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Abstract. We investigate the paramater of the average range of M -
Lipschitz mapping of a given graph. We focus on well-known classes
such as paths, complete graphs, complete bipartite graphs and cycles and
show closed formulas for computing this parameter and also we conclude
asymptotics of this parameter on these aforementioned classes.

1 Introduction

Graph-indexed randomwalks (or equivalently alsoM -Lipschitz mapping of graphs)
are a generalization of standard random walk on Z. Also, this concept has an
important connections to statistical physics, namely to gas models (as is de-
scribed by Zhao [22] and Cohen et al. [4]). Understanding the structure of all
M -Lipschitz mappings of a given graph and corresponding parameters is also
a point of interest because it can describe the expected behavior of a random
homomorphism to a suitable graph.

This paper aims on examining specific classes graphs and its average range.
This parameter can be described, without going into technical details from the
very beginning, as the expected size of the homomorphic image of an uniformly
picked random M -Lipschitz mapping of G.

Graph-indexed random walks and average range were studied for example in
[1,9,2,21,14].

In the following text we will not mix the terms M -Lipschitz mapping and
graph-indexed random walk and we will use only the first term.

1.1 Preliminaries

In this text we use the standard notation as for example in Diestel’s monograph
[7]. To avoid cumbersome notation, we will often write uv for undirected edge.

A graph homomorphism between digraphs G andH is a mapping f : V (G) →
V (H) such that for every edge uv ∈ E(G), f(u)f(v) ∈ E(H). That means that
graph homomorphism is an adjacency-preserving mapping between the vertex
sets of two digraphs. The set I := {w ∈ V (H) | ∃v ∈ V (G) : f(v) = w} for a
graph homomorphism f is called the homomorphic image of f .

For a comprehensive and more complete source on graph homomorphisms,
the reader is invited to see [12]. A quick introduction is given in [11] as well.

http://arxiv.org/abs/1801.05498v1


Definition 1. For M ∈ N, an M -Lipschitz mapping of a connected graph G =
(V,E) with root v0 ∈ V is a mapping f : V → Z such that f(v0) = 0 and for
every edge (u, v) ∈ E it holds that |f(u)−f(v)| ≤ M . The set of all M -Lipschitz
mappings of a graph G is denoted by LM (G).

By the term Lipschitz mappings of graph we mean the union of sets of M -
Lipschitz mappings for every M ∈ N .

The importance of having rooted graphs is the following. We want to have
finitely many Lipschitz mappings for a fixed graph G. Mappings with f(v0) 6= 0
are just linear shifts of some mapping with f(v0) = 0. Formally, consider a
mapping f ′ with f ′(v0) = a. Then we can define a linear transformation Ta as
Ta(f) 7−→ f − a. Applying Ta to f ′ yields a Lipschitz mapping of G with v0 as
its root.

We note that we are interested in connected graphs only. Components with-
out the root would also allow infinitely many new M -Lipschitz mappings.

In literature, we will often meet a slightly different definition of 1-Lipschitz
mappings. In it the restriction |f(u) − f(v)| ≤ 1, for all uv ∈ E, is removed
and instead, the restriction |f(u) − f(v)| = 1, for all uv ∈ E, is added. In [14]
authors call these mappings strong Lipschitz mappings. We generalize this in the
following definition.

Definition 2. For M ∈ N, a strong M -Lipschitz mapping of a connected graph
G = (V,E) with root v0 ∈ V is a mapping f : V → Z such that f(v0) = 0 and for
every edge (u, v) ∈ E it holds that |f(u)−f(v)| = M . The set of all M -Lipschitz
mappings of a graph G is denoted by L±M (G).

Note that strong M -Lipschitz mappings are a special case of M -Lipschitz
mappings of graph. Also, B-Lipschitz mappings are a superset of A-Lipschitz
mapping whenever B ≥ A. See Figure 1 for the Hasse diagram of various types
of Lipschitz mappings.

Analogously, by the term strong Lipschitz mappings of graph we mean the
union of sets of strong M -Lipschitz mappings for every M ∈ N .

First of all, let us define the range of a mapping.

Definition 3. The range of a Lipschitz mapping f of G is the size of the ho-
momorphic image of f . Formally:

rG(f) :=
∣

∣{z ∈ Z | z = f(v) for some v ∈ V (G)}
∣

∣.

We define the average range of graph G as follows.

Definition 4. (Average range) The average range of graph G over all M -Lipschitz
mappings is defined as

rM (G) :=

∑

f∈LM (G) r(f)

|LM (G)| .



strong 3-Lipschitz

strong 2-Lipschitz

strong 1-Lipschitz

3-Lipschitz

2-Lipschitz

1-Lipschitz

Fig. 1: The Hasse diagram of different types of Lipschitz mappings of graphs.

We can view this quantity as the expected size of the homomorphic image of
an uniformly picked random M -Lipschitz mapping of G.

Whenever we want to talk about the counterparts of these definitions for
strong Lipschitz mappings, we denote it with ± in subscript. For example, r±M

is the average range of strong M -Lipschitz mapping of graph.
Whenever we write average range without saying which M -Lipschitz map-

pings we use, it should be clear from the context what M do we mean.
It is worth noting that for computing the average range, the choice of root

does not matter. That is why we often omit the details of picking the root. For
better analysis in proofs we occasionally pick the root in some convenient way.

1.2 Conjectures on the average range

Fundamental conjectures on the average range of (strong) 1-Lipschitz mappings
say that paths Pn are extremal with regard to this parameter on the n-vertex
graphs.

The first one is from Benjamini, Häggström and Mossel.

Conjecture 1. [1] (Benjamini-Häggström-Mossel) For any connected bipartite
graph G ∈ Gn, r±1(G) ≤ r±1(Pn) holds.

Newer version which generalizes the previous one is the following conjecture
by Loebl, Nešetřil and Reed.

Conjecture 2. [14] (Loebl-Nešetřil-Reed ) For any connected graph G ∈ Gn,
r1(G) ≤ r1(Pn) holds.

We will occasionally abbreviate Conjecture 1 to BHM Conjecture and Con-
jecture 2 to LNR Conjecture.



1.3 Structure of this paper

Each of the following sections deals with a different graph class.

2 Complete graphs

For completeness of the picture we will show the formula for r1(Kn).

Theorem 1. For a complete graph Kn we have r1(Kn) = 2− (2n − 1)−1.

Proof. Let us count the number of 1-Lipschitz mappings of Kn. We cannot
choose the image of the root r but we can do it for other vertices. Namely,
we must choose integers from interval [−1, 1] due to the fact that every vertex
v 6= r is a neighbor of the root. Furthermore, 1-Lipschitz mapping f with vertices
u, v ∈ V (Kn) such that f(u) = −1 and f(v) = 1 cannot exist since uv ∈ E(Kn).
Thus, apart from the trivial case of setting image of all vertices to 0, we can
choose to map vertices other than r either to −1 and 0, or to 1 and 0 – exclusively.
For each of this choice we have 2n−1 − 1 of such 1-Lipschitz mappings and each
of them has the range equal to 2. We conclude:

r1(Kn) =
2 · 2 · (2n−1 − 1) + 1

2 · (2n−1 − 1) + 1
= 2− 1

2n − 1
.

⊓⊔

Theorem 1 implies the limiting behavior of r1(Kn).

Corollary 1. It holds that limn→∞ r1(Kn) = 2.

3 Complete bipartite graphs

We prove an exact formula for another well-known class of graphs, complete
bipartite graphs.

Theorem 2. For every p, q ∈ N, a complete bipartite graph Kp,q satisfies

|L1(Kp,q)| = 3p + 3q + 2p+q − 2p+1 − 2q+1 + 1,

and
r1(Kp,q) = 3− 2p+q · (3p + 3q + 2p+q − 2p+1 − 2q+1 + 1)−1.

Proof. We use Theorem ?? that implies that the possible ranges of Kp,q form a
subset of {1, 2, 3}. We analyze separate cases of possible ranges and count how
many such mappings exist. Let us denote the part of size p by P and the other
one, with the size q, as Q. Without loss of generality, assume that all 1-Lipschitz
mappings are rooted in some fixed vertex of P .

– Range equal to 1: Clearly, there is exactly one such mapping, sending every-
thing to zero.



– Range equal to 2: A homomorphic image of a 1-Lipschitz mapping is some
closed interval, as we observed earlier in preliminary chapter. Thus the pos-
sibilities for the homomorphic image of the range 2 are {0, 1} and {−1, 0}.
These cases are symmetric to each other, so let us analyze, without loss of
generality, the case {0, 1}.
There are 2p+q−1 possibilities how to assign 0 and 1 to the vertices excluding
the root. However, one of these possibilities is the trivial mapping of the
range 1 (everything mapped to zero). The result is that there are 2p+q−1− 1
mappings with the homomorphic image {0, 1}.

– Range equal to 3: Again we have multiple cases. The cases {0, 1, 2} and
{−2,−1, 0} are symmetric, the third is {−1, 0, 1}.
Let us solve the case {0, 1, 2} first. Clearly, 0 and 2 cannot be in different
parts, otherwise there would exist an edge with endpoints mapped to 0 and
to 2, violating the definition of 1-Lipschitz mapping. That further implies
the impossibility of vq ∈ Q mapped to 2. By a similar argument we get that
only in the case that all vertices of Q are mapped to one we can get the
homomorphic image {0, 1, 2}. We can then place any of the numbers from
{0, 1, 2} on the part P . However, we must exclude assignments with no 2 on
the part P . That yields 3p−1 − 2p−1 possibilities.
The remaining case is {−1, 0, 1}. Again, we see that 1 and −1 cannot be in
different parts. Thus, either the part P has all vertices mapped to zero and
on Q we can choose for every vertex an image from the set {−1, 0, 1}, or vice
versa. That gives us 3p−1 + 3q choices from which we must exclude those
that use only some propper subset of {−1, 0, 1}. Finally, we get the formula

3p−1 + 3q − 2p − 2q+1 + 2

for this case.

Table 1 summarize all the cases. The number of 1-Lipschitz mappings of Kp,q

is equal to
3p + 3q + 2p+q − 2p+1 − 2q+1 + 1,

i.e. the sum of the third column of Table 1. By straightforward calculations we
get

r1(Kp,q) = 3− 2p+q · (3p + 3q + 2p+q − 2p+1 − 2q+1 + 1)−1.

⊓⊔

We conclude this section with the observation on the limiting behavior of
r1(Kp,q) as (p+ q) → ∞. Clearly, the average range is 3 in limit.

4 Stars

Definition 5. A star graph Sn is a tree with n vertices; one vertex of degree
n− 1 and n− 1 leaves (vertices of degree one). Or, alternatively, it is a complete
bipartite graph K1,n−1.



range homomorphic image number of such mappings

1 {0} 1

2
{0, 1} 2p+q−1 − 1
{0,−1} dtto

3
{0, 1, 2} 3p−1 − 2p−1

{−2,−1, 0} dtto
{−1, 0, 1} 3p−1 + 3q − 2p − 2q+1 + 2

Table 1: Table for Theorem 2.

Theorem 3. A star Sn satisfies

r1(Sn) = 3− 2n

3n−1
,

and
r±1(Sn) = 3− 22−n.

Proof. We will use the definition of stars as a special case of complete bipartite
graphs. We can then use Theorem 2 for the case of 1-Lipschitz mappings with
p := 1 and q := n− 1. The desired claim follows.

We will now prove the second formula. Without loss of generality, we will
root our graph in the central vertex. Observe that all leafs will get either +1 or
−1 and only cases in which range is equal to 2 are the cases of either all leaves
mapped to 1 or to −1. The rest of the cases have the range equal to 3. Totally,
there are 2n−1 of strong 1-Lipschitz mappings. That concludes our claim. ⊓⊔

5 Paths

In [21], authors compute several values of r1(Pn) (see Table 2) and claim that
no explicit formula for an average range of a path is known. We fill this gap
and present such formula, exploiting the tool used in the random walk analysis
called reflection principle.

n 2 3 4 5 6 7 8 9 10 11 12

r1(Pn)
5

3

19

9

67

27

227

81

751

243

2445

729

7869

2187

25107

6561

78767

19683

250793

59049

786985

177147

Table 2: Table of values of r1(Pn) for 2 ≤ n ≤ 12.

We will define auxiliary random variables and we will speak for a while also
in the language of standard random walks which are naturally encoded in 1-
Lipschitz mapping of Pn. We refer reader to [15] for a general treatment of
random walks.



Definition 6. For a given 1-Lipschitz mapping f :

– M+
n (f) is a random variable corresponding to the maximum non-negative

number in the image of a 1-Lipschitz mapping f .
– M−

n (f) is a random variable corresponding to the minimum non-positive
number in the image of a 1-Lipschitz mapping f .

– Xn(f) denotes the number f(vn), i.e. image of the second endpoint of Pn.

We omit (f) if f is clear from the context.

Theorem 4. For a path Pn we have

r1(Pn) = 1 + 3−n+1 · 2 ·
n−1
∑

k=0

k ·
⌊n−1−k

2
⌋

∑

i=0

(

(

n− 1

k + i

)(

n− k − i− 1

i

)

+

(

n− 1

k + 1 + i

)(

n− k − i− 2

i

)

)

.

Proof. The average range of path Pn can be formulated as:

r1(Pn) = E[M+
n −M−

n + 1].

From the symmetry of M+
n and M−

n and from the linearity of expectation,
one gets:

r1(Pn) = E[M+
n +M+

n + 1] = E[M+
n ] + E[M+

n ] + 1 = 2E[M+
n ] + 1.

Set Mn := M+
n . Now let us prove that P (Mn ≥ r) = P (Xn ≥ r) + P (Xn ≥

r + 1).
The walks with Mn ≥ r fit into two groups. Either such walks end in s ≥ r or

in s < r. In the second case, we can reflect the section of the path after the first
time we get to r and we get a new walk which now ends in s′ > r. See Figure
2 for an illustration. Since this process is invertible and every path that reaches
s ≥ r must have Mn ≥ r, we get:

P (Mn ≥ r) = P (Xn ≥ r) + P (Xn ≥ r + 1).

Next we will prove that: P (Mn = r) = P (Xn = r) + P (Xn = r + 1).

P (Mn = r) = P (Mn ≥ r) − P (Mn ≥ r + 1)

= P (Xn ≥ r) + P (Xn ≥ r + 1)− P (Xn ≥ r + 1)− P (Xn ≥ r + 2)

= P (Xn = r) + P (Xn = r + 1).

Now we need to determine P (Xn = r). Recall the aforementioned bijection
between {1,−1, 0}-sequences and walks from Section ??.

We have n− 1 edges so if we want to attain some fixed k, we need to sum up
our sequence to k. Thus we need to pick k additional 1’s over −1’s. Summing
up through the all possible values of the number of −1’s we get:



r

Fig. 2: An illustration of the reflection principle.

P (Xn = k) = 3−n+1 ·
⌊n−1−k

2
⌋

∑

i=0

(

n− 1

k + i

)(

n− k − i− 1

i

)

. (1)

And for P (Xn = k + 1) analogously:

P (Xn = k + 1) = 3−n+1 ·
⌊n−1−k

2
⌋

∑

i=0

(

n− 1

k + 1 + i

)(

n− k − i− 2

i

)

. (2)

We are now ready to combine all of this together and we get:

r1(Pn) = 1 + 2 ·
n−1
∑

k=0

k ·
(

P (Xn = k) + P (Xn = k + 1)
)

.

We note that
(

a
b

)

is defined as zero if b > a. Substituting P (Xn = k) by (1)
and P (Xn = k + 1) by (2) we get the desired claim.

⊓⊔

Besides the exact formula for the average range of a path, we prove the
following relation between the r1 of paths Pn and Pn+1.

Lemma 1. For every n ∈ N, r1(Pn+1)− r1(Pn) ≤ 2/3.

Proof. Let us write v1, v2, . . . , vn for vertices of Pn consecutively and let

E(Pn) := {v1v2, v2v3, . . . , vn−1vn}.

For Pn+1, set V (Pn+1) := V (Pn)∪{vn+1} and E(Pn+1) = E(Pn)∪{vnvn+1}.



Pick v1 as the root of Pn and Pn+1 as well and consider all 1-Lipschitz
mappings L(Pn) and L(Pn+1). Choose an arbitrary f from L(Pn). Now f(vn) = r
for some r ∈ Z. If we want to extend this f to a 1-Lipschitz mapping f ′ of Pn+1,
we see that we can set f ′(vn+1) to either r, r + 1 or r − 1. Choosing r does not
increase the range. Since we want to do an upper estimate, let us presume that
choosing r + 1 or r − 1 always increases the range. Thus we get:

r(Pn+1) ≤ r(Pn) + 2/3.

Which is only a different form of the desired claim. ⊓⊔

This simple upper bound has two corollaries.

Corollary 2. For every r, q ∈ N, r > q, r1(Pr) ≤ r1(Pq) + (r − q) · 2
3 holds.

Proof. Use Lemma 1 (r − q) times. ⊓⊔

Corollary 3. For every Pn, r1(Pn) ≤ 2n+1
3 holds.

Proof. Choose r := n and q := 1. Then use the previous lemma and observe
that r1(P1) is equal to one. ⊓⊔

We remark that for all paths in general we cannot get a better upper bound
by a constant than in Lemma 1 since r1(P2)− r1(P1) =

2
3 .

6 Trees

The most recent result in the area of graph-indexed random walks is the result
of Wu, Xhu and Zhu from 2016 [21]. The authors tried to attack the LNR and
BHM conjecture and got the following partial result.

Theorem 5. [21] For any tree Tn on n vertices holds the following,

1. r1(Tn) ≤ r1(Pn),

2. r±1(Tn) ≤ r±1(Pn).

Their approach is to use a special transformation called KC-transformation,
named by Kelmans [13], which we already mentioned in Section ??. Csikvári
[5,6] proved that this transformation induces a partially ordered set on the class
of all n-vertex trees with the path Pn as the maximum element and the star Sn

as the minimum element. By carefully choosing a right chain in this poset they
prove Theorem 5.

We note that by proving Theorem 3 and Theorem 4 we showed the precise
formulas for the minimum and the maximum possible average range of trees on
n vertices for the case of 1-Lipschitz mappings.



n 3 4 5 6 7 8 9 10 11 12

r1(Cn)
13

7

41

19

121

51

365

141

1093

393

3281

1107

9841

3139

29525

8953

88573

25653

265721

73789

Table 3: Table of values of r1(Cn) for 3 ≤ n ≤ 12.

7 Cycles

In this section, more specifically in Theorem 7, we will show a formula for the
average range of cycle graphs Cn.

See Table 3 for values of r1(Cn) of smaller cycles computed with a help of
our computer program.

First, let us introduce what the trinomial triangle is.

7.1 Trinomial triangle

The trinomial triangle is similar to the Pascal (binomial) triangle of binomial
coefficients. One can similarly define trinomial coefficients in a recursive way.

Definition 7. (Trinomial triangle and central trinomial coefficient) Trinomial
numbers (coefficients)

(

n
k

)

2
are defined as:

(

0

0

)

2

= 1

(

n+ 1

k

)

2

=

(

n

k − 1

)

2

+

(

n

k

)

2

+

(

n

k + 1

)

2

for n ≥ 0,

where
(

n
k

)

2
= 0 for k < −n and k > n.

Central trinomial coefficients are the numbers
(

n
0

)

2
, where n ∈ N0.

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

Fig. 3: The trinomial triangle with central trinomial coefficients in blue color.

The sequence for central trinomial coefficients in OEIS is A123456 [18]. See
Figure 3 for a visualization of the trinomial triangle with highlighted central
trinomial coefficients. Trinomial coefficients appear quite often in enumerative
combinatorics. Let us show one particular example.



Example 1. Suppose you have a king on a chessboard (it does not have to be the
usual 8× 8 one). Each entry of the triangle corresponds to the number of paths
using the minimum number of steps between some cells of the chessboard. See
Figure 4.

Useful fact is that central trinomial coefficients satisfy the following identity
(for its derivation, see for example [3]):

(

n

0

)

2

=

n
∑

k=0

n(n− 1) · · · (n− 2k + 1)

(k!)2
=

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

. (3)

Fig. 4: Each number represents the number of ways how to get to that cell with
the minimum number of step with the figure of king. [20]

7.2 Motzkin numbers

For the proof of the formula for r1(Cn) we need to define generalized Motzkin
number and paths. We will further write only Motzkin numbers and Motzkin
paths.

Definition 8. Consider a lattice path, beginning at (0, 0), ending at (n, k) and
satisfying that y-coordinate of every point is non-negative. Furthermore, every
two consecutive steps (i, a) and (i + 1, b) must satisfy |a − b| ≤ 1. Such lattice
path are called Motzkin paths.

The set of all the possible paths ending in (n, k) is denoted by m(n, k) and
the cardinality of this set is denoted by M(n, k). We call M(n, k) the Motzkin
number.



For more details we refer to the seminal paper [8], Motzkin numbers M(n, 0)
form the sequence A001006 in OEIS [16]. See Figure 5 for an example of a
Motzkin path.

Fig. 5: A Motzkin path from (0, 0) to (8, 0).

7.3 Main theorem

Theorem 6. For any cycle graph Cn, n ≥ 3, we have

r1(Cn) =
3n + (−1)n

2 ·
(

n
0

)

2

.

We will prove Theorem 7 in series of lemmata that will be put together later.

Lemma 2. There is a bijection between 1-Lipschitz mappings of Cn and the set
of lattice paths starting at (0, 0), ending at (n, 0), and satisfying that for every
two consecutive steps (i, a) and (i + 1, b), |a− b| ≤ 1.

Proof. The proof is analogous to other bijections we made between 1-Lipschitz
mappings of some type and some class of lattice walks. Take the sequence

v1, v2, . . . , vn, v1

of the vertices of Cn such that v1 is the root and the vertices appear consecutively
on the cycle precisely as in this sequence. For every 1-Lipschitz mapping f of
Cn we can define another sequence

(v1, f(v1)), (v2, f(v2)), . . . , (vn, f(vn)), (v1, f(v1)).

The lemma follows easily. ⊓⊔

Let us prove the formula for |L(Cn)|.

Theorem 7. For any Cn, n ≥ 3, |L(Cn)| =
(

n
0

)

2
.



Proof. We will encode all 1-Lipschitz mappings of the cycle into the sequences
{−1, 0, 1}n. Consider the lattice walks constructed in Lemma 2. For each se-
quence

(v1, f(v1)), (v2, f(v2)), . . . , (vn, f(vn)), (v1, f(v1)),

one can define the new sequence

f(v2)− f(v1), f(v3)− f(v2), . . . , f(v1)− f(vn).

We know that these sequences must add up to 0. Thus for any total number
k of ones in this sequence we must have k times −1 in this sequence as well.
Furthermore, we have k ≤ ⌊n/2⌋.

Summing over all possible k’s we first pick 2k edges which have either +1
or −1. Then from these 2k edges, we choose k edges for placing 1. The rest of
n− 2k edges gets 0’s and the rest of 2k − k = k edges gets (−1)’s. Formally:

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

.

This coincides with identity (3) if we take into account that
(

a
b

)

is defined to be
equal to zero if b > a. ⊓⊔

Definition 9. We denote by L(Cn,−d) the set of 1-Lipschitz mappings f of Cn

satisfying
min

v∈V (Cn)
f(v) = −d.

In other words, L(Cn,−d) denotes the set of all 1-Lipschitz mappings of Cn with
−d as the minimum value in their homomorphic images.

Another ingredient we need is the following theorem of Van Leeuwen.

Theorem 8. [19] Within the class of walks on Z starting at 0 and with steps
advancing by +1, 0 or −1, there is a bijection, conserving both the length of
the walk and the number of steps 0, between on one hand the walks that end
in 0, and on the other hand the walks that do not visit negative numbers. The
bijection maps walks ending at 0 and whose minimal number visited is −d, to
walks ending at 2d, and is realized by reversing the direction of the d down-steps
that first reach respectively the numbers −1,−2, . . . ,−d.

Now we need to show a bijection between L(Cn,−d) and the set m(n, 2d).

Lemma 3. There exist a bijection from the set of Motzkin paths m(n, 2d) to the
set L(Cn,−d).

Proof. The existence of such sequence follows straightforwardly from combining
Theorem 8 and Lemma 2. ⊓⊔

For technical convenience, we will define the irregular trinomial triangle and
irregular trinomial coefficients ; see the sequence A027907 in OEIS [17]. See Fig-
ure 4, depicting a part of the irregular trinomial triangle.



Definition 10. The irregular trinomial coefficients are defined as

T ∗(n, k) =

(

n

k + n

)

2

.

n/k 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1
1 1 1 1
2 1 2 3 2 1
3 1 3 6 7 6 3 1
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15 5 1
6 1 6 21 50 90 126 141 126 90 50 21 6 1

Table 4: A part of the irregular trinomial triangle. The entries of the table are
numbers T ∗(n, k).

The following lemmata, showing the relation of Motzkin paths and irregular
trinomial coefficients will be crucial for the proof of the main theorem.

Remark 1. For every n, k ∈ Z the following identity holds:

T ∗(n, k) = T ∗(n− 1, k) + T ∗(n− 1, k − 1) + T ∗(n− 1, k − 2).

Proof. This is easily verified from the definition of the trinomial coefficients. ⊓⊔
Lemma 4. The following identity holds for every n, k ∈ N0, k ≤ n,

M(n, k) = T ∗(n, n− k)− T ∗(n, n− k − 2). (4)

Proof. We prove this theorem by induction on n. For n = 0, 1, the identity holds.
We divide the rest of the proof into two cases (the first case is needed because

in case of n = k, we would not be able to use induction hypothesis):
Case 1: n = k. Then 1 = M(n, n) = T ∗(n, 0) + T ∗(n,−2) = 1 + 0, so this

case is done.
Case 2: n > k. Now suppose the identity holds for all numbers up to n− 1.

By the definition of the generalized Motzkin numbers we have

M(n, k) = M(n− 1, k) +M(n− 1, k − 1) +M(n− 1, k + 1). (5)

And by induction hypothesis we can write

M(n, k) = T ∗(n− 1, n− k)− T ∗(n− 1, n− k − 2)

+ T ∗(n− 1, n− k − 1)− T ∗(n− 1, n− k − 3)

+ T ∗(n− 1, n− k − 2)− T ∗(n− 1, n− k − 4).

From Remark 1 on the recurrence relation of irregular coefficients we get that
the even summands and odd summands are equal to T ∗(n, n−k) and −T ∗(n, n−
k − 2), respectively. Our claim follows. ⊓⊔



Now we need the last lemma, concerning the sum of irregular coefficients.

Lemma 5. For every even n ∈ N0 holds:

n
∑

k=0

T ∗(n, 2k) = (3n + 1)/2, (6)

and for odd n ∈ N0 holds:

n
∑

k=1

T ∗(n, 2k − 1) = (3n − 1)/2. (7)

Proof. We will prove these identities by induction. For n = 0, 1, the respective
identities hold. Now assume that both identities hold for all n′ < n. By parity
of n we distinguish two cases. We will prove the lemma for the case of n even.
Odd case is very similar.

n
∑

k=0

T ∗(n, 2k) =

n−1
∑

k=1

T ∗(n, 2k − 1) + 2 ·
n−1
∑

k=0

T ∗(n, 2k) (8)

= 2 · 3n−1 −
n−1
∑

k=1

T ∗(n, 2k − 1) (9)

= 2 · 3n−1 − (3n−1 − 1)/2 (10)

= (3n + 1)/2. (11)

– The first equation follows from Remark 1.
– The second equation follows from the fact that the sum of the n-th row of

T ∗ is equal to 3n. That can be easily proved by induction.
– The third equation follows from the induction hypothesis.
– The fourth equation is straightforward calculation.

⊓⊔

We can finally prove the main theorem of this section and one of the main
results of this paper.

Proof (Proof of Theorem 7). We will first show the following identity for every
n ≥ 3.

⌊n/2⌋
∑

k=0

(2k+1)(T ∗(n, n−2k)−T ∗(n−1, n−2k−2)) =

{

∑n
k=0 T

∗(n, 2k), n even
∑n

k=1 T
∗(n, 2k − 1), n odd

This identity follows from the straightforward calculations and from the obser-
vation that T ∗(n, n− k) = T ∗(n, n+ k) for every n, k ∈ Z.

For brevity, we will do the following calculation for n odd. The proof for n
even is different in the last two equations but the only difference is the use of
the different parts of lemma and identity 7.3, depending on the parity.



r1(Cn) · |L(Cn)| =
⌊n/2⌋
∑

k=0

(2k + 1) ·M(n, 2k)

(by Lemma 3 and linearity of expectation)

=

⌊n/2⌋
∑

k=0

(2k + 1) ·
(

T ∗(n, n− 2k)− T ∗(n− 1, n− 2k − 2)
)

(by Lemma 4)

=

n
∑

k=1

T ∗(n, 2k − 1)

=
3n − 1

2
. (by Lemma 5)

Together with Theorem 7 taken into account we conclude the formula for
r1(Cn). ⊓⊔

We present the following corollary regarding the asymptotics of r1(Cn).

Corollary 4. It holds that r1(Cn) ∼ 2
√

π
3n.

Proof. The asymptotics of central trinomial coefficients is known, see e.g. [10, p.
588]. Central trinomial coefficients satisfy

(

n

0

)

2

∼ 3n+1/2

2
√
πn

.

The sign ∼ denotes the relation of two sequences. Two sequences an and bn are
in relation an ∼ bn if limn→∞

an

bn
= 1. Using Theorem 7 and the mentioned

asymptotics, we get: r1(Cn) ∼ 2
√

π
3n. ⊓⊔

8 Pseudotrees

We suspect that the following results might be the first step to prove LNR and
BHM conjectures for the class of pseudotrees.

Definition 11. We call a graph unicyclic if it contains exactly one cycle.

Definition 12. We call a graph pseudotree if it is a tree or a unicyclic graph.
Equivalently, pseudotrees are graphs with at most one cycle.

8.1 Counting the number of 1-Lipschitz mappings

Lemma 6. The number of 1-Lipschitz mappings of unicyclic graphs with order
n and cycle size c, c ≤ n, is equal to

(

c

0

)

2

· 3n−c.



Proof. Let us denote our unicyclic graph of order n and cycle size c by G and
the subgraph induced by the vertices on its cycle by C. We use Theorem 7 to
get the number of 1-Lipschitz mappings of the subgraph C. Now let us fix some
f , a 1-Lipschitz mapping of C.

By deleting all the edges of the cycle C we get a forest T of trees T1, . . . , Tc.
In this forest, exactly one vertex in each tree Ti has an image under the mapping
f . Thus we obtain 3|V (Ti)|−1 different 1-Lipschitz mappings for each of the tree
in T . Because we can choose all these mapping independently on each other, we
obtain, summing over all possible mappings f , the following identity.

L1(G) =

(

c

0

)

2

· 3
∑

c

i=1
|V (Ti)|−1 =

(

c

0

)

2

· 3n−c.

⊓⊔

Observe that Lemma 6 implies that two same-order unicyclic graphs with
the same-length cycle have the same number of Lipschitz mappings.

8.2 KC-transformation

In this section it will be useful for us to give a name to one special subset of
unicyclic graphs. See Figure 6 for an example.

Definition 13. A corolla graph is a unicyclic graph obtained by taking a cycle
graph and joining some path graphs to it by identifying their endpoints with some
vertex of that cycle. Every path is joined to exactly one vertex of the cycle. And
every vertex of the cycle has at most one path attached.

We note that cycles form a subset of corolla graphs.

Fig. 6: An example of corolla graph.

Now we are ready to introduce the generalized KC-transformation and the
main result of [21].

Definition 14 (Generalized KC-transformation). Take a connected graph

G and pick {a, b} ∈
(

V (G)
2

)

. Let Va;b(G) denote the set of those vertices which



cannot reach b without passing by a in G. If it is satisfied the following condition
that

min(|Va;b(G)|, |Vb;a(G)|) > 1,

then we can get a new graph Ga→b by modifying G in the following way.

Remove the edges bb1, . . . , bbt, where b1, . . . , bt are all the neighbors of b in
Vb;a(G) and add new edges ab1, . . . , abt.

Definition 15. Let G be a connected graph. Take two different cut vertices a
and b of G. We write V (G; a, b) for the set

(

V (G) \ (Va;b(G) ∪ Vb;a(G))
)

∪ {a, b}.

Theorem 9. [21] Let G be a connected graph. Take two different cut vertices a
and b of G. Let H be the subgraph of G induced by V (G; a, b). Assume that H has
an automorphism σ such that σ(a) = b and σ(b) = a. Then r1(G) ≥ r1(Ga→b).

It is worth noting that one of the corollaries of Theorem 9 is the aforemen-
tioned Theorem 5. We will use Theorem 9 to show that for every unicyclic graph
that is not a corolla graph there exists some corolla graph of the same order and
cycle size that has higher or equal r1.

Theorem 10. For every unicyclic graph U on n vertices that is not a corolla
graph there exist a corolla graph R on n vertices such that r1(R) ≥ r1(U).

Proof. Take an inclusion-wise maximal tree T rooted in r such that r is a vertex
of the cycle of U and T is not isomorphic to a path graph. Furthermore, T must
satisfy V (U)∩V (T ) = {r} . Since U is not a corolla graph, such tree must exist.

Consider a sequence T1, T2, . . . , Ts with T1 = T and Ts being a path graph
such that for every i ∈ {2, . . . , s}, r1(Ti−1) ≤ r1(Ti) holds. The existence of such
sequence directly follows from Theorem 9.

We can easily extend this argument and define the sequence U1, U2, . . . , Us

such that Ui is the graph in which T is replaced by Ti. Clearly, r1(Ui−1) ≤ r1(Ui).

We can repeatedly find another tree T ′ in Us, satisfying the same conditions
as T (except that the root has to be of different of course) in U and proceed
similarly until we cannot find some next T ′. We get a corolla graph and our
claim follows. ⊓⊔

9 Concluding remarks

We have showed closed formulas for several classes of graphs including paths,
complete graphs, complete bipartite graphs (and specially stars) and most im-
portantly we showed the formula for cycles by using properties of generalized
Motzkin numbers. We also investigated pseudotrees in the effort of extending
the results of [21].
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5. Csikvári, P. On a poset of trees. Combinatorica 30, 2 (2010), 125–137.
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