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Abstract

Being aware of the recent work of Andrews, we notice two conjectures concerning

with some variations of odd partitions and distinct partitions posed by Beck, which are

analytically proved by Andrews. Later, following the same method of Andrews, Chern

presented the analytic proof of another Beck’s conjecture related the gap-free partitions and

distinct partitions with odd length. However, the combinatorial interpretations of these

conjectures are still unclear and required. In this paper, motivated by Glaisher’s bijection,

we give the combinatorial proofs of these three conjectures directly or by proving more

generalized results.
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1 Introduction

A partition [1] of n is a finite nonincreasing sequence of positive integers (λ1, λ2, . . . , λℓ) such

that n = λ1 + λ2 + · · · + λℓ. We write λ = (λ1, λ2, . . . , λℓ) and call λi’s the parts of λ. If a

part i appears mi times for i ≥ 1, we also write λ as (1m1 , 2m2 , . . .), where the superscript mi

is neglected provided mi = 1. The size of λ is the sum of all parts, which is denoted by |λ|,

and the length of λ is the number of parts, which is denoted by ℓ(λ). The conjugate of λ is the

partition λ′ = (λ′
1
, λ′

2
, . . . , λ′

λ1
), where λ′

i
= |{λ j : λ j ≥ i, 1 ≤ j ≤ m}| for 1 ≤ i ≤ λ1, or λ′ can be

equivalently expressed as (1λ1−λ2, 2λ2−λ3, . . . , ℓ− 1λℓ−1−λℓ , ℓλℓ ). A partition λ = (λ1, λ2, . . . , λℓ) is

called a distinct partition if λ1 > λ2 > · · · > λℓ, and an odd partition if λi is odd for all 1 ≤ i ≤ ℓ,

respectively. In 1748, by using generating functions, Euler [6] gave the celebrated partition

theorem as follows.

Theorem 1.1 (Euler’s partition theorem) The number of distinct partitions of n equals the number

of odd partitions of n.
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After Euler’s partition theorem proposed, there are many extensions and refinements, the

famous ones of which are Glaisher’s theorem and Franklin’s theorem, and the reader can refer

[11, 12, 14] for more details. Glaisher [10] bijectively proved the following extension.

Theorem 1.2 (Glaisher’s theorem) For any positive integer k ≥ 1, the number of partitions of n

with no part occurring k or more times equals the number of partitions of n with no part divisible by k.

In 1882, Franklin [8, 13] acquired a more generalized result by giving constructive proof of the

following theorem. Franklin [13, p. 268] also asserted that the generating function is easily

obtained.

Theorem 1.3 (Franklin’s theorem) For any positive integer k ≥ 1 and nonnegative integer m ≥ 0,

the number partitions of n with m distinct parts each occurring k or more times equals the number of

partitions of n with exactly m distinct parts divisible by k.

Thus by taking m = 0, Franklin’s theorem degenerates to Glaisher’s theorem, then by taking

k = 2, Glaisher’s theorem gives Euler’s partition theorem.

From the works of Andrews and Chern, we notice three conjectures posed by Beck concern-

ing with some variations of odd partitions and distinct partitions, which are only analytically

proved by Andrews [4] and Chern [5] via differentiation technique in q-series introduced by

Andrews [4]. In this paper, by extending Glaisher’s bijection, we give the combinatorial proofs

of the three conjectures directly or by proving more generalized results. For the consistency

of notations, we utilize the same notations in [4] and [5] in the rest of paper as far as possible.

Let a(n) denote the number of partitions of n with only one even part which is possible

repeated. Beck [15] proposed the following conjecture:

Conjecture 1.1 a(n) is also the difference between the number of parts in the odd partitions of n and

the number of parts in the distinct partitions of n.

Example 1.1 For n = 6, the set of partitions of 6 such that the set of even parts has only one

element is {(6), (4, 1, 1), (3, 2, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1)}, which is consist of 6 partitions. The

odd partitions of 6 are {(5, 1), (3, 3), (3, 1, 1, 1), (1, 1, 1, 1, 1, 1)} with the sum of lengths is 14, and the

distinct partitions of 6 are {(6), (5, 1), (4, 2), (3, 2, 1)} with the sum of lengths is 8. Thus the difference

is 14 − 8 = 6.

Let c(n) denote the number of partitions of n in which exactly one part is repeated. Let b(n)

be the difference between the number of parts in the odd partitions of n and the number of

parts in the distinct partitions of n. Andrews [4] analytically proved the following theorem by

differentiation technique in q-series, which confirms the conjecture posed by Beck [15]:

Theorem 1.4 [4, Theorem 1.] For all n ≥ 1, a(n) = b(n) = c(n).
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Later Fu and Tang [9, Theorem 1.5] extended the the result of Andrews and gave the analytic

proof.

Note that setting k = 2 and m = 1 in Theorem 1.3 already gives the proof of a(n) = c(n).

Hence, in order to complete the bijective proof of Conjecture 1.1 or Theorem 1.4, we give the

combinatorial proof of a(n) = b(n) by proving a more generalized theorem. For k ≥ 1, let Ok(n)

be the set of partitions of n with no part divisible by k and Dk(n) be the set of partitions of n

with no part occurring k or more times, respectively. LetO1,k(n) be the partitions of n with exact

one part (possible repeated) divisible by k. We study the numerical relationship between the

cardinality of O1,k(n) and the difference between the number of parts in Ok(n) and the number

of parts inDk(n), where the case of k = 2 gives the combinatorial interpretation of a(n) = b(n).

Let a1(n) denote the number of partitions of n such that there is exactly one part occurring

three times while all other parts occur only once. Beck [15] made the following conjecture:

Conjecture 1.2 a1(n) is also the difference between the number of parts in the distinct partitions of n

and the number of distinct parts in the odd partitions of n.

Example 1.2 Let n = 6, then the corresponding set counted by a1(6) is {(3, 1, 1, 1, ), (2, 2, 2)}. By

Example 1.1, the number of parts in the distinct partitions of 6 is 8 and the number of distinct parts in

the odd partitions of 6 is 6, which implies the difference is 8 − 6 = 2.

Let b1(n) be the difference between the total number of parts in the partitions of n into

distinct parts and the total number of distinct parts in the partitions of n into odd parts. This

conjecture was also proved by Andrews [4] with analytic method.

Theorem 1.5 [4, Theorem 2] a1(n) = b1(n).

To verify Conjecture 1.2 combinatorially, we prove a extension of Theorem 1.5. Let Tk(n)

be the set of partitions of n such that there is exactly one part occurring more than k times and

less than 2k times while all other parts occur less than k times. We prove that the cardinality of

set Tk(n) is equal to the excess of the number of distinct parts of partitions in Dk(n), over the

number of distinct parts of partitions in Ok(n). Hence taking k = 2 confirms Conjecture 1.2.

A partition λ = (λ1, . . . , λℓ) is called a gap-free, or compact, partition if 0 ≤ λi − λi+1 ≤ 1 for

all 1 ≤ i ≤ ℓ − 1. Let a2(n) be the number of gap-free partitions of n and Andrews [3] gave the

generating function of a2(n). Beck [16] proposed the following conjecture of a2(n):

Conjecture 1.3 a2(n) is also the sum of the smallest parts in the distinct partitions of n with an odd

number of parts.

Example 1.3 For n = 6, there are 7 gag-free partitions, which are {(6), (3, 3), (3, 2, 1), (2, 2, 2), (2, 2, 1, 1),

(2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)}. The set of distinct partitions of 6 with odd length is {(6), (3, 2, 1)}, where

the sum of the smallest parts is 6 + 1 = 7.
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Let b2(n) denote the sum of the smallest parts in the distinct partitions of n with an odd

number of parts. Chern [5] proved this conjecture analytically by q-series based on method

used by Andrews in [4].

Theorem 1.6 [5, Theorem 1.2] For all n ≥ 1, a2(n) = b2(n).

In this paper, we not only give the combinatorial proof of Conjecture 1.3, but also study the

relationship between the gap-free partitions and the distinct partitions with even length, which

leads us to rediscover a classical combinatorial identity found by Fokkink-Fokkink-Wang [7]

combinatorially and proved by Andrews [2] analytically.

The rest of this paper is organized as follows. As our main tool to prove Conjecture 1.1

and 1.2, we introduce Glaisher’s bijection detailedly in Section 2. In section 3, we give the

combinatorial proof of Theorem 3.1, which is a extension of Conjecture 1.1. By proving a more

generalized result (Theorem 4.1), we confirm Conjecture 1.2 in Section 4. The combinatorial

proof of Conjecture 1.3 (Theorem 5.4) and a similar theorem (Theorem 5.5) connecting the

gap-free partitions with the distinct partitions of even length are contained in Section 5.

2 Glaisher’s bijection

In this section, we mainly recall Glaisher’s bijection since it will be used frequently through

this paper. Recall that for any positive integer k ≥ 1, Ok(n) is the set of partitions of n with

no part divisible by k, andDk(n) is the set of partitions of n with no part occurring k or more

times. Glaisher [10] gave the bijective proof of |Ok(n)| = |Dk(n)|.

Glaisher’s bijection is defined as follows. and one can refer [10, 11, 12, 14] for more details.

Let λ = (λ1, λ2, . . . , λℓ) be a partition in Dk(n), then for 1 ≤ i ≤ ℓ, each part λi can be uniquely

written as kmi fi with k ∤ fi. Thus φ(λ) is established from λ by replacing the part λi by kmi parts

fi for 1 ≤ i ≤ ℓ. Since each fi is not divisible by k, then we have φ(λ) ∈ Ok(n).

Example 2.1 If k = 3 and λ = (22, 6, 82, 9, 12) ∈ D3(47), then 2 = 30 · 2, 6 = 31 · 2, 8 = 30 · 8,

9 = 32 · 1 and 12 = 31 · 4. Hence φ(λ) = (19, 25, 43, 82) ∈ O3(47).

In another direction, given a partition µ = (µ1, µ2, . . . , µℓ) ∈ Ok(n), assume that there are mi

parts i in µ for 1 ≤ i ≤ n. Then for each mi ≥ 1, mi can be uniquely expressed as

mi = bi1 kai1 + bi2 kai2 + · · · + bipi
k

aipi ,

where ai1 > ai2 > · · · > aipi
≥ 0 and 1 ≤ bi j

≤ k − 1 for 1 ≤ j ≤ pi. Hence we can construct ϕ(µ)

by µ via substituting mi parts i by bi1 parts i · kai1 , bi2 parts i · kai2 , . . . , bipi
parts i · k

aipi whenever

mi ≥ 1 for 1 ≤ i ≤ n. It is clear that ϕ(µ) ∈ Ok(n) because 1 ≤ bi j
≤ k − 1 for 1 ≤ i ≤ n and
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1 ≤ j ≤ pi, and i · kr = j · ks if and only if both i = j and r = s hold since i and j are not divisible

by k. Actually, we can describe the process of producing ϕ(µ) more simply. It is easy to check

that ϕ(µ) is obtained from µ by keeping gluing k same parts into one part until there is no part

occurring at least k times.

Example 2.2 If k = 3 and µ = (19, 25, 43, 82) ∈ O3(47), then 9 = 1 · 32, 5 = 1 · 31 + 2 · 30, 3 = 1 · 31

and 2 = 2 · 30. Thus ϕ(µ) = (22, 6, 82, 9, 12) ∈ D3(47).

Therefore, the maps φ : Dk → Ok and ϕ : Ok → Dk are well defined bijections inverse to

each other: ϕ = φ−1, which gives Glaisher’s bijection. In the rest of paper, according to the

specific circumstances, we are free to choose Glaisher’s bijection as φmappingDk(n) to Ok(n)

or ϕmapping Ok(n) toDk(n).

3 Combinatorial proof of Conjecture 1.1

Recall that O1,k(n) is the set of partitions of n containing exactly one part divisible by k which

is possible repeated. To verify Conjecture 1.1, we prove the following generalized theorem

combinatorially.

Theorem 3.1 For k ≥ 2 and n ≥ 0, we have

∣
∣
∣O1,k(n)

∣
∣
∣ =

1

k − 1
·

(
∑

λ∈Ok(n)

ℓ(λ) −
∑

λ∈Dk(n)

ℓ(λ)

)

,

where ℓ(λ) is the number of parts in λ.

Thus, letting k = 2 in Theorem 3.1 reduces the set O1,k(n) to the set of partition of n with only

one even part which is possible repeated, and the setOk(n) (resp. Dk(n)) to the set of odd (resp.

distinct) partitions of n, which gives the combinatorial proof of Conjecture 1.1.

In this section, we use Glaisher’s bijection ϕ : Ok(n) → Dk(n). First we introduce some

notations. Let m be a positive integer, then denote by p(m) the sum of nonzero digits in the

k-adic representation of m and a(m) the highest digit in the k-adic representation of m. Precisely,

m can be uniquely written as b1ka1+b2ka2+ · · ·+bpkap with a1 > a2 > · · · > ap ≥ 0 and 1 ≤ bi ≤ k−1

for 1 ≤ i ≤ p, then p(m) =
∑p

j=1
b j and a(m) = a1.

Lemma 3.2 Let λ = (1m1 , 2m2 , . . .) ∈ Ok(n), we have

ℓ(λ) − ℓ(ϕ(λ)) =
∑

mi,0

(mi − p(mi)). (3.1)
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Proof. Assume that λ contains mi parts i with mi , 0, then by the construction of Glaisher’s

bijection ϕ : Ok(n)→ Dk(n), for each mi , 0, we rewrite mi as bi1kai1 + bi2 kai2 + · · · + bipi
k

aipi and

replace mi parts i by bi1 parts i · kai1 , bi2 parts i · kai2 , . . ., bipi
parts i · k

aipi . Therefore the number

of parts of ϕ(λ) is decreased to
∑

mi,0 p(mi), which implies (3.1) since the number of parts of λ

is
∑

mi,0 mi.

Next we will construct a series of subsets of O1,k(n) by λ ∈ Ok(n). Let λ = (1m1 , 2m2 , . . .) ∈

Ok(n), for each mi ≥ k, we establish a set of partitions πi
j,r

from λ by replacing r · k j parts i by r

parts i · k j, where 1 ≤ j ≤ a(mi) and 1 ≤ r ≤ ⌊mi/k
j⌋. Define

Oλ,k,i =
{

πi
j,r : 1 ≤ r ≤ ⌊mi/k

j⌋ and 1 ≤ j ≤ a(mi)
}

.

Example 3.1 Let k = 3 and λ = (111, 42, 57) ∈ O3(47), then it follows that m1 = 11 and m5 = 7. For

m1 = 11 and a(m1) = 2, we have π1
1,1
= (18, 3, 42, 57), π1

1,2
= (15, 32, 42, 57), π1

1,3
= (12, 33, 42, 57),

and π1
2,1
= (12, 42, 57, 9). For m5 = 7 and a(m5) = 1, we have π5

1,1
= (111, 42, 54, 15), and π5

1,2
=

(111, 42, 5, 152). Therefore, we conclude that Oλ,3,1 = {(1
8, 3, 42, 57), (15, 32, 42, 57), (12, 33, 42, 57), (12,

42, 57, 9)} and Oλ,3,5 = {(1
11, 42, 54, 15), (111, 42, 5, 152)}.

From the above example, we find that |Oλ,3,1| = 4 and |Oλ,3,5| = 2, which are equal to

(m1 − p(m1))/2 = (11 − 3)/2 = 4, (m5 − p(m5))/2 = (7 − 3)/2 = 2, respectively.

Lemma 3.3 Let λ = (1m1 , 2m2 , . . .) ∈ Ok(n), then for each mi ≥ k, we have Oλ,k,i ⊆ O1,k(n) and

∣
∣
∣Oλ,k,i

∣
∣
∣ =

mi − p(mi)

k − 1
.

Proof. By the construction of Oλ,k,i for 1 ≤ j ≤ a(mi) and 1 ≤ r ≤ ⌊mi/k
j⌋, we know that there

exists only one part i · k j divisible by k which occurs r times in πi
j,r

. Moreover, substituting r · k j

parts i by r parts i · k j preserves the size of partition. Thus we have πi
j,r
∈ O1,k(n), which leads

to Oλ,k,i ⊆ O1,k(n) for each mi ≥ k.

For the cardinality of Oλ,k,i, we may compute directly as follows. Assume that

mi = bi1 kai1 + bi2 kai2 + · · · + bipi
k

aipi ,

where ai1 > ai2 > · · · > aipi
≥ 0, then p(mi) =

∑pi

j=1
bi j

and a(mi) = ai1 . Thus we see that

∣
∣
∣Oλ,k,i

∣
∣
∣ =

⌊
mi

k

⌋

+

⌊
mi

k2

⌋

+ · · · +

⌊
mi

kai1

⌋

=

⌊

bi1 kai1
−1
+ bi2 kai2

−1
+ · · · + bipi

k
aipi
−1

⌋

+

⌊

bi1 kai1
−2
+ bi2kai2

−2
+ · · · + bip k

aipi
−2

⌋

+

· · · +
⌊

bi1 + bi2kai2
−ai1 + · · · + bipi

k
aipi
−ai1

⌋

=

(

bi1 kai1
−1
+ bi1 kai1

−2
+ · · · + bi1

)

+

(

bi2 kai2
−1
+ bi2 kai2

−2
+ · · · + bi2

)

+
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· · · +
(

bipi
k

aipi
−1
+ bipi

k
aipi
−2
+ · · · + bipi

)

= bi1 ·
kai1 − 1

k − 1
+ bi2 ·

kai2 − 1

k − 1
+ · · · + bipi

·
k

aipi − 1

k − 1

=
1

k − 1
·
(

bi1 kai1 + bi2 kai2 + · · · + bipi
k

aipi − (bi1 + bi2 + · · · + bipi
)
)

=
mi − p(mi)

k − 1
,

which completes the proof.

Theorem 3.4 For n ≥ 1, we have

O1,k(n) =
⋃

λ∈Ok(n)

(
⋃

mi≥k

Oλ,k,i

)

,

where the sets Oλ,k,i’s are pairwise disjoint.

By Theorem 3.4 with Lemma 3.2 and Lemma 3.3, we can easily give the proof of Theorem

3.1.

Proof of Theorem 3.1. We have

∣
∣
∣O1,k(n)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

⋃

λ∈Ok(n)

(
⋃

mi≥k

Oλ,k,i

)∣
∣
∣
∣
∣
∣
=

∑

λ∈Ok(n)

(
∑

mi≥k

∣
∣
∣Oλ,k,i

∣
∣
∣

)

=

∑

λ∈Ok(n)

∑

mi≥k

mi − p(mi)

k − 1
=

1

k − 1
·

(
∑

λ∈Ok(n)

ℓ(λ) − ℓ(ϕ(λ))

)

=
1

k − 1
·

(
∑

λ∈O(n)

ℓ(λ) −
∑

λ∈D(n)

ℓ(λ)

)

,

where the last but one equation is due to the fact that p(mi) = mi if mi < k, and the last equation

is due to Glaisher’s bijection.

Proof of Theorem 3.4. By Lemma 3.3, it is obvious that
⋃

λ∈Ok(n)(
⋃

mi≥kOλ,k,i) ⊆ O1,k(n). Hence

to prove the theorem, we only need to show that for each π ∈ O1,k(n), there exists an unique

pair (λ, i) satisfying π ∈ Oλ,k,i, where λ ∈ Ok(n) contains mi parts i with mi ≥ k. Fix a partition

π ∈ O1,k(n) and suppose that the only part divisible by k in π is a, we write a as a = k j · i, where

i ∤ k and j ≥ 1. Let λ be the partition constructed from π by replacing every part a by k j parts

i, thus we obtain λ ∈ Ok(n). Noting that k j ≥ k since j ≥ 1, hence λ contains at least k parts i,

implying mi ≥ k. Therefore we find the unique required pair (λ, i) such that π ∈ Oλ,k,i, which

completes the proof.
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λ ∈ O3(9) ϕ(λ) ∈ D3(9) Oλ,3,i ⊆ O1,3(9)

(19) (9) {(16, 3), (13, 32, 33), (9)}

(17, 2) (1, 2, 32) {(14, 2, 3), (1, 2, 32)}

(15, 22) (12, 22, 3) {(12, 22, 3)}

(13, 23) (3, 6) {(23, 3)}, {(13, 6)}

(1, 24) (1, 2, 6) {(1, 2, 6)}

(15, 4) (12, 3, 4) {(12, 3, 4)}

(13, 2, 4) (2, 3, 4) {(2, 3, 4)}

(14, 5) (1, 3, 5) {(1, 3, 5)}

Table 3.1: the correspondence among the subset of O3(9), the subset ofD3(9) and O1,3(9)

Example 3.2 In Table 3.1, we give the correspondence among O3(9), D3(9) and O1,3(9), where each

row contains a partition λ ∈ O3(9), the corresponding partition ϕ(λ) ∈ D3(9), and the corresponding

sets Oλ,3,i’s arranged in the increasing order of i. Note that for the brevity, we just list the pair (λ, ϕ(λ))

whose the difference of the number of parts are nonzero.

Remark 3.1 LetD1,k denote the set of partitions of n with exactly one part occurring at least k times.

Let Ek(n) denote the difference between the number of parts congruent to 1 modulo k in partitions of

Ok(n) and the number of distinct parts of partitions inDk(n). Fu and Tang [9, Theorem 1.5] analytically

obtained that for n ≥ 0 and k ≥ 2, O1,k(n) = D1,k(n) = Ek(n), which remains the combinatorial proof

still unsolved. By letting k = 2, this theorem implicates the validity of Conjecture 1.1, where the part

of O1,k(n) = D1,k(n) is ensured by Franklin’s theorem.

4 Combinatorial proof of Conjecture 1.2

Denote by Tk(n) the set of partitions of n such that there is exactly one part occurring more

than k times and less than 2k times while all other parts occur less than k times. Motivated by

Glaisher’s bijection, in stead of proving Conjecture 1.2 directly, we prove a more generalized

theorem as follows.

Theorem 4.1 Let k ≥ 2 be any positive integer, then for n ≥ 0, we have

|Tk(n)| =
∑

λ∈Dk(n)

ℓ̄(λ) −
∑

λ∈Ok(n)

ℓ̄(λ),

8



where ℓ̄(λ) is the number of distinct parts in λ.

Thus by taking k = 2, T2(n) becomes the set of partitions of n with exactly one part occurring

three times and other parts occurring only once while D2(n) and O2(n) become the set of

distinct and odd partitions of n, respectively, which gives a positive answer to Conjecture 1.2.

To prove Theorem 4.1, we first recall Glaisher’s bijection φ : Dk(n) → Ok(n) in Section 2.

Let λ be a partition in Dk(n), then for 1 ≤ i ≤ ℓ(λ), each part λi can be uniquely written as

kmi fi with k ∤ fi. Thus φ(λ) ∈ Ok(n) is consist of kmi parts of fi, where i ranges from 1 to ℓ(λ).

Define fk(n) be the largest factor of n which is not divisible by k. For any positive integer d with

k ∤ d, define Fk,d = {n ≥ 1: fk(n) = d}. Therefore, by the construction of φ, we easily obtain the

following lemma.

Lemma 4.2 For any λ ∈ Dk(n), we have

ℓ̄(λ) − ℓ̄(φ(λ)) =
∑

k∤d
Fk,d∩λ,∅

(∣
∣
∣Fk,d ∩ λ

∣
∣
∣ − 1

)

, (4.1)

here we view λ as a multiset.

Proof. Let λ ∈ Dk(n), then we know that ℓ̄(λ) =
∑

k∤d |Fk,d ∩ λ| and ℓ̄(φ(λ)) =
∑

k∤d |Fk,d ∩ φ(λ)|

since {Fk,d : k ∤ d} is a partition of the positive integer set. By the definition of Glaisher’s

bijection φ, |Fk,d ∩ φ(λ)| , ∅ if and only if |Fk,d ∩ λ| , ∅ for any k ∤ d. Thus, the difference

between ℓ̄(λ) and ℓ̄(φ(λ)) is the sum of the differences between |Fk,d ∩ λ| and |Fk,d ∩ (φ(λ))| for

any |Fk,d ∩ λ| , ∅. Therefore (4.1) holds since Fk,d ∩ φ(λ) ∈ {{d}, ∅} for all k ∤ d by Glaisher’s

bijection.

Example 4.1 Let k = 3 and λ = (2, 32, 42, 62, 12, 18) ∈ D3(58), then we see that |F3,1 ∩ λ| = |{3}| = 1,

|F3,2∩λ| = |{2, 6, 18}| = 3, |F3,4∩λ| = |{4, 12}| = 2, Thus ℓ̄(λ)− ℓ̄(φ(λ)) = (1−1)+ (3−1)+ (2−1) = 3.

Let λ ∈ Dk(n), if |Fk,d ∩λ| ≥ 2 for some k ∤ d, we construct Tλ,k,d ⊆ Tk(n) of size |Fk,d ∩λ| − 1.

Assuming |Fk,d ∩ λ| = p ≥ 2, then λ contains

{

ka1 d, ka1 d, . . . , ka1 d
︸                ︷︷                ︸

≤k−1

, ka2 d, ka2 d, . . . , ka2 d
︸                ︷︷                ︸

≤k−1

, . . . , kap d, kap d, . . . , kap d
︸                ︷︷                ︸

≤k−1

}

,

as parts with 0 ≤ a1 < a2 < · · · < ap. For 1 ≤ i ≤ p − 1, we construct τi
d

from λ by substituting

one part kai+1 d in λ by k parts kai d, k − 1 parts kai+1d, k − 1 parts kai+2d, . . . , k − 1 parts kai+1−1d.

Since

k · kai d + (k − 1) · kai+1d + (k − 1) · kai+2
+ · · · + (k − 1) · kai+1−1d = kai+1 d,

it follows that |τi
d
| = |λ|. Moreover, the number of parts kai d in τi

d
is between k + 1 and 2k − 1

while other parts in τi
d

occur less than k times, Therefore τi
d
∈ Tk(n).
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Example 4.2 From Example 4.1, we have |F3,2∩λ| = 3 and |F3,4∩λ| = 2, then τ1
2
= (24, 32, 42, 6, 12, 18),

τ2
2
= (2, 32, 42, 65, 12) and τ1

4
= (2, 32, 45, 62, 18) belong to Tk(58).

Theorem 4.3 For k ≥ 2 and λ ∈ Dk(n) with |Fk,d ∩ λ| = p ≥ 2, define

Tλ,k,d =
{

τ1
d, τ

2
d, . . . , τ

p−1

d

}

.

Then the sets Tλ,k,d’s are pairwise disjoint and

Tk(n) =
⋃

λ∈Dk(n)

(
⋃

k∤d
|Fk,d∩λ|≥2

Tλ,k,d

)

.

Therefore by the combination of Theorem 4.3 and Lemma 4.2, we can give the proof of

Theorem 4.1.

Proof of Theorem 4.1. We obtain that

|Tk(n)| =
∑

λ∈Dk(n)

∑

k∤d
|Fk,d∩λ|≥2

∣
∣
∣Tλ,k,d(n)

∣
∣
∣ =

∑

λ∈Dk(n)

∑

k∤d
Fk,d∩λ,∅

(∣
∣
∣Fk,d ∩ λ

∣
∣
∣ − 1

)

=

∑

λ∈Dk(n)

(

ℓ̄(λ) − ℓ̄(φ(λ))
)

=

∑

λ∈Dk(n)

ℓ̄(λ) −
∑

λ∈Ok(n)

ℓ̄(λ),

where the last equality is due to Glaisher’s bijection.

Proof of Theorem 4.3. By the construction of Tλ,k,d, it is clear that fix any λ ∈ Dk(n), then

Tλ,k,d1
∩ Tλ,k,d2

= ∅ if d1 , d2 with |Fk,d1
∩ λ|, |Fk,d1

∩ λ| ≥ 2 since Fk,d1
∩ Fk,d2

= ∅. Hence to

complete the proof, we only need to show that for arbitrary partition τ ∈ Tk(n), there must

exists one and only one partition λ ∈ Dk(n) such that τ ∈ Tλ,k,d for some k ∤ d.

Assume τ ∈ Tk(n) and there is only one part kad in λ for some a ≥ 0 and k ∤ d, the time

of occurrence of which is more than k and less than 2k. We replace k parts kad by one part

ka+1d, which preserves the size of partition and reduces the number of parts kad to at most

k − 1. If it cause the number of parts ka+1d increased to k, which is possible, then we continue

to replace k parts ka+1d by one part ka+2d. Thus as long as the number of parts ka+id is k, we

replace these k parts ka+id by one part ka+i+1d. This process would stop at a + m for some

m ≥ 1 since the number of parts of λ is finite. Then we obtain the desired λ ∈ Dk(n) since

the number of parts ka+id is less than k for all 0 ≤ i ≤ m and other parts of τ whose time of

occurrence is less than k originally are unchanged. Note that {kad, ka+1d, . . . , ka+md} ⊆ Fk,d ∩ λ,

which implies |Fk,d ∩ λ| ≥ m + 1 ≥ 2. Therefore we deduce that τ ∈ Tλ,k,d. For example, let

k = 3 and τ = (12, 24, 4) ∈ T3(14), then we find that the part 2 occurring four times, which gives

us λ = (12, 2, 4, 6) ∈ D3(14) by substituting three parts 2 by one part 6, hence τ ∈ Tλ,3,2. This

completes the proof.
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λ ∈ D3(12) φ(λ) ∈ O3(12) Tλ,3,d ⊆ T3(12)

(12, 22, 32) (18, 22) {(15, 2, 3)}

(1, 22, 3, 4) (14, 22, 4) {(14, 22, 4)}

(12, 32, 4) (18, 4) {(15, 3, 4)}

(1, 3, 42) (14, 42) {(14, 42)}

(12, 2, 3, 5) (15, 2, 5) {(15, 2, 5)}

(1, 32, 5) (17, 5) {(14, 3, 5)}

(12, 22, 6) (12, 25) {(12, 25)}

(1, 2, 3, 6) (14, 24) {(14, 2, 6)}, {(1, 24, 3)}

(2, 4, 6) (24, 4) {(24, 4)}

(12, 3, 7) (15, 7) {(15, 7)}

(1, 3, 8) (14, 8) {(14, 8)}

(1, 2, 9) (110, 2) {(14, 2, 32)}

(3, 9) (112) {(34)}

Table 4.1: the correspondence among the subset of O3(12), the subset ofD3(12) and T3(12)

Example 4.3 We give the correspondence among O3(12),D3(12) and Tk(12) in Table 4.1, where each

row contains a partition λ ∈ D3(12), the corresponding φ(λ) ∈ O3(12), and the sets Tλ,3,d arranged

in the increasing order of d. For the sake of conciseness, we just list the corresponding pairs (λ, φ(λ))

whose differences of the number of distinct parts are nonzero.

5 Combinatorial proof of Conjecture 1.3

In this section we are going to prove Conjecture 1.3 as follows. LetDO(n) be the set of distinct

partitions of n with odd length, and G(n) be the set of gap-free partitions of size n. First we

build a one-to-one correspondence between the set DO(n) and one special kind of gap-free

partitions of size n denoted by GI(n). Then by using λ ∈ GI(n) as indices, we partition G(n)

into |GI(n)| pairwise disjoint subsets denoted by Gλ. For any λ ∈ GI, we can prove that the

number of partitions in Gλ equals the smallest part of the partition inDO(n) corresponding to

λ. Hence, the conjecture 1.3 is true.

Based on the following lemma, we will give the definition of GI(n), and the one-to-one
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correspondence between GI(n) andDO(n).

Lemma 5.1 Let λ = (λ1, λ2, . . . , λℓ) ∈ D(n), then the conjugate of λ, λ′ = (1m1 , 2m2 , . . . , ℓmℓ ) satisfies

that mi ≥ 1 for all 1 ≤ i ≤ ℓ and mℓ = λℓ. Thus λ′ ∈ G(n).

Proof. By the definition of the conjugate of partitions, we see that mi = λi−λi+1 for 1 ≤ i ≤ ℓ−1

and mℓ = λℓ. Since λ ∈ D(n) is a distinct partition satisfying λi − λi+1 ≥ 1 for 1 ≤ i ≤ ℓ − 1, it is

obvious that mi ≥ 1 and λ′ ∈ G(n).

Hence if we take λ from DO(n) then take its conjugate, we obtain a gap-free partition

λ′ with the smallest part is 1 and the largest part is odd. Denote by GI the set of gap-free

partitions satisfying that the smallest part is 1 and the largest part is odd, and GI(n) the set of

such partitions of size n. Then Lemma 5.1 gives a one-to-one correspondence betweenDO(n)

and GI(n). For any partition λ, let s(λ) be the smallest part of λ and m(λ) be the times of the

largest part of λ repeats. Then we have the following lemma.

Lemma 5.2 There exist a bijection α : GI(n)→DO(n) such that for λ ∈ GI(n), m(λ) = s(α(λ)).

Example 5.1 Let (λ) = (1, 23, 3, 42, 54) ∈ GI(38), then α(λ) = (11, 10, 7, 6, 4) ∈ DO(38) and m(λ) =

s(α(λ)) = 4.

For convenience, we need to introduce some notations and operators on partitions. Let

λ = (1m1 , 2m2 , . . . , kmk ) be a partition with mi ≥ 0 for 1 ≤ i ≤ k. We call every imi the block of i if

mi ≥ 1 and denoted by Bi. Define Bi < B j if and only if i < j, and Bi to be odd (resp. even) if and

only if i is odd (resp. even). The number of blocks of λ is exactly the number of distinct parts

in λ denoted by ℓ̄(λ) as used in Section 4. Hence if a partition λ is gap-free, then λ contains

ℓ̄(λ) continuous block(s), and GI is consist of the gap-free partitions whose smallest block is

B1 and the largest block is odd. Let λ be a gap-free partition of form
(

k, . . . ,k
︸  ︷︷  ︸

Bk

, k + 1, . . . ,k+1
︸             ︷︷             ︸

Bk+1

, . . . , k + r − 1, . . . ,k+ r − 1
︸                        ︷︷                        ︸

Bk+r−1

, . . . , k + ℓ − 1, . . . ,k+ ℓ− 1
︸                        ︷︷                        ︸

Bk+ℓ−1

)

,

then for any 0 ≤ r ≤ ℓ, we can define increasing operator ξr which can increase the size of λ by r

and preserve its property of gap-free. To be more specific, notice that Bk,Bk+1, . . . ,Bk+r−1 are the

r smallest blocks of λ, then for each 1 ≤ j ≤ r, add 1 on the last k+ j− 1 part in the block Bk+ j−1,

which is in bold type. Let ξr(λ) be the resulting partition, then it is also gap-free and of size

|λ|+ r. For example, if λ = (32, 4, 53, 6) ∈ G(31), then ξ2(λ) = (3, 4, 54, 6) ∈ G(33). Symmetrically

we can define decreasing operator ξ−r , where 0 ≤ r ≤ ℓ. Note that Bℓ−r+1,Bℓ−r+2, . . . ,Bℓ are the

r largest blocks of λ. ξ−r (λ) is obtained from λ by subtracting 1 from the first ℓ − j + 1 part in

the block Bℓ− j+1 for each 1 ≤ j ≤ r. Thus ξ−1
r (λ) is a gap-free partition of size |λ| − r. As the

above partition λ, we have ξ−
2

(λ) = (32, 42, 53) ∈ G(29).

Lemma 5.3 Let λ be a gap-free partition with s(λ) > 1, then the following hold:
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(1). ℓ̄(λ) ≤ ℓ̄(ξr(λ)), ℓ̄(ξ−r (λ)) ≤ ℓ̄(λ) + 1 if r = ℓ̄(λ);

(2). ℓ̄(λ) − 1 ≤ ℓ̄(ξr(λ)), ℓ̄(ξ−r (λ)) ≤ ℓ̄(λ) if r = ℓ̄(λ) − 1;

(3). ξ−1
r = ξ

−
r if r ∈ {ℓ̄(λ) − 1, ℓ̄(λ)}, where ξ−1

r is the inverse operator of ξr.

Proof. Letλ = (kmk , (k+1)mk+1 , . . . , (k+ℓ−1)mk+ℓ−1 ) be the gap-free partition with k > 1 and ℓ̄(λ) = ℓ.

Set r = ℓ, then ξℓ(λ) = µ = (kmk−1, (k + 1)mk+1 , . . . , (k + ℓ − 1)mk+ℓ−1 , k + ℓ). Note that mk − 1 can be

zero, which means that ℓ ≤ ℓ̄(µ) ≤ ℓ + 1. Hence the acting of ξ−
ℓ

is valid and ξ−
ℓ

(µ) = (kmk , (k +

1)mk+1 , . . . , (k+ ℓ− 1)mk+ℓ−1 ) = λ. On the other hand, ξ−
ℓ

(λ) = ν = (k− 1, kmk , . . . , (k+ ℓ− 1)mk+ℓ−1−1),

implying that ℓ ≤ ℓ̄(ν) ≤ ℓ + 1. It follows that ξℓ(ν) = (kmk , (k + 1)mk+1 , . . . , (k + ℓ − 1)mk+ℓ−1 ) = λ.

Thus we have verified (1) and the case of r = ℓ̄(λ) in (3). The proof of (2) and the case of

r = ℓ̄(λ) − 1 in (3) are completely the same so we leave them to the reader.

Let λ = (1m1 , 2m2 , . . . , ℓmℓ) ∈ G(n) be a gap-free partition with the smallest block B1 and

ℓ̄(λ) = ℓ. Note that here we do not require the constraint that Bℓ is odd. Then we shall define

a series of operators ̺i for 1 ≤ i ≤ mℓ as follows. First We delete i − 1 parts ℓ from λ then λ

becomes λi
1
= (1m1 , 2m2 , . . . , ℓmℓ−i+1). It is clear that λi

1
is also gap-free and of ℓ̄(λi

1
) = ℓ. For

2 ≤ j ≤ i, let λi
j
= ξℓ(λ

i
j−1

) iteratively and finally let ̺i(λ) = λi
i
. It is easy to see that ̺i(λ) and

̺ j(λ) are different whenever i , j. We will use the following example to illustrate how these

sophisticated operators work.

Example 5.2 Let λ = (12, 23, 3, 4, 54). Trivially ̺1(λ) = λ = (12, 23, 3, 4, 54). For i = 2, deleting

one part 5 from λ then obtain λ2
1
= (12, 23, 3, 4, 53), λ2

2
= ξ5(λ2

1
) = (1, 23, 3, 4, 53, 6), hence we have

̺2(λ) = (1, 23, 3, 4, 53, 6). For i = 3, by subtracting two parts 5, λ becomes λ3
1
= (12, 23, 3, 4, 52).

Thus we deduce that λ3
2
= ξ5(λ3

1
) = (1, 23, 3, 4, 52, 6) and λ3

3
= ξ5(λ3

2
) = (23, 3, 4, 52, 62), which

leads to ̺3(λ) = (23, 3, 4, 52, 62). For i = 4, we take three parts 5 out from λ, which change λ

to λ4
1
= (12, 23, 3, 4, 5). Then λ4

2
= ξ5(λ4

1
) = (1, 23, 3, 4, 5, 6), λ4

3
= ξ5(λ4

2
) = (23, 3, 4, 5, 62) and

λ4
4
= ξ5(λ4

3
) = (22, 3, 4, 5, 62, 7). Hence we arrive at ̺4(λ) = (22, 3, 4, 5, 62, 7).

Theorem 5.4 For any λ ∈ GI(n), define

Gλ = {̺i(λ) : 1 ≤ i ≤ m(λ)}.

Then the sets Gλ’s are pairwise disjoint and

G(n) =
⋃

λ∈GI(n)

Gλ.

Combining Theorem 5.4 and Lemma 5.2, we see that

|G(n)| =

∣
∣
∣
∣
∣

⋃

λ∈GI(n)

Gλ

∣
∣
∣
∣
∣
=

∑

λ∈GI(n)

|Gλ| =
∑

λ∈GI(n)

m(λ) =
∑

λ∈DO(n)

s(λ),

which confirms Conjecture 1.3.
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Proof of Theorem 5.4. We first clarify that the operators ̺i’s are well-defined. To this end, by the

definition of increasing operator ξr for r ≥ 0, we only need to show that when we act ξr on

some partition λ, the number of the blocks of λ is no less than r. Actually, we can claim that

for any λ ∈ GI(n) and 1 ≤ i ≤ m(λ), we have ℓ̄(λ) ≤ ℓ̄(λi
j
) ≤ ℓ̄(λ) + 1 for 1 ≤ j ≤ i. Let λ ∈ GI(n)

be a gap-free partition with ℓ̄(λ) = ℓ and m(λ) = m, then for any 1 ≤ i ≤ m, it is evident that λi
1

is also of ℓ̄(λi
1
) = ℓ. By induction, we assume that ℓ ≤ ℓ̄(λi

j
) ≤ ℓ + 1 for 1 ≤ j ≤ m − 1. By acting

ξℓ on λi
j
, it produces ξℓ(λ

i
j
) = λi

j+1
. If ℓ̄(λi

j
) = ℓ, then by Lemma 5.3 (1), ℓ ≤ ℓ̄(λi

j+1
) ≤ ℓ + 1.

If ℓ̄(λi
j
) = ℓ + 1, then by Lemma 5.3 (2), we still have ℓ ≤ ℓ̄(λi

j+1
) ≤ ℓ + 1, thus we derive

ℓ ≤ ℓ̄(λi
j
) ≤ ℓ + 1 for 1 ≤ j ≤ m. Thus ̺i’s are well-defined.

Next, for every λ ∈ GI(n), we shall show that Gλ ⊆ Gn, which implies that
⋃

λ∈GI(n)Gλ ⊆

G(n). Since for any λ ∈ GI(n) and 1 ≤ i ≤ m(λ), λi
1

is gap-free of size n − (i − 1)ℓ̄(λ) and each

time acting ξℓ̄(λ) preserves the property of gap-free and increases the size by ℓ̄(λ), then after

(i − 1)-time composition of ξℓ̄(λ), it is clear that ̺i(λ) is gap-free and of size n. Thus we have

Gλ ⊆ Gn then
⋃

λ∈GI(n)Gλ ⊆ G(n).

Finally, we prove that for any µ ∈ G(n), there must exists only one λ ∈ GI(n) such that

µ ∈ Gλ, which simultaneously demonstrates that Gλ’s are pairwise disjoint and
⋃

λ∈GI(n)Gλ =

G(n). Given µ ∈ G(n), if µ ∈ GI(n), then we have done; otherwise letµ = (kmk , (k+1)mk+1 , . . . , (k+

ℓ − 1)mk+ℓ−1 ) with ℓ̄(µ) = ℓ. Set µ1 = µ and r = 2⌈ℓ/2⌉ − 1, i.e. r is the largest odd number that

do not exceed ℓ, so that r ≤ ℓ̄(µ1) ≤ r + 1. For i ≥ 2, we will keep constructing µi by letting

µi = ξ
−
r (µi−1) until first getting µm ∈ GI for some m ≥ 2. This could be done since for ℓ ≥ 1,

we have r ≥ 1 and for 1 ≤ i ≤ m, r ≤ ℓ̄(µi) ≤ r + 1 by Lemma 5.3 (1) and (2). Since ξ−r is the

inverse operator of ξr by Lemma 5.3 (3), it can be checked that the largest block of µm is Br.

Hence, by adding m − 1 parts r back to µm, we obtain the unique λ ∈ GI(n). For example,

if µ = (33, 4, 52, 6) ∈ G(29) \GI(29) , then r = 3 and we have µ2 = (34, 4, 52), µ3 = (2, 34, 4, 5),

µ4 = (22, 34, 4) and µ5 = (1, 22, 34) ∈ GI. Thus m = 5 and λ = (1, 22, 38) ∈ GI(29), implying that

(33, 4, 52, 6) ∈ G(1,22,38). This completes the proof.

Example 5.3 We list DO(12), GI(12) and G(12) in Table 5.1, where each row contains a gap-free

partition λ ∈ GI(12), the corresponding distinct partition α(λ) ∈ DO(12), and the set Gλ of which

partitions are arranged from ̺1(λ) to ̺m(λ)(λ).

Let DE(n) be the set of distinct partitions of n with even length. We can also investigate

the quantitative relationship between the cardinalities of DE(n) and G(n). Denote by G′
I

(n)

the set of gap-free partitions of n whose the smallest block is B1 and the largest block is even.

By Lemma 5.1, we know that the conjugate also gives a bijection β : G′
I

(n)→DE(n) such that

m(λ) = s(β(λ)) for any λ ∈ G′
I

(n).

Theorem 5.5 For any λ ∈ G′
I

(n), define Gλ = {̺i(λ) : 1 ≤ i ≤ m(λ)} as before. Then the sets Gλ’s are
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α(λ) ∈ DO(12) λ ∈ GI(12) Gλ ⊆ G(12)

(5,4,3) (1, 2, 33) {(1, 2, 33), (2, 32, 4), (3, 4, 5)}

(6,4,2) (12, 22, 32) {(12, 22, 32), (1, 22, 3, 4)}

(6,5,1) (1, 24, 3) {(1, 24, 3)}

(7,3,2) (14, 2, 32) {(14, 2, 32), (13, 2, 3, 4)}

(7,4,1) (13, 23, 3) {(13, 23, 3)}

(8,3,1) (15, 22, 3) {(15, 22, 3)}

(9,2,1) (17, 2, 3) {(17, 2, 3)}

(12) (112)

{(112), (110, 2), (18, 22), (16, 23),

(14, 24), (12, 25), (26), (23, 32),

(34), (43), (62), (12)}

Table 5.1: the correspondence amongDO(12), GI(12) and G(12)

pairwise disjoint and

G(n)
∖

G0(n) =
⋃

λ∈G′
I

(n)

Gλ,

where G0(n) is the set of gap-free partitions of n with only one block.

Proof. The proof is exactly the same as Theorem 5.4 except for setting r = 2⌊ℓ/2⌋, i.e., r is the

largest even number that do not exceed ℓ.

Example 5.4 We list DE(12), G′
I

(12) and G(12)
∖

G0(12) in Table 5.2, where each row contains a

gap-free partition λ ∈ G′
I

(12), the corresponding distinct partition β(λ) ∈ DE(12), and the set Gλ of

which partitions are arranged from ̺1(λ) to ̺m(λ)(λ).

Remark 5.1 Note that the number of gap-free partitions of n with only one block equals the number of

divisors of n, which is usually denoted by d(n) in number theory and combinatorics. Thus by Theorem

5.4 and 5.5, we rediscover the following identity
∑

λ∈DO(n)

s(λ) −
∑

λ∈DE(n)

s(λ) = d(n), (5.1)

which is first obtained by Fokkink, Fokkink and Wang [7] via the sum of polynomial quotients for n.

Andrews [2] asserted that (5.1) is a corollary of the differentiation of the q-analog of Gauss’s theorem

[1, Corollary 2.4] then gave the analytic proof of (5.1) by q-series.
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β(λ) ∈ DE(12) λ ∈ G′
I

(12) Gλ ⊆ G(12)
∖

G0(12)

(5,4,2,1) (1, 22, 3, 4) (1, 22, 3, 4)

(6,3,2,1) (13, 2, 3, 4) (13, 2, 3, 4)

(7,5) (12, 25)
(12, 25), (1, 24, 3), (23, 32),

(2, 32, 4), (3, 4, 5)

(8,4) (14, 24)
(14, 24), (13, 23, 3), (12, 22, 32),

(1, 2, 33)

(9,3) (16, 23) (16, 23), (15, 22, 3), (14, 2, 32)

(10,2) (18, 22) (18, 22), (17, 22, 3)

(11,1) (110, 2) (110, 2)

Table 5.2: the correspondence amongDE(12), G′
I

(12) and G(12)
∖

G0(12)
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