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Abstract

The problem of finding formulas for sums of powers of natural

numbers has been of interest to mathematicians for many centuries.

Among these is Faulhaber’s well-known formula expressing the power

sums as polynomials whose coefficients involve Bernoulli numbers. In

this paper we give an elementary proof that the sum of p-th powers

of the first n natural numbers can be expressed as a polynomial in

n of degree p + 1. We also prove a novel identity involving Bernoulli

numbers and use it to show symmetry of this polynomial.
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1 Introduction.

In an introductory calculus class, undergraduate students usually encounter
the following summation formulas:

n∑

k=1

k = 1 + 2 + · · ·+ n =
n(n + 1)

2
n∑

k=1

k2 = 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
n∑

k=1

k3 = 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4

(1)

for any positive integer n. Typically, these are proved by mathematical
induction and are used in the Riemann sum evaluation of definite integrals.

The problem of finding formulas for sums of powers of integers has cap-
tivated mathematicians for many centuries [2]. The Pythagoreans were the
first to discover the formula for the sum of the first powers with their pebble
experiments. Archimedes and Aryabhata are credited for a geometric proof
of the remaining two formulas above, respectively. These formulas were first
introduced in a generalizable form by Harriot. Faulhaber provided formulas
for power sums up to the 17th power, but did not make it clear how to gen-
eralize them. Later, Fermat, Pascal, and Bernoulli discovered and presented
succinct formulas for representing these sums.

Ever since generalized formulas for the powers sums, Sp(n) =
n∑

k=1

kp, have

been established, their various representations and number-theoretic proper-
ties have been studied [7, 9]. Faulhaber’s formula expresses the power sums
as polynomials whose coefficients involve Bernoulli numbers [4, p. 107] that
have a rich history of their own. Until close to the 21st century, very few
recurrences of Bernoulli numbers were known. Such recurrences in Bernou-
lli numbers reveal important aspects and properties of these numbers that
can be used to simplify proofs of known identities [6]. Namias [10] derived
recurrences based on Gauss’s multiplication formula and a generalization of
those formulas was posed as a problem in the The Amer. Math. Monthly

[3]. Tuenter [11] proved a relation of symmetry between the power sum poly-
nomials and Bernoulli numbers which can be used to generalize Namias’s
recurrence formulas. The power sum polynomials can be expressed in terms
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of Bernoulli polynomials [1]:

Sp(n) =
1

p+ 1
(Bp+1(n+ 1)− Bp+1(1)).

Lehmer [8] proved symmetry of Bernoulli polynomials

Bm(1− x) = (−1)mBm(x)

using the Fourier series representation. This implies symmetry of the power
sum polynomials

Sp(−(n + 1)) = (−1)p+1Sp(n)

although this result has not appeared in the literature. In this paper, we
present an alternate proof of the above symmetry of the power sum polyno-
mials using a novel identity involving Bernoulli numbers.

This paper is organized into five sections. In section 2, we provide a
recursive definition for Sp(n) which is used to prove that the sum of p-th
powers of natural numbers is a polynomial of degree p + 1. In section 3, we
prove a novel identity for the Bernoulli numbers. In section 4, we use this
identity to prove the symmetry of Sp(n). Lastly, in section 5 we pose some
open problems about the roots of Sp(n).

2 A recursive definition for Sp(n).

Definition 1. For n ∈ R, let S1(n) =
n(n+ 1)

2
.

For p ≥ 2 and n ∈ R, define

Sp(n) =
1

p+ 1

(

(n+ 1)((n+ 1)p − 1)−

p−1
∑

i=1

(
p+ 1

i

)

Si(n)

)

.

Remark 2. For each p ∈ N, Sp(n) is a polynomial of degree p+ 1.

Lemma 3. For p ∈ N and n ∈ R,

(n+ 1) ((n+ 1)p − 1) = n(n + 1)p + (n + 1)
(
(n + 1)p−1

− 1
)
.

3



Proof. Indeed,

(n+ 1) ((n+ 1)p − 1) = (n+ 1)(n+ 1)p − (n+ 1)

= n(n + 1)p + (n + 1)p − (n+ 1)

= n(n + 1)p + (n + 1)
(
(n + 1)p−1

− 1
)
.

Lemma 4. For p ∈ N and n ∈ R,

p
∑

i=1

(
p+ 1

i− 1

)

ni = n
(
(n + 1)p+1

− np(p+ n+ 1)
)
.

Proof. We will use the convention that

(
k

−1

)

= 0 for all k ∈ N.

We proceed by induction on p. If p = 1, then

1∑

i=1

(
2

i− 1

)

ni =

(
2

0

)

n1 = n = n
(
(n + 1)2 − n(1 + n+ 1)

)
,

so the statement holds.
Now assume that the statement holds for some p ≥ 1. Then

p+1∑

i=1

(
p+ 2

i− 1

)

ni =

p+1∑

i=1

((
p+ 1

i− 1

)

+

(
p+ 1

i− 2

))

ni

=

p+1
∑

i=1

(
p+ 1

i− 1

)

ni +

p+1
∑

i=1

(
p + 1

i− 2

)

ni

=

p
∑

i=1

(
p+ 1

i− 1

)

ni +

(
p+ 1

p

)

np+1 +

p+1
∑

i=2

(
p+ 1

i− 2

)

ni

︸ ︷︷ ︸

by convention

= n
(
(n+ 1)p+1

− np(p+ n+ 1) + np(p+ 1)
)

+

p
∑

i=1

(
p+ 1

i− 1

)

ni+1

= n

(

(n+ 1)p+1
− np+1 +

p
∑

i=1

(
p + 1

i− 1

)

ni

)
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= n
(
(n+ 1)p+1

− np+1 + n((n + 1)p+1
− np(p+ n+ 1))

)

= n
(
(n+ 1)p+1

− np+1 + n(n + 1)p+1
− np+1(p+ n + 1)

)

= n
(
(n+ 1)p+2

− np+1((p+ 1) + n+ 1)
)
.

Theorem 5. For p, n ∈ N, Sp(n) =

n∑

k=1

kp.

Proof. We use strong induction on p.

For p = 1, S1(n) =
n(n + 1)

2
=

n∑

k=1

k.

For p = 2,

S2(n) =
1

3

(

(n + 1)
(
(n+ 1)2 − 1

)
−

(
3

1

)

S1(n)

)

=
1

3

(

(n + 1)(n2 + 2n)− 3

(
n(n+ 1)

2

))

=
1

3
·
n(n + 1)

2
(2(n+ 2)− 3)

=
n(n+ 1)(2n+ 1)

6

=

n∑

k=1

k2.

Now assume that for some p ≥ 2, Si(n) =

n∑

k=1

ki holds for all 1 ≤ i ≤ p.

Then

(p+ 2)Sp+1(n) = (n+ 1)
(
(n+ 1)p+1

− 1
)
−

p∑

i=1

(
p+ 2

i

)

Si(n)

= (n+ 1)
(
(n+ 1)p+1

− 1
)
−

p
∑

i=1

((
p+ 1

i

)

+

(
p+ 1

i− 1

))

Si(n)

= n(n+ 1)p+1 + (n+ 1) ((n+ 1)p − 1)
︸ ︷︷ ︸

by Lemma 3

−

p−1
∑

i=1

(
p+ 1

i

)

Si(n)
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− (p+ 1)Sp(n)−

p
∑

i=1

(
p + 1

i− 1

)

Si(n)

= n(n+ 1)p+1 + (p+ 1)Sp(n)
︸ ︷︷ ︸

by Definition 1

−(p + 1)Sp(n)

−

p
∑

i=1

(
p+ 1

i− 1

)

Si(n)

= n

p+1
∑

i=0

(
p+ 1

i

)

ni
−

p
∑

i=1

(
p+ 1

i− 1

)

Si(n)

=

p+2
∑

i=1

(
p+ 1

i− 1

)

ni
−

p
∑

i=1

(
p+ 1

i− 1

)

Si(n)

= np+2 + (p+ 1)np+1
−

p∑

i=1

(
p+ 1

i− 1

)

Si(n− 1)

= np+2 + (p+ 1)np+1
−

n−1∑

k=1

p
∑

i=1

(
p+ 1

i− 1

)

ki

= np+2 + (p+ 1)np+1
−

n−1∑

k=1

k
(
(k + 1)p+1

− kp(p+ k + 1)
)

︸ ︷︷ ︸

by Lemma 4

= np+2 + (p+ 1)np+1
−

n−1∑

k=1

k(k + 1)p+1 +

n−1∑

k=1

kp+1(k − 1)

+

n−1∑

k=1

kp+1(p+ 2)

= np+2 + (p+ 1)np+1
− (n− 1)np+1 +

n−1∑

k=1

(p+ 2)kp+1

= (p+ 2)

(

np+1 +

n−1∑

k=1

kp+1

)

= (p+ 2)
n∑

k=1

kp+1.
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Hence, Sp(n) =
n∑

k=1

kp for all natural values of p and n.

3 An identity involving Bernoulli numbers.

Recall that Bernoulli numbers, Bm for m ∈ Z, m ≥ 0, are defined recursively
as follows:

Definition 6. Let B0 = 1, and for each m ≥ 1,

m∑

i=0

(
m+ 1

i

)

Bi = 0.

Remark 7. For m ≥ 3 odd, Bm = 0 [4, p. 107].

Gessel [5] proved that for any nonnegative integers m and n,

m∑

i=0

(
m

i

)

Bn+i = (−1)m+n

n∑

j=0

(
n

j

)

Bm+j . (2)

Remark 8. Setting n = 0 in (2) yields

(−1)mBm =
m∑

i=0

(
m

i

)

Bi =
m∑

i=0

(
m

m− i

)

Bm−i. (3)

Theorem 9. For m, k ∈ Z, m ≥ 1, 0 ≤ k ≤ m,

(−1)m−k

(
m

k

)

Bm−k =

m∑

i=k

(
m

i

)(
i

k

)

Bm−i.

Proof. Replacing m by m− k in (3) gives

(−1)m−kBm−k =
m−k∑

i=0

(
m− k

m− k − i

)

Bm−k−i

=

m∑

i=k

(
m− k

m− i

)

Bm−i.
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Now multiplying both sides by

(
m

k

)

yields

(−1)m−k

(
m

k

)

Bm−k =

m∑

i=k

(
m

k

)(
m− k

m− i

)

Bm−i

=

m∑

i=k

m!

k!(m− k)!
·

(m− k)!

(m− i)!(i− k)!
Bm−i

=
m∑

i=k

m!

i!(m− i)!
·

i!

k!(i− k)!
Bm−i

=
m∑

i=k

(
m

i

)(
i

k

)

Bm−i.

4 Symmetry of Sp(n).

Observe that all three of the polynomial formulas in (1) have 0 and −1 as
roots, and the second one also has −1

2
as a root. In fact, more is true: not

only are the roots symmetric about −1
2
, but the polynomials themselves have

symmetry about −1
2
. We will show that for each natural p, the sum of p-th

powers of natural numbers from 1 to n, Sp(n), is symmetric about −1
2
.

Theorem 10. For each p ∈ N, Sp(−(n + 1)) = (−1)p+1Sp(n). Thus the

graph of Sp(n) is symmetric about the vertical line at −
1
2
if p is odd, and

symmetric about the point
(
−

1
2
, 0
)
if p is even.

Proof. We use the following Faulhaber formula [4, p. 107]:

Sp(n) =
1

p+ 1

p
∑

i=0

(−1)i
(
p+ 1

i

)

Bin
p+1−i.

Note that with an index change, this formula is equivalent to

Sp(n) =
1

p+ 1

p+1
∑

i=1

(−1)p+1−i

(
p+ 1

i

)

Bp+1−in
i.
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Now,

Sp(−(n + 1)) =
1

p+ 1

p+1
∑

i=1

(−1)p+1−i

(
p+ 1

i

)

Bp+1−i (−(n + 1))i

=
1

p+ 1

p+1
∑

i=1

(−1)p+1−i

(
p+ 1

i

)

Bp+1−i(−1)i
i∑

k=0

(
i

k

)

nk

=
1

p+ 1

p+1
∑

i=1

i∑

k=0

(−1)p+1−i(−1)i
(
p+ 1

i

)(
i

k

)

Bp+1−in
k

=
1

p+ 1

(
p+1
∑

i=1

(−1)p+1

(
p+ 1

i

)(
i

0

)

Bp+1−i

+

p+1
∑

k=1

p+1
∑

i=k

(−1)p+1

(
p+ 1

i

)(
i

k

)

Bp+1−in
k

)

=
1

p+ 1









(−1)p+1

p
∑

i=0

(
p+ 1

i

)

Bi

︸ ︷︷ ︸

=0 by Definition 6

+

p+1
∑

k=1

(−1)p+1

p+1
∑

i=k

(
p+ 1

i

)(
i

k

)

Bp+1−in
k









=
1

p+ 1

(
p+1
∑

k=1

(−1)p+1

p+1
∑

i=k

(
p+ 1

i

)(
i

k

)

Bp+1−in
k

)

=
1

p+ 1








p+1
∑

k=1

(−1)p+1 (−1)p+1−k

(
p+ 1

k

)

Bp+1−k

︸ ︷︷ ︸

by Theorem 9 for m=p+1

nk








= (−1)p+1Sp(n).

Thus if p is odd, then Sp(n) = Sp (−(n+ 1)), so the graph of Sp(n) is
symmetric about the vertical line at −

1
2
, and if p is even, then Sp(n) =
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−Sp (−(n + 1)), so the graph of Sp(n) is symmetric about the point
(
−

1
2
, 0
)
.

Corollary 11. For each p ∈ N, the roots of Sp(n) are symmetric about −1
2
.

When p is even, Sp(n) has −
1
2
as a root.

5 Open problems.

As shown in section 2, Sp(n) is a polynomial in n of degree p+ 1. Therefore
it has p + 1 complex roots, counting with multiplicity. Below are two open
questions about these roots.

1. How many distinct real roots does Sp(n) have, and what are their
multiplicities?

2. Are there any patterns in the roots, both real and complex, in addition
to the symmetry described in Corollary 11?
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