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THE ASCENT-PLATEAU STATISTICS ON STIRLING PERMUTATIONS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

ABSTRACT. In this paper, several variants of the ascent-plateau statistic are introduced, includ-
ing flag ascent-plateau, double ascent and descent-plateau. We first study the flag ascent-plateau
statistic on Stirling permutations by using context-free grammars. We then present a unified re-
finement of the ascent polynomials and the ascent-plateau polynomials. In particular, by using
Foata and Strehl’s group action, we prove two bistatistics over the set of Stirling permutations

of order n are equidistributed.
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1. INTRODUCTION

A Stirling permutation of order n is a permutation of the multiset {1,1,2,2,... ,n,n} such
that for each 7, 1 <1 < n, all entries between the two occurrences of ¢ are larger than 7. Denote
by Q, the set of Stirling permutations of order n. Let 0 = 0109---09, € Q. For 1 <i < 2n,
we say that an index i is a descent of o if o; > ;41 or i = 2n, and we say that an index ¢ is an
ascent of o if 0; < 041 or i = 1. Hence the index ¢ = 1 is always an ascent and i = 2n is always
a descent. Moreover, a plateau of o is an index ¢ such that o; = 0,41, where 1 <7 < 2n —1. Let
des (0),asc (o) and plat (o) be the numbers of descents, ascents and plateaus of o, respectively.

Stirling permutations were defined by Gessel and Stanley [§], and they proved that

(1 o x)Qk—Hi {n:k}xn — Z xdesaj
n=0

c€Qy

where {Z} is the Stirling number of the second kind, i.e., the number of ways to partition a set
of n objects into k non-empty subsets. A classical result of Béna [2] says that descents, ascents

and plateaus have the same distribution over Q,,, i.e.,

$ glse = §7 geer - § gelate,

o€Qn o€Qn o€Qn
This equidistributed result and associated multivariate polynomials have been extensively stud-
ied by Janson, Kuba, Panholzer, Haglund, Chen et al., see [0 [9, [I0, 1T] and references therein.
Recently, Ma and Toufik [15] introduced the definition of ascent-plateau statistic and presented
a combinatorial interpretation of the 1/k-Eulerian polynomials. The purpose of this paper is
to explore variants of the ascent-plateau statistic. In the following, we collect some definitions,

notation and results that will be needed throughout this paper.
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Definition 1. An occurrence of an ascent-plateau of o € O, is an index i such that o;_1 <
0; = 0541, where i € {2,3,...,2n—1}. An occurrence of a left ascent-plateau is an index i such
that 0,1 < 0y = 041, where i € {1,2,...,2n — 1} and o¢g = 0.

Let ap (o) and lap (o) be the numbers of ascent-plateaus and left ascent-plateaus of o, respec-
tively. For example, ap (442332115665) = 2 and lap (442332115665) = 3.
Define
M, (z) = Z ) N, (z) = Z 1ap (@),
o€Qn o€Qn
According to [I5, Theorem 2, Theorem 3], we have

Ma,t) = Y Mol oy = [ 1)

n>0

1—=x
1 _ zedti—a)

NGt =) Y Mol = 2)

n>0
It should be noted that the polynomials M, (z) and N, (z) are also enumerative polynomials of
perfect matchings. A perfect matching of [2n] is a partition of [2n] into n blocks of size 2. Let
Mo, be the set of perfect matchings of [2n]. Let el (M) (resp. ol (M)) be the number of blocks
of M € My, with even (resp. odd) larger entries. According to [I7], we have
M, (x) = Z 2ot (M) Np(z) = Z 2 M),
MeMay MeMan

Let #C denote the cardinality of a set C'. Let &,, denote the symmetric group of all per-
mutations 7 = 7(1)7(2)...7(n) of [n|, where [n] = {1,2,...,n}. A descent of 7 is an index
i € [n — 1] such that 7(i) > 7(i + 1). For 7 € &, let des(7) be the number of descents of .

The classical Eulerian polynomials are defined by
Ay (z) = Z pdes (™),
WEGn

The hyperoctahedral group B, is the group of signed permutations of the set +[n| such that
w(—i) = —mn (i) for all 4, where £[n] = {£1,42,...,£n}. Throughout this paper, we always
identify a signed permutation 7 = (1) - - - w(n) with the word w(0)7(1) - - - m(n), where 7(0) = 0.
For each 7 € B,,, we define

desa(m)=#{icn—-1]:7@)>n(i+1)},

desp(m) =#{i1€{0,1,2....,n =1} : 7w(i) > w(i + 1)}.

It is clear that

> adealm = 9m A, (2).

WEB'!L
Following [1], the flag descents of m € B,, is defined by

fdes () 2des a(m) + 1, if m(1) < 0;
es(m) =
2des 4(m), otherwise.
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The Eulerian polynomial of type B and the flag descent polynomial are respectively defined by

Bn(a;) _ Z xdeSB(W)7 Fn(a;) _ Z xfdes(w).

TeBy TeBy

Very recently, we studied the following combinatorial expansions (see [I8] Section 4]):

A, (e) = 3 (Z) N() Noe(2), Bale) = 3 (:) Ni@) My (2).

k=0 k=0

It is now well known that F,(x) = (1 4+ 2)"A,(x) (see [I, Theorem 4.4]). This paper is moti-
vated by exploring an expansion of Fj,(z) in terms of some enumerative polynomials of Stirling
permutations.

This paper is organized as follows. In Section 2] we present a combinatorial expansion of
F,(z). In Section Bl we study a multivariate enumerative polynomials of Stirling permutations.

In particular, we consider Foata and Strehl’s group action on Stirling permutations.

2. THE FLAG DESCENT POLYNOMIALS AND FLAG ASCENT-PLATEAU POLYNOMIALS

Context-free grammar is a powerful tool to study exponential structures (see [B, [18] for in-
stance). In this section, we first present a grammatical description of the flag descent polyno-
mials by using grammatical labeling introduced by Chen and Fu [5]. And then, we study the

flag ascent-plateau statistics over Stirling permutations.

2.1. Context-free grammars.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in
monomials formed from letters in A. Following [4], a context-free grammar over A is a function
G : A — Q[[A]] that replaces a letter in A by a formal function over A. The formal derivative
D is a linear operator defined with respect to a context-free grammar G. More precisely, the
derivative D = Dg: Q[[A]] — Q[[4]] is defined as follows: for x € A, we have D(z) = G(z);
for a monomial u in Q[[A]], D(u) is defined so that D is a derivation, and for a general element
q € Q[[A]], D(q) is defined by linearity.

Let us now recall a result on context-free grammars.
Proposition 2 ([I3] Theorem 10]). Let A = {z,y,z} and
G ={z — zyz,y — yz*, 2 = y?2}. (3)

Forn >0, we have

D" ($y) =y Z yfdes () z2n—fdos () ] (4)
7T€Bn
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Moreover,

Dn(y2) — y2 Z deGSA(W)ZQTL—QdeSA(n)7
TeBy
D"(yz) =Yz Z y2des B(ﬂ)z2n—2des B(W)’
TeBy
Dn(y) =Yy Z y2ap (0) Z2n—23p (0—)’
TE€Qn
Dn(z) =z Z y21ap (U)Z2n—2lap (a’)
TEQDn

The grammatical labeling is illustrated in the following proof of (). Let m € B,,. As usual,
denote by 7 the negative element —i. We define an ascent (resp. a descent) of 7 to be a position
i1€40,1,2...,n — 1} such that 7(i) < w(i + 1) (resp. w(i) > 7w(i + 1)). Now we give a labeling
of m € B,, as follows:

(Ly) If i € [n — 1] is an ascent, then put a superscript label z and a subscript label z right
after (i);

(Ly) If i € [n — 1] is a descent, then put a superscript label y and a subscript label y right
after m(i);

(L3) If w(1) > 0, then put a superscript label z and a subscript label x right after 7(0);

(Ly) If 7(1) < 0, then put a superscript label x and a subscript label y right after 7(0);

(Ls) Put a superscript label y and a subscript label z at the end of 7.

Note that the weight of 7 is given by w(m) = xyfdes (m)+1 fasc (m)+1

Let
F,(i,j) ={m € By, : fdes (w) = i, fasc (7) = j}.

When n = 1, we have F1(0,1) = {021¢} and Fi(1,0) = {071}. Note that D(zy) = zyz* 4+ zy?2.
Thus the sum of weights of the elements of B; is given by D(zy).

Suppose we get all labeled permutations in F}, (i, ) for all 4, j, k, where n > 1. Let ' € B, 14
be obtained from 7 € F, (i, j) by inserting the entry n+ 1 or n + 1. We distinguish the following
five cases:

(c1) Let i € [n — 1] be an ascent. If we insert n + 1 (resp. n + 1) right after m(7), then
7' € Foy1(i +2,7), and the insertion of n + 1 (resp. n + 1) corresponds to applying the
rule z — y22 to the superscript (resp. subscript) label z associated with 7 ().

(co) Let i € [n — 1] be a descent. If we insert n + 1 (resp. n + 1) right after (i), then
7' € Fpi1(i,j + 2), and the insertion of n + 1 (resp. n + 1) corresponds to applying the
rule y — yz2 to the superscript (resp. subscript) label y associated with 7 (7).

(c3) If we insert n + 1 (resp. n+ 1) at the end of 7, then «' € F,41(i,7 + 2) (resp. 7’ €
F,11(i+2,7)), and the insertion of n + 1 (resp. n + 1) corresponds to applying the rule
y — yz? (resp. z — y22) to the label y (resp. z) at the end of m;

(cq) If (1) > 0 and we insert n + 1 (resp. n + 1) immediately before (1), then 7’ €
Foi1(i +2,5) (resp. ©" € Fop1(i+ 1,5 + 1)), and the insertion of n + 1 (resp. n+1
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corresponds to applying the rule z — %2 (resp. x — xyz) to the label z (resp. z) right
after 7(0);

(c5) If 7(1) < 0 and we insert n + 1 (resp. n + 1) immediately before (1), then 7' €
Fop1(i+ 1,5+ 1) (resp. 7 € F,11(4,5 + 2)), and the insertion of n + 1 (resp. n+ 1
corresponds to applying the rule 2 — 2yz (resp. y — yz2) to the label z (resp. y) right
after 7(0).

In general, the insertion of n + 1 (resp. n + 1) into 7 corresponds to the action of the formal

derivative D on a superscript label (resp. subscript label). By induction, we get a grammatical
proof of ().

Example 3. For example, let m = 043152. Then m can be generated as follows:

021Y — 02122¢;

TrTzTz)

03132¢ — 0737172Y;

r-z=z zZTz52)

0237122 > 074Y37122Y;

zZTZ zZTzTz)

054Y37122Y — 034Y37125024.
2.2. The flag ascent-plateau statistic.

Definition 4. Let 0 = 010909, € Q,. The number of flag ascent-plateau of o is defined by

ap (o) =
P 2ap (0), otherwise.

We can now present the first main result of this paper.

Theorem 5. Let D be the formal derivative with respect to the grammar @)). For n > 1, we
have
D"(z) == Z yfap (9) ;2n—fap (o) (5)
o€Qn
Therefore,

Z fdes (7) :En: (:) Z 2fap (@) Z 228p () (6)

TEB, k=0 geQy 0€EQn_k
Proof. We first introduce a grammatical labeling of o € Q,, as follows:

(Ly) Ifie€{2,3,...,2n — 1} is an ascent-plateau, then put a superscript label y immediately
before o; and a superscript label y right after o;;

(Lo) If 01 = 09, then put a superscript label y immediately before o1 and a superscript z
right after oy;

(L3) If o1 < 09, then put a superscript label 2 immediately before o71;

(L4) The rest of positions in o are labeled by a superscript label z.

Note that the weight of o is given by

w(a) _ xyfap (o) Z2n—fap (o) )
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For example, The labeling of 1223314554 and 661223314554 are respectively given as follows:
T1Y2Y293Y37174Y5Y574% ) Y6767 1Y2Y2Y3Y37174Y5Y5%47.
We then prove (@) by induction. Let S, (i) = {0 € Q,, : fap(¢) = i}. For n = 1, we have
S1(1) = {¥1*1%}. For n = 2, the elements of Qy are labeled as follows:
So(1) = {V27271717}, S5(2) = {"1¥2¥2717}, Sy(3) = {¥171v2¥27}.

Note that D(z) = zyz and D*(z) = zyz(y® + yz + 2%). Hence the result holds for n = 1,2.
Suppose we get all labeled Stirling permutations of S, (i) for all i, where n > 2. Let ¢’ € Q41
be obtained from o € S, (i) by inserting the pair (n + 1)(n + 1) into 0. We distinguish the
following three cases:

(c1) If 01 = 09 and the pair (n + 1)(n + 1) is inserted at the front of o, then the change of
labeling is illustrated as follows:

Yofog - =Y (n+1)"(n+1)°cfog--- .

In this case, the insertion corresponds to the rule y — y2z% and ¢’ € S,41(i);
(c2) If 01 < 0y and the pair (n + 1)(n + 1) is inserted at the front of o, then the change of

labeling is illustrated as follows:
Yop-oo=Y (n+1)%(n+1)%0q - -+

In this case, the insertion corresponds to the rule z — xyz and o’ € S, 11(i + 1);
(c3) If ¢ is an ascent plateau of o, and the pair (n + 1)(n + 1) is inserted immediately before

or right after o;, then the change of labeling are illustrated as follows:
ol joloipg ol ((n+ )Y (n4 1) 070

ol q0loipr e of ol (n+ 1)V (n+ 1) o -

In this case, the insertion corresponds to the rule y — y22 and o’ € S,11(i);
(cq) If the pair (n + 1)(n + 1) is inserted to a position with the label z, then the change of

labeling are illustrated as follows:
O-ZZ|_) ...... U?(n+1)y(n+1)z

In this case, the insertion corresponds to the rule z +— y2z and o’ € S,,.1(i + 2).

It is routine to check that each element of Q, 1 can be obtained exactly once. By induc-
tion, we present a constructive proof of (B)). Using the Leibniz’s formula, we have D" (zy) =
> h_o D¥(x)D""1(y). Combining () and Proposition 2 we get the desired formula (). O

Let

Th(x) = Z gfop (o) — ZT(n,k‘)xk.

0EQn k>1

From the proof of ([fl), we see that the numbers T'(n, k) satisty the recurrence relation

Tn+1,k) =kT(n, k) +T(n,k—1)4+ 2n—k+2)T(n, k — 2).
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with the initial conditions 7'(0,0) =1, T(1,1) = 1 and T'(1,k) = 0 for k # 1. It should be noted
that T'(n, k) is also the number of dual Stirling permutations of order n with & alternating runs
(see [16]). Recall that (see [20, A008292]):

t" r—1
A(‘Tat) = ZAn(x)m = r_ ell@1)"
n>0
Hence
Flot) = —2 1

T — et(@®=1)"

Let T(x,t) = Y, 50 T, () Y. Write the formula (@) as follows:

n!
IAOESY (Z) Ty (2) My_io(22).
k=0
Thus, F(z,t) = T(z,t)M (2?,t). Combining (), we get

Fa,t)  x-1 72 — 2(@?~1) @)
M(22,t)  x —etl@®-1) x2—-1

T(x,t) =

Combining ([2)) and (), we have
T(z,t)N(2?,t) =1 —z + zA(z, t(1 + z)).

Therefore, a dual formula of (@) is given as follows:

Z pfdes (m)+1 :Zn: (Z) Z pfap () Z p2lap (o).

T€B, k=0 c€Qy 0€EQn_k

for n > 1.
Let 6; ; be the Kronecker delta, ie., 6;; = 1if i = j and d; ; = 0 if 7+ # j. It is not hard to
verify that T'(x,t)T(—x,t) = 1. In other words,

n

> () 1@ Tur(-) = b

k=0

3. MULTIVARIATE POLYNOMIALS OVER STIRLING POLYNOMIALS

Let

Cn(az) _ Z xasc(o).
0€Qn
The polynomials C,,(x) and N, (x) respectively satisfy the following recurrence relation

Cht1(z) = (2n + 1)2Cp(x) + (1 — 2)C) (z),

Npi1(z) = (2n + 1)aN,(z) + 22(1 — 2)N/ (2),
with the initial conditions Cy(x) = No(x) = 1 (see [2, B [14] for instance). In this section, we
shall present a unified refinement of the polynomials C,(z) and N, (z).
In the sequel, we always assume that Stirling permutations are prepended by 0. That is, we

identify an n-Stirling permutation o109 - - - 09, with the word ogoi09 - - - 09, where oo = 0.
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3.1. A grammatical labeling of Stirling permutations.

Definition 6. Let 0 = 010909, € Q. For 1 < i < 2n, a double ascent of o is an index i

such that 0,1 < 0; < 0411, 6 descent-plateau of o is an index i such that o;—1 > 0; = 0j41.

Let dasc (o) and dp (o) denote the numbers of double ascents and descent-plateaus of o,
respectively. For example, dasc (244332115665) = 2 and dp (244332115665) = 2. It is clear that

asc (o) = lap (o) + dasc (o), plat (¢) = lap (o) + dp (o). (8)
Define
x Y, 2 Z xlap dasc(a dp(a ZP Z gk LL’ y Z
0€Qn 7, k

where 1 <i<n,0<j<n-—1,0<k<n—1. In particular,
P,(z,z,1) = P,(z,1,2) = Cp(x), Py(z,1,1) = Np(x).
The first few of the polynomials P, (z,y, z) are given as follows:

Pl(:Evyvz) =,
Py(x,y, z) = zy + xz + 22,
Py(x,y, 2) = z(y? + 2%) + 422 (y + 2) + 2zyz + 222 + 3.

Now we present the second main result of this paper.

Theorem 7. Let A= {x,y,z,p,q} and

G ={r — xzq,y — yzp,z = Tyz,p — Y2, q — TYZ}. (9)
Then
_ZZP’L], )qpkz2n223k
i3,k

where 1 <i<n,0<j<n—-1,0<k<n-—1and2i+j+k<2n. Set P, = P,(x,y,2). Then

the polynomials P, (x,y,z) satisfy the recurrence relation

Poi1 = 20+ 1)2P, + (zy + 22 — 227) Puta(l=2)2 P, (10)

) )
L P +a(l—y)— =

ox oy
with the initial condition Py(x,y,z) = 1.

Proof. Now we give a labeling of ¢ € Q,, as follows:

(Ly) If i is a left ascent-plateau, then put a superscript label y immediately before o; and a
superscript label x right after o;;

(Lo) If i is a double ascent, then put a superscript label ¢ immediately before oy;

(L3) If i is a descent-plateau, then put a superscript label p right after oy;

(L4) The rest positions in o are labeled by a superscript label z.
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The weight of ¢ is defined by

’lU(O') _ Z(:Ey)lap (o) qdasc (o)pdp (o) Z2n—21ap (o)—dasc (o)—dp (o) )

For example, the labeling of 552442998813316776 is as follows:

Y5*5%2¥4%472Y979*8P8* 193319697 7°6~.

We proceed by induction on n. Note that Q; = {¥1¥1*} and

Q, = {V1%1Y272%, 91¥27271% ¥2¥2%1P1%},

Thus the weight of ¥171% is given by D(z) and the sum of weights of elements in Q5 is given by

D?(z), since D(z) = zyz and D?(z) = z(zyqz + vypz + 2%9?).

Assume that the result holds for n = m — 1, where m > 3. Let o be an element counted by

Pp—1(i,j,k), and let ¢’ be an element of Q,, obtained by inserting the pair mm into o. We

distinguish the following five cases:

(c1)

(ca)

If the pair mm is inserted at a position with label xz, then the change of labeling is

illustrated as follows:

q Y

Y T T, 2

In this case, the insertion corresponds to the rule x — zzq and produces ¢ permutations
in Q,, with 7 left ascent-plateaus, j + 1 double ascents and k descent-plateaus;
If the pair mm is inserted at a position with label y, then the change of labeling is

illustrated as follows:

Y x Y z, z D

In this case, the insertion corresponds to the rule y — y2zp and produces ¢ permutations
in Q,, with ¢ left ascent-plateaus, j double ascents and k + 1 descent-plateaus;
If the pair mm is inserted at a position with label z, then the change of labeling is

illustrated as follows:

Y

z x z

In this case, the insertion corresponds to the rule z — zyz and produces 2m—2—2i—j—k
permutations in Q,, with ¢ + 1 left ascent-plateaus, j double ascents and k descent-
plateaus;

If the pair mm is inserted at a position with label ¢, then the change of labeling is

illustrated as follows:

Y

q T,z

In this case, the insertion corresponds to the rule ¢ — zyz and produces j permutations
in Q,, with ¢ + 1 left ascent-plateaus, j — 1 double ascents and k descent-plateaus;
If the pair mm is inserted at a position with label p, then the change of labeling is

illustrated as follows:

p Yoy Ton 2
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In this case, the insertion corresponds to the rule p — xyz and produces k permutations

in Q,, with ¢ + 1 left ascent-plateaus, j double ascents and k — 1 descent-plateaus.

By induction, we see that grammar (@) generates all of the permutations in Q,,.

Combining the above five cases, we see that
Poi1(i,j, k) =iP,(i,5 — 1,k) +iP,(i, 5,k — 1)+ (F+ 1)P,(i — 1,5 + 1,k)+
(k+1D)P,i—1,5,k+ 1)+ 2n+3—-2i—j—k)P,(i — 1,7,k).
Multiplying both sides of the above recurrence relation by x'y’2* for all i, j, k, we get (IQ) O

3.2. Equidistributed statistics.

Let i € 2n] and let 0 = 0105 ... 09, € Q,,. We define the action ¢; as follows:

e If i is a double ascent, then @;(0) is obtained by moving o; to the right of the second o,
which forms a new pleateau o;0;;
e If i is a descent-plateau, then ¢;(0) is obtained by moving o; to the right of oy, where
k=max{j € {0,1,2,...,i — 1} : 0 < 0;}.
For instance, if o = 2447887332115665, then

p1(0) = 4478873322115665, ¢4(0) = 2448877332115665,

and ¢9(¢1(0)) = pe(pa(o)) = o. In recent years, the Foata and Strehl’s group action has
been extensively studied (see [3, [12] for instance). We define the Foata-Strehl action on Stirling

permutations by

, @i(0o), if i is a double ascent or descent-plateau;
@i(o) =

o, otherwise.

It is clear that the ¢’s are involutions and that they commute. Hence, for any subset S C [2n],
we may define the function ¢ : Q, = Q, by () = ] ¢i(0). Hence the group Z3" acts on
€S
Q,, via the function ¢, where S C [2n].
The third main result of this paper is given as follows, which is implied by (I0]).

Theorem 8. For any n > 1, we have

Pn($7y7z) :Pn(':l;?z?y)' (11)
Furthermore,
Z xlap (cr)yasc (o) — Z xlap (cr)yplat (o)' (12)
c€Qn c€Qn
Proof. For any o € Q,,, we define
Dasc (o) ={i € 2n] : 0_1 < 0y < 0441},

{
DP (o) ={i € [2n|:0i_1 > 0; = 0it1},
LAP (o) ={i € [2n]|: 0i_1 < 0; = 0i1}.
Let S = S(0) = Dasc (o) UDP (o). Note that

Dasc (¢s(c)) = DP (o), DP (¢5(0)) = Dasc (o) and LAP (¢5(c)) = LAP (o).
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Therefore,

Pn(gj, Y, Z) — Z xlap (o) ydasc (o) de (0)
o€Qn

_ Z 2P (P56 () ydp (50 (0))) dase (9, ()
o'€Qn,

— Z xlap (o) Zdasc (o) ydp (o)
o€Qn

= Pn (.Z', 2, y)

Combining () and (III), we see that P,(zy,y,1) = P,(xy,1,y). This completes the proof.

Theorem 9. Forn > 1, we have

Z xlap (o) ydasc (o) de (o) _ Z ’Yn,i,jxi(y + Z)j,

c€Qn 1<i<n
0<j<n—1

where

Tn,i,j = #{J € Q,:lap (J) = i,dasc (0) = Jj,dp (J) = 0}

Proof. Define
NDP,,;; ={o € Q, :lap (¢0) = i,dasc (o) = j,dp (o) = 0}.
For any o € NDP ,, ; ;, let
o] = {¢s(e) | § € Dasc (0)}.

For any o’ € [o], suppose that o’ = ¢/5(0) for some S C Dasc (¢). Then
lap (¢) = lap (o), dasc (¢/) = dasc (o) — |S] and dp (¢/) = |S].
Moreover, {[o] | 0 € NDP ,,; ;} form a partition of Q,,. Hence,

Z xlap (o) ydasc (U)de (o)
o€Qn

— Z Z xlap (J’)ydasc (O’l)zdp (o)

oceNDP ,, o/€[o]
=YY o) e () Ap (o)

0€NDP ,, SCDasc (o)

— Z Z $1ap (U)ydasc (J)—|S\Z\S|

0€NDP ,, SCDasc (o)

— Z xlap (o) Z ydasc (o)—|5] Z‘Sl

ceNDP, SCDasc (o)

_ Z xlap (o) (y + Z)dasc (o)
oceNDP ,,

= D gt (y+2)
i

11
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Taking y = z = 1 in Theorem [, we have

n n—1
No(z)= Y a™®@ =3 " | 3 2y ) o
o€, i=1 \j=0

Let Ny(z) = Y7, N(n,k)z*. According to [14, Eq. (24)],

& 2k
Ny(z) =Y on=2 ( L >k!{2}xk(1 — )"k,
k=1

Thus, for n > 1, we have

el : 20\ (n— 4\ . (n

5 2= 20w (1) ({7}

j=0 J=1
Theorem 10. Let A = {u,v,w} and G = {u = vow,v — 2uw, w — uw}. Then

D" (w) = Z Vi, jul v w27 (13)

1<i<n
0<j<n—-1

Furthermore, the numbers v, ; ; satisfy the recurrence relation

Yot 1ig = Pnyij—1 4 205 + Dmi-141 + (20 +3 = 20 — ) V1,4, (14)
with the initial conditions y11,0 =1 and v14; =0 fort>1 and j > 0.
Proof. From the grammar (@), we see that

D(zy) = zyz(p + q),
D(p +q) = 22yz,
D(z) = xyz.

Set u = zy,v = p+ q and w = z. Then D(u) = vvw, D(v) = 2uw and D(w) = vw. Combining
Theorem [Tl and Theorem [, we get (I3]). Since D" (w) = D(D"(w)), we obtain that

Dn-i—l(,w) - D § :,yn’i’juivjw2n+1—2z—j

i7j
— § :i7n7i7ju’v]+1w2"+2_2z_3 + 2§ :j’}/n,i,jul+11)]_1w2n+2_2z_]-|—
i, i,J
E (2n + 1 — 20 — §) v u T ol w? T2

i7j
Equating the coefficients of u‘v/w?"+1=21=J on both sides of the above equation, we obtain (I4).
O

Let Gp(x,y) = Z” Yni 2y’ . Multiplying both sides of the recurrence relation (I4) by z'y’
for all 7, j, we get that

Gni1(z,y) = Cn+ 1D)aGy(z,y) + (zy — 2x2)%Gn(x, y)+ (2x — :Ey)%Gn(:E, Y). (15)
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The first few of the polynomials Gy, (x,y) are given as follows:
Go(w,y) = 1,Gi(w,y) = x,Ga(w,y) = wy + 2%, G3(x,y) = zy” + 42’y + 22° + 2°,

3.3. Connection with Eulerian numbers.

Recall that the Fulerian numbers are defined by

<Z> = #{r € &, : des (m) = k}.

The numbers <Z> satisfy the recurrence relation

<"‘k”>:(k+1)<z>+(n+1—k)<kfl>,

with the initial conditions <(1]> =1 and <i> =0 for k> 1.

Theorem 11. Forn>1 and 0 < k <n —1, we have

o n
Tnn—kk = K/

Proof. Set a(n,k) = ynn—kk Then a(n,k —1) = v n—ky1,k-1. Using ([Id)), it is easy to verify
that
Tnij =0 for i 4 j > n.

Hence 7y, n—k k+1 = 0. Therefore, the numbers a(n, k) satisty the recurrence relation
aln+1,k)=(k+ 1a(n, k) + (n+1—k)a(n,k—1).

Since the numbers a(n, k) and <Z> satisfy the same recurrence relation and initial conditions, so

they agree. This completes the proof. O
A bijective proof of Theorem [I1k

Proof. Let 0 € Q,. Note that every element of [n| appears exactly two times in o. Let a(o)
be the permutation of &,, obtained from o by deleting all of the first ¢ from left to right, where
i € [n]. Then « is a map from Q,, to &,,. For example, «(344355661221) = 435621. Let

D, ={o € Q, :lap (o) =i,dasc(0) =n —i,dp (o) = 0}.

Let = be a given element of [n]. For any o € Q,,, we define the action 3, on Q,, as follows:
e Read o from left to right and let 7 be the first index such that o; = z;
e Move o; to the right of oy, where k = max{j € {0,1,2,...,71 — 1} : 0; < 05}, where
o) = 0.

For example, if o = 3443578876652211, then
B1(0) = 1344357887665221, [o(0) = 2344357887665211, [g(o) = 3443567887652211.

It is clear that 8,(8y(0)) = By(Bz(0)) for any =,y € [n]. For any S C [n], let Bs : Q,, — Q,, be
a function defined by

Bs(a) = [ Belo).

€S
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It is easy to verify that
B[n](o-) € Dy, 04(0) = Oé(ﬁ[n} (O‘)), ﬁ[n](a) =cifoeD,.

Let a|p, denote the restriction of the map « on the set D,,. Then «|p, is a map from D,, to
S,. Let m =n(1)7(2) -+ w(n) € &,. The inverse aB}L is defined as follows:

e let 0 = 01093...09, be the Stirling permutation such that o9;_1 = 09; = 7(i) for each
i=1,2,....n
o let S(m) ={m :mi_1 >m,2<i<n}
o let alp (1) = By(m (o).
Note that
lap (oz|1_)}1 (7)) + dasc (oz|5i (m)) = n and dasc (oz|5i (m)) = des (m).
Then «|p, is a bijection from D,, to &,,. This completes the proof. O

Example 12. The bijection between &3 and Ds is demonstrated as follows:

123 112233 (S = 0) > B5(112233) = 112233;

132 > 113322 (S = {2}) ¢ Bs(113322) = 112332;
213 <5 221133 (S = {1}) > B5(221133) = 122133;
231 <5 223311 (S = {1}) > B5(223311) = 122331;
312 <5 331122 (S = {1}) + B5(331122) = 133122;
321 <» 332211 (S = {1,2}) <> B5(332211) = 123321.

4. CONCLUDING REMARKS

In this paper, we introduce several variants of the ascent-plateau statistic on Stirling permu-
tations. Recall that Park [19] studied the (p, ¢)-analogue of the descent polynomials of Stirling

permutations:

LZ' D, q Z xdes(a inv (o) maJ( )
o€Qn

It would be interesting to study the relationship between C,(z,p,q) and the following polyno-

mials:

Z 2P lap (o) 1nv (o) qmaj (o) )

O’GQn

In [6], Egge introduced the definition of Legendre-Stirling permutation, which shares similar
properties with Stirling permutation. One may study the ascent-plateau statistic on Legendre-

Stirling permutations.
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