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1 Introduction

It was first proposed by Cachazo, He and Yuan (CHY) [1–4] that the tree-level scattering amplitudes of
many massless theories are supported by the solutions to the scattering equations

fi =

n∑
j=1,j 6=i

sij
σij

= 0 , i = 1, 2 . . . n , (1.1)

where sij = (pi + pj)
2 are Mandelstam variables, and σij = σi − σj are moduli space variables. The CHY-

formulation consists of an integrand In that specifies the theory, and a measure on the moduli space that
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fully localizes the integration to the solutions of the scattering equations (1.1):∫
dµCHY =

∫
(σrsσstσtr)

2
∏
i 6=r,s,t

dσiδ(fi) . (1.2)

The moduli space integration indicates that the CHY-formulation should appear as a certain limit of the
string amplitudes, which effectively reduces the path ordered string measure into the color ordered CHY
measure. It has been shown that the CHY-formulation naturally emerges as the infinite tension limit of
ambitwistor strings [5–7], chiral strings [8, 9] and pure spinor formalism of superstrings [10, 11]. In the
context of conventional string theory, the CHY-formulation can also appear as the zero tension limit of an
alternative dual model [12].

The scattering equations (1.1) have (n − 3)! solutions, and to obtain the amplitudes, naively one
needs to get all the solutions and sum up their contributions. However, solving the equations becomes
computationally unavailable as the number of particles grows. This difficulty can be circumvented by using
integration rules [13–16]. The idea behind this approach is that one can obtain the sum over algebraic
combinations of the solutions in terms of the coefficients of the original polynomial equations without
knowing each individual solution. Using the original integration rules, we can extract the correct amplitudes
of those theories without the appearance of higher order poles, for example, the bi-adjoint scalar theory
whose integrand consists of two Parke-Taylor (PT) factors,

In = PT(ααα)× PT(βββ) = 〈α1α2 · · ·αn〉 × 〈β1β2 · · ·βn〉

=
1

σα1α2σα2α3 · · ·σαnα1

× 1

σβ1β2σβ2β3 · · ·σβnβ1
, (1.3)

where ααα = {α1, . . . , αn} and βββ = {β1, . . . , βn} are two permutations of external particles. On the other
hand, theories with more complicated integrands usually involve (spurious) higher order poles. For example,
by expanding the Yang-Mills integrand following the way of Lam and Yao [17], one has to develop various
techniques to evaluate the higher order poles and show that they indeed cancel towards the end [18–
22]. Alternatively, one can expand the integrand in terms of linear combinations of bi-adjoint scalar ones
with local coefficients, such that the calculation of higher order poles can be avoided. This approach has
succeeded in Yang-Mills, Yang-Mills-scalar and nonlinear sigma model [23–28]. The latter approach has an
extra benefit that the expansion coefficients are automatically the Bern-Carrasco-Johansson numerators [4,
29, 30]. It is not surprising that the amplitudes of various theories land on the bi-adjoint scalar ones after
a recursive expansion. The reason is that these bi-adjoint scalar amplitudes capture exactly the physical
poles associated with various diagrams that are planar under certain color ordering, while different theories
just dress these diagrams with different kinematic numerators.

The above discussion shows the fundamental role of the bi-adjoint cubic scalar amplitudes in the un-
derstanding of CHY-formulation, so it is not surprising that many different approaches have been proposed
towards the evaluation and better understanding of CHY-integrand with product of two PT-factors. While
many of them focus on the rational function of complex variables σi’s, in paper [31] the authors have re-
lated the PT-factors to the partial triangulations of a polygon with n edges (n-gon), and the PT-factors are
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deeply connected to the associahedron. It also brings permutation group Sn into the story, since each PT-
factor is accompanied by a color trace with a definite ordering. We should find one-to-one correspondence
between action of Sn onto the PT-factors and partial triangulations of n-gon. It would be a very natural
idea to understand the CHY-integrand from the knowledge of permutations. Certain progress along this
direction has been made in [32] by investigating pairing of external legs, whose results are presented in
terms of illustrative objects like crystal and defect. In fact, for the two PT-factors in the CHY-integrand of
bi-adjoint cubic scalar theory, if we set one PT-factor as the natural ordering 〈12 · · ·n〉, corresponding to
identity element in the permutation group, then the other PT-factor can be interpreted as a permutation
acting on the identity. The physical information, i.e., the poles and vertices of the Feynman diagrams that
this CHY-integrand evaluates to, should find its clue in the structure of permutations. In this paper, we try
to understand the cubic scalar amplitude by inspecting the structure of permutations. We demonstrate how
the physical information is encoded in the permutations, and explore the relations of different PT-factors
from the means of permutations as well as other algebraic methods stemmed from the integration rules.

This paper is organized as follows. In §2, we set our convention and provide some necessary back-
grounds. In §3, we show how the structure of those Feynman diagrams produced by a CHY-integrand can
be extracted from the cycle representations of the corresponding PT-factor viewed as a permutation. In §4,
we study the inverse problem on how to write out the PT-factor for an arbitrary given Feynman diagram.
In the form of cycle representation, we propose a recursive method to construct an n-point PT-factor re-
cursively from lower point PT-factors. In §5, we investigate the relations among different PT-factors via
the merging and splitting of cycle representations, as well as via multiplying cross-ratio factors. Conclusion
is presented in §6, and in Appendix A, we comment on an interesting interplay between the associahedron
and cycle representations of permutation.

2 The setup

In this section, we give the definitions of some important objects to be used in later.

2.1 The canonical PT-factor

Since the 2n PT-factors obtained by acting cyclic rotations and reflections evaluate to the same amplitude,
despite an overall sign (−1)n for the latter case, all these 2n PT-factors form an equivalent class. Thus the
number of independent PT-factors is n!/(2n). We can represent each independent PT-factors by a canonical
ordering 〈α1α2 · · ·αn〉 that satisfy two conditions: (1) the first element α1 is fixed to be 1 to eliminate the
cyclic ambiguity, (2) the second element α2 should be smaller than the last element αn to eliminate the
reversing ambiguity. The complete equivalent class can be generated from these independent PT-factors
by acting the cyclic rotation and reversing. For example, up to n = 5, we can choose the independent
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PT-factors as follows,

n = 3 # =
n!

2n
= 1 : 〈123〉 ,

n = 4 # =
n!

2n
= 3 : 〈1234〉 , 〈1243〉 , 〈1324〉 ,

n = 5 # =
n!

2n
= 12 : 〈12345〉 , 〈12354〉 , 〈12435〉 , 〈12453〉 , 〈12534〉 , 〈12543〉 ,

〈13245〉 , 〈13254〉 , 〈13425〉 , 〈13524〉 , 〈14235〉 , 〈14325〉 .

The CHY-integrand for bi-adjoint cubic scalar amplitudes is given by PT(ααα)×PT(βββ), as shown in Eq. (1.3).
A simultaneous permutation acting on ααα and βββ merely leads to the same result up to a relabeling of external
legs. Hence we can fix one of the PT-factors to be the natural ordering PT(ααα) = 〈12 · · · (n− 1)n〉, and
consider the other PT-factor PT(βββ) as a permutation acting on ααα. Thus all the dynamical information is
encoded in PT(βββ), from which one can read out the amplitude.

2.2 Permutation, cycle representation and PT-factor

Permutations, as group elements of the n-point symmetric group Sn, can be defined by their action onto
the space spanned by the elements of Sn themselves, for example,

βββ|eee〉 = |βββ〉 , γβγβγβ|eee〉 = γγγ|βββ〉 = |γβγβγβ〉 , (2.1)

where βββ and γγγ are two generic elements of Sn, and eee is the identity element defined as the natural ordering
{1, 2, . . . , n}. Each permutation can be represented by a product of disjoint cycles (i1i2 · · · is), which stands
for the map i1 7→ i2, i2 7→ i3, . . ., is 7→ i1. For example,

(123)(4)(5) · · · (n)|1234 · · ·n〉 = |2314 · · ·n〉 (2.2)

stands for the permutation in Cauchy’s two-line notation(
1 2 3 4 · · · n
2 3 1 4 · · · n

)
. (2.3)

Cycles are defined up to a cyclic ordering, for example, (123) = (231) = (312) gives the same permutation.
It is also obvious that two disjoint cycles commute, i.e., (123)(45) = (45)(123). Each permutation has a
unique decomposition in terms of disjoint cycles, modulo the cyclicity of each cycle and the ordering of
disjoint cycles.1 We call this unique decomposition the cycle representation of a permutation in the rest
of this paper. The number of disjoint cycles in a cycle representation is called the length of this cycle
representation, and the number of elements in a cycle is called the length of cycle.

1In this statement, disjoint is crucial to the uniqueness. Otherwise, we could have other decompositions like (1)(2) =

(12)(12), etc.
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In our CHY-integrand (1.3), we can treat PT(βββ) = 〈β1β2 · · ·βn〉 also as a permutation. The equivalent
class of PT(βββ) consists of all the 2n permutations obtained by cyclic rotations and reversing,

b[βββ] :=

{
〈β1β2 · · ·βn−1βn〉 , 〈β2β3 · · ·βnβ1〉 , . . . , 〈βnβ1 · · ·βn−2βn−1〉
〈βnβn−1 · · ·β2β1〉 , 〈β1βn · · ·β3β2〉 , . . . , 〈βn−1βn−2 · · ·β1βn〉

}
. (2.4)

We define the cyclic generator gggc and reversing generator gggr respectively as

gggc = (β1β2 · · ·βn) , gggr =

{
(β1βn)(β2βn−1) · · · (βn

2
βn+2

2
) for even n

(β1βn)(β2βn−1) · · · (βn−1
2
βn+3

2
)(βn+1

2
) for odd n

, (2.5)

which satisfy the relation gggrgggc = ggg−1c gggr and gggnc = ggg2r = eee. Thus they generate the n-point dihedral group
Dn. For a permutation βββ, the equivalent class b[βββ] is thus given by,

b[βββ] =
{
βββ , βββgggc , . . . , βββggg

n−1
c , βββgggr , βββgggrgggc , . . . , βββgggrggg

n−1
c

}
. (2.6)

The elements in b has one-to-one correspondence to the equivalent class of PT-factors (2.4). There are in
all n!/(2n) non-equivalent permutations. However, they do not form a group in general, since Dn is not
a normal subgroup of Sn for n > 4. For permutations in the same equivalent class, of course they have
different cycle representations, since after all they are different group elements of Sn. In the next section,
we are going to show that which set of Feynman diagrams PT(βββ) corresponds to is encoded collectively in
the different cycle representations of the equivalent permutations in b.

3 From permutations to Feynman diagrams

One of our motivations is to explore the information encoded in the PT-factors, described in the form of
permutations. As mentioned in the previous section, in our setup the amplitude result is determined by the
second PT-factor PT(βββ), considered to be a permutation acting on the identity element. It determines an
equivalent class containing 2n elements evaluating to the same amplitude. Thus we need to consider all the
permutations in the equivalent class. For example, when working with the CHY-integrand PT(ααα)×PT(βββ) =
〈1234〉 × 〈1243〉, we need the equivalent class of 〈1243〉, containing eight elements,{

〈1243〉 , 〈2431〉 , 〈4312〉 , 〈3124〉 , 〈3421〉 , 〈4213〉 , 〈2134〉 , 〈1342〉
}
, (3.1)

or in the form of cycle representations,{
(1)(2)(34) , (124)(3) , (1423) , (132)(4) , (1324) , (143)(2) , (12)(3)(4) , (1)(234)

}
. (3.2)

Our purpose is to relate these cycle representations to the Feynman diagrams contributing to the amplitude.
All the above eight cycle representations in (3.2) can be used to reconstruct the PT-factor PT(βββ) by acting
them on the natural ordering 〈1234〉, so each one encodes the complete information for evaluation. However,
they have different structures. In Eq. (3.2), two cycle representations are length-1, four are length-2, while
the remaining two are length-3. How can we read useful information out of these different cycle structures?
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To answer this question, let us recall the integral result of the CHY-integrand 〈1234〉 × 〈1243〉, which
is − 1

s12
. It corresponds to a Feynman diagram with two cubic vertices, one connecting the legs 1, 2 and the

internal propagator P12 := p1 + p2, while the other connecting the legs 3, 4, and the internal propagator
−P12. It is very plausible to conjecture that, the two cycle representations (1)(2)(34) and (12)(3)(4) in fact
describe respectively the two cubic vertices. In (1)(2)(34), the two cycles (1) and (2) describe respectively
the external legs 1 and 2 attached to a vertex, while the cycle (34) describes the corresponding internal
propagator of that vertex. It also indicates that 1

s34
= 1

s12
is an internal pole. Similar analysis can be

carried out for the cycle representation (12)(3)(4).

Above discussion tells us that, although each cycle representation contains the complete information
of amplitude, the pole structure is manifest in some of them but not all. The complete picture of Feynman
diagrams is determined collectively by all cycle representations whose pole and/or vertex structures are
manifest. With this understanding, we only need to consider those good cycle representations, i.e., the
pole and/or vertex structure are manifest. For bi-scalar theory, the physical pole would appear only for the
external legs with consecutive ordering. So let us define the good cycle representations as those satisfying
the following criteria:

• the cycles in the considered cycle representation can be separated into at least two parts, while the
union of cycles in each part is consecutive (later called planar separation).

• in case that the cycle representation can only be separated into two parts, then each part should
contain at least two elements.

Moreover, if the planar separation of a good cycle representation contains at least three parts, we call it
a vertex type (V-type) cycle representation. Otherwise, we call it a pole type (P-type) cycle representa-
tion. Let us give a few more examples. At six point, both (12)(34)(56) and (12)(35)(46) are good cycle
representations. The former is a V-type one since it can be separated into three parts (12), (34) and (56),
while the latter is a P-type one since it can only be separated into two parts (12) and (35)(46). On the
other hand, both (14)(25)(36) and (1)(23456) are bad cycle representations according to the above criteria,
since the former one has no planar separation at all while the separated part (1) in the latter contains only
one element. With the above definitions, we can give an answer to the question raised at the end of the
first paragraph of this section: we can reconstruct the Feynman diagrams by considering all the good cycle
representations in the equivalent class of a PT-factor.

Now we illustrate how a good cycle representation reflects the vertex and pole structure of the cor-
responding Feynman diagram by an eight point example PT(βββ) = 〈12846573〉, which gives four trivalent
Feynman diagrams after the CHY integration,

1

s12s56s8123

(
1

s812
+

1

s123

)(
1

s456
+

1

s567

)
. (3.3)
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The result can be summarized into a single effective Feynman diagram,

2

1

5

6
8

3

7

4

.

There are 16 equivalent cycle representations in b[βββ], collected as,

good : V-type : (1)(2)(38)(4)(56)(7) , (12)(3)(47)(5)(6)(8) ,

P-type : (132)(4875)(6) , (128)(3467)(5) , (1)(2378)(456) , (1843)(2)(576) ,

bad : (15274)(3)(68) , (14726)(35)(8) , (16385)(24)(7) , (17)(25836)(4) , (3.4)

(176423)(58) , (182457)(36) , (135468)(27) , (14)(286753) ,

(1526)(3487) , (1625)(3784) .

In general, P-type cycle representations manifest certain poles contained in some of the Feynman diagrams.
For example, (132)|||(4875)(6) is P-type since it can only be divided into two parts indicated by the vertical
line. This separation indicates that the pole s123 should appear in some Feynman diagrams. Similarly, the
other three P-type cycle representations correspond respectively to the pole s812, s456 and s567, as can be
seen in Eq. (3.3). In contrary, the V-type cycle representations contain both pole and vertex information.
For example, the cycle representation (1)(2)(38)(4)(56)(7) allows two different planar separations,

four parts : (1)(2)(38)|||(4)|||(56)|||(7) , (3.5a)

three parts : (1)|||(2)|||(38)(4)(56)(7) . (3.5b)

These two separations indicate that the effective Feynman diagram contains one quartic vertex with legs
{P8123, 4, P56, 7}, and one cubic vertex with legs {1, 2, P345678}. Since the legs with more than one elements
also give pole information, we can read out the poles s8123, s56, and s12 from this V-type cycle representation.
Similarly, the cycle representation (12)(3)(47)(5)(6)(8) gives one quartic vertex with legs {P12, 3, P4567, 8}
and one cubic vertex with legs {5, 6, P781234}, and it gives the same pole structures as the previous one.
Combining these two, we do produce all the vertices in the effective Feynman diagram.

The above example shows that by collectively combining the information from all good cycle represen-
tations, we can read out the complete Feynman diagram result. This provides one method of analysis. On
the other hand, we can arrive at the complete final result by relying on only one good cycle representation,
since each one should contain the complete information of PT-factor PT(βββ). Hence we should have another
method of analysis. Observations from practical computation show that,

(A) All V-type cycle representations together manifest the vertex structure of the corresponding effective
Feynman diagram.

– 7 –



(B) It is also possible to reproduce the effective Feynman diagram from one V-type cycle representation
if we recursively use the lower multiplicity results.

(C) One P-type cycle representation is not sufficient to reproduce the complete result, and in order to get
the correct answer we should consider all P-type cycle representations.

We use again the example (3.4) to demonstrate our observations. We start with the V-type cycle represen-
tation (1)(2)(38)(4)(56)(7). In the four-part separation (3.5a), we first coarse grain the part {8123} and
{56} by replacing them by a single propagator. This leads to an effective quartic vertex,

PT(βββ) = (1)(2)(38)|||(4)|||(56)|||(7) → (P8123)(4)(P56)(7) ,

PT(ααα) = (8)(1)(2)(3)|||(4)|||(5)(6)|||(7) → (P8123)(4)(P56)(7) ,

which gives the contribution

P8123

P564

7

=
1

s8123s56

(
1

s4P56

+
1

sP567

)
=

1

s8123s56

(
1

s456
+

1

s567

)
. (3.6)

Next, we look into the substructures. In Eq. (3.5a), the substructure {P56, 5, 6} has the cycle representation
(P56)(56). In its equivalent class, we have only one good cycle representation

V-type : (P56)(5)(6) =⇒ P56

5

6

, (3.7)

which gives the familiar cubic vertex. The substructure {P8123, 8, 1, 2, 3} has the cycle representation
(1)(2)(38)(P8123) in Eq. (3.5a). By acting on it with the cyclic generator gggc = (P81238123) and the reversing
generator gggr = (P8123)(83)(12), we can reproduce all the ten permutations in the equivalent class,2

V-type : (P )(8)(12)(3) ,

P-type : (P8)(132) , (P3)(812) , (3.8)

Bad : (P )(38)(1)(2) , (P231)(8) , (P182)(3) ,

(P823)(1) , (P318)(2) , (P1)(832) , (P2)(813) .

From the V-type cycle representation (P8123)(8)(12)(3), we see immediately the quartic vertex structure

(P8123)(8)(12)(3) =⇒
P8123

P128

3

, (3.9)

2We omit the subscript in the propagator P when there is no possible confusion.
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where the {P12, 1, 2} part is another cubic vertex, following the analysis of (3.7). Thus we get the con-
tribution

(
1

s812
+ 1

s123

)
. When combining with (3.6), we do get the complete result (3.3). The above

calculation shows that by recursively looking into the V-type cycle representations of each substructure, we
can reproduce the full Feynman diagram result.

Now we move to the P-type cycle representation, for example, the planar separation (132)|||(4875)(6).
We need to analyze the two substructures given by cycle representations (P123)(132) and (P123)(4875)(6).
Using the algorithm given in (2.6), the substructure (P123)(132) gives the following eight equivalent cycle
representations

V-type : (1)(2)(3P ) , (12)(3)(P ) ,

Bad : (132)(P ) , (1P23) , (124)(3) , (1P3)(2) , (132P ) , (1)(23P ) ,

in which either (1)(2)(3P123) or (12)(3)(P123) manifests the pole structure 1
s12s123

. Similarly, the substruc-
ture (P123)(4875)(6) gives the following 12 equivalent cycle representations

V-type : (8P )(4)(56)(7) , (8)(P )(47)(5)(6) ,

P-type : (78P )(456) , (4P8)(765) ,

Bad : (P )(6)(4875) , (P764)(58) , (P5)(47)(68) , (P6)(4578) , (P467)(5)(8) ,

(P48675) , (P6)(4)(58)(7) , (P54687) .

From both the V-type cycle representation, we can read out the contribution 1
s56s1238

(
1

s456
+ 1

s567

)
. Putting

two substructures together, we get only two terms

1

s12s56s1238

1

s123

(
1

s456
+

1

s567

)
,

compared to the full result (3.3). One can check that only by combining with another P-type cycle repre-
sentation (128)(3476)(5) can we obtain the full result.

With the above example in mind, let us move on to the systematic investigation of four, five and six
point PT-factors. For presentation purpose, we shall organize the independent PT-factors into categories
according to the topology of corresponding Feynman diagrams. In the same category, different PT-factors
are related by group actions, and can be analyzed in the same manner. Concretely, we can define the group
action as follows. In the space of n!

2n equivalent classes b[βββ], we define the permutation action

C(b[βββ]) = b
[
βββ|i 7→i+1

]
, R(b[βββ]) = b

[
βββ|i 7→n+1−i

]
, (3.10)

where C and R also generate a dihedral group Dn.3 The action of Dn further separates the space of b[βββ] into
different orbits. The number of elements inside each orbit depends on the symmetric property of such orbit.

3We note that this Dn is different from the Dn defined in §2 that generates the equivalent class b[βββ], since their actions on
the permutations are different.
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For example, the identity permutation PT(βββ) = 〈12 · · ·n〉 is invariant under Dn action such that it forms
a one dimensional orbit by itself. A nontrivial example is that by acting Dn onto PT(βββ) = 〈12846573〉, we
get an orbit with four elements:

〈12846573〉 , 〈13248675〉 , 〈15342687〉 , 〈17354628〉 . (3.11)

The above discussion is useful because, all PT-factors in the same orbit of Dn share the same structure
of the cycle representations. Most importantly, starting from the V-type and P-type cycle representations
of one PT-factor in the orbit, we can get the V-type and P-type cycle representations of all the other
PT-factors in this orbit simply by the mapping i 7→ i+1 or i 7→ n+1− i. Later on we will only study one
PT-factor for each orbit.

After above general discussion, we present more example to further elaborate our algorithm. In ap-
pendix A, we will give some further discussions on the cycle structure of PT-factors and Feynman diagrams.

3.1 The three and four point cases

At three point, there is only one independent PT-factor PT(βββ) = 〈123〉. Among the six cycle representations
of the equivalent class, only (1)(2)(3) is a good one. The planar separation (1)|||(2)|||(3) indicates pictorially
that the three external legs are attached to a single cubic vertex. This Feynman diagram evaluates to 1,
which agrees with the CHY integration result.

At four point, there are three independent PT-factors PT(βββ). Each of them corresponds to an equivalent
class with 8 permutations. Their good cycle representations are summarized in the following table as

PT(βββ) V-type P-type
〈1234〉 (1)(2)(3)(4) (41)(23) , (12)(34)

〈1243〉 (1)(2)(34) , (12)(3)(4)

〈1324〉 (4)(1)(23) , (41)(2)(3)

For the PT-factor 〈1234〉, we can read out the complete vertex information from the sole V-type cycle
representation (1)(2)(3)(4). This PT-factor gives all trivalent four point Feynman diagrams whose four
external legs are connected at cubic vertices respecting the color ordering, and the result is simply 1

s12
+ 1
s23

.
In the language of planar separation, the V-type cycle representation can be separated into four parts
(1)|||(2)|||(3)|||(4), which can be explained as defining an effective quartic vertex with exactly the same meaning
as mentioned above. This structure will be one of the building blocks for the analysis of higher point
Feynman diagrams.

However, the two P-type cycle representations alone only provide partial result. For example, the
planar separation of cycle representation (41)|||(23) indicates that, legs 2 and 3 are connected to the same
cubic vertex while legs 4 and 1 are connected to another, resulting in a contribution of 1

s23
. This is half of

the complete answer, and the remaining part is given by the other P-type cycle representation (12)|||(34),
leading to 1

s12
.
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The other two PT-factors 〈1243〉 and 〈1324〉 are related through i 7→ i + 1, i.e., 〈1243〉 7→ 〈2314〉 =
〈1324〉. In other words, they belong to the same orbit under D4 action. Thus by knowing one, we can
obtain the other just by relabeling. For 〈1243〉, the V-type cycle representation with planar separation
(1)|||(2)|||(34) indicates a cubic vertex with three legs {1, 2, P34}, while (12)|||(3)|||(4) indicates the other cubic
vertex with legs {P12, 3, 4}. Putting them together, we get the s-channel Feynman diagram evaluated to
1
s12

. Alternatively, we can use just one V-type cycle representation to reproduce the complete result. For
example, (1)(2)(34) indicates a cubic vertex represented by (1)(2)(P34), and a three point substructure
(P34)(34). Then by using the three point result, this substructure is nothing but another cubic vertex
(P34)(3)(4). Thus (1)(2)(34) indeed gives the s-channel diagram. For the V-type cycle representation
(12)(3)(4), the analysis is exactly the same, and we can show that both V-type cycle representations give
the same answer.

3.2 The five point case

For five point case, there are 5!
10 = 12 independent PT-factors PT(βββ). They can be divided into following

four categories,

(1) The PT-factor 〈12345〉 has only one V-type cycle representation (1)(2)(3)(4)(5) and five P-type cycle
representations (15)(24)(3), (1)(25)(34), (12)(35)(4), (13)(2)(45) and (14)(5)(23). The V-type one
corresponds to the Feynman diagrams where the legs {1, 2, 3, 4, 5} form all possible Feynman diagrams
connected by cubic vertices, while respecting the color ordering. The result is simply

2

31

45

=⇒ 1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23
. (3.12)

In the language of planar separations, (1)|||(2)|||(3)|||(4)|||(5) indicates an effective five point vertex with
the same meaning. As a comparison, each P-type cycle representation corresponds to only two triva-
lent Feynman diagrams. For example, the planar separation (15)|||(24)(3) fixes the pole s15. The
substructure (P15)(24)(3) has a V-type cycle representation (P )(2)(3)(4) in its equivalent class, indi-
cating an effective quartic vertex, which gives two trivalent Feynman diagrams. Only after combining
all the five P-type cycle representations do we get the complete answer, where each Feynman diagram
appears twice.

(2) The following five PT-factors 〈12354〉, 〈12435〉, 〈12543〉, 〈13245〉 and 〈14325〉 form an orbit under
D5 action, and are related by the cyclic permutation i 7→ i + 1, for example, 〈12354〉 7→ 〈23415〉 =
−〈14325〉.4 Thus we only need to analyze one of them, say, 〈12354〉. In its equivalent class, There are
two V-type cycle representations (1)(2)(3)(45) and (13)(2)(4)(5), together with two P-type cycle rep-
resentations (12)(345) and (154)(23). For the first V-type cycle representation, the planar separation

4One can easily check that the result of i 7→ n+ 1− i is also in this orbit.
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(1)|||(2)|||(3)|||(45) indicates an effective quartic vertex, labeled as V1 in Eq. (3.13), while for the second
V-type cycle representation, the planar separation (13)(2)|||(4)|||(5) indicates a cubic vertex labeled as
V2 in Eq. (3.13). Putting them together, we do reproduce the unique effective Feynman diagram with
five external legs,

2

4

5

1

3

V1 V2
=⇒ 1

s45

(
1

s12
+

1

s23

)
. (3.13)

Alternatively, we can obtain the same answer by using only one V-type cycle representation, for
instance the planar separation (1)|||(2)|||(3)|||(45). We first replace the cycle (45) by the propagator
(P45). This gives the effective quartic vertex V1 marked in Eq. (3.13) and a three point substructure
(P45)(45). Then following the three point analysis presented at the beginning of §3.1, we reproduce
the vertex V2 in Eq. (3.13). The complete result can be arrived by combining the two vertices along
the propagator P45, which is just Eq. (3.13).

(3) The following five PT-factors 〈12453〉, 〈12534〉, 〈13254〉, 〈13425〉 and 〈14235〉 form another orbit under
D5 action, and are related by the cyclic permutation i 7→ i+ 1. As before, we only consider the PT-
factor 〈12453〉 as example. It contains three V-type cycle representations, and the planar separations
(1)|||(2)|||(345), (12)|||(3)|||(45) and (321)|||(4)|||(5) manifest three cubic vertices. After combining them
together, we get the effective Feynman diagram

2

1

4

5

3

V1 V2 V3
=⇒ 1

s12s45
. (3.14)

Next, we show how to reproduce above result by using only one V-type cycle representation, for
example, (12)(3)(45). The planar separation (12)|||(3)|||(45) indicates a cubic vertex (P12)(3)(P45),
which is the vertex V2 in (3.14). We also get two three point substructures (P12)(12) and (P45)(45),
leading to the vertex V1 and V3 respectively in (3.14). The Feynman diagram thus contains only
cubic vertices, and there are exactly two internal propagators P12 and P45, evaluating to 1

s12s45
. Also,

the same result can be obtained by using the planar separation (1)|||(2)|||(345), where the vertex V1

in (3.14) is manifest. For the substructure (P345)(345), we need to look into its equivalent class. Now
using (2.6), we find two V-type cycle representations (P )(3)(45) and (P3)(4)(5). According to the
four point analysis in §3.1, they both lead to a pole 1

s45
. Thus we get again the result 1

s12s45
.

(4) The cycle representations for the last PT-factor 〈13524〉 are

(1)(2354) , (2)(3415) , (3)(4521) , (4)(5132) , (5)(1243) ,

(1)(2453) , (2)(3514) , (3)(4125) , (4)(5231) , (5)(1342) .
(3.15)
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There is no good cycle representation at all, so the contribution is zero, which is indeed the case.

3.3 The six point case

There are in total 6!
12 = 60 independent PT-factors for the six point case. According to the number

of trivalent Feynman diagrams they evaluate to, we can distribute them into different groups, with the
number of PT-factors in each group as

# of trivalent Feyn. diagrams 14 5 4 2 1 0

# of PT-factors 1 6 3 21 14 15
(3.16)

We will study them group by group in the following paragraphs.

With 14 Feynman diagrams: There is only one PT-factor PT(βββ) = 〈123456〉 that evaluates to 14
Feynman diagrams. In the equivalent class, the good cycle representations are

V-type : (1)(2)(3)(4)(5)(6) , (3.17a)

P-type : (61)(25)(34) , (12)(36)(45) , (23)(41)(56) ,

(1)(26)(35)(4) , (2)(31)(46)(5) , (3)(42)(15)(6) . (3.17b)

The sole V-type one indicates that the six external legs form all possible cubic diagrams respecting the
color ordering, contributing to 14 terms,

1 4

2

5

3

6

=⇒ 1

s16s23s45
+

1

s12s34s56
+

1

s12s45s123
+

1

s23s45s123
+

1

s12s56s123

+
1

s23s56s123
+

1

s12s34s126
+

1

s16s34s126
+

1

s12s45s126
+

1

s16s45s126
(3.18)

+
1

s16s23s156
+

1

s16s34s156
+

1

s23s56s156
+

1

s34s56s156
.

Again, the planar separation (1)|||(2)|||(3)|||(4)|||(5)|||(6) tells us that the above 14 terms in (3.18) can be effectively
represented by a six point vertex, which becomes a building block for higher point analysis.

The P-type cycle representations have two different structures, collected respectively in the first and
second row of (3.17b). Among the three cycle representations in the first row, we study (61)(25)(34)

as an example. First, the planar separation (61)|||(25)(34) gives a cubic vertex with legs {6, 1, P61}, and
a five point substructure (P61)(25)(34). In its equivalent class, we have a V-type cycle representation
(P61)(2)(3)(4)(5), indicating that the substructure is just an effective five point vertex. Thus from the
planar separation (61)|||(25)(34), we reproduce five terms in Eq. (3.18) that contain the pole s61. Similarly,
the planar separation (61)(25)|||(34) gives a propagator s34 and a substructure (P34)(61)(25), which has a
V-type cycle representation (P34)(5)(6)(1)(2). Thus this substructure is another effective five point vertex,
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which means that the planar separation (61)(25)|||(34) gives another five terms in Eq. (3.18) that contain
the pole s34. They have two common terms to the result of the first planar separation, so the P-type cycle
representation (61)(25)(34) gives eight terms in Eq. (3.18). If we combine the contributions from all the
three P-type ones in the first row of (3.17b) and remove the overlaps, we get the complete answer (3.18).

Finally, each of the three cycle representations in the second row of (3.17b) gives four terms in Eq. (3.18).
For example, the planar separation (1)(26)|||(35)(4) gives a propagator s612, together with two four point
substructures (P )(1)(26) and (P )(35)(4). In their equivalent classes, the former has a V-type cycle rep-
resentation (P )(6)(1)(2) while the latter has (P )(3)(4)(5), both of which are effective quartic vertices, so
that their contribution is

(1)(26)|||(35)(4) =⇒ 1

s612

(
1

s12
+

1

s61

)(
1

s34
+

1

s45

)
. (3.19)

Summing over the contributions of these three P-type cycle representations, we reproduce the twelve terms
in Eq. (3.18) that contain a three-particle pole sijk.

With 5 Feynman diagrams: There are six PT-factors in this category,

〈123465〉 , 〈123546〉 , 〈124356〉 , 〈126543〉 , 〈132456〉 , 〈154326〉 . (3.20)

The last five PT-factors can be generated from the first one by cyclic permutation i 7→ i+1. They actually
form an orbit under D6 action. In the equivalent class of 〈123465〉, the good cycle representations are

V-type : (1)(2)(3)(4)(56) , (14)(23)(5)(6) ,

P-type : (1526)(34) , (3546)(12) , (13)(2)(456) , (24)(3)(165) . (3.21)

We first derive the result by combining the information from all the V-type cycle representations. From
previous examples, we can easily tell that the planar separation (1)|||(2)|||(3)|||(4)|||(56) indicates an effective
five point vertex while (14)(23)|||(5)|||(6) indicates a cubic vertex. Thus we have fixed the effective Feynman
diagram and obtain following result,

3 5

62

4

1

=⇒ 1

s56

(
1

s12s34
+

1

s12s123
+

1

s23s123
+

1

s23s156
+

1

s34s156

)
. (3.22)

As an alternative approach, we repeat the result by using only one V-type cycle representation and re-
cursively those of substructures. For example, besides the cubic vertex, the separation (14)(23)|||(5)|||(6)
also indicates a substructure (P )(14)(23), which has the V-type cycle representation (P )(1)(2)(3)(4) in its
equivalent class generated by (2.6). Thus we again recover the effective five point vertex.

Alternatively, let us use the P-type cycle representations to find the result. There are two different
structures (1526)|||(34) and (3546)|||(12) manifest a two-particle pole, while (13)(2)|||(456) and (24)(3)|||(165)
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manifest a three-particle pole. In the first class, the substructure (P )(1526) gives the V-type cycle repre-
sentation (P )(56)(1)(2) after using (2.6), so we have

(1526)|||(34) =⇒ 1

s34s56

(
1

s12
+

1

s561

)
. (3.23)

Similarly, we can derive that

(3546)|||(12) =⇒ 1

s12s56

(
1

s34
+

1

s123

)
. (3.24)

For (13)(2)|||(456) and (24)(3)|||(165), similar analysis applies for each substructure, we find that

(13)(2)|||(456) =⇒ 1

s456s56

(
1

s12
+

1

s23

)
, (24)(3)|||(165) =⇒ 1

s561s56

(
1

s23
+

1

s34

)
. (3.25)

The complete result can only be recovered by combining all four P-type contributions.

With 4 Feynman diagrams: There are three PT-factors 〈123654〉, 〈125436〉 and 〈143256〉 that evaluate
to four Feynman diagrams. They are related by the cyclic permutation i 7→ i+ 1, and form an orbit under
D6 action. Let us take 〈123654〉 as an example. The good cycle representations are

V-type : (1)(2)(3)(46)(5) , (13)(2)(4)(5)(6) ,

P-type : (1432)(56) , (1236)(45) , (12)(3456) , (23)(1654) .

In the V-type cycle representations, the planar separation (1)|||(2)|||(3)|||(46)(5) indicates an effective quartic
vertex with legs {1, 2, 3, P456}, while the planar separation (13)(2)|||(4)|||(5)|||(6) indicates another effective
quartic vertex with legs {4, 5, 6, P123}. By combining them, we get an effective Feynman diagram with two
quartic vertices, evaluated to

2 5

1

3

6

4

=⇒ 1

s12s123s45
+

1

s12s123s56
+

1

s23s123s45
+

1

s23s123s56
. (3.26)

We can also arrive at above result by analyzing just one V-type cycle representation with its substruc-
tures. For (1)|||(2)|||(3)|||(46)(5), the substructure (P )(46)(5) has an equivalent V-type cycle representation
(P )(4)(5)(6) in the equivalent class generated by (2.6), so we recover the result (3.26). If we start from
(13)(2)|||(4)|||(5)|||(6), the analysis is similar.

For the P-type cycle representations, each one contributes two terms in (3.26). For example, the
planar separation (12)|||(3456) gives a pole s12 and a substructure (P12)(3456), and the substructure has
an equivalent V-type cycle representation (P12)|||(3)|||(5)(46) in the equivalent class. We can then read
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out the pole s456 and another substructure (P456)(5)(46). This substructure further gives a V-type cycle
representation (P456)(4)(5)(6), indicating a quartic effective vertex. Putting them together, we get

(12)|||(3456) =⇒ 1

s12s456

(
1

s45
+

1

s56

)
. (3.27)

Similar analysis can be done for other three P-type cycle representations, and the results are

(1432)|||(56) =⇒ 1

s56s123

(
1

s12
+

1

s23

)
,

(1236)|||(45) =⇒ 1

s45s123

(
1

s12
+

1

s23

)
,

(1654)|||(23) =⇒ 1

s23s456

(
1

s45
+

1

s56

)
. (3.28)

Again, we see that a single P-type cycle representation is not sufficient to provide the complete information,
and we need to combine all of them.

With 2 Feynman diagrams: There are 21 PT-factors that evaluate to two Feynman diagrams. Accord-
ing to the action of D6, we can divide them into three orbits as

S1 : 〈125643〉 , 〈126534〉 , 〈132546〉 , 〈145326〉 , 〈124365〉 , 〈154236〉 , (3.29a)

S2 : 〈126453〉 , 〈132465〉 , 〈153426〉 , (3.29b)

S3 : 〈123645〉 , 〈143265〉 , 〈134526〉 , 〈124563〉 , 〈142356〉 , 〈125346〉 ,

〈123564〉 , 〈152346〉 , 〈126345〉 , 〈132654〉 , 〈134256〉 , 〈124536〉 . (3.29c)

For the category S1 of (3.29), we take 〈125643〉 as an example. The good cycle representations are

V-type : (12)(3)(4)(56) , (1)(2)(3546) , (1423)(5)(6) ,

P-type : (132)(456) , (15)(26)(34) .

The planar separations in the V-type cycle representations indicate the following vertex structures,

(12)|||(3)|||(4)|||(56) =⇒ quartic vertex with legs P12 , 3 , 4 , and P56 , (3.30a)

(1)|||(2)|||(3546) =⇒ cubic vertex with legs 1 , 2 , and P12 , (3.30b)

(1423)|||(5)|||(6) =⇒ cubic vertex with legs 5 , 6 , and P56 . (3.30c)

Combining them together, we get an effective Feynman diagram with two cubic vertices and one quartic
vertex, and the result is

2

1

5

6

3 4

=⇒ 1

s12s56

(
1

s123
+

1

s34

)
. (3.31)
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We can also reproduce above result by considering only one V-type cycle representation and its substruc-
tures. For example, the planar separation (1)|||(2)|||(3546) gives the substructure (P )(3546), which has a
V-type cycle representation (P )(3)(4)(56) generated by (2.6). Thus the substructure contains a quartic
vertex with legs P12, 3, 4, P56, and a cubic vertex with legs 5, 6, P56.

Alternatively, let us discuss the contribution from P-type cycle representation. For the one (132)|||(456),
we can derive two substructure of V-type cycle representations (P )(12)(3) and (P )(4)(56). Thus we get
the contribution 1

s12s56s123
. Similarly, the P-type cycle representation (15)(26)|||(34) has a substructure

(P )(15)(26) that has a V-type cycle representation (P )(12)(56). Thus we get the contribution 1
s12s34s56

.
Again, we need to combine the information of all the P-type cycle representations to get the full result.

Next, we move to the category S2 of (3.29), and take 〈126453〉 as an example. The good cycle repre-
sentations are

V-type : (1)(2)(36)(4)(5) , (12)(3)(45)(6) ,

P-type : (132)(465) , (126)(345) .

The V-type cycle representation (1)(2)(36)(4)(5) allows two different planar separations (1)|||(2)|||(36)(4)(5)
and (1)(2)(36)|||(4)|||(5), so it gives two cubic vertices. Meanwhile, (12)(3)(45)(6) has only one planar sepa-
ration (12)|||(3)|||(45)|||(6), so it gives an effective quartic vertex. Putting all these vertices together, we get
the effective Feynman diagram

2

1

4

5
6

3

=⇒ 1

s12s45

(
1

s123
+

1

s612

)
. (3.32)

Now we follow another approach by considering only one V-type cycle representation to reproduce the
result (3.32). If we focus on the cycle representation (12)(3)(45)(6), the planar separation (12)|||(3)|||(45)|||(6)
gives the final result directly. While if we focus on the V-type cycle representation (1)(2)(36)(4)(5), the
planar separation (1)|||(2)|||(36)(4)(5) will manifest the cubic vertex with legs 1, 2, P12, and the substructure
(P )(36)(4)(5) then generates a V-type cycle representation (P )(3)(45)(6), which leads to a quartic and
a cubic vertex. Hence we do reproduce the result (3.32). Analysis of (1)(2)(36)(4)(5) from the planar
separation (1)(2)(36)|||(4)|||(5) is exactly the same. We note that the P-type cycle representation (132)|||(465)
gives 1

s12s45s123
while (126)|||(345) gives 1

s12s45s612
. Thus by combining them, we get the complete result.

Finally, we study the category S3 of (3.29), and take 〈123645〉 as example. The good cycle representa-
tions are

V-type : (1)(2)(3)(465) , (1236)(4)(5) , (13)(2)(45)(6) ,

P-type : (12)(356)(4) , (23)(164)(5) .
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Using the V-type cycle representations, we see that (1)|||(2)|||(3)|||(465) gives an effective quartic vertex, while
(1236)|||(4)|||(5) and (13)(2)|||(45)|||(6) give two cubic vertices. Putting all of them together, we get the effective
Feynman diagram

2

4

5
1

3

6

=⇒ 1

s123s45

(
1

s12
+

1

s23

)
. (3.33)

Alternatively, let us take just one single V-type cycle representation to reproduce above result. From
the planar separation (1)|||(2)|||(3)|||(465), the substructure (P )(465) generates a V-type cycle representation
(P )(45)(6) according to (2.6). Thus we get the same effective Feynman diagram as in (3.33). From the pla-
nar separation (1236)|||(4)|||(5), the substructure (P )(1236) has a V-type cycle representation (P6)(1)(2)(3),
while from (13)(2)|||(45)|||(6), the substructure (P )(13)(2) gives a V-type cycle representation (P )(1)(2)(3).
Both of them recover the result (3.33) respectively.

For the P-type cycle representations, we note that (12)|||(356)(4) gives the partial result 1
s12s123s45

fol-
lowing our algorithm, while (23)|||(164)(5) gives another piece 1

s23s123s45
. They combine to give the full

result (3.33).

With 1 Feynman diagram: There are 14 PT-factors that evaluate to one Feynman diagram. According
to the action of D6, they can be distributed into three orbits,

S1 : 〈132645〉 , 〈134265〉 , 〈135426〉 , 〈124653〉 , 〈153246〉 , 〈126435〉 , (3.34a)

S2 : 〈125463〉 , 〈142365〉 , 〈143526〉 , 〈132564〉 , 〈152436〉 , 〈126354〉 , (3.34b)

S3 : 〈125634〉 , 〈145236〉 . (3.34c)

For the category S1 of (3.34), we analyze 〈132645〉 as example. Its good cycle representations are

V-type : (1)(23)(465) , (123)(45)(6) , (136)(2)(4)(5) , (2)(3)(164)(5) . (3.35)

There is no P-type cycle representation. This can be understood as follows. Since the final result only
contains one term, so that we do not have partial result. From the V-type cycle representations, we see
that each planar separation of (1)|||(23)|||(465), (123)|||(45)|||(6), (136)(2)|||(4)|||(5) and (2)|||(3)|||(164)(5) indicates
a cubic vertex. Thus we get a trivalent Feynman diagram evaluated to

1 6

32 54

=⇒ 1

s23s45s123
. (3.36)

Of course, we can get the same result by considering a single V-type cycle representation and its substruc-
tures. For example, besides the cubic vertex with legs {1, P23, P123}, the planar separation (1)|||(23)|||(465)
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also indicates a substructure (P )(465), which contains a V-type cycle representation (P )(45)(6), giving
exactly the other two cubic vertices in Eq. (3.36). Analysis for the other V-type cycle representations is
the same.

For the category S2 of (3.34), we analyze 〈125463〉 as example. Its good cycle representations are

V-type : (1)(2)(356)(4) , (132)(45)(6) , (1)(236)(4)(5) , (12)(3)(465) . (3.37)

Each planar separation of (1)|||(2)|||(356)(4), (132)|||(45)|||(6), (1)(236)|||(4)|||(5) and (12)|||(3)|||(465) indicates a
cubic vertex. After combining them, we get the trivalent Feynman diagram evaluated to

1 6

2 3

54

=⇒ 1

s12s45s123
. (3.38)

Finally, for the category S3 of (3.34), we analyze 〈125634〉 as example. Its good cycle representations are

V-type : (1)(2)(35)(64) , (13)(24)(5)(6) , (15)(26)(3)(4) , (12)(34)(56) . (3.39)

Again, all the planar separations (1)|||(2)|||(35)(64), (13)(24)|||(5)|||(6), (15)(26)|||(3)|||(4) and (12)|||(34)|||(56) indi-
cate cubic vertices, so that the final result is

1 6

2 5

43

=⇒ 1

s12s34s56
. (3.40)

Both Eq. (3.38) and (3.40) can be reproduced by a single V-type cycle representation, and the analysis is
almost the same to that of the category S1 shown above.

With 0 Feynman diagram: Finally, there are 15 PT-factors that evaluate to zero. According to the
action of D6, they can be distributed into three orbits,

S1 : 〈124635〉 , 〈146235〉 , 〈134625〉 , 〈136245〉 , 〈135624〉 , 〈135246〉 , (3.41a)

S2 : 〈125364〉 , 〈146325〉 , 〈143625〉 , 〈136254〉 , 〈136524〉 , 〈142536〉 , (3.41b)

S3 : 〈135264〉 , 〈136425〉 , 〈142635〉 . (3.41c)

The category S3 of (3.41) does not have any good cycle representations, and indeed it evaluates to zero.
For the category S1 of (3.41), we take 〈124635〉 as example. The good cycle representations are

V-type : (1)(2)(3465) , P-type : (12)(3564) . (3.42)

Both of them manifest a pole P12, together with a substructure (P )(3465) and (P )(3564) respectively.
However, both substructures are members of (3.15), which give zero contribution. This can be seen clearly
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if we replace P by 2, and then replace i→ i− 1 for the rest. Thus we see that the category S1 evaluates to
zero because it contains a substructure with zero contribution. Actually, the category S2 of (3.41) evaluates
to zero for the same reason. For example, 〈125364〉 has good cycle representations

V-type : (1)(2)(3564) , P-type : (12)(3465) , (3.43)

whose substructures are identical to the case of category S1.
This result can also be understood from another point of view. As we have shown with many examples,

the V-type cycle representations encode the vertex structure of corresponding effective Feynman diagram.
In the current case, there is only one V-type cycle representation and it has only one planar separation of
cubic vertex. If we use vm to denote the number ofm-point vertices, we should have the following constraint
for all the valid effective Feynman diagrams as

n∑
m=3

(m− 2)vm = n− 2 . (3.44)

For the cases (3.42) and (3.43), we only have v3 = 1 and all the other vi = 0, while for category S3, all
vi’s are zero. Thus the identity (3.44) is violated, indicating that no such effective Feynman diagram exits.
One can check that for all the cases with nonzero results, the identity (3.44) is satisfied.

3.4 Higher point examples

Let us now consider an eight point example with PT-factor 〈12347856〉. It has 16 cycle representations,
and we can classify them as

V-type (1)(2)(3)(4)(57)(68) , (153)(264)(7)(8) , (137)(248)(5)(6) , (14)(23)(56)(78)

P-type (12)(367458) , (13)(2)(468)(5)(7) , (175)(24)(3)(6)(8) , (34)(185276)

Bad (16785432) , (1874)(25)(36) , (1735)(2846) , (1456)(27)(38)

(12347658) , (1638)(2547) , (1)(2648)(357) , (1537)(286)(4)

Among them, four are V-type cycle representations, and each one encodes the vertex information. For each
cycle representation, there is only one planar separation, and from which we can directly work out

1

2

3

4

P5678

(1)|||(2)|||(3)|||(4)|||(57)(68)

8

7

−P78

(153)(264)|||(7)|||(8)

6

5

−P56

(137)(248)|||(5)|||(6)

P78

P56

−P5678

(14)(23)|||(56)|||(78)

.
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Collectively considering all these four V-type cycle representations, and gluing them via propagators, we
get the Feynman diagram as

4
3

1
2

5

6

7

8

=⇒ 1

s56s78s1234

(
1

s12s123
+

1

s23s123
+

1

s23s234
+

1

s34s234
+

1

s12s34

)
, (3.45)

which exactly produces the result of CHY-integrand 〈12345678〉 × 〈12347856〉. Alternatively, we can re-
produce the same result from only one V-type cycle representation by going into its substructures. We use
the V-type cycle representation (14)(23)(56)(78) as our example. The planar separation (14)(23)|||(56)|||(78)
gives three substructures, namely (14)(23)(P5678), (56)(P56) and (78)(P78). For each one, we can find a
V-type cycle representation that manifests the vertex structure in the equivalent class,

1

2

3

4

5

6

7

8

(14)(23) ||| (78) ||| (56)

(1)|||(2)|||(3)|||(4)|||(P5678)

(7)|||(8)|||(−P78)

(5)|||(6)|||(−P56)

By connecting the substructures together, we obtain the effective Feynman diagram as in (3.45).
There are also four P-type cycle representations. As mentioned previously, they should be considered

collectively in order to produce the complete result, while each one only contributes a partial result. From
the planar separations of these cycle representations and their substructures, we can work out the contri-
bution of each P-type cycle representation. We will not repeat the detailed analysis here, but only give the
result as,

1

2
3 4

5

6

7

8

3

4

2 1

5

6

7

8

1

2

3 4

5

6

7

8

2

3

4

1

5

6

7

8
⇑

(12)|||(367458)
⇑

(34)|||(185276)
⇑

(13)(2)|||(468)(5)(7)
⇑

(24)(3)|||(175)(6)(8)
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We see that, each P-type cycle representation gives a quartic vertex contained in the original five point
vertex. Thus each P-type cycle representation produces two terms. Only after summing up the above four
contributions and removing the duplicates can we recover the complete result.

Our last example involves a nine point PT-factor PT(βββ) = 〈123857649〉. There are in all 18 cycle
representations and we can classify them as

V-type (1)(2)(3)(48)(5)(67)(9) , (12)(39)(4)(567)(8) , (13)(2)(4985)(6)(7)

P-type (19432)(586)(7) , (12389)(457)(6) , (19)(247368)(5) , (1)(29)(346578) , (18764)(23)(59)

Bad (142968753) , (163978524) , (173495)(26)(8) , (159836)(27)(4) , (182546937)

(135647928) , (15)(286974)(3) , (1796)(25)(384) , (1627)(35)(489) , (1458)(2637)(9)

There are three V-type cycle representations. Each planar separation of V-type cycle representation tells us
about the vertex information. The V-type cycle representation (1)(2)(3)(48)(5)(67)(9) allows two different
planar separations while each of the other two allow one planar separation. The vertex information of them
are presented as follows,

9

1

2

3

−P1239

(1)|||(2)|||(3)|||(48)(5)(67)|||(9)

−P567 P67

5

(9)(1)(2)(3)(48)|||(5)|||(67)

4 8

P567

P1239

(12)(39)|||(4)|||(567)|||(8)

7

6

−P67

(13)(2)(4985)|||(6)|||(7)

The first planar separation indicates a five point vertex, which corresponds to five possible terms, while
the second planar separation indicates a quartic vertex which corresponds to two possible terms. So gluing
them together we get the nine point effective Feynman diagram as

9

1

2

3 4 5

6

7

8

which is a collection of 10 trivalent Feynman diagrams, agreeing with the result of the CHY-integrand
〈123456789〉 × 〈123857649〉.

Alternatively, we derive the above result from one V-type cycle representation and its substructures. For
instance, the planar separation (1)|||(2)|||(3)|||(48)(5)(67)|||(9) indicates a five point vertex, while the substruc-
ture (P1239)(48)(5)(67) has further structure. By working out the equivalent class of (P1239)(48)(5)(67), we
find a V-type cycle representation of this substructure that allows the planar separation (4)|||(567)|||(8)|||(P1239),
indicating a quartic vertex and a four point substructure (567)(P567). Then the equivalent V-type cycle
representation (5)|||(67)|||(P567) of this four point substructure indicates two cubic vertices with legs 5, P67,
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P567 and 6, 7, P67 respectively, according to our four point discussion in §3.1. The above recursive process
can be graphically represented by

(1)|||(2)|||(3)||| (48)(5)(67) |||(9)

9

1

2

3 4 5

6

7

8

(4)||| (567) |||(8)|||(P1239) (5)||| (67) |||(−P567) (6)||| (7) |||(−P67)

Hence from one V-type cycle representation it is sufficient to obtain the complete result.
On the contrary, if taking only one P-type cycle representation, we will end up with a partial result.

For instance, if we take the P-type cycle representation (19432)(586)(7), it has only one planar separation
(19432)|||(586)(7) that splits the external legs into two parts. For both the substructures (19432)(P5678) and
(P5678)(586)(7), we can work out their contributions by recursively going into their substructures. We will
not repeat the details but show the result as follows,

9

1

2

3 4 5

6

7

8

(19432)(P5678) =⇒ ⇐= (−P5678)(586)(7)

The corresponding effective Feynman diagram obtained by gluing these two subdiagrams contributes only
half of the full result, since the leg 4 and 8 is connected in just one way of the two allowed by the
quartic vertex {P9123, 4, P567, 8} in the original Feynman diagram. We need to include all the P-type
cycle representations to reproduce the complete result.

4 From Feynman diagrams to permutations

In §3, we have addressed the problem that given a PT-factor as a permutation acting on the identity
element, how we can determine the Feynman diagrams the CHY-integrand evaluated. In this section, we
will consider the inverse problem, namely, given an effective Feynman diagram, how to obtain directly the
corresponding good cycle representations. We will show that there is a recursive construction to produce the
good cycle representations of a given Feynman diagram from the relation between subdiagrams and planar
separations. Later, we will use the eight point example given in Fig. 1 to illustrate general discussions. We
remind the readers that an m-point vertex in the Feynman diagram stands for the sum of all the m-point
trivalent diagrams. For example, a quartic vertex gives the sum of s and t channel trivalent diagrams. The
Feynman diagram in Fig. 1a corresponds to the CHY-integrand 〈12345678〉 × 〈12783654〉, which evaluates
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Figure 1: An eight point Feynman diagram and its dual n-gon diagram.

to
1

s12s78s1278s456

(
1

s45
+

1

s56

)
. (4.1)

As we have mentioned in previous section, the PT-factor PT(βββ) determines a permutation acting on identity
element and it encodes the pole structure of the Feynman diagram. Conversely, the pole structure in the
Feynman diagram also encodes the information of permutation. To describe the way of reading out the
PT-factor and cycle representations, we find it is more convenient to introduce the polygon with n edges
(n-gon) that is dual to the n-point Feynman diagram under inspection.

An n-point effective Feynman diagram can be described as partial triangulation of n-gon diagram [31,
33, 34], and an example of our considered eight point Feynman diagram is presented in Fig. 1. Each external
leg is dual to an edge of the n-gon, and each vertex is dual to a subpolygon in the interior. A triangulation
line inside the n-gon, which cut it into two subpolygons, is dual to a propagator. If the Feynman diagram
considered is trivalent diagram with only cubic vertices, the corresponding n-gon is completely triangulated,
while if it is an effective Feynman diagram with also higher point vertices, the n-gon diagram is partially
triangulated. If we use Ei to denote the number of edges of a subpolygon inside the original n-gon, then
the number of terms in the final result is given by∏

i∈all polygons

C(Ei) =
∏

i∈all polygons

2Ei−2(2Ei − 5)!!

(Ei − 1)!
, (4.2)

where C(n) is also the number of all possible n-point color ordered trivalent Feynman diagrams. The blue
line in Fig. 1b represents the triangulation of our considered example, and the dashed gray line gives the
Feynman diagram dual to the partial triangulation of n-gon. Discussion on the Feynman diagram can as
well be applied to the n-gon diagram, and the latter is naturally enrolled in the associahedron [31, 34].
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Figure 2: The zig-zag path in an eight point Feynman diagram and n-gon diagram.

4.1 The zig-zag path and cycle-representation of permutation

Now let us return to the problem of reading out the PT-factor from Feynman diagram. A solution for
this problem has been provided in paper [15], where a pictorial method has been proposed to write the
PT-factor for a given Feynman diagram. Based on their discussion, we will rephrase it by the language of
zig-zag path.5 The basic idea comes as follows,

• Any tree-level Feynman diagram can be placed as a planar diagram, while the external legs lying in
the plane apparently define an ordering, identified as PT-factor PT(ααα).

• Starting from any external leg, we can draw a zig-zag path along the boundary of diagram, which
crosses each internal line it meets and closes at the starting point. The ordering of legs along the
direction of zig-zag path is identified as PT-factor PT(βββ).

The corresponding CHY-integrand PT(ααα)× PT(βββ) then evaluates to the given Feynman diagram.
The zig-zag path for our considered example is shown in Fig. 2, both in the Feynman diagram and

n-gon diagram. In the Feynman diagram, the zig-zag path is along the external legs, while in the n-gon
diagram, it is along the interior of edges. In both diagrams, the path crosses the lines whenever they are
propagators. It is easy to tell that, for the Feynman diagram shown in Fig. 2, we have PT(ααα) = 〈12345678〉,
while along the arrows of zig-zag path, we can read out PT(βββ) = 〈12783654〉, as it should be. However,
there are two subtleties we should pay attention to. The PT-factor PT(βββ) = 〈12783654〉 is obtained under
the condition that we read out the zig-zag path from leg 1 towards a specific direction. If starting from the
same leg 1 but with opposite direction, we will get PT(βββ) = 〈14563872〉. If we start from another leg and

5More discussions on the zig-zag path can be found in [35–37].
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(b)

Figure 3: The zig-zag paths of subdiagrams in Feynman diagram and n-gon diagram.

a chosen direction, we will get another PT-factor, though they are in the same equivalent class. Special
attention should be paid to the orientation of zig-zag path. It is a local but not global property, and it only
make sense with respect to a vertex. For example, for the cubic vertex where legs {1, 2} attached to, the
zig-zag path around it is clockwise, while for the quartic vertex where legs {4, 5, 6} attached to, the zig-zag
path around it is anti-clockwise. The orientation of zig-zag path is more obvious in the n-gon diagram, as
shown in Fig. 2b. For each polygon inside the n-gon, the zig-zag path can be considered as a closed loop
with definite orientation. If the zig-zag path in the triangle with edge 1, 2 is clockwise, then the zig-zag
paths in the triangles with legs 7, 8 and with legs 3 are also clockwise, while zig-zag paths in the triangle
in middle and the quadrangle are anti-clockwise. To the whole Feynman diagram or n-gon diagram, we
do not need to worry about the ambiguity of the zig-zag path orientation, since our canonical definition of
PT-factors in §2 fixes which leg to start and which direction it should ahead. However, as we would discuss
soon, the orientation of zig-zag path is important in the recursive construction of PT-factors.

Now we consider splitting the Feynman diagram into two subdiagrams (labeled as L and R) at the
propagator P7812 that connects the vertex V1 and V2, as shown in Fig. 3. In each subdiagram, the zig-zag
path form a closed loop, from which we can read out the PT-factors. In order to define the canonical
ordering of PT-factors, we read out the ααα-orderings from both subdiagrams in the clockwise direction as

PT(αααL) = 〈7812P 〉 , PT(αααR) = 〈P3456〉 . (4.3)

Next, we read out PT(βββL,R) from the zig-zag paths of both subdiagrams, starting from the leg P . We
emphasize that the zig-zag path for subdiagram L is anti-clockwise with respect to the vertex V1, while
the zig-zag path for subdiagram R is clockwise with respect to V2. The orientations of two zig-zag paths
are always opposite with respect to the two vertices connect by the split propagator. This is a generic and
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important feature since, as we mentioned before, the orientations of zig-zag paths of two adjacent polygons
in the n-gon diagram are always opposite. This feature will play a consequential role in determining the
cycle representations for subdiagrams. Now we write down the PT-factors for the subdiagrams according
to the arrows in the zig-zag paths of Fig. 3a as

PT(βββL) = 〈P1278〉 , PT(βββR) = 〈P3654〉 . (4.4)

The complete PT(βββ) is given by the union of (4.4) in a specific way: 〈1278P 〉 ⊕ 〈P3654〉 → 〈12783654〉.
The pattern will be clear if we use their cycle representation,

PT(βββL) = 〈P1278〉 ∼ (P )(17)(28) , PT(βββR) = 〈P3654〉 ∼ (P )(3)(46)(5) . (4.5)

Namely, we can obtain a V-type cycle representation of the complete Feynman diagram by the union of the
above two after eliminating the single cycle (P ): (17)(28)(P )⊕ (P )(3)(46)(5) = (17)(28)(3)(46)(5).6

To obtain the above result, we have to select two specific cycle representations for the subdiagrams out
of the 10 equivalent ones of βββL,R,

βββL :

{
(P )(17)(28) (P8127) (P78)(1)(2) (P21)(7)(8) (P1872)

(P )(78)(12) (P17)(8)(2) (P2718) (P7281) (P82)(7)(1)

}
(4.6a)

βββR :

{
(P )(3)(46)(5) (P43)(56) (P534)(6) (P635)(4) (P36)(45)

(P )(3456) (P3)(4)(5)(6) (P654)(3) (P5)(364) (P46)(35)

}
. (4.6b)

First of all, we choose those that leave P in a single cycle as (P ) in the equivalent class. This is reasonable
since when gluing subdiagrams, P should get eliminated without affecting other cycles, which is possible
only if P is in a single cycle. This limits us to the two in the first column of (4.6). Next, we need to answer
which one to choose among the two. Looking back to (4.5), we find that βββR is a V-type cycle representation
that manifests the vertex V2, while βββL is not a good cycle representation. If we color the legs according to
how they are separated by V1 and V2, then for PT(βββR), we have (P )(3)(46)(5), namely, each cycle contains
elements with the same color, i.e., elements from the same part of the V2 splitting. We say that this cycle
representation satisfies planar splitting for short. In contrary, for PT(βββL), some cycles contain elements
with different colors, i.e., the elements inside one cycle are from different parts of the V1 splitting. We call it
cycle representation non-planar splitting for short. One notices that among the two subdiagrams of Fig. 3a,
one cycle representation is planar splitting while the other is non-planar splitting. For instance, if the arrows
in Fig. 3a is reversed globally, then for PT(βββL) the consequent cycle representation is (P )(78)(12) while
for PT(βββR) it is (P )(3456). Again, one cycle representation is planar splitting and the other is non-planar

6Now the operation ⊕ can be properly defined as follows: if βββ1 and βββ2 are two permutations that have only one overlap
element P , and in both of them P sits in a single cycle, namely, βββ1,2 = (P )βββ′1,2, we have

βββ1 ⊕ βββ2 = βββ′1βββ
′
2 .
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splitting. By gluing them together, we get (78)(12)(3456), which is another V-type cycle representation of
the complete Feynman diagram. This feature results from the fact that the orientations of the subdiagram
zig-zag paths are opposite with respect to the two vertices connected by the split propagator. It is generally
true no matter how we cut the complete Feynman diagram.

The above discussion indicates clearly that the permutation representation of PT-factor can be recur-
sively constructed by breaking a complete Feynman diagram into subdiagrams along internal propagators.
We will provide a systematic and abstract construction in next subsection.

4.2 The recursive construction of PT-factor via cycle representation

We already have the experience that, (1) in the gluing of two subdiagrams to one complete diagram, cycle
representation of one subdiagram should be planar splitting, and that of the other should be non-planar
splitting, (2) the planar splitting cycle representation corresponds to a zig-zag path in clockwise direction,
while the non-planar splitting cycle representation corresponds to a zig-zag path in anti-clockwise direction.
The orientation of zig-zag path is related to the planar or non-planar splitting of cycle representations
because we use the convention that PT(ααα) is obtained by traversing the external legs in clockwise direction.

Let us head to a more systematic and abstract discussion on the recursive construction of cycle rep-
resentation for a Feynman diagram. Consider a generic n-point effective Feynman diagram, where besides
cubic vertices, the effective (m > 3)-point vertices can also appear. An m-point vertex represents a collec-
tion of all possible (2m−4)!

(m−1)!(m−2)! such m-point trivalent subdiagrams. If we use vm to denote the number of
m-point vertices appearing in the effective Feynman diagram, then they should satisfy the constraint

n∑
m=3

(m− 2)vm = n− 2 , (4.7)

where the total number of vertices
∑
vm falls between 1 and n− 2. An illustration of the n-point Feynman

diagram as well as the dual n-gon diagram with also the zig-zag path is shown in Fig. 4.
Let us focus on a m-point vertex, marked as a black dot in the middle of the blue octagon7 in Fig. 4.

This vertex connects m subdiagrams via m propagators Pk with k = 1, 2 . . .m. Our goal is to write
the cycle representation of n-point PT-factor into a form that manifests the factorization into those cycle
representations of the m subdiagrams connected to the m-point vertex. Since according to our convention,
the PT(αααm) is read in clockwise direction, we have

PT(αααm) = 〈P1P2 · · ·Pm〉 (4.8)

for the subdiagram inside the blue octagon. We intentionally choose the direction of zig-zag path as
clockwise with respect to the considered m-point vertex, so that for this subdiagram, we have

PT(βββm) = 〈P1P2 · · ·Pm〉 ∼ (P1)(P2) · · · (Pm) . (4.9)
7It should connect m propagators, but we only sketch eight lines as illustration. The circles with dots inside represent

many subdiagrams.
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Pi

Ai+1

Ai−1

Am−1

A1

Am

ai1

ais

Figure 4: The recursive construction of n-point PT-factor. Black lines represent a general n-point Feynman
diagram. Gray lines denotes the dual n-gon. Blue line represent the partial triangulations of n-gon dual
to the Feynman diagram, while red dashed lines denote the zig-zag path. The direction of zig-zag path
is labeled by arrows in preference of our convention. All dotted lines are abbreviation of their detailed
structures that are not explicitly shown in the diagram.

Note that among the 2m equivalent cycle representations of PT(βββm), this is the only one that allows every
Pk appear as a single element in a cycle. Now consider them subdiagrams in the other side of Pk, denoted as
A1, A2, . . ., Am. Since Pk is an external leg of Ak, we know a priori that there must be a cycle representation
(Pk)βββ

cyc-rep
Ak

for this subdiagram, where βββcyc-rep
Ak

is to be determined. So when gluing all the m subdiagrams
to the one inside the octagon by propagator Pk’s, we obtain the follow factorization form

βββcyc-rep = (P1)(P2) · · · (Pm)⊕ (P1)βββ
cyc-rep
A1

⊕ · · · ⊕ (Pm)βββ
cyc-rep
Am

= βββcyc-rep
A1

βββcyc-rep
A2

· · ·βββcyc-rep
Am

, (4.10)

namely, it allows a planar separation into m parts. Once the cycle representations of PT-factors for
subdiagrams are known, the complete cycle representation is simply a combination of them. Note that the
factorization (4.10) is based upon a given vertex. Now we can go into each subdiagram Ai and perform the
same construction, until we reach a subdiagram with only one vertex.

A remaining problem is that suppose all the cycle representations of a subdiagram Ai is known, how do
we choose the βββcyc-rep

Ai
that is used as the building block of (4.10). According to Fig. 4, the subset Ai and

propagator Pi form a (|Ai|+1)-point subdiagram, connected to the remaining parts via the propagator Pi.
In order to connect it with the subdiagram inside octagon, we already constrain the cycle representation
of this subdiagram as (Pi)βββ

cyc-rep
Ai

, where (Pi) itself is a cycle. From the definition of equivalent class (2.6),
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we know that there are two cycle representations satisfying this condition. One of them can be constructed
according to (4.10): suppose the propagator Pi is connected to an (s + 1)-point vertex in subdiagram
Ai, marked as black dot in the interior of blue rectangular in Fig. 4. This (s + 1)-point vertex splits
the subdiagram Ai into s disjoint sub-subsets ai1 to ais via s propagator Pi` with ` = 1, . . . , s. Then
following (4.10), we should choose the zig-zag path inside the rectangle in clockwise direction, from which
we can obtain a cycle representation satisfying the planar splitting,

βββcyc-rep
Ai+1 = (Pi)βββ

cyc-rep
Ai

= (Pi) βββ
cyc-rep
ai1

βββcyc-rep
ai2

· · ·βββcyc-rep
ais

. (4.11)

However, since we have already set the zig-zag path around the octagon to be clockwise, the zig-zag path
around the rectangle must be anti-clockwise, and what we should use is the cycle representation other
than (4.11) with Pi in a single cycle. Thus we can obtain (Pi)βββ

cyc-rep
Ai

by acting reversing and cyclic rotation
onto (4.11). Moreover, the βββcyc-rep

Ai
obtained this way must be non-planar splitting, namely, at least one

cycle of βββcyc-rep
Ai

contains elements from different subsets ai` . In other words, there must exist at least one
cycle that can not be a part of any βββcyc-rep

ai`
. To prove this point, it is suffices to study the following problem.

Given an identity element in the permutation group,

〈Pi, a1, a2, . . . , ai, b1, b2, . . . , bj〉 , (4.12)

which splits into three planar parts {Pi}, {a1, . . . , ai} and {b1, . . . , bj}. Let us consider the planar splitting
cycle representation (Pi)aaa

cyc-repbbbcyc-rep that maps the identity element (4.12) into another permutation as

(Pi) aaa
cyc-repbbbcyc-rep =

Pi a1 a2 · · · ai b1 b2 · · · bj↓ ↓ ↓ · · · ↓ ↓ ↓ · · · ↓
Pi a

′
1 a
′
2 · · · a′i b′1 b′2 · · · b′j

 , (4.13)

where {a′1, . . . , a′i} is a permutation of {α1, . . . , αi} and {b′1, . . . , b′j} is a permutation of {b1, . . . , bj}. The
other cycle representation with (Pi) as a single cycle in equivalent class is thus given by reversing the
ordering and dragging Pi to the first position asPi a1 a2 · · · ai b1 · · · bj−1 bj

↓ ↓ ↓ · · · ↓ ↓ · · · ↓ ↓
Pi b

′
j b
′
j−1 ···· ···· ···· ···· a′2 a′1

 = (Pi)(a1b
′
j ····)(····) · · · (····) . (4.14)

Since b′j ∈ {b1, . . . , bj} and a1 ∈ {a1, . . . , ai}, it is clear in (4.14) that the legs in two subsets {a1, . . . , ai},
{b1, . . . , bj} must appear together in at least one cycle in the cycle representation.

To recap, the cycle representation of a Feynman diagram can be written as a simple combination
of cycle representations of subdiagrams as presented in (4.10). This leads to a recursive construction of
cycle representation from those of lower point Feynman subdiagrams. Crucially, the cycle representation of
subdiagram Ai that used in the complete cycle representation (4.10) should be the one with Pi as a single
cycle (Pi) and be non-planar splitting with respect to its vertex connected to Pi. Then we can work out
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the permutation from cycle representation and eventually the PT-factor PT(βββ). Note that, it is possible
to start the recursive construction from any vertex of a Feynman diagram, and different choice leads to
different cycle representation but they are all in the same equivalent class. We will show in Appendix A
that different planar splittings characterize the shapes of the associahedron boundaries.

4.3 Examples

Let us now present some nontrivial examples to illustrate the recursive construction of cycle representation.
First we consider the three point diagram. The cubic vertex splits diagram into three subdiagrams, each
one is trivially a single external leg. This is also true for the diagrams with only a single vertex. So
following (4.10), we get

3
2

1

⇐⇒ βββcyc-rep = (1)(2)(3) ,
n

3

2

1

⇐⇒ βββcyc-rep = (1)(2)(3) . . . (n) . (4.15)

Note that (12)(3) is in the same equivalent class of (1)(2)(3) for this three point diagram. When it appears
as a subdiagram, one leg becomes an internal line P , namely

P

a2

a1

. (4.16)

In this case, we should use the non-planar splitting cycle representation (a1a2)(P ) instead of (a1)(a2)(P ).
To see this, let us proceed to a four point Feynman diagram as shown below. If we start from the vertex
marked by red dot, the diagram splits to three subdiagrams, two of which are single external legs and one
is three point subdiagram. The non-planar splitting for three point subdiagram appears as (12)(P12), so
according to (4.10), the recursive procedure is described as follows,

2

1

3

4

−→

2

1

(12)(P12)

(1)(2)(P12)

P12

3

4(P34)(3)(4)

=⇒ βββcyc-rep = (12)(3)(4) . (4.17)

From above results, we can recursively compute the cycle representation of PT(βββ) for five point CHY-
integrand. Here we present an example as follows,

2

3
4

51
V2 V1

,
(4.18)
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and construct the cycle representation starting from two different vertices respectively. If we start from
vertex V1, then the diagram is split to three parts: the external leg 4, 5 and a four point subdiagram. As
mentioned above, (12)(3)(P123) is a planar splitting cycle representation with respect to V2, and we should
take the non-planar splitting one in the equivalent class, namely, (132)(P123), to form the complete cycle
representation, which is obtained from (12)(3)(P ) by acting the reversing permutation (13)(2), namely,
[(12)(3)] · [(13)(2)] = (132). Hence, the final result is (132)(4)(5).

Alternatively, we can start from vertex V2. Then the diagram is split to another three parts, two of
which are three point subdiagrams with non-planar splitting cycle representation (12)(P12) and (45)(P45),
while the other is the single external leg 3. Connecting them via the vertex (P12)(P3)(P45), we obtain
(12)(3)(45). We see that different splitting of diagram leads to different cycle representations. However, all
of them are in the same equivalent class. In fact, both (132)(4)(5) and (12)(3)(45) lead to the PT-factor
PT(βββ) = 〈12453〉.

Next, we give a seven point example. The Feynman diagram is shown below, together with the resultant
cycle representations when we carry out the recursive construction at different vertices,

2

1

3 4

7

5

6

V1 V2 V3

V4

V5

(V1) βββ = (1)(2)(347)(5)(6)

(V2) βββ = (12)(3)(467)(5)

(V3) βββ = (132)(4)(576)

(V4) βββ = (143)(2)(56)(7)

(V5) βββ = (1)(2)(347)(5)(6)

(4.19)

Some brief explanation is in order. For the vertex V4, the planar splitting cycle representation is (P )(56)(7),
while its non-planar splitting one is [(7)(56)] · [(75)(6)] = (576). The former can be used in the recursive
construction starting from vertex V4, while the latter can be used in the recursive construction starting
from vertex V3. Similarly, for the vertex V3, the planar splitting cycle representation is (P )(4)(576), while
the non-planar splitting one is [(4)(576)] · [(47)(56)] = (467)(5). The latter can be used in the recursive
construction starting from vertex V2.

This recursive construction can be easily taken to higher points, and we have run extensive checking
up to eight point diagrams.

5 Relations between different PT-factors

After clarifying the relations between permutations of PT-factors and the Feynman diagrams, we move
on to the relations between different PT-factors in the language of permutation and cycle representation.
This topic has been discussed from the associahedron point of view [31] and before proceeding let us
briefly review their result. The major conclusion is that, the canonical form of an (n − 3)-dimensional
associahedron is the n-particle tree-level amplitude of bi-adjoint scalar theory with identical ordering. A
consequence is that, the codimension d faces of an associahedron are in one-to-one correspondence with the
partial triangulations with d diagonals, while the partial triangulations are dual to cuts on planar cubic
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− 1
s12

− 1
s23

1
s12

+ 1
s23

(12)(3)(4) (1)(23)(4)(1)(2)(3)(4)

.

Figure 5: The associahedron for four point amplitudes and PT-factors.

diagrams with each diagonal corresponding to a cut. Hence the faces of the associahedron are dual to
the singularities of cubic scalar amplitude. In this sense, PT-factors can also be related to corresponding
faces of associahedron. For instance, a three point amplitude is dual to a triangle, allowing only one
trivial triangulation. Thus the corresponding associahedron is just a zero dimensional point, on which
sits the only independent PT-factor PT(βββ) = 〈123〉. A four point amplitude is dual to a box, while the
associahedron formed by its (partial) triangulations is a one dimensional line as shown in Fig. 5. The vertices
correspond to all complete triangulations of the box, while the edge corresponds to partial triangulations.
The edge is related to PT(βββ) = 〈1234〉 with amplitude 1

s12
+ 1

s23
, while the two ending vertices are related

to PT(βββ) = 〈1243〉 and 〈1324〉 respectively with amplitude 1
s12

and 1
s23

. The relations between different
PT-factors are manifest in this geometric picture.

A five point amplitude is dual to a pentagon, and the associahedron constructed from all its (partial)
triangulations is also a pentagon, as shown in Fig. 6, where the thick black lines form the associahedron and
the blue line is the triangulations of pentagon. The face corresponds to 〈12345〉, while the edges correspond
to 〈12543〉, 〈12354〉, 〈13245〉, 〈14325〉, 〈12435〉, and the vertices correspond to 〈12453〉, 〈13254〉, 〈14235〉,
〈13425〉, 〈12534〉. The PT-factor of each vertex evaluates to a single Feynman diagram. An edge connects
two vertices, which means that the PT-factor of the edge evaluates to two Feynman diagrams. Two edges
share a common point, which means that there is common Feynman diagram shared by them. The face
contains five vertices, such that its PT-factor evaluates to five Feynman diagrams. Therefore the relation
among different PT-factors is obvious in the diagram. For higher point amplitude, the associahedron would
be much more complicated geometric objects, however the correspondence is similar.

5.1 Relation analysis via cycle representation

From the n-gon picture, we see that by adding one more triangulation line (i.e., fix one more propagator), we
get the immediate child amplitude. In contrary, by removing one triangulation line (i.e., unfix a propagator),

– 33 –



1
5

43

2

(1)(2)(3)(4)(5)
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1
s15

( 1
s23
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s34

)
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−1
s34
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)
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( 1
s34
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)
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)
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Figure 6: The associahedron for five point amplitudes and the PT-factors.

we recover the mother amplitude. In terms of zig-zag path, we have the following picture,

���

���

⇐⇒

			

���

. (5.1)

The extra triangulation separates the n-gon into two subpolygons. Notably, in one of them we need to re-
verse the ordering. In this section, we study how the above picture is realized by good cycle representations,
namely, how to merge or split certain parts in good cycle representations to fix or unfix a propagator.

We start with the general discussion. The left hand side of Eq. (5.1) indicates that there exists a good
cycle representation with the form

βββ = βββlowerβββupper = (. . .)|||(. . .)(. . .)||| . . . (. . .)︸ ︷︷ ︸
lower

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ (. . .)|||(. . .)(. . .)||| . . . . . .︸ ︷︷ ︸

upper

, (5.2)

where subscripts lower and upper denote the external legs below and above the extra triangulation line in (5.1).
This cycle representation can either be a V-type or P-type one. Suppose the upper set consists of

upper = {i, i+ 1 . . . j} , (5.3)

– 34 –



then the reversing process of (5.1) can be realized by

βββreversed
upper = βββupperβββr , (5.4)

where βββr simply flips the ordering βββr|i, i + 1 . . . j〉 = |j . . . i + 1, i〉. Similar to Eq. (2.5), βββr has the cycle
representation

βββr =

{
(ij)(i+ 1, j − 1) . . . ( i+j−12 , i+j+1

2 ) j − i = odd
(ij)(i+ 1, j − 1) . . . ( i+j−22 , i+j+2

2 )( i+j2 ) j − i = even
. (5.5)

Therefore, the process of (5.1) can be realized in an algebraic way as8

βββlowerβββupper ⇐⇒ βββlowerβββupperβββr . (5.6)

If the propagator manifested in (5.2) is an overall one, then the above process gives the immediate mother
amplitude that has the original amplitude as a part. Otherwise, the above process gives the immediate
child amplitude that contains this propagator as an overall factor, and is a part of the original amplitude.

Next, we use the example given in (3.3) with cycle representations (3.4) to demonstrate our idea,

PT(βββ) = 〈12846573〉 =⇒ 1

s12s56s8123

(
1

s812
+

1

s123

)(
1

s456
+

1

s567

)
. (5.7)

We first consider its immediate child amplitudes by fixing the poles s812, s123, s456 and s567 one by one.

Fix the pole s812: To achieve this goal, we need to use the good cycle representations that manifest
the separation {8, 1, 2} and {3, 4, 5, 6, 7}. In (3.4), only (12)(3)(47)(5)(6)(8) and (128)(3467)(5) satisfy the
condition. We can achieve the child amplitude by using either one. Starting with (12)(3)(47)(5)(6)(8), we
split all cycles into two parts according to the pole, namely, (8)(12)|||(3)(47)(5)(6). Now we can keep one
part invariant and perform the prescription (5.4) to the other. For example, we keep the part (8)(12), such
that for another part we should do the following manipulation as

[(3)(47)(5)(6)] · [(37)(46)(5)] = (3467)(5) , (5.8)

where (37)(46)(5) is the reversing permutation βββr obtained from (5.5). Putting the two parts together, we
get the cycle representation (8)(12)(3467)(5), which corresponds to the PT-factor PT(βββ) = 〈12837564〉. It
indeed gives the desired child amplitude,

PT(βββ) = 〈12837564〉 =⇒ 1

s12s56s8123

(
1

s812

)(
1

s456
+

1

s567

)
. (5.9)

Alternatively, we keep the part (3)(47)(5)(6) intact and act the prescription (5.4) onto the part (8)(12),

[(8)(12)] · [(82)(1)] = (812) . (5.10)
8Equivalently, we can reverse the lower part. The result will only differ by an overall reversing.
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Putting them together, we get another cycle representation (812)(3)(47)(5)(6), corresponding to the same
PT-factor as (5.9). If we use the other cycle representation (128)|||(3467)(5), we get the same result,

[(128)] · [(82)(1)](3476)(5) = (8)(12)(3467)(5) ,

(128)[(3467)(5)] · [(37)(46)(5)] = (128)(3)(47)(5)(6) . (5.11)

Fix the pole s123: For this case, the cycle representations (12)(3)(47)(5)(6)(8) and (132)(4875)(6)

from (3.4) can be used. By similar manipulations, we get

(12)(3)(47)(5)(6)(8) =⇒

{
[(12)(3)] · [(13)(2)](47)(5)(6)(8) = (132)(47)(5)(6)(8)

(12)(3)[(47)(5)(6)(8)] · [(48)(57)(6)] = (12)(3)(4875)(6)
, (5.12a)

(132)(4875)(6) =⇒

{
(132)] · [(13)(2)](4875)(6) = (12)(3)(4875)(6)

(132)[(4875)(6)] · [(48)(57)(6)] = (132)(47)(5)(6)(8)
. (5.12b)

Both results correspond to the PT-factor PT(βββ) = 〈12756483〉, which is evaluated to

1

s12s56s8123

(
1

s123

)(
1

s456
+

1

s567

)
. (5.13)

Fix the pole s456: For this case, the cycle representations (1)(2)(38)(4)(56)(7) and (1)(2378)(456)

from (3.4) can be used. By similar manipulations we get

(1)(2)(38)(4)(56)(7) =⇒

{
(1)(2)(38)(7)[(4)(56)] · [(46)(5)] = (1)(2)(38)(7)(456)

[(1)(2)(38)(7)] · [(73)(82)(1)](4)(56) = (1)(2378)(4)(56)
, (5.14a)

(1)(2378)(456) =⇒

{
(1)(2378)[(456)] · [(46)(5)] = (1)(2378)(4)(56)

[(1)(2378)] · [(73)(82)(1)](456) = (1)(2)(38)(7)(456)
. (5.14b)

Both results correspond to the PT-factor PT(βββ) = 〈12856473〉, which is evaluated to

1

s12s56s8123

(
1

s123
+

1

s812

)(
1

s456

)
. (5.15)

Fix the pole s567: For this case, the cycle representations (1)(2)(38)(4)(56)(7) and (1843)(2)(576)

from (3.4) can be used. By similar manipulations we get

(1)(2)(38)(4)(56)(7) =⇒

{
(1)(2)(38)(4)[(56)(7)] · [(57)(6)] = (1)(2)(38)(4)(576)

[(1)(2)(38)(4)] · [(84)(13)(2)](56)(7) = (8431)(2)(56)(7)
, (5.16a)

(1843)(2)(576) =⇒

{
(1843)(2)[(576)] · [(57)(6)] = (1843)(2)(56)(7)

[(1843)(2)] · [(84)(13)(2)](576) = (1)(2)(38)(4)(576)
. (5.16b)

Both results correspond to the PT-factor PT(βββ) = 〈12847563〉, which is evaluated to

1

s12s56s1238

(
1

s123
+

1

s812

)(
1

s567

)
. (5.17)
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After showing how to get the child amplitudes, we now discuss the case of mother amplitudes. This
happens when we perform the prescription (5.4) to a separation that manifests an overall propagator. For
the case (5.7), there are three common poles s12, s56 and s8123. Relaxing any one of them, we can get a
mother amplitude. The procedure is similar to the above discussion, and we again do it one by one.

Unfix the pole s12: For this case, the following two cycle representations (1)(2)(38)(4)(56)(7) and
(12)(3)(47)(5)(6)(8) manifest the pole s12. If we take (1)(2)(38)(4)(56)(7), we have the following calculation
according to (5.4),

(1)(2)(38)(4)(56)(7) =⇒

{
[(1)(2)] · [(12)](38)(4)(56)(7) = (12)(38)(4)(56)(7)

(1)(2)[(38)(4)(56)(7)] · [(38)(47)(56)] = (1)(2)(3)(47)(5)(6)(8)
, (5.18a)

(12)(3)(47)(5)(6)(8) =⇒

{
[(12)] · [(12)](3)(47)(5)(6)(8) = (1)(2)(3)(47)(5)(6)(8)

(12)[(3)(47)(5)(6)(8)] · [(38)(47)(56)] = (12)(38)(4)(56)(7)
, (5.18b)

which correspond to PT(βββ) = 〈12375648〉. It gives ten terms, among which four are just (5.7).

Unfix the pole s56: For this case, the cycle representations (1)(2)(38)(4)(56)(7) and (12)(3)(47)(5)(6)(8)

manifest the pole s56. We have the following calculation according to (5.4),

(1)(2)(38)(4)(56)(7) =⇒

{
[(56)] · [(56)](1)(2)(38)(4)(7) = (1)(2)(38)(4)(5)(6)(7)

(56)[(1)(2)(38)(4)(7)] · [(47)(38)(12)] = (56)(12)(3)(8)(47)
, (5.19a)

(12)(3)(47)(5)(6)(8) =⇒

{
[(5)(6)] · [(56)](12)(3)(47)(8) = (12)(3)(47)(56)(8)

(5)(6)[(12)(3)(47)(8)] · [(47)(38)(12)] = (5)(6)(1)(2)(4)(7)(38)
. (5.19b)

One can check that they correspond to PT(βββ) = 〈12845673〉. It also gives ten terms, among which four are
just (5.7).

Unfix the pole s8123: For this case, we have two good cycle representations (1)(2)(38)(4)(56)(7) and
(12)(3)(47)(5)(6)(8) that manifest the pole s8123. We have the following calculation according to (5.4),

(1)(2)(38)(4)(56)(7) =⇒

{
[(1)(2)(38)] · [(12)(38)](4)(56)(7) = (12)(3)(8)(4)(56)(7)

(1)(2)(38)[(4)(56)(7)] · [(47)(56)] = (1)(2)(38)(47)(5)(6)
, (5.20a)

(12)(3)(47)(5)(6)(8) =⇒

{
[(12)(3)(8)] · [(12)(38)](47)(5)(6) = (1)(2)(38)(47)(5)(6)

(12)(3)(8)[(47)(5)(6)] · [(47)(56)] → (12)(3)(8)(4)(56)(7)
, (5.20b)

which correspond to PT(βββ) = 〈12875643〉. It gives 14 terms, among which four are just (5.7).

5.2 Relation analysis via cross-ratio factor

We can also study the relations of PT-factor from another approach. As we have already known, the relations
between different PT-factors can be seen as selecting terms corresponding to specific pole structures in the
evaluated results. For instance, 〈1234〉 〈1234〉 evaluates to 1

s12
+ 1

s23
while 〈1234〉 〈1243〉 evaluates to 1

s12
. It
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means that, by selecting terms with pole 1
s12

in 〈1234〉 〈1234〉, we can reproduce the result of 〈1234〉 〈1243〉.
To achieve this goal at the CHY-integrand level, we can use the cross-ratio factor given in paper [38], which
we will call it the selecting factor

f select[a, b, c, d] :=
[ab][cd]

[ac][bd]
, [ab] := σab . (5.21)

To pick up the Feynman diagrams with a pole 1
sA

from a given CHY-integral result, where A follows a certain
color ordering, we propose to multiply the CHY-integrand with a selecting factor f select[A−1, A1, A−1, A1],
where A1, A−1 are the first and last elements of the subset A respectively, and A is the complement subset
of A, i.e., in order to pick up terms with pole 1

sA
, the arguments b, c in the selecting factor should be the

two ending legs in the set A, while the arguments a, d are the nearby two legs of b, c outside the set A
respectively. As an illustration, let us consider the above mentioned PT-factors 〈1234〉 and 〈1243〉. We
want to select terms with 1

s12
pole in the evaluated result of 〈1234〉 〈1234〉, which means that we need to

take the selecting factor f select[4, 1, 2, 3],

〈1234〉 f select[4, 1, 2, 3] =
1

σ12σ23σ34σ41

σ41σ23
σ42σ13

= −〈1243〉 . (5.22)

It indeed produces the PT-factor 〈1243〉, despite of the overall sign.
There is a subtlety in the choice of the selecting factor. The bi-adjoint scalar theory has two color

orderings, given by PT(ααα) and PT(βββ). We should choose A to follow one of the orderings. If ααα = βββ, there
is no ambiguity in defining the selecting factor, which is the situation discussed in [38]. However if ααα 6= βββ,
the multiplication

PT(ααα)× PT(βββ)× f select[A−1, A1, A−1, A1] (5.23)

has two choices for a given set A. The arguments of f select depend on the color ordering of legs, and we
have two color orderings to rely on. It can be shown that although we would get two different selecting
factors, the resulting CHY-integrands are equivalent in the sense that the difference of two CHY-integrands
evaluates to zero. We note that this happens only when 1

sA
is indeed a physical pole of the integrated result

of PT(ααα)× PT(βββ), but not an overall one.
Now let us present a brief explanation about why the selecting factor f select is able to pick up terms with

specific poles. It is known that from [14–16], the order of pole 1
sA

in the evaluated result is characterized
by the pole index

χ[A] = L[A]− 2(|A| − 1) , (5.24)

where L[A] is the linking number of subset A, and |A| is the length of subset A.9 If χ[A] < 0, there is
no sA pole, while if χ[A] > 0, the pole would appear in the result as 1

sχ+1
A

. For CHY-integrands with two

PT-factors, we only have simple poles, namely, χ[A] 6 0 for any subset A. With this in mind, let us take
9The linking number L[A] can be read out from the so-called 4-regular diagrams, which is discussed in details in [14–16].
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a further look on the selecting factor f select, assuming that 1
sA

is not an overall pole. The combinations
in both the numerator and denominator of f select represent lines connecting elements in subset A and its
complement A, so that f select will not change the linking number of A itself: after multiplying f select, we
still have χ[A] = 0 and the pole 1

sA
remains unchanged. Now suppose there is another pole 1

sB
, where B

has nonempty overlap with both A and A, then it will be removed by f select. The reason is that in the
denominator of PT-factor there are [A−1A1] and [A−1A1], while in the numerator of the selecting factor
there are [A−1A1] and [A−1A1], which at least reduces the linking number of subset B by one, such that
χ[B] is reduced from 0 to −1. Thus all the poles that are not compatible with 1

sA
are removed. Finally, we

need to show that the terms with 1
sA

are not altered by the selecting factor, namely, we should confirm that
in a term with pole 1

sA
, f select do not change the pole indices of all the other poles. By the compatibility

condition, these poles should either be a subset of A or a subset of A. For the four factors [A−1A1], [A−1A1],
[A−1A−1] and [A1A1] in f select, each one contains an element from subset A and another from A, so that
none of them contributes to the linking number of either A or A.

In general, when using f select to pick up a pole 1
sA

, we will encounter three situations. In the first
situation, the original theory does not contain such a pole. Then multiplying the selecting factor does not
make any sense. For instance, the CHY-integrand 〈123456〉 〈124563〉 evaluates to

〈123456〉 × 〈124563〉 → 1

s12s123

(
1

s45
+

1

s56

)
, (5.25)

which does not contain the pole 1
s34

. If we insist to take the selecting factor f select[2, 3, 4, 5] following the
color ordering of the first PT-factor, we get

(
〈123456〉f select[2, 3, 4, 5]

)
× 〈124563〉 → − 1

s56s124

(
1

s12
+

1

s56

)
, (5.26)

which is a completely irrelevant answer.

In the second situation, the pole 1
sA

we pick is overall to all the terms. By multiplying the selecting
factor, we produce the mother amplitude, obtained by pinching the propagator 1

sA
in the Feynman diagram.

For example, there are two overall poles 1
s12

and 1
s123

in (5.25). If we follow the color ordering of the first
PT-factor, and multiply f select[6, 1, 2, 3] that corresponds to 1

s12
, we get

(
〈123456〉f select[6, 1, 2, 3]

)
× 〈124563〉 → 1

s12s123

(
1

s45
+

1

s56

)
+

1

s13s123

(
1

s45
+

1

s56

)
, (5.27)

which is a mother amplitude with additional terms produced. Similarly, if we follow the color ordering of
the second PT-factor, and multiply f select[3, 1, 2, 4] that corresponds to 1

s12
, we get

〈123456〉 ×
(
〈124563〉f select[3, 1, 2, 4]

)
→ 1

s12s123

(
1

s45
+

1

s56

)
+

1

s23s123

(
1

s45
+

1

s56

)
, (5.28)
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which is another mother amplitude with different additional terms produced. Similar calculation can be
done for the overall pole s123 and the two different mother amplitudes are given by(
〈123456〉f select[6, 1, 3, 4]

)
× 〈124563〉 → 1

s12s123

(
1

s45
+

1

s56

)
+

1

s12s124

(
1

s36
+

1

s56

)
+

1

s12s36s45
,

〈123456〉 ×
(
〈124563〉f select[6, 3, 2, 4]

)
→ 1

s12s123

(
1

s45
+

1

s56

)
+

1

s12s126

(
1

s34
+

1

s45

)
+

1

s12s34s56
,

indicating that (5.25) can be part of the mother amplitudes with different color orderings.
In the third situation, the pole we pick is physical but an overall one, thus multiplying the select-

ing factor we get the immediate child amplitude. This is the case we have considered in detail in the
beginning of this subsection. Consider an eight point CHY-integrand with PT(ααα) = 〈12345678〉 and
PT(βββ) = 〈12348765〉. The amplitude is

PT(ααα)PT(βββ)→ 1

s1234

(
1

s12s34
+

1

s12s123
+

1

s23s123
+

1

s23s234
+

1

s34s234

)
×
(

1

s56s78
+

1

s56s567
+

1

s67s567
+

1

s67s678
+

1

s78s678

)

=
1

s1234

(
P1234

12

3 4 )(
P5678

8 7

65 )
, (5.29)

where we used the five point vertices to represent the terms in two parentheses. For instance, if we want to
pick up terms with pole 1

s78
, either f select[6, 7, 8, 1] following the color ordering of PT(ααα) or f select[4, 8, 7, 6]

following the color ordering of PT(βββ) can do the job. Indeed, by direct computation, we confirm that

(
PT(ααα)f select[6, 7, 8, 1]

)
× PT(βββ)

PT(ααα)×
(
PT(βββ)f select[4, 8, 7, 6]

)
→ 1

s1234
× 1

s78

(
1

s56
+

1

s678

)
×

(
P1234

12

3 4 )
. (5.30)

In fact, we can multiply more than one selecting factors to pick up terms with several specific poles. For
example, if we want to pick up terms with pole 1

s78
1

s678
, we can start from the result (5.30) and take

the selecting factor f select[5, 6, 8, 1] following the color ordering of PT(ααα) in the second row of (5.30), or
f select[4, 8, 6, 5] following the color ordering of PT(βββ) in the first row of (5.30). It leads to four possible
multiplications, and by direct computation, they produce the same result as

(
PT(ααα)f select[6, 7, 8, 1]f select[5, 6, 8, 1]

)
× PT(βββ)(

PT(ααα)f select[6, 7, 8, 1]
)
×
(
PT(βββ)f select[4, 8, 6, 5]

)
(
PT(ααα)f select[5, 6, 8, 1]

)
×
(
PT(βββ)f select[4, 8, 7, 6]

)
PT(ααα)×

(
PT(βββ)f select[4, 8, 7, 6]f select[4, 8, 6, 5]

)


→ 1

s1234
× 1

s78s678
×

(
P1234

12

3 4 )
. (5.31)
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We note that the first and last of them do not end up directly with pure PT-factors. Nontrivial identities
are required to further reduce the results. Thus, multiplying the selecting factor is a little bit broader than
the situation discussed in the previous subsection.

We can further pick up terms with, say, 1
s12

pole, from the previous result. It can be checked that the
following eight multiplications of selecting factors

(PT(ααα)f [6, 7, 8, 1]f [5, 6, 8, 1]f [8, 1, 2, 3])× PT(βββ) (PT(ααα)f [6, 7, 8, 1]f [5, 6, 8, 1])× (PT(βββ)f [5, 1, 2, 3])

(PT(ααα)f [6, 7, 8, 1]f [8, 1, 2, 3])× (PT(βββ)f [4, 8, 6, 5]) (PT(ααα)f [6, 7, 8, 1])× (PT(βββ)f [4, 8, 6, 5]f [5, 1, 2, 3])

(PT(ααα)f [5, 6, 8, 1]f [8, 1, 2, 3])× (PT(βββ)f [4, 8, 7, 6]) (PT(ααα)f [5, 6, 8, 1])× (PT(βββ)f [4, 8, 7, 6]f [5, 1, 2, 3])

(PT(ααα)f [8, 1, 2, 3])× (PT(βββ)f [4, 8, 7, 6]f [4, 8, 6, 5]) (PT(ααα))× (PT(βββ)f [4, 8, 7, 6]f [4, 8, 6, 5]f [5, 1, 2, 3])

indeed evaluate to 1
s1234

(
1

s12s34
+ 1

s12s123

)
× 1

s78s678
. So we have extracted all terms with poles 1

s12
1
s78

1
s678

from the result (5.29).

As another illustration, let us apply the above discussion to six point CHY-integrands with PT(ααα) =
〈123456〉 fixed, such that we can examine relations between the independent PT(βββ)’s. Starting from the
identity PT-factor PT(βββ) = 〈123456〉, we can choose the selecting factors to corresponds to the independent
Mandelstam variables {s12, s23, s34, s45, s56, s61} and {s123, s234, s345}. Explicitly, we have

〈123456〉 ×



f select[6, 1, 2, 3]s12 → 〈126543〉
f select[1, 2, 3, 4]s23 → 〈132456〉
f select[2, 3, 4, 5]s34 → 〈124356〉
f select[3, 4, 5, 6]s45 → 〈123546〉
f select[4, 5, 6, 1]s56 → 〈123465〉
f select[5, 6, 1, 2]s61 → 〈154326〉

, 〈123456〉 ×


f select[6, 1, 3, 4]s123 → 〈123654〉
f select[1, 2, 4, 5]s234 → 〈143256〉
f select[2, 3, 5, 6]s345 → 〈125436〉

, (5.32)

where the subscripts are to remind which pole we are picking up. The left column shows the results of
picking up the terms with a common two-particle pole 1

si,i+1
, while the right column shows the results of

picking up terms with a common three-particle pole 1
si,i+1,i+2

. It can be simply checked that the six resulting
PT-factors in the left column are those evaluating to five diagrams, while the three in the right column are
those evaluating to four diagrams, as presented in §3.3.

Based on above results, we can further consider multiplying one more selecting factor. For example,
let us take the resulting PT-factor 〈123465〉 from the left column and 〈123654〉 from the right column. For
〈123465〉, it has overall pole 1

s56
in the evaluated result. From compatibility condition, the selecting factors

we can take are those corresponding to poles 1
s12

, 1
s23

, 1
s34

, 1
s123

and 1
s234

. For 〈123654〉, it has overall pole
1

s123
in the evaluated result, and from compatibility condition the selecting factors we can take are those
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corresponding to poles 1
s12

, 1
s23

, 1
s45

and 1
s56

. Explicitly, we have

〈123465〉 ×



f select[5, 1, 2, 3]s12 → 〈125643〉
f select[1, 2, 3, 4]s23 → 〈132465〉
f select[2, 3, 4, 6]s34 → 〈124365〉
f select[5, 1, 3, 4]s123 → 〈123564〉
f select[1, 2, 4, 6]s234 → 〈143265〉

, 〈123654〉 ×


f select[4, 1, 2, 3]s12 → 〈124563〉
f select[1, 2, 3, 6]s23 → 〈132654〉
f select[6, 5, 4, 1]s45 → 〈123645〉
f select[3, 6, 5, 4]s56 → 〈123564〉

. (5.33)

It can be checked that all the resulting PT-factors evaluate to two Feynman diagrams. In fact, all the six
resulting PT-factors in the left column of (5.32) can be treated in the same manner as 〈123465〉, which lead
to 6 × 5 = 30 PT-factors. All the three resulting PT-factors in the right column of (5.32) can be treated
in the same manner as 〈123654〉, which in all produce 3 × 4 = 12 PT-factors. However, we have over-
counted each PT-factor by one since the result is independent of the order of picking up poles. Therefore,
the independent PT-factors that can be produced from all resulting PT-factors in (5.32) by multiplying
another selecting factor should be 6×5+3×4

2! = 21, which is exactly the number of independent PT-factors
that evaluated to two Feynman diagrams.10 Indeed, it can be checked that the 21 resulting PT-factors as
partly shown in (5.33), together with the other not written down, are just those evaluated to two diagrams
as presented in §3.3.

Again, based on above result, we can multiply one more selecting factor that is compatible with the
previous two. The resulting PT-factors from (5.33) can be shown as

〈125643〉 ×

{
f select[6, 4, 3, 1]s34 → 〈125634〉
f select[4, 3, 2, 5]s123 → 〈124653〉

〈132465〉 ×

{
f select[5, 1, 2, 4]s123 → 〈132564〉
f select[1, 3, 4, 6]s234 → 〈142365〉

〈124365〉 ×

{
f select[5, 1, 2, 4]s12 → 〈125634〉
f select[1, 2, 3, 6]s234 → 〈134265〉

〈123564〉 ×

{
f select[4, 1, 2, 3]s12 → 〈124653〉
f select[1, 2, 3, 5]s23 → 〈132564〉

〈143265〉 ×

{
f select[4, 3, 2, 6]s23 → 〈142365〉
f select[1, 4, 3, 2]s34 → 〈134265〉

,

〈124563〉 ×

{
f select[2, 4, 5, 6]s45 → 〈125463〉
f select[4, 5, 6, 3]s56 → 〈124653〉

〈132654〉 ×

{
f select[6, 5, 4, 1]s45 → 〈132645〉
f select[2, 6, 5, 4]s56 → 〈132564〉

〈123645〉 ×

{
f select[5, 1, 2, 3]s12 → 〈125463〉
f select[1, 2, 3, 6]s23 → 〈132645〉

〈123564〉 ×

{
f select[4, 1, 2, 3]s12 → 〈124653〉
f select[1, 2, 3, 5]s23 → 〈132564〉

. (5.34)

We notice that each PT-factor in (5.33) has two compatible selecting factors, leading to two new PT-factors,
all of which evaluate to one Feynman diagram. Since from (5.32) to (5.33), we get 42 PT-factors (of which
21 are independent), in this step we will get 42× 2 = 84 PT-factors. After excluding the double counting,
we get 42×2

3! = 14 independent PT-factors, which are exactly the PT-factors that evaluated to one Feynman
diagram. Our results (5.34), together with those not written down, agree with the 14 independent PT-
factors that evaluated to one Feynman diagram as presented in §3.3, after deleting the double counting.

10Alternatively, we can pick up the two poles from 〈123456〉 at the same time, similar to our example (5.31). The resultant
integrands will be different at the first glance, but still evaluate to the same amplitudes.
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Since now every pole is overall, if we multiply another selecting factor, we will either get an irrelevant result
or return to the mother amplitude.

Before closing, we give a criterion on whether a pole sA is overall with fixed PT(ααα). First, sA is
a physical pole iff A is consecutive with both PT(ααα) and PT(βββ). Next, we define {A−1, A1, A−1, A1}
according to PT(βββ), and put PT(ααα) into the unique form PT(ααα) = 〈A1 . . . A−1 . . .〉. Then sA is an overall
pole iff in PT(ααα) we have A−1 ≺ A−1 ≺ A1, namely, A−1 precedes A1. Otherwise, sA is not an overall
pole. This can be easily understood by the zig-zag path in n-gon. Since an overall pole corresponds to a
partial triangulation line in the n-gon, a reverse of ordering must happen when the zig-zag path cross this
triangulation line.

6 Conclusion

The CHY-integrand of bi-adjoint cubic scalar theory consists of two PT-factors as PT(ααα) × PT(βββ). Once
we fix the color ordering of first PT-factor PT(ααα) as the natural ordering eee = 〈12 · · ·n〉, the second PT-
factor PT(βββ) then can be interpreted as a permutation acting on the identity element. It is shown in
this paper that, the pole structure and vertex information of Feynman diagrams evaluated by a CHY-
integrand is completely encoded in the permutations of corresponding PT-factors. The cycle representation
of permutation, which neatly organizes the external legs into disjoint cycles, manifests the pole and vertex
information. More concretely, since a PT-factor is invariant under cyclic rotations and gains at most a
sign (−)n under reversing of color ordering, we are actually considering 2n equivalent permutations of a
PT-factor. We then write all the equivalent permutations of PT(βββ) into the cycle representation, and pick
out the good ones. Those that can be separated to at least three consecutive parts with respect of PT(ααα)
are called V-type cycle representations. Those that can only be separated into two parts, while each part
contains more than two elements, are called P-type cycle representations. We show that the CHY-integrand
PT(eee)× PT(βββ) gives nonzero contributions if and only if the ways of planar separations allowed by all the
V-type representations satisfy the constraint (3.44). The Feynman diagram of a CHY-integrand can be
completely determined by one V-type cycle representation by going into its substructures, or collectively
determined by all P-type cycle representations of a PT-factor. The vertex structure can be obviously seen
from the planar separation of V-type or P-type cycle representations. We presented the algorithm to read
out the physical poles and vertices from them.

On the other hand, given an effective Feynman diagram, with possible effective higher point vertices,
we have proposed a recursive algorithm to obtain directly the correct cycle representation of corresponding
PT-factor PT(βββ). We show that cycle representations of any Feynman diagram allow a factorization as
Eq. (4.10) with respect to an arbitrary m-point vertex, called a planar splitting. We have figured out that,
the cycle representations of subdiagrams that used in the factorization (4.10) are the non-planar splitting
ones in the equivalent class of PT-factors of subdiagrams. The same algorithm applies to the subdiagrams
as well, so we can reconstruct the cycle representation of any n-point PT-factor basically from three point
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PT-factor. We show that all the discussions are parallel in the Feynman diagram and n-gon diagram, while
the latter also takes its role in the associahedron discussion.

It is shown in [31] that different PT-factors are neatly connected in the associahedron picture. In
this paper, we also investigate the relations among different PT-factors via the reversing permutation on
cycles, which corresponds to adding or removing triangulation line in the n-gon diagrams. The merging and
splitting of cycles in a cycle representation mainly select terms with the same poles in a result. From the
same thought, we further study the relations among PT-factors via the multiplication of certain cross-ratio
factor which we call selecting factor. They all give similar topology about how the PT-factors are connected.

Finally, since the planar diagram possess a natural interpretation as the vertices and boundaries of an
associahedron, the structure of good cycle representation introduced in this paper can be used to characterize
certain boundaries. We have shown how this can be achieved by merging of cycles, in the equivalent class of
a PT(βββ), the number of different factorizations into disjoint permutations describes the shape of boundaries
of the associahedron.
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A Associahedron and cycle representation of permutation

As we have briefly mentioned, all the cubic scalar diagrams are related to the associahedron. More con-
cretely, all the n-point PT-factors can be elegantly encoded into an associahedron denoted as Kn−1, which
is an (n− 3)-dimensional convex polytope whose vertices are labeled by n-point cubic diagrams. The two
vertices connected by an edge represent the two diagrams that share the same (n− 4) internal edges, such
that we can label the edges with those diagrams with (n − 4) cubic vertices and one quartic vertex. In
general, an k-dimensional boundary consists of vertices that share the same (n− 3−k) internal edges. The
number of k-dimensional boundaries in Kn−1 is given by the equation11

T (n, k) =

(
k

n− 3

)(
n− k − 3

2n− k − 4

)
1

n− k − 2
. (A.1)

All these boundaries correspond to diagrams with higher point vertices. They are thus characterized by
the vertex number vector

vvv ≡ (v3, v4, v5, . . . , vn) , (A.2)
11See https://oeis.org/A033282
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where vi satisfies the constraint of (4.7). For instance, at n = 6, the three-dimensional associahedron K5 has
two kinds of faces (two-dimensional boundaries): pentagon (K4) and rectangle (K3×K3). They correspond
to the diagrams with vvv = (1, 0, 1, 0) and (0, 2, 0, 0) respectively. All the boundaries of Kn−1 can be obtained
by direct products of lower dimensional associahedrons. We use Nn(v3, v4, . . . , vn) to denote the number of
boundaries Kn−1 that are of the form

K2 × · · · × K2︸ ︷︷ ︸
v3

×K3 × · · · × K3︸ ︷︷ ︸
v4

×K4 × · · · × K4︸ ︷︷ ︸
v5

× · · · . (A.3)

In particular, Nn(n − 2, 0, . . . , 0) gives the number of vertices of Kn−1, which is the Catalan number
Cn = (2n−4)!

(n−1)!(n−2)! , and Nn(0, 0, . . . , 0, 1) = 1 just stands for the Kn−1 itself.
Knowing the relation between cycle representations and Feynman diagrams, we can give the number

Nn(v3, v4, . . . , vn) another interpretation. From §4.2, we know that a PT-factor PT(βββ) corresponds to a
Feynman diagram with vvv = (v3, v4 . . . vn) only if among the (2n) elements of its equivalent class, there are
exactly vi different cycle partitions {βββcyc-rep

A1
, . . . ,βββcyc-rep

Ai
} such that

βββcyc-rep
A1

βββcyc-rep
A2

· · ·βββcyc-rep
Ai

∈ b[βββ] , 3 6 i 6 n ,

where each βββcyc-rep
Ai

can not be further split planarly. Then the number Nn(vvv) simply counts the number
of such permutations. To clarify this statement, a few typical examples are in order. First, at n = 6, the
PT-factor 〈123465〉 corresponds to a diagram with two quartic vertices, namely, vvv = (0, 2, 0, 0),

2 5

1

3

6

4

⇐⇒ PT(βββ) = 〈123465〉 . (A.4)

In the equivalent class of 〈123465〉, there are two cycle representations that can be split planarly, and there
are in all two ways to split them into four planar parts,

(1)|||(2)|||(3)|||(46)(5) =⇒ βββcyc-rep
A1

= (1) , βββcyc-rep
A2

= (2) , βββcyc-rep
A3

= (3) , βββcyc-rep
A4

= (46)(5)

(13)(2)|||(4)|||(5)|||(6) =⇒ βββcyc-rep
A1

= (13)(2) , βββcyc-rep
A2

= (4) , βββcyc-rep
A3

= (5) , βββcyc-rep
A4

= (6)
. (A.5)

Now comparing with Eq. (A.5), we see that the two four-part planar splitting is due to the fact that
the corresponding Feynman diagram consist of two quartic vertices. Since each subdiagram can also be
factorized to sub-subdiagrams, this allows a recursive computation for Nn(vvv), down to the pieces where only
cubic vertices exist and only length-1 or length-2 cycles appear in the cycle representation. Thus 〈123465〉
contributes to the counting N6(0, 2, 0, 0). Next, we consider an eight point example with vvv = (2, 2, 0, 0, 0, 0),

2

1

5

6

8

3

7

4

⇐⇒ PT(βββ) = 〈12846573〉 . (A.6)
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In the equivalent class of 〈12846573〉, there are again two cycle representations that have planar splittings,
but this time there are two ways to split them into three parts (blue partitions), and two ways to split them
into four parts (red partitions),

(1)|||(2)|||(38)|||(4)|||(56)|||(7) , (8)|||(12)|||(3)|||(47)|||(5)|||(6) . (A.7)

Again, the cycle splitting pattern agrees exactly with the vertex number vector (2, 2, 0, 0, 0, 0). Thus the
PT-factor 〈12846573〉 contributes to the counting N8(2, 2, 0, 0, 0, 0). The above machinery can also be used
to pick out those PT-factors that do not give any Feynman diagram. We again illustrate this point by a
few examples first. At n = 6, we consider the PT-factor 〈124635〉. In its equivalent class, there is only one
three-part cycle partition,

(1)|||(2)|||(3465) . (A.8)

Had this PT-factor given any Feynman diagram, the vertex number vector would be vvv = (1, 0, 0, 0). Since
this vvv does not satisfy the constraint (4.7), 〈124635〉 does not correspond to any Feynman diagram com-
patible with the planar order 〈123456〉. Similarly, the PT-factor 〈135264〉 does not have any valid cycle
partition (namely, more than three parts) in its equivalent class, it must also give zero Feynman diagram.
In general, by inspecting how the cycle representations of a PT-factor split, we can get a vertex number
vector vvv. If this vvv fails to satisfy the constraint (4.7), the PT-factor under consideration must give zero
Feynman diagram.

In order to write down a recursive formula for Nn, let us consider the following factorization of Feynman
diagram. Starting from an arbitrary external leg, it would connect to, say, a (s + 1)-point vertex. This
vertex splits the diagram into (s + 1) subdiagrams. One of the subdiagram is just the single external leg
we started from, which does not contain any other external legs of the Feynman diagram. The remaining
(n− 1) external legs are separated into the other s subdiagrams. Let us assume that the number of legs is
xi for each subdiagram i, with 1 6 i 6 s. Since each subdiagram consists of external legs and an internal
propagator, we would have the following constraint

s∑
i=1

xi = (n− 1) + s . (A.9)

If the vertex number vector for each subdiagram is uuui, then we have the following constraint

s∑
i=1

uuui = (v3, v4, . . . , vs, vs+1 − 1, vs+2, . . . , vn) , (A.10)

where vvv = (v3, v4, . . . , vn) is the vertex number vector of the complete Feynman diagram, and vm is the
number of the m-point vertices. The meaning of Eq. (A.10) is clear: summing over the numbers of m-
point vertices in all the subdiagrams should give the number of m-point vertices in the complete Feynman
diagram, except that the number of (s+ 1)-point vertex should be reduced by one, since the (s+ 1)-point
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n = 6 n = 8

vvv F Nn(vvv) T (n, k) k vvv F Nn(vvv) T (n, k) k

(4, 0, 0, 0) 1 14 14 0 (6, 0, 0, 0, 0, 0) 1 132 132 0

(2, 1, 0, 0) 2 21 21 1 (4, 1, 0, 0, 0, 0) 2 330 330 1

(1, 0, 1, 0) 5 6
9 2

(3, 0, 1, 0, 0, 0) 5 120
300 2

(0, 2, 0, 0) 4 3 (2, 2, 0, 0, 0, 0) 4 180

(0, 0, 0, 1) 14 1 1 3 (2, 0, 0, 1, 0, 0) 14 36

120 3n = 7 (1, 1, 1, 0, 0, 0) 10 72

vvv F Nn(vvv) T (n, k) k (0, 3, 0, 0, 0, 0) 8 12

(5, 0, 0, 0, 0) 1 42 42 0 (1, 0, 0, 0, 1, 0) 42 8

20 4(3, 1, 0, 0, 0) 2 84 84 1 (0, 2, 0, 1, 0, 0) 28 8

(2, 0, 1, 0, 0) 5 28
56 2

(0, 0, 2, 0, 0, 0) 25 4

(1, 2, 0, 0, 0) 4 28 (0, 0, 0, 0, 0, 1) 132 1 1 5

(1, 0, 0, 1, 0) 14 7
14 3

(0, 1, 1, 0, 0) 10 7

(0, 0, 0, 0, 1) 42 1 1 4

Table 1: Nn(vvv) and the corresponding T (n, k) for n = 6, 7 and 8. In addition, F gives the number of
trivalent Feynman diagrams.

vertex that connects the starting external leg has been split and does not belong to any subdiagram12.
Then Nn can be recursively computed from those Nxi ’s of the subdiagrams as,

Nn(v3, v4, . . . , vn) =
n−1∑
s=2

∑
{xi}

∑
{uuui}

Nx1(uuu1)Nx2(uuu2) · · ·Nxs(uuus) , (A.11)

where for each 2 6 s 6 n− 2, the summation over {xi} and {uuui} are constrained respectively by Eq. (A.9)
and (A.10), and s takes the value k whenever vk+1 is not zero. We note that by definition the vector uuui
satisfies the constraint,

xi∑
m=3

(m− 2)uim = xi − 2 . (A.12)

In addition, we also require that each xi > 2 and each component of uuui is non-negative. The recursion
starts at N2(0) = 1. If vvv = (n − 2, 0, . . . , 0), i.e., all vi = 0 except that v3 = n − 2, then s can only take
s = 2 in (A.11), which gives nothing but the recusion for the Catalan numbers. For low multiplicity, one

12The uuui in (A.10) is the vertex number vector of xi-point subdiagram, so it has xi− 2 components uuui = (ui3, ui4, . . . , uixi).
When we equal the left and right side of (A.10), all the uik with xi + 1 6 k 6 n are automatically understood to be zero.

– 47 –



can easily find that,

N3(1) = 1 , N4(2, 0) = 2 , N5(3, 0, 0) = 5 ,

N4(0, 1) = 1 , N5(1, 1, 0) = 5 , (A.13)

N5(0, 0, 1) = 1 .

The cases of n = 6, 7 and 8 are shown in Table 1, where we can easily check that the values of N6(vvv), for
example, agree with the counting of Feynman diagrams. By knowing the values for lower multiplicities, we
can easily calculate, for example,

N7(0, 1, 1, 0, 0) = N2(0)N2(0)N5(0, 0, 1) +N2(0)N5(0, 0, 1)N2(0) +N5(0, 0, 1)N2(0)N2(0)

+N2(0)N2(0)N2(0)N4(0, 1) +N2(0)N2(0)N4(0, 1)N2(0)

+N2(0)N4(0, 1)N2(0)N2(0) +N4(0, 1)N2(0)N2(0)N2(0)

= 7 . (A.14)

The value of Nn, as a complement of T (n, k), further distinguishes different shapes of k-dimensional bound-
ary of associahedron Kn−1.
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