
THE NECKLACE PROCESS: A GENERATING FUNCTION APPROACH

BENJAMIN HACKL AND HELMUT PRODINGER

ABSTRACT. The “necklace process”, a procedure constructing necklaces of black and white
beads by randomly choosing positions to insert new beads (whose color is uniquely determined
based on the chosen location), is revisited. This article illustrates how, after deriving the
corresponding bivariate probability generating function, the characterization of the asymptotic
limiting distribution of the number of beads of a given color follows as a straightforward
consequence within the analytic combinatorics framework.

1. INTRODUCTION

We consider the following process (illustrated in Figure 1) for constructing necklaces with
two-colored beads:

– We start with , the necklace with one black and one white bead.
– New beads can be added between any two adjacent beads. The color of the new bead

is determined by the color of those two beads: The new bead is white if and only if
its two neighbors are black.
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FIGURE 1. Construction of a necklace by the necklace process. The numbers
on the beads correspond to the order in which they were inserted into the
necklace.

Motivated by a simple network communication model, this “necklace process” was analyzed
in [5]. Further variants of this process were discussed in [8], where an elegant approach
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using Pólya urns to model the edges connecting the beads was pursued. The parameters
investigated in these articles are the number of white beads in a random necklace of size n
(i.e., consisting of n beads), as well as the number of runs of black beads of given length.

The purpose of this brief note is to provide an alternative access to the analysis of the
number of beads of a given color in the necklace process by focusing on an appropriate
generating function and using tools from analytic combinatorics. A similar approach has been
successfully employed in, for example, [6, 7].

In Section 2 we briefly discuss the combinatorial structure surrounding the necklace process
and elaborate how many different necklaces of given size (i.e., consisting of a given amount
of beads) can be constructed. Then, in Section 3 we analyze the number of white and
black beads in a random necklace of given size. Our main result is given in Theorem 1,
which is an explicit formula for the bivariate probability generating function with respect
to the number of white beads—which has a surprisingly nice closed form. Apart from some
additional remarks on the structure of this generating function, we then show in Corollaries 3.1
and 3.2 how the qualitative results concerning the number of black and white beads obtained
in [5] (expectation, variance, limiting distribution) are a straightforward consequence of the
explicitly known bivariate generating function.

2. NUMBER OF NECKLACES

Before diving straight into the analysis of the number of beads of a given color, for the
sake of completeness, we briefly discuss the combinatorial structure of the objects we are
constructing.

While it is rather easy to see that there are (n− 1)! possible necklace constructions1 for
a necklace of size n, many of those constructions yield the same necklace. Note that the
number of different necklaces of size n is enumerated by sequence A000358 in [9]. We use
the analytic combinatorics framework in order to analyze this quantity in detail.

Proposition 2.1. Let N be the combinatorial class containing all different necklaces constructed
by the necklace process. The corresponding ordinary generating function N(z) enumerating these
necklaces with respect to size is given by

N(z) =
∑

k≥1

ϕ(k)
k

log

�

1− zk

1− zk − z2k

�

, (1)

where ϕ(k) is Euler’s totient function. Asymptotically, the number of necklaces of size n is given
by

[zn]N(z) =

�

1+
p

5
2

�n

n−1 +O

��

1+
p

5
2

�n/2

n−1

�

. (2)

1Starting with , the necklace of size 2, there are 2 possible positions for a new bead. In the new necklace
there are now 3 positions to choose from. Inductively, this proves that there are possible (n− 1)! construction
processes for necklaces with n beads.

http://oeis.org/A000358
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Proof. The generating function (1) can directly be obtained by means of the machinery
provided by the symbolic method (see Chapter I and in particular Theorem I.1 in [2]). In fact,
we can construct the combinatorial class N as

N = Cyc( × +),

where and + represent the combinatorial classes for a single white and a non-empty
sequence of black beads, respectively. Translating the construction of the combinatorial class
N into the language of generating functions then immediately yields (1).

In order to obtain the asymptotic growth of the coefficients of N(z), we use singularity
analysis (see [1], [2, Chapter VI]), which requires us to identify the dominant singularities of
N(z), i.e., the singularities with minimal modulus.

In fact, by observing that all ζ ∈ C satisfying ζk = −1±
p

5
2 are roots of 1− zk − z2k = 0, it is

easy to see that N(z) has a unique dominant singularity located at z = −1+
p

5
2 which comes

from the first summand of N(z) in (1). Extracting the coefficient growth provided by the
first summand and observing that the singularity with the next-larger modulus is located at
z =

Æ

(−1+
p

5)/2 (and comes from the second summand), we obtain (2). �

3. BEADS OF EQUAL COLOR

Let n≥ 2 and let Wn and Bn denote the random variables modeling the number of white
and black beads in a necklace of size n that is constructed uniformly at random, respectively.

The fact that Wn + Bn = n allows us to concentrate our investigation on Wn. Results from
the characterization of Wn can be translated directly to Bn. Let W (z, u) denote the shifted
bivariate probability generating function corresponding to Wn, that is

W (z, u) =
∑

n,k≥1

P(Wn = k)zn−1uk.

In contrast to previous works on the necklace process, we give an explicit formula for the
bivariate probability generating function W (z, u).

Theorem 1. The shifted bivariate probability generating function W (z, u) corresponding to the
random variables Wn modeling the number of white beads in a random necklace of size n is given
by

W (z, u) =
u

p
1− u coth(z

p
1− u )− 1

, (3)

or, equivalently, by

W (z, u) = u
exp(zα)− exp(−zα)

exp(zα)(α− 1) + exp(−zα)(α+ 1)
= u

exp(2zα)− 1
exp(2zα)(α− 1) +α+ 1

, (4)

where α :=
p

1− u.
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Proof. Analogously to the approach in [5] we also see the number of white beads in the
context of a Markov chain with properties

P(Wn+1 = k |Wn = k) =
2k
n

, P(Wn+1 = k+ 1 |Wn = k) = 1−
2k
n

. (5)

This is because when choosing the position for the new bead uniformly at random among all
possible n positions, the color of the bead to be inserted is white (which would increase the
total number of white beads) if and only if we chose one of the positions not adjacent to a
white bead. Given that there are k white beads among the n beads, there are n− 2k such
positions.

Let wn,k := P(Wn = k) and let wn(u) denote the probability generating function for Wn.
With the help of (5) and the law of total probability we find

wn+1,k = P(Wn+1 = k |Wn = k)wn,k + P(Wn+1 = k |Wn = k− 1)wn,k−1

=
2
n

kwn,k −
2
n
(k− 1)wn,k−1 +wn,k−1.

(6)

It is interesting to note that structurally, these probabilities wn,k are strongly connected to
Eulerian numbers (see [4, Section 5.1.3.]): By setting en,k := wn,k/(n− 1)! in (6) we obtain

en,k = 2ken−1,k + (n+ 1− 2k)en−1,k−1,

which strongly resembles the recurrence for Eulerian numbers as given in [4, 5.1.13.(2)].
By multiplication of (6) with uk and summing over k this translates to

wn+1(u) =
2u(1− u)

n
w′n(u) + uwn(u) (7)

for n≥ 2 with initial value w2(u) = u. Note that the bivariate probability generating function
W (z, u) can be expressed by the wn(u) by means of W (z, u) =

∑

n≥2 wn(u)zn−1. After multi-
plying (7) with zn−1 and summation over n≥ 2 we find that W (z, u) satisfies the first order
linear partial differential equation

∂zW (z, u)(1− zu) = 2u(1− u)∂uW (z, u) + uW (z, u) + u, (8)

with the condition W (0, u) = 0. Solving this PDE (e.g., by means of the method of charac-
teristics, or with the help of a computer algebra system) yields (3). The alternate form (4)
follows from rewriting coth(z) = exp(z)+exp(−z)

exp(z)−exp(−z) . �

Because of the particularly nice shape of the bivariate probability generating function
W (z, u) we are able to use the machinery around Hwang’s quasi-power theorem (see [3], [2,
Section IX.7]) in order to find the characterization of Wn from [5] as an immediate corollary.

Corollary 3.1 ([5, Section 3]). The expected number of white beads in a necklace of size n
constructed uniformly at random and the corresponding variance are given by

EWn =
n
3

and VWn =
2n
45

(9)
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for n≥ 6. Furthermore, Wn is asymptotically normally distributed in the sense that for all x ∈ R
we have

P
�

Wn − n/3
p

2n/45
≤ x

�

=
1
p

2π

∫ x

−∞
e−t2/2 d t +O(n−1/2). (10)

Proof. This explicit form of the bivariate probability generating function allows us to use
standard techniques from analytic combinatorics in order to obtain the expected value EWn
and the variance VWn. By construction, EWn is the coefficient of zn−1 in ∂uW (z, 1). We find

∂uW (z, 1) =
(z2 − 3z − 3)z

3(1− z)2
= z +

∑

n≥3

n
3

zn−1,

which proves EWn = n/3 for n ≥ 3. Similarly, we can use the second partial derivative of
W (z, u) with respect to u in order to extract the second factorial moment, E(Wn(Wn − 1)).
Together with the well-known identity

VWn = E(Wn(Wn − 1)) +EWn − (EWn)
2

this allows to verify that VWn = 2n/45 for n≥ 6.
Finally, the asymptotically normal limiting distribution is obtained immediately by using the

explicit formula for F(z, u) := zW (z, u) and applying [2, Theorem IX.12]. The corresponding
necessary conditions are all checked easily:

– Analytic perturbation. We have

A(z, u) = 0, B(z, u) = z2u, C(z, u) = z(
p

1− u coth(z
p

1− u)− 1)

and α= 1. A(z, u) and B(z, u) are obviously entire functions, and C(z, u) is analytic
in the domain {z ∈ C : |z| < 2π} × {u ∈ C : |u− 1| < ε} for some ε > 0. To see this,
observe that coth(z) is an odd function with Laurent expansion

coth(z) =
1
z
+

z
3
−

z3

45
+

2z5

945
+O(z7),

which means that only even powers of
p

1− u occur. Hence, there is no branching
point of the square root at u = 1. Also, C(z, 1) = 1− z has a unique simple root at
ρ = 1 with B(ρ, 1) = 1 6= 0.

– Non-degeneracy. It is straightforward to check ∂zC(ρ, 1) · ∂uC(ρ, 1) = 1/3 6= 0.
– Variability. By explicitly computing the variance above we already computed that the

linear term does not vanish.
This proves (10) and concludes this proof. �

As mentioned above, the characterization Wn can immediately be carried over to Bn. Rewrit-
ing Bn = n−Wn proves the following result.

Corollary 3.2. The expected number of black beads in a necklace of size n constructed uniformly
at random and the corresponding variance are given by

EBn =
2n
3

, and VBn =
2n
45

(11)
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for n≥ 6. Furthermore, Bn is asymptotically normally distributed.

As a side effect of Theorem 1 we are also able to extract more information on the probability
generating functions wn(u).

Corollary 3.3. Let α =
p

1− u. The shifted probability generating functions wn(u)/u can be
expressed by means of even polynomials rn(α) satisfying the recurrence relation

rn(α) =
(2α)n−2

(n− 1)!
+ (1−α)

n−2
∑

k=0

(2α)k

(k+ 1)!
rn−1−k(α), (12)

for n≥ 2 with initial value r1(α) = 0.

Proof. From (4), and by the definition of W (z, u), we find

exp(2zα)− 1
exp(2zα)(α− 1) +α+ 1

=
∑

n≥2

zn−1wn(u)/u=
∑

n≥2

zn−1rn(α).

After multiplying with the denominator and extracting the coefficient of zn−1 on both sides,
we obtain

(2α)n−1

(n− 1)!
= (α+ 1)rn(α) + (α− 1)

n−1
∑

k=0

(2α)k

k!
rn−k(α),

valid for n≥ 2. Rearranging this equation then yields (12). �
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