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Abstract

We study =-representations of the quantized algebra Pol(Mat,, ), of polynomials on the space of
n X n-matrices. We prove that any such representation can be lifted to a x-representation of the
x-algebra C[SUs,]4. Using this result we prove the existence of the universal enveloping C*-algebra
of Pol(Mat,,), and show that the Fock representation of Pol(Mat,,), can be extended to a faithful
representation of this C*-algebra; the latter can be considered as a quantization of the algebra of
continuous functions on the unit matrix ball D,, = {z € Mat,, : 2*x < 1}. Finally, we classify all
irreducible *-representations of Pol(Mat,,), using a diagram approach.

1 Introduction

Let ¢ € (0,1). In [12], L. Vaksman and S. Sinelshchikov put forward a construction of a g-analogue
of Hermitian symmetric spaces of non-compact type via a g-analogue of the Harish-Chandra em-
bedding. This construction gives a x-algebra that is a g-analogue of the x-algebra of polynomial
functions on the bounded symmetric domain that is the image of the Harish-Chandra embedding.
In the simplest case (see [12], section 9), this yields the algebra Pol(C),, the quantum disc; this is
the x-algebra generated by a single generator z subject to the relation

2z =q* 22" + (1 —¢H)I.

Another particular case, derived explicitly in [II], gives the algebra Pol(Mat,),, a g-analogue of
polynomial functions on the open matrix ball D,, := {Z € Mat,, : Z*Z < I}. In [10, 11}, 14 15],
L. Vaksman et. al. considered Pol(Mat, ), more carefully and explicitly developed some of the
more general theory from [I2]. In particular, the Fock representation g, of Pol(Mat,), was
introduced and proved to exist in [I0]. This is the unique (up to equivalence), faithful, irreducible
«-representation of Pol(Mat, ), determined by a non-zero vector v subject to the condition

WF,n(Zg-n)*’UZO, m,j=1,...,n

for the set of generators {2}, }1, ;_; C Pol(Mat,,), (see section 2.1). A complete list of irreducible
s-representations of Pol(Mats), was given in [I3] and in [8] the inequality

Im(a)ll < I7r2(a)ll, Va € Pol(Mats), (1)
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was derived for any #-representation w. As a consequence, this shows that the universal enveloping
C*-algebra of Pol(Matg), exists and is isomorphic to the closure of 7r 2 (Pol(Mat,),).

In [2], the author, together with O. Bershtein and L. Turowska considered the C*-algebra
CF(En)q, the completion of the image of 7 ,. We then described the non-commutative Shilov
boundary (see [1]) for the closed sub-algebra Ar(D,), € Cr (D)4, the closure of the image under
7rn of the ’analytic polynomials’ in Pol(Mat,,),. To do this, we proposed a novel construction of
the Fock representation as the composition 7g, = m, o ¢ of an embedding ¢ of Pol(Mat, ), into
the quantum group C[SUs,), and an irreducible -representation m, of C[SUs,],. We introduced
a neat way of calculating the action of the generators of Pol(Mat,, ), using certain directed paths
and diagrams. Moreover, it was observed that several of the known irreducible *-representations
of Pol(Mat,,), factors through the C*-algebra Cr(Dy,),. This raises the question of whether for
general n € N, all irreducible *-representations could be constructed as quotient representations of
TFn, OF equivalently, if the universal enveloping C*-algebra of Pol(Mat,, ), exists and is isomorphic
to CF (Dn)q

In this paper we answer this question affirmatively and we also give a complete picture of the
irreducible representations of Pol(Mat,),. The main idea in the proof is to use the previously
mentioned embedding ¢ : Pol(Mat,), — C[SUsz,], and to prove that for every irreducible *-
representation 7 of Pol(Mat,, ), on a Hilbert space K, we can lift 7 to an irreducible *-representation
IT of C[SUs,), on the same space K, such that

r=Toc(. (2)

The result (2)) is stated more precisely in Theorem 1] and the proof makes up Sections 5. In
Corollary we then use the lifting result to prove () for general n € N. By Soibelman’s result
(see [6]), all irreducible *-representations of C[SUsy,], are parametrized by elements in the sym-
metric group Sa, (the Weyl group of suy,) and 2n-tuples ¢ = (41, ..., ¢2,) € [0,27) such that
Zj ¢; = 0 (mod 2m). In Section 6 we use this result to do a more careful analysis of which irre-
ducible *-representations IT of C[SUa,|, that give rise to non-equivalent irreducible *-representation
7w =IIo(¢ of Pol(Maty,),. It turns out that for 7 = ITo ¢ the element s € Sg,, corresponding to a lift
IT is uniquely determined while the coordinates of the corresponding ¢ = (¢1, .. ., P2, ) are uniquely
determined only for those indices n + 1 < j < 2n such that n+ 1 < s(j) < 2n. We then use this to
give a presentation of the irreducible *-representations of Pol(Mat,, ), as quotient representations of
7Trn (see Section 3.1). One advantage of this presentation is that it yields an easy way to calculate
the action of the generators, by use of directed paths and diagrams in a similar way as for 7g,.

This paper is organized as follows: In section 2 we introduce the *-algebras Pol(Mat, ), and
C[SU,], and review some of their basic theory.

In Section 3 we explain how to associate x-representations of Pol(Mat,, ), to some kind of directed
diagrams and how to use these diagrams to compute the images of the generators zi under the
x-representations. We will also explain there how every irreducible *-representation of Pol(Maty,),
can be realized as one of these diagrams and we give a complete classification of irreducible *-
representations of Pol(Mat, )q.

In Section 4, we state the main result, Theorem Il and we show, in Corollary [£.2] how it
implies that the universal enveloping C*-algebra of Pol(Mat,, ), is isomorphic to 7g ., (Pol(Mat,,),).




The beginning of Section 5 is devoted to explaining, in a slightly informal way, how we need to
split the proof of the main result into two cases, A and B, and the idea behind the mechanics of
the proof of Theorem [41]in both cases. The hope is that this will make the later sections clearer.
Subsections 5.3 and 5.4 complete the proof of Theorem [£.1] for the case A and B respectively.

In Section 6, we use Theorem 1] to complete the classification of irreducible *-representations
of Pol(Mat,,), as it was presented in Section 3.

2 The x-algebras Pol(Mat,), and C[SU,],

2.1 Pol(Mat,),

In what follows C is a ground field and ¢ € (0,1). We assume that all the algebras under con-
sideration has a unit I. Consider the well known algebra C[Mat, |, defined by its generators zg,
a,a=1,...,n, and the commutation relations

zﬁ‘zf—quzg‘:(), a=b & a<fB, or a<b & a=p, (3)
2325—2522‘:0, a<fB & a>hb, 4)
22‘25 - 2523‘ —(g—q Hzlp =0, a<pf & a<hb. (5)

This algebra is a quantum analogue of the polynomial algebra C[Mat,] on the space of n x n-
matrices. Let A = (aj )k € Mn(Z+) be a n x n matrix of positive integers a; 5, and denote by
z(A) the monomial

2(A) =
nya n— a —1 An 1 n An—1 Anp—1.,1 nyai a1 6
) e NN e LT I I L SR E S C R ) RN

It follows from the Bergman diamond lemma that monomials z(A), A € M,(Z.), form a basis

for the vector space C[Mat,],. Hence C[Mat,], admits a natural gradation given by deg(z]) = 1,
and in general deg(z(A)) = | A|, where

A=) . (7)

k,j=1
In a similar way, we write C[Mat,,], for the algebra defined by generators (z3)*, @,a =1,...,n,
and the relations
(7)) (z0)" —a(z8)" ()" =0, a=b & a<p, or a<b & a=p (8)
()" (28)" = ()" ()" = 0, a<f & a>b, (9)
()" (26)" = (=) ()" = (a = ¢ )= ()" =0, a<f & a<b (10)

A gradation in C[Mat,], is given by deg(z$)* = —1.



[e3

Consider now the algebra Pol(Mat,,),, whose generators are z<, (2§

list of relations is formed by @) — (I0) and

n n
)z =a’- Y, D RRG -2d ()" + (1= ¢*)dapd™,
alb'=1a',8'=1

with dap, 67 being the Kronecker symbols, and

a1t i£j & i=k & j=I
T —(¢%2-1), i=j & k=1 & 1>}
0, otherwise.

The involution in Pol(Mat,, ), is introduced in an obvious way: * : 25 — (25)*.

It is known from [I0] (Corollary 10.4) that we have an isomorphism of vector spaces

C[Maty,]qs ® C[Mat, ], — Pol(Mat,, ),

)*, @,a=1,...,n, and the

(11)

(12)

induced by the linear map a ® b+ a-b. Thus, we can consider the algebras C[Mat,], and C[Maty,],

as sub-algebras of Pol(Mat,, )4, if we identify them with the images of C[Mat,],®I and I ® C[Mat,],

respectively.

For the ease of reference, we split (1)) into 4 cases that we write down explicitly as

1. Ifa#b,a#p

(25)"28 = 22(2))".

2. fa=ba#p

3. Ifa#ba=p

Jj=a+1
4. Ifa=ba=p
(2028 = P22z = (1—®) Y 2 —(1—-¢) > 25"+
j=a+1 j=a+1

1 -¢> > ) A=A

j=a+lm=a+1



2.2 The Quantum group C[SU,],

Recall the definition of the Hopf algebra C[SL,],. It is defined by the generators {¢; ;}i j=1
and the relations

vvvvv n

ta,atsp — qtgpta,e = 0, a=b & a<fB, or a<b & a=4,
ta,at,@,b - tB,bta,a =0, o< ﬁ & a> b,

ta,atﬁ,b - tﬁ,bta,a - (q - qil)tﬁ,ata,b = 0; a< ﬂ & a< ba

det, t = 1.

Here detg t is the g-determinant of the matrix t = (¢; ;)7 ;_;.

It is well known (see [4] or other standard book on quantum groups) that C[SU,,], def (C[SL,]gs %)

is a Hopf *-algebra. The co-multiplication A, the co-unit €, the antipode S and the involution *
are defined as follows

Altij) = Zti,k Dty eltiz) =0y, S(tij) = (—q)"’ detyt;,
k
and o
t;(,j = (—q)a7Z detq tij7

where t;; is the matrix derived from t by discarding its i-th row and j-th column.

Let {ex|k € Z+} be the standard orthonormal basis of £2(Z, ) and let S be the isometric shift
Sex, = ep41 on (*(Zy). For q € (0,1), we now introduce the operators D,, C, € B({*(Zy)) given
by the formulas

Coem = /1 —¢*"em, Dyey, =q™en forallkeZy.
Now let
T11 = S*Oq, T12 = _qu7
T21 = Dq7 T22 = CqS (17)

It is not hard to verify the formulas
D= TR, 01~ $8)5, Ci=1- D}

It follows from this that D,, C, € C*(S), the C*-algebra generated by S, and therefore T;; € C*(.59),
fori,j =1,2.

Notice that the following relations hold

Ty =T5, T To2 — qTh2T5 =0 T19To1 = To1Tho
T11Th2 = qT12T11 T11T51 = T 111 Ty = VI —T5T, (18)

Ti1Toy = ¢*TooTh1 + (1 — ¢*)I

from which we conclude that the operators T;; determine an irreducible *-representation m :
CISUs)y — C*(S) € BUA(Z4))
m(ti;) = Tij, 1 < 4,5 < 2. (19)



For 1 <i<n-—1,let ¢; : C[SU,]q; — C[SUs],4 be the *-homomorphism determined by

Gi(tis) =t1,1, bi(tiv1iv1) = to.0,
Gi(tiit1) = t1,2, bi(tiy1i) = tan (20)
and ¢;(tx, ;) = 0k ;I otherwise.

Then 7; = 7o ¢; is a *-representation of C[SU,], on ¢?(Z,). Moreover ;(C[SU,]) C C*(9).

Let s; denote the adjacent transposition (7,7 + 1) in the symmetric group .S,,.

Definition 2.1. For an element s € §,, consider a reduced decomposition of s = s, 55, ... s;,, into
a product of adjacent transposition and put

Ts :ﬂ-jl ®...®7Tj7n'
It is known that 74 is independent of the specific reduced expression of s, in the sense that

another reduced decomposition gives a unitary equivalent x-representation.

Recall that the length of s € S,,, denoted by £(s), is the number of adjacent transpositions in a
reduced decomposition of s = sj, 55, ... 8j,,,- For the identity element e € S,,, we let £(e) = 0. For
s,t € Sy, it is easy to see that the inequality

U(st) < l(s) + £(1).
holds, and that £(s~1) = £(s).

Let ¢ = {¢1,...,9n} €10,27)™ be a n-tuple such that
ngj =0 (mod 2m).
j=1

Then we can define a one-dimensional *-representation x,, : C[SU,]; — C by the formula
Xo(ti) = €% 8;;. (21)
From the work of Soibelman, the following is known (with S™ the Weyl group of SU,,)

Proposition 2.2. [ [6], Theorem 6.2.7] Every irreducible *-representation II of C[SU,|, is equiv-
alent to one of the form

Ts @ X (22)
for s € Sy and ¢ = [p1,...,pn] €[0,2m)", 377, p; =0 (mod 27). Conversly, such pairs give rise

to non-equivalent irreducible x-representations of C[SUy]4.

It follows from Proposition that for every s € S, and ¢ = [p1,...,9,] € [0,27)", such
that 3°7_) ¢; = 0 (mod 27), there is another n-tuple ' = [¢},...,¢},] € [0,2m)", 350, ¢} =
(mod 27), such that

Ts @ Xo = Xo? @ Ts. (23)
A direct calculation, shows that if (-, -) is the inner product on (£2(Z))®“*) and eg = eg®- - -®ep €
(02(Z4))®4®), then for I = ms @ X4

(TI(ti;)eo, e0) = €97 (—q)'36; o5, (24)



with I = #({1 < k <j|s(j) < s(k)}) (#(-) denotes the number of element in the set). Notice that
the right-hand side of ([24]) completely determines s and . We can use (24)) to determine ¢’ in the
right-hand side of (23]) to be
¢ =571p) = lpsm11y - Ps1(m)] (25)
so that

Ts Q@ X gxs—l(@)®ﬁs. (26)

3 *-Representations of Pol(Mat,),

The Fock representation
TFn : Pol(Mat, ), — B(Hpn)

is known to be a x-representation of Pol(Mat,, ), with the property that there exists a cyclic non-zero
unit vector vg € Hp p, called a vacuum vector, such that

Trn(20) 0 =0, k. j=1,...,n

(see [I0]). Strictly speaking, the term vacuum vector refers to the subspace generated by vg, but
we will abuse the terminology slightly by calling a nonzero vector v € H a vacuum vector for
Pol(Mat, ) if there exists a %-representation « : Pol(Mat,,)q — B(H) such that m(z])*v = 0 for all
1 <k,j <n.lItis then clear that the sub *-representation of m generated by v is isomorphic to the
Fock representation.

The following is known from [2] [Corollary 1].

Proposition 3.1. The set {z(A)vo|A € M, (Z4+)} is an orthogonal basis for Hp,, and z(A)vg # 0
for all A e My(Zy).

Remark 3.2. The ordering of the generators {zi} is done slightly different in [ [2],Corollary 1],
but the statements are equivalent as the difference in ordering is restricted to the columns in the
generator matriz (z],)k,; and the elements in the columns q-commutes by ().

We collect some results regarding *-homomorphisms on Pol(Mat, ).

Lemma 3.3. (1) The map Z zif’: uniquely extends to an injective x-homomorphism p :

Pol(Mat,,)q — Pol(Matay, ).
(2) There is a surjective x-homomorphism & : Pol(Mat,,), — C[SU,], such that &(z]) = (—q)* "tx ;.

The integer n in the above *-homomorphisms will always be clear from context.

Proof. That p is a well defined *-homomorphism can be seen by noticing that equation (IIJ) for
z] only involves generators 2L with m > k and [ > j and its form depends only on the relative
difference (n — k,n — j), and not on the particular n. Hence, for all m > n, the map 2z — ziiﬂ:z
can be extended in a unique way to a *-homomorphism from Pol(Mat,, ), to Pol(Mat,, ). If m = 2n,
we get the x-homomorphism p. From [14] (Theorem 2.2), we have that the *-homomorphism ¢ is
well defined and surjective. By [2] (Theorem 2), the Fock representation 7g,, is equivalent to a
representation of the form ms0£op, for a *-representation 7, of C[SUa,],. As the Fock representation

is faithful, it follows that p must have trivial kernel. O



We also define the s-homomorphism ¢ : Pol(Mat,, ), — C[SUs,]4 by

(=Eo0piz) = (=)  "tutknt (27)

As in the proof of LemmaB.3, 750 = ms0€0p = g, gives that ( is an injective *-homomorphism
from Pol(Maty, ), to C[SUa,],.

In the next subsection, following [2] we present a method that allows one to describe explicitly
the Fock representation by means of diagrams and directed paths. We then show how to modify
these diagrams in order to get a similar description of any irreducible *-representation of Pol(Mat,, ),
up to equivalence.

3.1 Directed Path Presentations of x-representations

There is a diagrammatic way of calculating an(zi) that was introduced in [2], using hooks and
arrows on a n X n grid labelled in the following way

=W N

1 23 4--n (28)

where every square corresponds to a factor C*(S) C B(¢2(Z,)) in the tensor product C*(S)&"”.
We order the factors by letting the lower left square corresponds to the first factor, the square
directly above corresponds to the second factor, proceeding up the first column, and then once we
are done with the first column we proceed to the second column etc. So for example, in

C"(S)®22 =C"(S)®C*(S)®C*(S)® C*(S),
1 2 3 4

the squares corresponds to the factors

[\Ol GV e
[\)

2
1
1

We now represent the operators T;; and the identity I graphically as

Ty~ (29)
Ty~ (30)
Ti (31)
Thy ~ (32)
I o~ [ (33)



Elementary tensors in C* (S)®"2 with Tj; as factors can then be represented by n x n grids with
hooks and arrows (29)- ([B3) placed at the corresponding boxes. So, for example, the operator

T, T2 T Q1€ C* (S’)®22 will correspond to the diagram

—> 1
=g
1 2

To represent the images of generators of Pol(Mat,, ), under the Fock representation, we are going to
use directed connected paths from the bottom side to the right side of the n x n grid drawn with the
hooks and arrows. The different terms in the image of 7p,,,(21) can then be represented as (—¢q)*~"
times the sum of elementary tensors corresponding to all possible diagrams with connected paths

from the bottom side integer k to the right side integer j. For instance, the image of mp3(z]) is

(—q)' =3 times the sum of the operators in C* (S’)®32 corresponding to the diagrams

1 [
nE) 2
3 3 | pH 3
12 3 123 123
Pl 1 Pl 1 - 1
T2 rH | 2
3 [ pE| 13 |
12 3 12 3 12 3

Written out, we see that the image of mr3(27) in C*(S)®% is the operator
(=) 21210121 @T0 RIQIRT1oRIRTIRT1a +To1 @Too R IRIRT1 @Toy @I @I @ Tio+

Too@I@IQT11 Q0T @Tn@IRIRTI+T21®T2RIQ1QT1a®1Q®1®T @ T+

TooRIRITRTI1 T ®RTIRXTRT11 ®@Tog+TooRTRTRT1oRTRIT®T1 ®Th ®T22).

For every ¢ € [0,27), we have a *-homomorphism 7, : C*(S) — C determined by 7,,(5) = €. If
we apply 7, to any of the factors in C* (S )®"2 and compose this with the Fock representation, we get
anew (but not necessarily irreducible!) *-representation of Pol(Mat,,),. As an example, by applying
7, on the n’th factor in C*(S )®32 we can get the so-called coherent representation, determined by
the presence of a cyclic vector Q such that (25)*Q =0, if (i,7) # (1,1) and (27)*Q = e Q. It is
well known [3] (Proposition 1.3.3) that the coherent representation is irreducible and by [2] (Lemma

7) it can be obtained by applying 7, to one of the factors in C*(S )®"2. In what follows we will prove
that all irreducible *-representations of Pol(Mat,,), can be acquired by applying homomorphisms
T,, onto a subset of the factors. In our n x n grid we represent a C*(S) factor that has had 7,
applied to it by coloring the corresponding box in gray.




(here, 7, has been applied to the first tensor factor). Notice that 7,(Th2) = 7,(Z21) = 0 as they
are both compact operators, while 7,(T71) = e~ and 7,(T22) = €' and hence paths corre-
sponding to nonzero terms cannot contain any arrow or through the gray boxes. Thus, if
7 : Pol(Matg), — C*(S)® 1 denotes the *-representation corresponding to the grid (34), then
(—q)?7(2}) will be the sum of the operators given by the diagrams

1 P 1

pl 1
T | 2

Vv

|_>
e | |3 e
1 2 3 1 2

Explicitly, we get that 7(21) is equal to
(—q) 2(e?IRIRTI1 @101 @ T @IRIRTin+e¥IRIRTII @ T ®I®I1® T ® Tt

TR I ®Ts RIRIRT11 @ Tor @ Taa).

The representation 7 is not irreducible as no upward pointing arrow can cross the gray square
and hence for all 1 < k,j < 3 the operators 7(z],) will have I’s in the two first tensor factors.
In Section 6 we classify the grids that corresponds to irreducible #-representations and show that
such *-representations exhaust all irreducible *-representations of Pol(Mat,),, up to equivalence.
In general however, an irreducible *-representation can be represented as a grid in many different
ways, for example, for suitable chosen 7y’s, the two grids

1 2 3 1 2 3

correspond to equivalent x-representations.

Definition 3.4. A sequence [k, k,_1,...,k1] € Z7} is said to be admissible if
0<k; < max (k; +j +1—14,7). (35)
: j<isn
For sequences of positive integers k = [k, ..., k1] and numbers ¢ = [¢y,..., 1] € [0,2m)", we
shall call the sequence of pairs
k%? = [(knvwn)v(knflaﬁpnfl)v"'7(k17¢1)] (36)

admissible if k is admissible and

p; €10,2m)  if 0 < kj <maxjci<n (ki +7+1—1,7) (37)
p; =0 if k; Zman<iSn(/€i+j+1—i,j).
Notice that it follows from the definitions that
kj<n, j=12,....n (38)

10



for an admissible sequence [k, kn—1,. .., k1].

To each such admissible sequence k., we associate a colored n x n grid constructed the following
way: if

]Cj <

ki j 1_.7’7
max (ki +j +1—14,j)

then the j’th row of the grid consists of k; non-shaded boxes to the right, one lightly shaded box
to the left of the non-shaded boxes and the remaining boxes are dark shaded

——"

n —kj —1 boxes Ty,

k; boxes

In the other case, when
k; = kl j 1- .7 ] )
j = max (ki +j+1-1i,j)
we replace the lightly shaded box with a dark shaded one. If k; = n, then the whole j'th row
consists of non-shaded boxes. However, if k; = n, then (B8) forces k; = maxjci<n(ki+j+1—1,7)
and hence ¢; = 0. So this does not give rise to any ambiguity.

Now, to each nxn grid corresponding to an admissible sequence k,, we associate a *-representation
Tk, of Pol(Mat,,),, k, — m, by starting with the white n x n grid ([28) associated to the Fock
representation. Recall that each box corresponds to a tensor-factor of C*(S). If a box correspond-
ing to a tensor-factor C*(S) is colored dark gray in the grid for k, then we compose the Fock
representation with the x-homomorphism 7y applied to this factor, and if the box is colored light
gray (and hence has a number ¢; € [0,27) associated to it) we compose the Fock representation
with 7, applied to the factor. In this way we get a *-representation my, of Pol(Mat,,),. Moreover,
it the follows that we can calculate the images of the generators 2, € Pol(Mat,,), under 7y using
the hooks-and-arrow diagrams, in the fashion that we outlined in this section.

For instance, the sequence [(0, ), (2,0), (2,0)] corresponds to the grid

1

2

3
1 2 3

and [(3,0), (3,0), (2, ¢)] gives the grid

1

2

3
1 2 3

which corresponds to the coherent representation.

Example 3.5. In [13], the 7 different families of irreducible *-representations of Pol(Mats), was
classified. They corresponds to

[(27 0)7 (2, O)]= [(27 0)7 (1, 90)]7 [(17 90)7 (1, O)]= [(27 0)7 (0, 90)]7 [(17 901)7 (0, 902)]7

11



[(Oa 90)7 (L O)]a [(Oa @1)) (07 <P2)]

1 1 1 1 1
2 2 2 2 2

1 2 1 2 1 2 1 2
1 1
2 2
1 2 1 2

where ¢, p1, 2 € [0,27) are arbitrary.

and the grids

For irreducible x-representation 7, let [rr] denote the set of all *-representations unitarily equiv-
alent to . In general, we have the following.

Theorem 3.6. The map k, — [wkgj] gives a one to one correspondence between admissible sequences
of pairs k, = [(kn,¢n),...,(k1,¢1)] and equivalence classes of irreducible x-representations of
Pol(Maty,),.

We will prove the theorem in section 6. There, we will also give a slightly different interpretation
of an admissible sequence
[kn, kn—1,..., k1]

Let S be the subgroup of the symmetric group Ss, that fixes the integers n + 1,...,2n and let
o € So, be any element. In Proposition [6.1] we show that the orbit set
O, :={goh|g,h € S}

contains a unique element w € O, of minimal length ¢(w) = minseo,, £(t). If we define the cycles
in Sgn
o = {5j+nk5j+nk+1 o Sjpno1 f1<k<n
’ ifk=0
where e € So, is the identity, then we prove in Proposition that there is a unique admissible
sequence of integers
kn, kn—1,. .., k1]

such that
W= Chpy nChy 1 n—1"" " Chey 1 (39)

and the length of w is

n

j=1

i.e. the decomposition ([B9) is minimal. Conversely, if we start with an admissible sequence
[kn, kn—1,..., k1], then we prove in Proposition that the group-element

W = CkynChp_1,n—1"""Ckq,1

12



is of minimal length in O, and ¢(w) = Z?:l k;. Moreover, by Proposition [6.4]
kj

_ ki +1—i.
jriliaéxn( +j + ! j)
if and only if 1 <w(n + j) <n.

For t,r € S, either Oy = O, or O; N O,. = (. Hence Sy, is a union of finite number of disjoint
subsets
Son =0 U0y, UOy, U ... (40)

If we let A,, denote the cardinality of the set {O; : t € Sa,}, then it follows that A,, corresponds
to the number of different irreducible diagrams and hence to the number of different families of
irreducible #-representation of Pol(Mat,,),. The sequence A4,, (starting with n = 1) is

2, 7, 34, 209, 1546,.. A002720 in OEIS.

One can calculate the generating function for the sequence % as

—An 1 .
1"‘21?.@ :1_:1;61*2.

4  Main results

Theorem 4.1. For any irreducible x-representation m : Pol(Mat,, ), — B(K), there is an irreducible
s-representation II : C[SUap]q — B(K) such that

r=To( (41)

and hence m is equivalent to (7, ®@X,)o(, for some w € Sap, ¢ € [0,27)*". Moreover, if (T, ®x)oC,
(e ® Xxy) © ¢ are irreducible *-representations of Pol(Maty,)q, then

(T @ Xp) © €= (T @ Xy) © ¢

only if w = o.

The proof of the first item makes up sections 5. The second statement is proved in Section
6 (Lemma [6.5]), where we also specify those elements w € Sa,, which give rise to irreducible x-
representations (m, ® x,) © ¢ of Pol(Maty, ).

We remark here that Theorem [£.1] does not claim that II maps C[SUsy,], into the C*-algebra
generated by the image of Pol(Mat,), in B(K). There are many ways to choose the lift II such
that I o { = m, but in general, it is impossible to find a II such that

TI(C[SUs,],) C w(Pol(Mat,),) (42)

for n > 2.

Let A be a x-algebra. We can define a semi-norm ||- || on A, with values in [0, o], by the formula

llallu = sup||¢(a)l
o

13



where the supremum ranges over all x-representations A. It follows that || - ||,, is a semi C*-norm
on A, in the sense that

llabllu < flallullbllu:  la*[lu =lallu, [laa* [l = [|al|Z. (43)

If ||al], < oo for all a € A, we let I C A be the subset {a € 4;||a||, = 0}. It follows from (@3) that
I is a x-ideal. We can then, using || -||., define a C*-norm on A/I (that we again denote by || - [|.)-
The universal enveloping C*-algebra C*(A) of A is defined to be the closure of A/I under || - ||y.-
We have that

e C*(A) is a C*-algebra.
o 1:A— C*(A) defined by a — a+ I € A/I C C*(A) is a *-homomorphism.

o If ¢: A— B(H) is a *-representation, then there is a unique *-homomorphism ¢ : C*(A) —
B(H), such that

(]5 = (]3 O L.
For a x-representation m : Pol(Mat, ), — B(H) and a € Pol(Mat,,)q,v € H we often denote m(a)v
as av. This is to simplify the notations and no ambiguity will arise from it.
We have the following corollary to Theorem [£.11

Corollary 4.2. The universal enveloping C*-algebra of Pol(Mat,,), ezists and is isomorphic to
CF (En) = TFEn (Pol(Matn)q).

Proof. Fix a s-representation 7 of Pol(Mat,),. It is enough to prove the inequality

[m(@)ll < lwrn(a)ll

for all a € Pol(Mat,,),. By Theorem[T], there is a *-representation ¢ of C[SUsy], such that 7 = ¢o(
and ( = & o p where

& : Pol(Matay, )g = C[SUay)q, p: Pol(Maty, ), — Pol(Matay, )4

are the maps defined in Lemma B3l As ¢ o £ is a s-representation of Pol(Mats, ), that factors
through C[SUsy]4, it must annihilate the Shilov boundary of Pol(Mats, ), and hence (by Lemma
12 in [2]) it will be dominated by the Fock representation mg oy, i.e. |[(¢ 0 &)(a)| < ||[7r2n(a)| for
all a € Pol(Matay, ).

Hence
[m(a)l| = l[¢o&opla)|l < |ITp2n o pla)ll,a € Pol(Maty,, ).

Therefore, we only need to show the inequality

[(7F2n 0 p)(@)l] < |7Fn(a)]l; @ € Pol(Maty, ).

To this end, we are going to prove that the %-representation mr o, o p is a direct sum of the Fock
representations mr,,. To see this, we introduce an order on the generators {z]}x; : 21 < 2!, if

14



either £ < m or if K = m, then j < [. We can visualize this ordering using the matrix Z = (zi)kj

of generators of Pol(Mats, ), as

TR TRRCIE TR
zid z Zon—1d P
: ' : : (44)
2n—1 2n—1 2n—1 2n—1
27 BT Z%Z_% Zom
A ABhL . mn Zn

where the ordering start with the upper left element, going down the first column, and then move
onto the second column etc.

If we write Z as a block matrix

Z; ; being n x n-blocks, then it follows from (@) that for each 1 < k < n the elements in the k’th
column of Z (5 5y commute with all elements in Z(; oy that preceeds them in our ordering on Z. For
A= (ajk)jr € Man(Zy), we let, as in (@), z2(A) denote the element

() ()t (21) ™2 (21) M

Then for A € Ms,(Z+), we have z(A) = z(A")z(A"), where A = A’ + A” and A’ is the matrix with
the same integers as A in the lower right n X n square and zero everywhere else and A” is the same
matrix as in A but with zeros in the lower right n x n square, i.e. if

_( A A -
A= < Aoy Ao > 7A1] € Mn(Z-i-)a

then A’ = ( 8 AO ) and A" = ( ill A62 ) . Denote these classes of matrices as ML, and
22 21

MY, respectively.

We shall omit 7g 2, and write simply a for the image mp2,(a), a € Pol(Matay,),. Let v be a
vacuum vector for the representation. We claim that (zi)*z(A”)vo = 0 for every zi € Z2,2) and
A" € MY, and hence z(A”)vg is a vacuum vector for the *-representation mg 2, o p. To see this,
notice that by Proposition 3.1l it is enough to show that

((2])*2(A")vo, 2(B)vo) = (2(A” v, z}2(B)vg) = 0

i.e. that z(A”)vOJ_ziz(B)vo for all B € M3, (Z4). Write z(B) = z(B’)z(B") as above. It is not
hard to see that the sub-algebra of C[Mata,], C Pol(Mats, ), generated by the elements zsjr'i with
1 < k,j < nhas a vector space basis given by {2(C")|C" € M£,} and hence, as degz z(B’) = |B'|+1,
we have ziz(B’) =, cmz(Cy,) for constants ¢, € C and where each C}, has norm |C], | = |B'|+1.
We can then write

2] 2(B)vg = 2}2(B)2(B" vy = chz(C;n + B")vp.
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Since C/,, # 0 and hence A” # C/ + B", we get z(A")vgLz(C}, + B")vy. Thus z(A”)vOJ_zéz(B)vo.

It follows that for every A” € MY | we have a x-representation equivalent to the Fock represen-
tation on the subspace H4» of Hp 9, spanned by the orthogonal vectors

{z(A)2(A")vo|A € MQLn}
But as we know that
{z(A)z(A")vo|A € M2Ln,A” S Mgz} =
{z(A)volA € Man(Z4)}

is an orthogonal basis for Hp oy, it follows that Hpo, = Daremy Ha» and that Pol(Maty,),-
TF2n © p is a direct sum of *-representations equivalent to 7p,p,. [l

5 Proof of the Main Result: Existence of Lifting

In this section we will prove the first part of Theorem ] the existence of the lift ([@I]). The second
part follows from Lemma The proof is by induction on n. The result is well known in the
case of n = 1, as in this case it follows from (@B)-({I)) that Pol(Mat,), = Pol(C),, the quantum
disc (see [I6]). This is the unital x-algebra over C generated by a single element z subject to the
relation

2z =q%22" + (1 - ¢

By [16] (Proposition 1.10), any irreducible *-representations of Pol(C),, up to unitary equivalence,
is either

o mp1: Pol(C), — B({?(Z4)) determined by z + The with Ths as in (), or
e X, : Pol(C), — C for ¢ € [0,27), determined by z — e’%.

It is not hard to show that these *-representations can be lifted in the way claimed in Theorem [£.1]
Indeed, with mg1, we let ¢ be the x-representation of C[SUs], determined by ¢;; — T;;. Then
gf) o C(Z) = ¢(t22) = T22 and hence gf) o C =TF]1-

If we let ¢, : C[SUz]q — C be the x-representation of C[SUs|, determined by
t11  ti2 e~ 0
(tzl t22)H( 0 e“")
Then ¢, 0 ((2) = ¢y (ta2) = " and therefore by 0 C = Xo-

We also note that the representation theory of Pol(C), implies the following lemma.
Lemma 5.1. If X € B(H) satisfies the equation
X*X =@ XX*+(1—-¢)I (45)

then H can be written as a direct sum H = Hy & Hy of subspaces Hi, Ha, both reducing X, such
that X |, is isomorphic to a direct sum of the operator Tas and X|m, is a unitary isometry. In
particular, if ker X* = {0}, then X is a unitary isometry.
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In the general case, when n > 1, the proof is constructed around the fact that every irreducible
s-representation 7 of Pol(Mat,,), falls into one of two classes:

A There is 1 < k < n such that either ker w(2]')* = {0} or ker w(2¥)* = {0};
B kerm(zF)* # {0} and ker w(2)* # {0} for all k.
The induction will be applied slightly different in these two cases.

Notice that the map z; — zf is a *-automorphism of Pol(Mat,,), and hence in the case A, we

can, and will, assume that ker m(2})* = {0}.

5.1 CQutline of The Proof By Use of Examples

We shall first outline the structure of the proof in two particular examples representing the two
different cases of A and B.

Let 7 be the *-representation of Pol(Mats), corresponding to the string

[(17903)7 (27 0), (17 901)]

with the associated square diagram given by

i.e. m =1l o (, where
II= (10 @70 Q70 ® Tpy Qid @7y, ®id®id®1id) o 7.

So, by considering all possible routes from (3, j) to (i,3) constructed out of arrows and hooks, we
can recover the action of 7(z}). In particular, we have

1 1 1
n(23) = (—q)*x 2 () = (—q)'x 2 () =
> 3 r 3 3
1 2 3 1 2 3 1 2 3

However, observe that if the arrow [ or happen to fall in a shaded box, then the corresponding

operator is zero. This follows from the fact that and corresponds to the compact operators
T2 and T5; respectively, and hence annihilated by each *-representation 7. In particular, we have
m(z3) = 0.

As m(23) = eI ®T12 @I ® I, we see that ker w(z3)* = {0}, and this shows that 7 falls into the
class (A).
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Let 7’ be the *-representation of Pol(Mats), corresponding to the upper right 2 x 2 sub-square

1 2 3

The string associated to 7 is [(2,0), (1, ¢1)]. Next we will relate 7’ to the *-representation w. To
do this, consider all possible routes from (3,7) to (j,3) such that i # 2 and j # 3. Using the
above observations about straight arrows on dark squares, we can easily see that the only routes
corresponding to non-zero operators are those having in the last row either the sub-path

(I) 3 (wheni=1)or

123
) [ TT]3 (wheni=3).
123

Hence all routes corresponding to non-zero summands in 7(z7) (resp 7(2})) can be obtained by
attaching to sub-path (I) (resp (II)) a path from the positions (2,1) to (j,2) (resp (2,2) to (j,2))
in the upper right sub-square

1
2

1(2

Next we observe that the operator

1
2
aHE

1 2 3

is e=?31, while the operator

2 =1Tn®I®I

113

1 2 3

is a multiple of the identity (actually the identity) after restricting it to the subspace H :=
ker m(25)* = span{e, ® €o ® em ® €5 (k,m, 1) € Z3} = (*(Z) @ (eo) @ (*(Z4) ® (*(Zy.). Therefore,
we have

w()lm = (=a)' Pe 2 ((—g) "7 (o) = (—q)te e (=)
and ‘ ‘ ‘
m(z3)|n = (=0)’ > ((=a)* 7?1 (3)) = 7' (23).
Moreover, it is easy to see that 7(23)|z = 0 for j # 3 and 7(23)| g = ¢*#°I. In general, being in the
case A with an irreducible *-representation m of Pol(Mat,,),, such that ker w(z}})* = {0}, we shall

prove that the subspace
H =N kerm(z]")”
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is invariant with respect to all the operators 7(2/) and 7(2}) = €I for some ¢ € [0,27). Further-
more, we can define an irreducible -representation 7’ : Pol(Mat,,_1)q; — B(H) by the formula

() —e ®qr(z])|lg forl<i<kand1<j<n-—1

I A = .

¢ w(zf_H) fork<i<n—-land1<j<n-1

Returning to the example, we can by induction lift the x-representation 7’ of Pol(Mats), to a *-

representation of I : C[SU,], — B(H). If we let ¥ : C[SUs), — C[SU44 be the *-homomorphism
determined by

W(tes) =

th—1,—1 if2<k,j<5
O 51 otherwise

then II' o ¥ o ¢ corresponds to the grid

In fact,
II'oTol=(r®m®T® T ®id®T, ®n®id®id) o,

The replacement of the last row on (@) by .j:‘ 3 will correspond to the tensoring

1 2 3
the s-representation II' o U of C[SUg], by a suitable *-representation A of C[SUs], and taking
the composition (A ® (I"' o ¥)) o (, i.e. ® = (A ® (II' 0 ¥)) o . More precisely, A is given by
(7'() QT ®1d) o (7T3 ® T4 ®7T5) = (T,LP ®1d) o (71'4 ®7T5).

Assume now that 7 is a *-representation of Pol(Mats), such that ker 7(z3) # {0} and ker (25)* #
{0} for any k = 1,2, 3. If 7 is the #-representation corresponding to a string [(ks, ©3), (k2, v2), (k1, ©1)],
then the kernel condition is satisfied if and only if the last column and last row of the correspond-
ing grid consist of white boxes. A typical example of such *-representation is the one given by the
string [(3,0), (2, ¢), (2,0)] with the following grid

1 2 3

Here the approach from the case A fails. Instead we shall construct a s-representation of Pol(Mats),
corresponding to the left upper 2 x 2 sub-grid
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and to show that it can be obtained out of m by restricting the latter to an appropriate subspace,

namely
= (g bern(z)") 1 (A Kerm(24)°)

We have
1 1
m(2}) = (—q) 7 x 2 7w(28) =(—q)7 " x 2
[ 3 [ 3
1 2 3 1 2 3
1 Pl 1
w(2) = 2 n(4) = [1]2
Pl 3 HE
1 2 3 1 2 3
1
m(23) = Pl 2.
3
1 2 3

Using the fact that the kernel of the adjoint of Thy = CyS (recall that Tho corresponds to the

arrow) is C{egp) and that the kernels of the operators corresponding to the arrows and are
zero, we can easily see that

H = span{eg ® eg ® ex, ® e; ® eg ® €9 @ eq; (k, j) € Z7} =

Cleo) ® Cleg) ® £2(Z4) ® £2(Z+) @ Cleg) ® Cleg) ® Cleo).

By looking at paths, it is not hard to see that H is invariant with respect to ﬂ'(zf) for k,j # 3
(it can also be seen directly from the relations defining Pol(Mats),). Consider now the routes
representing the terms in m(z{). They will either start and end at the arrows of the diagram

—>)

T

1 2 3

or they will have to contain a right-up arrow in the last row or the last column. The operators

corresponding to the latter routes will vanish when restricted to the subspace H (as corresponds
to S*Cy and S*Cyep = 0). Moreover, the operator corresponding to

—>)
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becomes a multiple (in fact —q) of the identity when restricted to H. Therefore, by letting 7 to
be the s-representation of Pol(Mat,), corresponding to the upper left 2 x 2 sub-grid, we obtain
7(21)| g = 7' (2}). A similar argument shows that

ﬂ'(zf)|H = W/(Zf) forall 1 <j,k<2.

Hence, by induction, we can lift 7’ to a *-representation II' of C[SUy],. Consider now the *-
homomorphism ® : C[SUs], — C[SU4|, given by

o)~ {ti  f1sigsd
7 0;;1  otherwise.

One can show that II' o ® o ¢ is a *-representation of Pol(Mats), with the corresponding grid as
follows
1

2
3
1 2 3

The original grid can be obtained by tensoring the x-representation II' o ® (of C[SUs],) with the
k-representations A\, = m3 ® m4 @ w5 and A\p = w3 ® ™4 So that

(Aa®@ ("0 ®@) @ Np) 0 ¢ =

5.2 Auxiliary Lemmas

Let Z, as above, be the set of generators {z] }1<x.j<n and Z* the set {(2])*}1<k j<n. For 1 <1,m <
n, we let Zj" = {z], € Z|k #1,j # m}, and similar we define Z;"* = {(2])* € Z*|k # [, j # m}.

1Y Tn )

Pol(Mat,, ), be the unital x-sub-algebra generated by I. Then there exists a unique linear functional
~r on C(I) with the property that for any *-representation m : Pol(Mat,, ), — B(K), with a subspace
H C K such that kerﬂ'(zj-)* NH =H for all zj € I, we have

Lemma 5.2. Let T = {z}',27'1,....2;, 20 .., 20y € Z for 1 < k,m < n, and let C(I) C

<7T(a)u7 w> = <u7 w>'71(a)
for all u,w € H.

Proof. We let
y1(a) == (mrn(a)vo,vo)

where 7p,, is the Fock representation of Pol(Mat,), and vy a unit vacuum vector. From the
relations in Pol(Mat,, )4, it is easy to see that the sub-algebra C(I) is generated as a vector space
by elements of the form cb* where b, ¢ are either monomials of the generators in I, or the identity
1. Tt follows from the properties of the Fock representation that for monomials ¢, b we have

y(eb*) = (mpn(cb*)vo, vo) = (Tpn(b)*vo, TEn(c)*ve) =0 if either b or ¢ # I
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and also that v1(I) = (vg, vg) = 1. Thus, the linear functional v1 projects onto the vector space V
that is the quotient of C(I) by the subspace generated by elements ab*, where a,b are monomials
in I, not both equal to I. The vector space V is of dimension at most 1, and since 71 # 0, we see
that dimV = 1.

For any u,w € H, consider the linear functional 7y, defined as a +— (m(a)u,w). From the
properties of H, we get for any two monomials b, ¢ € C(I), not both multiples of I, that

Yuw (€0) = (m(eb™ )u, w) = (w(b)*u, w(c)*w) = 0.

S0 Yuw factors through the subspace V' and thus it must be a multiple of 41. Evaluating vy, (I) =
(u,v), we get that vy, = (u, w). O

Lemma 5.3. If we let A(I) be the unital algebra generated by the elements in I, then viewing A(I)
as a vector space over C, the functional vr gives a non-degenerate inner product {(-,-yr on A(I) by
(a,byr = v1(b*a) for a,b € A(I). Moreover, the monomials in A(I) form an orthogonal basis of
A(I) with respect to the inner product {-,-)r.

Proof. The monomials obviously span A(I) as a vector space, so we only need to check that they
form an orthogonal basis. Notice that by (@) and (@), the elements in I commute or g-commute.
Thus, every monomial a can be written in the form

a = B2)** () - ()t ()P (2 )Pt ()P (47)
for some 8 € C, «y, B; € Z4+. Using the terminology from Corollary A2l we have a = $z(A), where
A = (aij)ij € Mp(Z4) with aip, = a; if k < i <n, ap; = 6 if m < j <n and a;; = 0 otherwise.
Under the Fock representation, we have g, (2(A))vo L7, (2(B))v for any B € My, (Z4 ) not equal
to A, it follows that 7p ., (2(A))veL7wp,(b)ve for any monomial b € A(I) that is not a multiple of
a. So if a # b are monomials in A(T), then we have

(a, by =y1(b*a) = (mpn(b*a)vg, vo) = (Tpn(a)ve, mpn(b)ve) =0
and as g, (2(B))ve # 0 for any B € M,,(Z.), we also get (a,a); = ||7rn(a)vo||* > 0. O

Lemma 5.4. Let |1I| be the cardinality of I. For any multi-index
m = (ml,mg,.. .,mm) € ZL{I,

let
z(m) i= (21)™ (2 0)™ - ()R () () e L () (48)

n—

Then the elements of the form z(m)b, where b is a monomial in Z\I, form a vector space basis for

C[Maty]4-

Proof. As the generators 27, zJ either commute or g-commute, it is enough to prove the statement
for

_ n n _n—1 1
I={z7,..., 20,20 "z b
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Firstly, using the ordering of the generators zi, we can write any z(A) with A € M, (Z4) as
z(A")z(A"), where A’ has only non-zero values in the last column, A” is equal to zero in the last
column and A = A" + A”. Notice that for any 1 < k <n — 1, we can use [B)-(E) to see that in the
ordering of the generators, we have that z;' commutes with all the generators proceeding it that
is not in the form z7,. Hence we can write every z(B) as z(B’)z(B")z(B""), with B’ only nonzero
in the last column, B” only nonzero in the last row , B’ equal to zero in the last row and column
and B = B’ + B” 4+ B". We can then write z(B’)z(B") = z(m) for some m € Z3"~". O

Lemma 5.5. Given a *-representation m of Pol(Mat,,), the operators

(21, ..., w(z0), 7(z" ), ..., w(2})

are all contractions.

Proof. Let I = {z],25,...,z"}. Then by ([II)) we have C(I) = Pol(C") with a *-isomorphism given
by
zf»—%zj,lgjgn.

The statement now follows from the fact that ||¢(z;)]] < 1 for 1 < j < n and any bounded *-

representation ¢ of Pol(C™) (see [7], though notice that they defined Pol(C™) using the generators
1 — 1 .2 n

a; = ﬂzl). The same also holds for I = {z,,, z z O

5.3 The Case A

In this section we prove the existence of the lifting I : C[SUs,], — B(K) for a fixed irreducible
s-representation 7 : Pol(Mat,, ), — B(K) such that kern(z}})* = {0} for some 1 < k < n. Let us
assume that k is the largest integer with this property.

Throughout this section write

H :=Xker(n(zp) n(z;) = I)

and fix the set of generators
Ii={z ..., 20}
Lemma 5.6. If k =n, then H = K. If 1 < k < n, then H is a non-trivial proper subspace of K
and H = Nj_ ., kerw(2}')".
Proof. If ker m(z1)* = 0, then by ([I6) =) satisfies the equation
(zn) 2 = 2 (2)" + (1 — )1

By Lemma 5.1l 7(z])7) is a unitary operator and hence ker(w(2])*n(2]) — I) = K.

n n n

Assume now 1 < k <n and set H' := NJ_, ., kerw(z})*. For the simplicity, we shall write zé
for the images W(Z;—),l <l <n. As qzp(2])" = (2]
H' reduces z}}. Moreover, as

&)z = 2R () + A=) I = Y 27 (=))
J=k+1

)z and 23z = qz7zp for k < j, we see that
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and (z7)"H' = 0 for k +1 < j < n, we obtain

(z8) 2kl = @2 (21)" | + (1= ¢*)]

and, as ker(z})* = 0, we can use Lemma (5] to see that z’|gx/ is a unitary operator and hence
H' CH.

To see the other inclusion, notice that (27)*((z)*2) = ¢*((2))*2zf)(2})* for k < j < n and
hence by Lemma [5.5] we have for v € H

1) ol = 115) " ((zR) 28wl = @ I1((=k) " 25) () | <

Pl 221 1127 ol < @?I(=5) ]l
giving [[(27)*v|[ = 0 and v € ker(z7)*. Thus H = H'.

We now need to prove that H # 0 if 1 < k < n. Assume contrary that
H =N} ker(2])* =0

and let 1 <m <n be the first integer such that N7_,, ker(z}“)* # 0. Notice that this integer exists
since we assumed that ker(z;;)* # {0}. The subspace L := N}_,, ker(z}')* reduces the operators
21, ..., %y, _1 by the same argument that we used to prove the similar statement for H. Now, the
restriction of 27}, _; to L must again satisfy the equation

(zm—1)"zm1le = @251 (2 1) [ + (1 = )T
and as ker(z"_,)*|r =0, it follows that 2 |, is unitary.
We then claim that (z]*)*|z = 0 for 1 <! < m — 1 and hence
L =nj_, ker(z])" Cker(z;)".
As k < m — 1, this gives a contradiction. To see the claim, observe first that for m — 2 we have

(zm—2) zmale = ooz o) o+ (L= @) = Y 2 (=)L) =

T -1

qzz;lz 2(zm_2) L+ (1 —¢q )(I Zm—1(Zm—1)"L) = q22g172(2g172)*|L
as 2, (2 1)L = 1. This gives |27, 5(z7 2)*|ell = [[(z5,—2) 2 olrll = @®ll2f o (25 2)* 2|
and hence (zm_ )*|r = 0. We now use an induction type argument on 1 < j < m—2; if the equation
I =370 1 2Mz")*|r = 0 holds, then we can again deduce that

127 (23)" |l = 11(7) " 27 L1 = @125 (27) " L

giving (27)*|z = 0 and hence also that I — 7" rej_2 2 (28) | = 0. O
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Lemma 5.7. For 1 <m <n, let

1 n\k_n n/on \*
2 Am = Az, 1<j<m (50)
z;-zAm =Anzj,m<j<n. (51)

Furthermore, if IL is a x-representation of Pol(Mat,, ), such that kerII(2]})* = 0, then also II(A,,) =
0 and

1. w(z") is normal,
2. w(2}) =0 for 1 <j<m,

Proof. The equation ({@3]) follows by subtracting 2z (2 )* from both side of the equation

(zm) 2 = 2 (z)" + (1= )T = Z 2z (27)") (52)

and dividing by (1 — ¢?). When j # m, (G0) and (EI) follow directly from equations (@) and (I5).
When j = m, we have (with A,11 =1)

n noom\k n n
Amzm =z (Zm) Zy AerlZm =

m

—Zy, (q2zn (2)" + (1 = q2)Am+1) + 20 Amy1 =

2. n . n

—q* oz (zn)" + o An = 2 A
Let II be a s-representation satisfying the conditions of the lemma and write simply zf for the
image T1(27),4,j = 1,...,n. Let (22)* = U|(z")*| be the polar decomposition of (z7)*, here
|(z7)*| = (2™ (2)*)7 and U is an isometry. As

(2 (2) ) Am = Am (2, (21)"),

we can easily deduce from (EI) that
UA,, =AU

giving ¢?U*A,,U = A,, and hence A,, = 0. From equation (52)), it now follows that 27 is normal.
As we also have 27 (2, (2,)") = (27, (27,)") 2} for 1 < j < m, we get similarly that ¢2}U = Uz}

giving U*z7'U = ¢ 1zJ and hence 2" = 0. [l

In section 3, during our informal discussion, we indicated how to approach the problem of
lifting a *-representation = of Pol(Mat, ), to a s-representations of C[SUs,], by reducing 7 to a
«-representation of Pol(Mat,_1),. In the case A, this was done by isolating the paths not starting
on the integer k, satisfying the condition kerm(z})* = {0}. The next proposition is the general
statement of this. However, while the heuristic picture is quite clear, the proof turns out to be
somewhat arduous as we must check that we actually end up with a representation of Pol(Mat,_1),
and hence must verify that the equations (I3)- (I6) hold.
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Proposition 5.8. For the irreducible x-representation 7 : Pol(Mat,, ), — B(K) the following holds
1. we have w(27)| g = e 1|y for some ¢ € [0,27),
2. there is an irreducible x-representation n’' : Pol(Mat,—1), — B(H) such that

(53)

() = {_q“*"w(z;—”)lﬂ If1<j<k

g (= )lm fk<j<n-1

Proof. The proof of the irreducibility of 7’ is postponed until after Lemma Let again I =

{#h1s 21415 -5 20t By LemmalB.6, H = N7_, ., ker w(27)*. By Lemma[5.2] there is a linear func-
tional 41 on A(I), such that for all v,u € H, and a € A(I), we have (av,u) = ~1(a)(v,u). Again,
we suppress 7 and write z] instead of 7(z]) for i,j =1,...,n.

It follows from the proof of Lemma [5.6, that the restriction z}|gx is unitary. Now, from

Lemma 5.7 we know that the elements 27, ..., z;_; € Pol(Mat, ), are all mapped to zero by 7 and
this gives that relation (Bl reduces to 2"z} = 2’27 for j < k and m < n. As also 272} = 227"

for k < j and m < n holds by (@), we get that the elements in Z; commute with both 2z} and (2})*
(the latter follows from (1)) and hence H is a reducing subspace for the m-images of elements in Z;,.
By (), we have zi(z,’;)* = (Z%)*Zi forl1 <j<m-—1land k+1 <m < n and hence H is
invariant under the operators z{, 27, .. ., 2271. As also z]'z], = qzz] and z}!|y is unitary, we must

have ‘
zllg=0for1 <j<n-—1. (54)

Let U be the unitary operator in the polar decomposition of 2z (that U actually is unitary
follows from the fact that z} is normal and ker(z})* = {0}). Then we claim that U commutes
with the image of Pol(Mat, ), under 7. As we already know that 2}’ and (z})* commutes with
the elements in Z7, it follows that so does also U. So what is left to prove is that U commutes
with z,i, z,%, .. .2271 and the elements in I. However, as 2}’ is normal and g-commutes with these
operators, we can apply the Fuglede-Putnam Theorem (if T, N, M € B(#H) and N, M are normal,
then NT = T'M implies N*T = TM*) with N = z}!, M = gz}? and T = zj, to get

()", = a7 (=)
and hence ) )
((z8) 212 = @4 (28) %)
This gives |z,?|zi = qzi|z}g| and _ _
Uz]|z;t| = 2,U|2; |U.

As ker |z;| = {0} and hence |z}'| K = K, this implies Uzi = in. By Schur’s Lemma, U = e*1.

So it is left to prove that 7" actually defines a %-representation of Pol(Mat,_1),. It is easy to
see that relations [B)-(I0) hold for the m-images of the generators, so what is left to verify is ([[I).

We do this by splitting () into cases (I3)-({16).

It is clear that relation (I3]) holds.
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For j,m # k, we have by ([5)

n

() 2l = qz (2 | — (@ —q) Y 25(25) |u =
c=a+1

n—1

@22 e — (a7 —a) Y 2 () |
c=a+1

as 2,(2}')"|m = 0 when m, j # k. Hence 7'(2§),a,j = 1,...,n — 1, satisfy relation (I3]).
If j > k then it is easy see that (I4) and (I6]) hold for the images

w'(zf)*w’(zf) = (zf+1)*z§‘+1|g,a,b =1,...n—1

as they hold for m and as we have 2} (21, 1)1, 20 (270 0) |, - -5 25 (20)* [ = 0.

’r n

B

In order to verify the remaining relations, which are (I4) and (I6) for «'(z;)*7’(2§") when j < k,

we observe first that as z,f|H =0for 1 <pg<n-—1, we have (zg‘)*zﬂH =0 and by (I4)

0=qz ()"l — (@ =) Y2 ()| (55)
k<l

if a # 8 and by (I6])

0=z ()"l — (L= a*) DG |m = (1= ¢%) Y 20 (z0) |+
k<l a<f

(1= > @) a+ 01— (56)
k<l,a<pB

if a = B. Assume now that m = j < k and a #  then we have

n

(i) 2l = @z ()l = (@ = @) Y (&) =

n

= (22 20 = a2l () = (@ =)D 2 ) i — (a7 = @)z (2R) |~

By (B5), we get
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—(@ 2= Da—a )Y = =) > ) e =

k<l m<l
n k—1
=z (z0) 1 — (0 =) D (—) ) = (0 = a) Y 2 ) e
k<l m<l

Finally if m = j < k and a = 3, then

(z50) 2 0 = ¢?2p, (%)*lH_(l_Q)Zzl ()| — (1= ¢ sz )+

<l a<l

n

+q (1 - ¢%)? Z Z) 1w+ (1= ) =

m<l,a<b
k—1 n
= @2 ()"l — (L= ") D 2 () | — (1= ®)2f )l — (L= a?) Y 2 () |+
m<l k<l
k—1n—1 n
2= @) m+a 20 = )Y 2 ()t
m<l a<b a<f
1-4¢ Zzzz Zl |+ (1 =)
k<l a<p

If, in this last sum, we use (G6) to substitute z(zy)*|m, then a similar calculation as in the case
« # [ yields the final case. O

Lemma 5.9. Assume k < n. For any multi-index m = (my,ma, ..., My_) € Z’_ffk, let

2(m) = (240)™ (1p2)™ - (20)

and
H,, = 7n(z(m))H.
Then Hp L H,, for m # n and
\/ Hn (57)

n—k
meL;

Proof. Let w',v" € H and v = 7(z(n))v" € Hy,u = w(z(m))u’ € Hy, for n # m. By Lemma 5.2
and Lemma 5.3 applied to I = {z2}!, |, 2}, ,,...,2,} and H, we have

(v,u) = (m(2(n))v, 7(2(m))u’) = y(2(m)"z(n)) (v, u') =0
and hence Hy, | H, whenever m # n.

To prove (&), it is enough to prove that the right hand side is reducing Z, as then the equality
follows from the irreducibility of w. By Lemma [54] the elements of the form z(m)b, where b

is a monomial of generators in Z\I, is a basis of C[Mat,], and thus for any zj € Z, we have
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zéz(m) =Y, 2(my;)b;, where b; is in the unital algebra generated by Z\I. As H is invariant under

the operators in Z\I, we then get

\/ 7(z(m HC\/ 2m)HC \/ Hm.

i mezy k
Let us now prove the invariance under the operators in Z*. If 1 < j < k—-land k+1<[<n
then (2])*z]" = 27" (2])" if 1 <r <mn—1and 2]'(2})* = q(2])*2]" if 7 = n, and hence the right-hand
side of (&7 is invariant under these operators. Now let k + 1 < j < n, if we define the norm
|m| = mq +mg + -+ + my_g, then from the equations

(2])"2 = 2" (z])" if j #land r #n
(27)" 2" = qz"(2})" if j#land r =n
()7 2] = a2 () = (¢ =) Y200 i r#n
Jj<s
() 2p = a2 ()7 + (1= ¢*)(I = Y =0(=0)")
j<s

and the fact that 2] € Tif j < s, it is easy to see by induction on m € Z,, that the spaces
K = V|m|<m Hm are all invariant under the operators m(z7)*, as Ko = H is invariant with
respect to them (hence establishing the case m = 0).

The final case to consider is the column (zi)* for 1 < 5 < n. Notice that as z,’jz]" = qz]"z,’g
and we assumed m(2)|g = €I, we see that m(2})|m, = €q™!I. As the set of operators
m(z)*, m(22),. .. ,w(z,(cnfl))* commute with the operators m(z} ), m(2k42),...,7(2), (by ([@3))
we only need to prove that m(z])H C \/ZT;c Hp, for j =1,...,n — 1. Let P be the orthogonal
projection onto the orthogonal complement of \/meznqc H,, and let v € H. Then

+

|1Pr(=) ol = ||Pr(=]) m(z4 ol =

= [|P(qr(zp)m(=])" = (a7" = @) Y_ w(=2)m(=d) )oll = gl Pr(=p)m(=]) o]
j<s
by what has already been proven. By induction, we have

|1Pr(=]) 0l = " || Pr(zg) m(=]) -

By Lemma 5.5, 7(2])* is a contraction, and so we get

|1Pr(z)) ol < g [[w (=)l - [Jo]| for all 7 € Zy
and thus ||Pr(z])*v|| = 0. O

Remark 5.10. Notice that this lemma shows that by applying Lemma and Lemma to
I={z},...,2;} and H, we get a natural unitary isometry A(I) @ H — K, where A(I) is equipped
with the inner product (-,-Yr. This unitary isometry is the closure of the linear map determined by

a®ve Al ®@ Hw— w(a)v € K.
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We can now prove that n’ is irreducible. Assume that H = H; ® Ha, where H; 1 H, and
both subspaces reducing 7’. Then Hy, Hy are actually invariant under Z\I as 7(z])|g = 0 for
1<j<n-—1and n(z})|g = e¥I and the invariance under the remaining operators follows from
the way 7’ is defined. Now, the same arguments that were used in Lemma [5.9] to show invariance
under Z of the right hand side of (&1]) can be used to show that the subspaces vmezi—k 7(z(m))Hy

and Vmezi—k m(z(m))Hs are both invariant under Z. We also have m(z(m;))H; L7 (z(mz))H for

all m;, my € Z’}r_k by similar arguments as in Lemma 5.9 By Lemma [5.9] we get

K= \/ #zm)H o \/ =(z(m))H,

mez; " mez "

L -
and therefore (\/mezrxc w(z(m))H1> = Vmezi—k m(z(m))Hs. So both subspaces are actually

invariant under Z* too, contradicting irreducibility of .

For j+1i < m—1, let ¢j; be the cycle s;s;41...5j+; € Spm. Let us denote the *-representation of
C[SU,,]4 corresponding to ¢;; by m;; (see Definition ). In next part of the proof we are going to
reconstruct the original *-representation 7 using the lift of 7/, so now we are working in C[SUsy],
instead. We are going to tensor our reduced and lifted representation n’ with a suitable 7;;, and
the proof that this x-representation is isomorphic to 7 relies strongly on being able to explicitly
calculate the image 7j; (tx;), so we will now explain how to do this easily. By the definition of tensor
product of representations of C[SU,,|, we have

m

miltn) = D m(tek) @ i1 (b k) @ - ® Tyt 1) (58)
k1,ka,... k=1

Notice that since 7, (t;s) = 51 unless (r, s) is one of the four pairs of integers (a, a), (a+1,a), (a,a+
1),(a+1,a+ 1), we have that a non-zero term in (E8]) corresponds to a sequence k, ki,...,k;i—1,1
that can be visualized as paths on the grid

1 @ ® 1
2 @ o 2
e L J
J ® ®
® o
jti @ ® j+i
e o

0 1 2 3 o it (59)
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starting at vertex (k,0) on the left-hand side proceeding to (k1,1) etc, and then ending at vertex
(I,i+ 1). These paths have the property that k, # k.41 if and only if k., = j+ror k., =j+r+1,
and in the first case, then k.11 = j +r 4+ 1 and in the second case k.11 = j + r. As an example,
when m = 8,7 = 2,7 = 4, a path for ¢46 can be visualized as

1@ | I
2 @ o2
3 @ ® 3
41 @ @ 4
5@ ®5
6 @ ® 6
7T® ® 7

8 @ o @ @ o ® 38
0 1 2 3 4 5 (60)

Here the light shadowed boxes indicate the x-representations j, ..., mj4+;. They are drawn so that,
if m; is the m’th tensor-factor in 7;;, then the box, that is I’th from the top and m’th from the left
is shaded gray. As

8

moaltss) = Y maltary) © W (thika) © Wa(thaks) © s (thghs) © o (thy6)
k1,...,ka

the path chosen in ([G0) corresponds to k1 = 4, ks = 4, ks = 5, k4 = 6 and to the operator

72 (taa) @ m3(taa) @ wa(tas) © 75 (ts6) ® me(tes) =
T ®To @T1o®@T1o@TY1.

We define an admissible path in 7;;(tmn;) as a sequence of integers {m, k1, ko, ..., k;, 1} such that
Ti(tmky ) @ i1 (bhyky) @ -+ @ Wi (Er,) # 0.

In o4, it is not hard to see that the path in (60) corresponding to {4,4,4,5,6,6} is the only
admissible path. We also see that there is no possible way to join m with m — 2, as we can traverse
at most once upwards in a diagonal. This holds also in general.

Lemma 5.11. For j +i < m — 1, let mj; (resp. 75} ) be the x-representation of C[SUp], corre-
sponding to S$;Sj41...Sj+i € Smt1 (T€SP. Sj+iSjti—1---S; € Sm). Then for any 1 < k,I < m,
there is at most one non-zero term in the sum

m

Tiiltm) = Y T(bmks) @ T (thyks) @ - @ Wity 1)
kikz,...,k;=1
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(resp.

m

75t (t) = S mriltmk) @ T (k) ® - @7 (tk 1))
kiki—1,...,k1=1

and we have mji(tm) = 0 if m —1>2 (resp. 757 (tpy) = 0 if L —m > 2).

The above lemma can be easily seen to be true by drawing diagrams such as (60), and it is not
hard to make the pictorial intuition into a formal proof by, for instance, using induction on .

Hence by this lemma, it is very easy to calculate the action of 7j;(¢m;) explicitly as one only
needs to draw the obvious path. Another way to illustrate the action of 7;; (t,,) is by using diagrams
with arrows and hooks similar to the one that describes the action of the Fock representation of
Pol(Maty,)q. Consider the row

1 J g+ m—1
2 v j41 -j4itlee 0m

where the dark gray squares again correspond to the trivial *-representation of C[SUs], onto C and
on the white squares the s-representation of C[SU,], into C*(S) given by (I9). Here the tensor
factors are ordered from left to right, and we determine the image 7;;(tx;) by connecting k on the
left or bottom side to the top or right side with the hooks and arrows. So, in the previous example,
the term corresponding to the admissible path ma4(ts,,), can be represented now as

1 2 3 4 5)

6 7
] EE== §
7T 8

2 3 4 5 6

If we instead consider s;y;S;jqi—1...5; € Sm, we can represent this similarly, but with a vertical
block instead, and where the ordering of factors is made from top to bottom. If we apply 7, to
one of the C*(9) factors, then as before, we can calculate the new x-representation by putting in a
light gray square in that factor’s place. We leave it up to the readers to convince themselves that
these two ways of doing calculations actually yield the same result.

Some remarks about notations regarding tensor products: the Hilbert space ¢*(Z)®7 will
be given the basis {em}meZ]J-r, where m = {mi,mo,...,m;} € Zi is a multi-index and e =
€my ® €my @ -+ @ €, € L2(Z4)%7, where {em}5o_ is the standard orthonormal basis of ¢3(Z.).
For me Z; and 1 <1 <4, let (m); € Zi be the multi-index with value m at the {’th index and

equal to zero otherwise. Let also 0 = {0,0,...,0} € Z/,, so that eg = eg@eg @ --@eg € £2(Z4)%.

Let B, : Pol(Mat,—1)q — Pol(Mat,_1), be the automorphism defined by

%

e ifj£k—1 o
Be(z;) {ei“’zé ifj=FkFk—-1 (61)
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By induction, we can now assume that 7’ o §,, where 7’ is defined by (G3), can be lifted to a
*-representation p : C[SUy,—1y]q — B(H) such that

pol=m"op,. (62)

We can then lift 1 to a *-representation 7 of C[SUs,]q using the map v : C[SUsy]q = C[SUs(,—1)lq
given as

th_1.i_ if2<k,j<2n-1
Ultny) = { o = (63)
k. otherwise
so that
= po. (64)

Remark 5.12. A sudden involvement of B, may seem a bit unmotivated, but it is logical, given
our informal discussion in section 3. If we look at the paths starting like

) 3
1 2 3

then when we use the scheme in Section 5.1 to express the operators w'(z1), 7' (23) (7' corresponding

to the upper-right 2 x 2 square) they get multiplied by e~ coming from they gray square at (2,3).
So if we want to get the x-representation corresponding to the upper right 2 x 2 square, then we
must multiply the first column in Pol(Mats), by €' in order to cancel this factor.

Now define a *-representation of C[SUs,], by the formula
)\ = (7'%, (e} 7Tn+k71) ® Tn+k ® e ® Ton—1 - C[SUQn]q — B(éQ(ZJr))@nik (65)

corresponding to the diagram

1 4+ k—1-- e 2n—1

and consider the representation
A@ 7 : C[SUsn), — B(P3(Z4))®" % @ B(H),

If we let A := (A ® 7) o ¢, then the aim is to show that A 2 7.
Lemma 5.13. We have ker A(z7)* =0 and

M1 ker A(27)" = (eg) @ H (67)
and for z}, € Z\I (recall I={z},,,...,2}) we have

Az (eo®v) = eo ® m(2),)v. (68)
Moreover, (*(Z..)*" % @ H is the closed linear span of vectors

A(z(m))(eg®v), veEH, meZi "
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Proof. We start with (68). We have ((z,) = (—¢)™ "tm+n,j+n (see 217)) and hence

A(h) = (=)™ " Y Mtmanr) @ F(trjan) (69)

r=1

If 1 <m < k—2, then Mtmsinr) = Omsn,I so that, by (6I), (62) and (@), the right hand side
of ([69) becomes

A = (@)™ ® Ftmgngin) = (~0™ T @ (100 6) (tusnjn) =
— (=)™ "I ® plbtn1gen1) = (—q) T @ (2 0 B)(2h,) =
— (~q) T () = T@n(])

proving (68) in this case. If m = k — 1, then similar arguments give A(tx—14n) = € “0k—14n.1,
and so _ .
A(zi—l) = eiup(_Q)kilinI@) 7~T(tkfqun,qun) -

= e (=) T @ (1o ) (th-14ngin) = € (=) T @ pth-14n-14n-1) =
= e_w(—q)_ll® (n'o Bsa)(ziq) = (_Q)_1[®”I(2£71) = I®7T(Zif1)
proving (68).
When m = k, then as 7(t;2,) = 02,1, we obtain by (69) that
A(z) = (=) " Mtrgn,2n) ® I = €¥Dyg @ Dg @ -+ @ Dy @ I

(where D, is given by) proving (G8) and that ker A(zf)* = 0. By LemmaE.7 we get A(2}') = 0 for
1<j<k-1 As w(z;“) = 0 for those values of j, we obtain

A(z])(eo ®v) =0 =eo @ (2] )v
and so (68]) holds in this case.

If 1 <j < n then

2n
A = (0" "> Mtksns) @ F(trjn) =
r=1
2n—1
(_q)kin Z A(thrn,T) & 77r(tr,j+77,) + )\(tk+n,2n) ® 7Tr(t2n,j+n) -
r=1
2n—1
= (_Q)kin Z )‘(tk-i-n,r) ® 7~T(lfr,j-i-n)-
r=1

A calculation using ([60)) gives that unless r = 2n, the operator A(tx4n,r), if non-zero, will contain
T11 as a factor, thus annihilates eg. Hence

n+k—1

(_Q)k_n Z )‘(thrn,r) @ 77r(tr,jJrn)(eo ® 'U) =0
r=2
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for all v € H, and thus equal to eg ® ﬂ'(zi)v by [©4).

Finally, if 27, € Z\{z}".1,..., 2} with m > k 4 1, then we have

2n
A(an) = (_Q)k_n Z A(tmtn,r) @ Tty jin) =
r=1
2n—1
= (_Q)m_n Z )‘(tm-i-n,r) ® 7~T(tr,j-i-n)-
r=1

Again, we see from (G0)) that if » # m + n — 1, then we have a S*C, factor in A(ty4n,) if it is
non-zero, and in the case r = m +n — 1, we have A(ty4n.r)e0 = €o. We obtain

2n—1
(_q)m—n Z )‘(tm-i-n,r) ® ﬁ—(tr,j-i-n)(eo ® U) =

r=1
= (=) " Mtmanmin-1) @ T(tmin—1,j4n)(eo ®v) =
=0 @ (=)™ "7 (tmsn—1,5+n))v = €0 @ ((=q)" "o Y(tmin-1,54n))v =
=0 ® (=)™ " ltmsn—2,j4n-1)0) = €0 @ (=)™ V"D Ut (1) 4 (n-1) j4 (n—1))V) =
=0 ® (70 B,) (2, 1))V = €0 & (m(23,_))v =
=eo @ (2.

and hence (68)) is proven for all zj € Z\L

Now we prove the second claim. We have

2n

Alzy) = (=" ™" Z Mtmtn,r) ® 7tr2on) =

r=1
= (_Q)m_n)‘(tm-l-n,%z) ® 1
as 7(tran) = 0r2nl. For k4+1 <m <n we use (G0) to get
(=) " Alminzn) @1 = [©-- @1 @CS @Dy @@ Dy®I
—_———

m — k + 1 times n — m times

and hence (7). As A(z(m))(eg ® v) is a nonzero multiple of ey, ® v, and these vectors obviously
span (2(Z,)®" % @ H, we obtain the last statement. O

Proposition 5.14. The x-representations A and w are equivalent by the unitary isometry U : K —
2(Z,)®" % @ H given by
m(z(m))v — A(z(m))(eg ® v) (70)

n—k
forve H and m € Z™".
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Proof. By Lemma[5.2] and Lemma [5.3] for all v € H

17 (= (m))w][* = (z(m), 2 (m))x[v]|?

and (z(m), z(m))1 # 0. Hence 7(z(m))v = m(z(m))u u,v € H if and only if v = u. It then follows
from Proposition 5.9 that U is well defined on the dense subspace, and hence if we can show that
U is an isometry on this dense subspace, then it can be extended to an isometry on the whole of
K. By applying Lemma [5.2] again to both (H,I) and (ep ® H,I), we see that

(m(z(m))v, m(z(m"))u) = y1(z(m’)"z(m))(v, u) =
7 (z(m’)"z(m)){eo @ v, €0 ® u) =
= (A(z(m))(eo ® v), A(z(m"))(e0 @ u)) =

= (U(w(2(m))v), U(r(z(m))u)).

Hence, by linearity, we can extend U to an isometry. By Lemma [5.13] we can now conclude that
U is surjective and thus it follows that U is a unitary isometry.

To prove that U induces an isomorphism we only need to prove that Um(z),) = A(z),)U for
all 27, € Z. Note that this is true by the construction of U for the elements in I. By Lemma [5.13]
for 27, € (Z\I) N {z7,...27 |} we have w(2J,) = 0 and A(zJ,) = 0, so obviously in this case
Un(zd,) = A(zL,)U. If 2, € Z\(TU {z7,...27_,}), then first we apply the same arguments that
were used in the proof of Lemma to see that

2 2(m) = Z 2(my)b;

for some b; in the unital algebra generated by Z\I. Then

Un(22 )r(z(m))v = UZw(z(mi))w(bi)v =

=3 Al=(m) (Un(b)v) =

= Az(my))(eo @ ( <ZA 2(m;)b; ) (eo ®v) =
= A(z),(2(m))(eo ® v)) = A(2],)U (7 (z(m))v)
where in the fourth equality we used (68]). This concludes the proof of case A. O

5.4 The Case B

Assume now that the irreducible *-representation m : Pol(Mat, ), — B(K) has the property that
ker m(2F)* # {0} and ker m(2})* # {0} for 1 < k < n. In this case the reduction from n to n — 1 is
much more straightforward. We will also be re-using many of the arguments from the case A, so
at some places in the proofs, we will simply refer to Section 5.3.
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Throughout this section, we let

I= {z?,...,zﬁ_l,zﬁ,...,z}l}
and, as before, we use the multi-index notation: for m = (mq,...,ma,—1) € 72n—1
2(m) = (z1)™ e (20 )=t (z0)mn L (gL )mant,

We start by proving the following:

Lemma 5.15. The subspace H := (NP_, ker w(zF)*) N (N2_, ker 7(2})*) is non-trivial.

Proof. For the simplicity, we suppress m and write simply a for the image m(a),a € Pol(Mat,,),.
Assume that (N7_; ker(zX)*) N (NP_, ker(22)*) = {0} and let 0 < m,j < n be integers such that

(Mmy1 ker(23)") N (N4 ker(25)") # {0}

but

(M ker(z)*) N Ny ker(2)") = {0}
if m > 0 and

(M1 ker(z5)") N (MR ker(27)") = {0}

if 7 > 0. To be more precise, we assume that m > 0 and let
J = (g ker(z5)) 1 (O 4 Ker(2)").

Then as ker(z")* N J = 0 we get, by the same argument as in Lemma [5.6] that J reduces 2, and
zP" |y is unitary. This shows that the operator

Ri= 20, ()" = () 20

has a non-trivial kernel, as it clearly contains J.

Claim: ker R is reducing for .

As 7 is irreducible, the claim would give R = 0 and hence 2]}, is normal. By using Fuglede-Putnam’s
theorem in a similar way as in the proof of Proposition 5.8 we can deduce that the normal partial
isometry U in the polar decomposition of z7), is commuting with the image of Pol(Mat,,), under 7.
This gives that K = ker U @ UK is a decomposition of K into orthogonal subspaces, both reducing
7. Hence one of the subspaces must be trivial. But if ker U is trivial, then the kernel of (27 )* must
be trivial, contradicting our assumption on 7. If UK is trivial, then U = 0 and hence (2]%)* = 0,
but this contradicts (N}_,, ,; ker(z8)*) N (Mh=jy1 ker(z7)*) # {0}.

Proof of the claim: It is easy to see that zi with k > m and | < n commutes with R. As R is self
adjoint, then z! must reduce its kernel. Similarly, it is easy to see that 2} with k < m commutes
with R. We can then use the arguments from Lemma [5.7] to see that the restriction of such 2} to
ker R is zero. Now consider z¥, with k < n. Then

m = 2m(zm)

=z, (quﬁ(z;ﬁ)* —(g—-q") ) Zz’“(%”f“) -

l=m+1

Reb, = 23 () 2, — (20) 202 “eh = a T ) e =
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n n
A (z;z S ) g S zf@m*z:;).
l=m+1 l=m+1

We consider these two terms separately. The first term reduces to
G zm(2m)” = 2y (20 2 = 2z (7)™ = 2 () 25, = 2, R

m\Tm m m m m

For the second one, we obtain

n
g D A —ah Y A e =
=m+

l=m+1 l=m+1
n n
= Zm a\z) — ZmA\Z1 ) =
l=m+1 l=m+1

= (qQZ;Z(Z;Z)* +(1-¢°) <I— > Z?(ZW)) Zm
l=m+1

and as 2z, commutes with z*(z")* for I = m+1,...,n (by @) and (), this sum reduces to
@?zm 2 (2 — g2l (21) 28 = ¢?2" R and hence ker R is also reducing 27%. Finally, let k < m and
I <n and let v € ker R. We have

l * n

Rzbv =2 (7)Y 2o — (27) 20 2ho = (27 20) (7)) v — (21)* (20 2k v =

(2
= (zkzm = (07" = Oz 2) (2) v = (2) (kg — (07 = @zl Jv
= (2kzm) (2m) ™0 = (23)" (20 = 2k (2 (20) )0 = 2 (27) "2 v =
2t Av =0

where the fourth equality follows from z'v = 0 and 2}(21%)*v = (27)*zfv = 0. The case for (z})*
is treated similarly. O

Lemma 5.16. H is a reducing subspace for w(zji-), zi € Z;. Moreover, the map
w’:z§'—>7r(z§)|H, hL,ji=1,...,n—1, (71)

extends to an irreducible x-representation of Pol(Mat,_1)q.
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Proof. As before, we suppress 7 and write simply a for the image a € Pol(Mat,,),. To see that H
is invariant under the action of (Z2)*, pick (z})* € Z. Notice that by (8)-(0), any (2},)* € T*
either commutes or g-commutes with (zi)*, or (2 )* and (zi)* satisfy (I0). In the first two cases,
it follows that

(2)* (20) H = ()" (z,)"H = {0}
(2) " (2)"H = q(=])" (21,)" H = {0}
respectively. In the last case when m < k and [ < 7, we get
(21)" (Z) H = ()" (z1)" = (@ = a7 ) (=0) (o)) H = (a — a7~ ) ()" (21)" H
and as (27,)*(2L)* = (2})*(27,)* and at least one of the integers m or i is equal to n, we get
(a—a (=) (z)" H = {0}.

From this it follows that H is invariant with respect to (zi)* But in this case the action of the
extra term also annihilates H, as one of the factors will be in I* and the two factors commute.

To prove the invariance under Z;,, we pick again some zi € Z. By (), the only two elements
in I* not commuting with 2] are (z7)* and (2)*. By ()
n
(z,?)*ziv = qzi(z?)*v —(¢—q™) Z 2N v=0,veH
r=k+1
giving ziH C ker(z)*. Similarly ziH C ker(z7)*. As zi commutes with the rest of I*, we obtain
2 H C H.

It is easy to see that @B))-(E]) and (®)-(I0) hold for the operators ﬂ'(zi)| H, as these relations for
the restriction is just the restriction of the original relations, so the only crux is ([Il). However, if we
look at the equations (Id])-(I6]), then we see that under 7, the terms in the sums corresponding to
j =mnorm = n annihilate H and disappear in the restriction, thus only leave the equations for n—1.
We will postpone the proof of the irreducibility of 7' untill after the proof of Proposition B.17} O

Proposition 5.17. For m € Z3" ™', let Hy, := 7(2(m))H. Then Hpml Hpy for m# m/' and

K= \/ Hn (72)

2n—1
mezy

Proof. The claim that Hy, | Hyy if m # m’ can be deduced in the same way as the analogous claim
in Proposition[5.9l Similarly, we prove the equality in (Z2)) as before, by showing that the right hand
side is reducing 7. Invariance under Z is once again deduced from Lemma 54l Invariance under
Z" can be seen by combining (I2)) with Lemma [5.41 We get the result that any a € Pol(Mat, ),

can be written as a sum
o= 2(my)a(aj) z(mj)"
i
with a;, b} in the unital algebra generated by Zy. For v € Hy, of the form 7(2(m))u with u € H,
we then have that for any (z])* € Z*



= > w(z(m)(w(bi(bi) z(m) )u) € \/  Hm

i mez2n1
as m(b;(b;)*z(m})*)u € H. O

We now prove that 7’ is irreducible. Notice that in the above proof, the only property of H
that is used to prove that the right hand side of ([2)) is reducing =, is that H is reducing Z, and
is invariant under I*. If 7’ is not irreducible and H can be decomposed into non-trivial orthogonal
subspaces H; @ Hz, both reducing 7’. Then as Hy, Ho are both annihilated by the elements in I*
(since they are subspaces of H) and reducing Z; by the definition of 7/, it follows by the proof
of Proposition [£17] that the subspaces \/mezinfl 7(z(m))H; and \/mezinfl m(z(m))Hy are both
reducing 7 and as they are not equal, and in fact even orthogonal to each other, we derive a con-
tradiction to the assumption that 7 is irreducible.

We can now use the induction hypothesis on #«’ that it can be lifted to a *-representation
I : C[SUzp—2]q — B(H) such that #’ =1II' o (.

We now lift II' to a x-representation II of C[SUs,], by first defining a *-homomorphism
0: (C[SUQ»,—L]q — C[SUgn_g]q (73)

determined by

S(te) = th; 1<k j<2n—2
7 0r;1  otherwise

(this corresponds to putting the matrix (tkj)i’;jl in the upper left corner of the matrix (tkj)%fj:l)

and then letting IT = II' o 4.

Let us now consider d = s,,55,4+1 - - - Sop—1 and b = S9,_2S2,—3 . . . S, and make the *-representation
A of Pol(Mat,, ), given by the formula A = (74 ® II®@ m;) 0 . Again we can use the diagram repre-
sentation of w4 and 7, to calculate easily the images of the generators in C[SUs,],. We have that
mq and 7, correspond to the diagrams

1
1 2
n—1 n
1 - n—1 ---2n—1 2n —2 2n —1
2 n 2n 2n
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respectively, where in the vertical diagram we calculate the image of m(tx;) by connecting k on
the left (if k& # 2n) or bottom side (if ¥ = 2n) with j on the top (if j = 1) or right side (if j # 1).

Lemma 5.18. We have
(Nit=y ker A(z)") N (Mg ker A(2f)*) = eo® H @ g
and for oll v € H, we have
A(z]) (eo® v © eq) =
a(l)epry, ®v®eg
for 1 < j <mn, where 0+ (1); means that l is added to the jth cordinate. Also
Az eg@v@eg=
a(lleg®@v® €Ot (1)n_;

forl1<j<n-1 anda(l):Hi;:llx/l—qm”.

Proof. Evidently, if we prove the claims made on the action of the operators on eg ® H ® eg, then
the claims about intersections of the kernels are easy to see. For 1 < k <n — 1, we have

2n
A(Zs) = Z 7Td(t2n,r) & H(tr,s) & 7"'l)(ts,rhtlc) =
r,s=1
2n 2n
Z Z 7Td(t2n,r) ® H(tr,s) ® 7"'b(ts,nqu)
s=1r=2n-—1

as mq(tan,r) = 0 unless r = 2n — 1,2n. If r = 2n, then II(¢,s) = d,sI so that s = 2n, but then
To(t2n,n+k) = 02n,ntkd = 0, by the bounds on k. So the sum reduces to

2n 2n
Z 7Td(t2n,2n71) ® H(t2n71,s) ® 7Tb(ts,nJrk) - Z 7Td(t2n,2n71) ® 5277,71,51 ® 7Tb(ts,nJrk) =
s=1 s=1

= ma(tan,2n-1) ® I @ m(tan—1,n+k)

and since 74 (t2n,2n—1)€0 = €o, and TQlQeo = a(l)ey, it is not hard to see by calculating the action of
Ty (tan—1,n+%) that the lemma holds in this case. On the other hand, if 1 <m < n, then

2n
Aep) = (=)™ " 37 Taltngm.r) ©T(trs) © m(ts.2n) =

r,s=1

2n 2n

= (=" " Z Ta(tntmr) @ Mty s) @ 6s2nd = (=)™ " Z Ta(tntm,r) @ M(tron) @ 1 =

r,s=1 r=1

2n
= (_q)m—n Z ﬂ-d(tn-i-m,r) & 67‘,2111 ®I=

r=1

= (=)™ "ma(tnimon) T ® I

and a calculation using the diagram for 74 confirms the lemma also in this case. O
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Corollary 5.19. The linear span of the vectors in (?(Z, )" @ H ® £2(Z,)*"L of the form
A(z(m))(eg @ v ® eg)

is dense in (*(Z,)®" @ H @ (?(Z,)®" 1.

Lemma 5.20. For 2, € Z and v € H, we have

A(zD)(eo®v® eg) = eg @ (2] )v @ ey (74)
Proof. By the definition of A
] 2n
A(2])(eo ® v @ o) = (—¢)* " Z Ta(tntr,r) @ H(tr,s) @ T (ts,nt5) (€0 ® v ® €o)
r,s=1

Using the diagram for 74, it is easy to see that the only value of r such that the path for 74 (¢n+k.,)
does not contain the hook (i.e. a Ty factor, annihilating eg), is 7 = n + k — 1 and hence the
sum reduces to

2n
(=0)" " Y maltnknri—1) @ Mtnsi—1,6) © T (tsnrs) (0 @ v @ €) =

s=1

2n
(=0)* " > T @ M(tnsk-1,5) ® My (ts,n5) (€0 © v @ eo).
s=1
as Tg(tntkntk—1)€0 = €g. Likewise, as 1 < j < n —1, it is easy to see that the only value of s such
that 7y(ts,n+;) does not annihilate eg is s = n + j — 1. Thus the sum contains the only non-zero
term

(=) " T @ MW(tngh—1,n45-1) @ T (tntj1,n15)(€0 @ v @ eg) =
(=) (I @ M(tntk—1.n—j-1) @ I)(e0 @ v ® €g) =
(I® (n(tk;)|r) @ I)(eo ® v @ eg) = o @ T(2))v @ eo
as my(tntj—1,n+j)€0 = (—q)eo and (—q)kH’”H(thrk,Ln,j,l) = m(tr;)|a by the definition of

II. (|

Proposition 5.21. A is unitary equivalent to © by the unitary isometry U : K — (*(Z4)"®@ H®
(2(Zy )"t determined by
m(z(m))v = A(z(m))(eg ® v ® eg)

forve H.

Proof. This is shown in a completely analogous way to Proposition 5.14] by first proving that U
defines an isometry. For this one uses Proposition [5.17] to show that U is well defined on a dense
subset and then using lemmas and to see that it is isometric and hence can be extended to
the whole space. Corollary [5.19 then implies that U is onto and the definition of U shows that it
intertwines the images of the operators in I. We can then use Lemma and a similar calculation
as the one that was made in Proposition 5.14] to see that U also intertwines the images of the
operators in Z;.. O

This completes the proof of the first item of Theorem [£.11
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6 Irreducible *-representations of Pol(Mat,,),

6.1 Elements of Minimal Length in Certain Subsets of Sy,

Let o € S,. By £(0) we denote the length of o, that is, the number of elements in the minimal
decomposition of o as the product of adjacent transpositions o = sj,sj, . . . Sj,,, - It is known that

t(o) = #{1 <j <i<nlo(i) <o(j)}, (75)

where # denotes the number of elements in the set.

Let S C S, be the subgroup consisting of permutations that only permutes the first n elements
and leave the rest unchanged. It is clear that S = S,,. For o € So,, let
Oo :={g1092|91,92 € S}.

We have the following;:

Proposition 6.1. There is a unique element w € O, of minimal length £(w) and with minimal
decomposition w = $j,8j, "+ Sjy ., Such that for any other t € O, there are h = Sk, Sk, * Sk,

and g = S1,81, *** Siy,, i S such that

t=h-w-g= (S Sk, " ~ske(h))(sjlsj2 . -sjlz(w))(sllsl2 C Slygy)
18 a minimal decomposition of t.
Proof. For any t € O, we split {1,2,...,n,n+1,...,2n} into the four sets
Nf={1<j<nll <t(j) <n}
Ni={1<j<nln+1<t(j)<2n}
Ni={n+1<j<2n|l <t(j)<n}
Ni={n+1<j<2nn+1<t(j) <2n}.

By decomposing {1,2,...,2n} = N{ U Ns U N U N} we can for any ¢t € O, calculate the length
L(t) as
0t) = #{1 < i < j < 2nt(j) < t(i)} =

4
> #{ie N, i€ N < jlt(G) <t(i)} =

m,l=1

=#{i € Nf,j € Ni,i <j|t(j) <t(i)} +#{i € N{,j € N§,i <jlt(j) <t(i)}+
+#H{i € N3, j € Ny, i < jlt(j) < t(i)} +#{i € N3, 5 € N3, i < jlt(5) < t(i)}+
+#H{i € N§, j € Ni,i < jlt(j) <t(i)} +#{i € N§,j € Ni,i < jlt(j) < t(i)}+ (76)
+#{i € N§,j € N§i < jlt(j) < t(i)} +#{i € Ni,j € N§,i < jlt(j) < t(i)}+

—|—#{Z € N47] € Nivl <.7|t(.7) < t(l)}

In (76), we have removed the terms we know to be zero. For example, the term #({i € Ni,j €
Nii < jlt(j) < t(i)}) is equal to zero because j < ¢ holds for all i € N{ and j € NJ.
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Notice that |Nf| = |Nf| and |Ni| = |[Ni| = n — |N{|. It is not hard to see that if g,h € S then
INZ| = |N!9| for i = 1,2,3,4, and also NJ* = N§,NJ? = g~ 1(Ng), N'79 = N and N7 = NJ.
For all h,g € S, we have

hog hog
N7 (NS 1) g Vg + 1)
2 2

#({i € Ny7%,j € Ny“?|hog(j) < hag(i)}) = (77)

For any g,h € S, the inequality i < j always holds for i € NJ?9,j € NI'79 and as NJ79 = NJ9 =
g Y (Ng) and N9 = NY we get
#{i € N379,j € Ny7%i < jlhog(j) < hog(i)} =
#{i € N37%.j € N{”’|hag(j) < hog(i)} =
#{9(i) € N3, j € N{lo(j) <o(g(i)} =#{i € N5,j € N{|o(j) <o(i)}

and hence for any t € O,, we have

#{i € Ny, j € Nii < jlt(j) <t(i)} = #{i € N5, j € Ni,i < jlo(j) < o(0)}. (78)
A very similar reasoning gives that for all t € O,,

#{i € Nj,j € N3, i < jlt(j) <t(i)} = #{i € Ni,j € N§,i < jlo(j) < o(0)}. (79)

For t € O,, let
mp, = #{i € N{,j € Ni,i < jlt(j) < t(i)},

then we can rewrite ([70]) as
0(t) = mby +mby +mby +mby + mby +mby +mbs +mls +mlhy. (80)
From the equalities (T7), (8], () we get, for any t € O,, the lower bound
mi, +mis +mg, +m3s < L(2). (81)

We claim that there is a unique element w € O, such that equality holds in ([®I)). We show the
existence first. We are going to do this by showing that there exist g, h € S such that

hog __ hog __ hog __ hog hog __
My~ = Myg” = My~ = Moy~ = M3zz” = U. (82)

If we then let w := hog, then as (BI]) holds for any ¢ € O,, it follows from (80) that the element w

would be of minimal length in O,.

Consider {0(1),0(2),...,0(n)} = N{ U NJ. There is a unique permutation g € S such that
og(1) <og(2) <--- <og(n)

and hence m7{ = mg{ = m3J = 0. Now, consider

{(09)™' (1), (69)7"(2), ..., (09) "' ()} = N7 UN5”.

There is h € S such that for all 1 < j,k < n we have (o9)"(j) < (o0g)~1(k) if and only if
h(j) < h(k). We claim that (82) holds for hog. To see this, first notice that N = N279  since
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h fixes n + 1,...,2n. Hence mhg? = m3g = 0. Also, we have m/79 = m}fgg = m4d9 = 0 by the
definition of h. We need to check that hog preserves the ordering of {1,2,...,n}, so that m}wq =0.

Let 1 <4 < j <mn, then by the definition of g, we have og(i) < og(j), If n + 1<o0g(j) < 2n, then
h fixes og(j) and ag( ) can at most be mapped by h to another integer less than n, and so we have
hog(i) < hog(j). If 1 < og(j) < n, then

{i.5} = {(09)" (09(1)), (09) " (09(5))} S N’ UNS?,

and hence h(og(i)) < h(og(j)) by the definition of h. This shows that also m'J? = 0 and we can
now let w = hog. Hence, there exists an elements w € O, such that equality holds in (BI).

To prove the uniqueness of w, we will show that the equality in (81]) determines w completely.
If
miz = #{i € Ni*,j € Ny’,i < jlw(j) <w(i)} =0,

then as w(N{"UN3’) = {1,2,...,n}, it follows that the image of N7’ under w must be {1,2, ..., |N{’|}.
Furthermore, as w(j) < w(i) holds automatically for j € Nj* and ¢ € NZ’, we have that

m21—#{Z€N2,]€N1,Z<]|w()<’UJ()}:0

implies
#{ie Ny, je Ny, i<j}=0. (83)

From (83)), it follows that w(N’) = N = {1,...,|N{|}. As m}y = 0, we can then deduce that
w(j) = j for j € Ni’. Moreover, we have N3’ = {N{* + 1,...n}. Thus w : N¥ — N3’ and
w:NY = {n+1,n+2,...,2n}\w(N}") are bijective maps that preserves the ordering i.e they are
uniquely determined. Finally, the action of w on N’ are the same for all elements in O,.

To prove the second part, it is clear that we only need to prove this claim for o, as Oy = O,, for
any t € O,. We will show that
(o) = l(w) + L(g) + £(R), (84)

with g, h € S as above. Notice that by the definition of g, we have
Ug) =g~ ") =#{1 <i<j<nlo(j) <ali)}
and as {1,2,...,n} = N{ UNJ, we get that
£(g) = m{y +my + m3y +m3y = m{, +m3; +m3,
as m{, = 0. While, by the definition of h, we have
b(h) = #{i,j € NY? UNg?,i < jlog(j) < og(i)} =

mi{ +mi7§ + ms) +m3y =mi{ +mi§ +m3j

as ms; = 0. By the definition of g, we have #{i € Ny%,j € N}9,i < jlog(j) < og(i)} = 0.
Moreover, we have

4{i € N9, j € N§%,i < jlog(j) < og(i)} = #{i € N§,j € N§.i < jlo(j) < o(i)}
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as g does not permute any of the integers in N§. We will now show the equality

#{ie NU¥,j e Ng¥ i <jlog(j) <og(i)} = #{i € NY,j € Ni,i < jlo(j) <ao(i)}.
We have that i < j already holds for all i € NY?,j € N3¢ and hence

#{i € Ny?,j € Ng*,i < jlog(j) <ogl(i)} = #{i € N{*,j € Ng’|og(j) < ogli)} =

#{i € N{?,j € Ng|o(j) < og(i)}
as, again, og(j) = o(j) and N3? = N§. If i € N7Y, then g(i) € NY and hence

#{i € Ni?,j € Nglo(j) <olg(i))} = #{i € NV,j € Nf|o(j) <o(i)} =

#{i € N{,j € Ni,i < jlo(j) <o(i)} =mfis.

This shows that £(0) = £(w) + £(g) + €(h) and hence if w = sj, -+ 5j,,,, 9 = 51,51, Sl N =
SkySky " Sk, are minimal decompositions, then so is
0= (Skl Sky * Skl(h))(sjl St sz(w))(sllslz U Slz(g))'
O
For integers 1 < j < n and 0 < k < n we define the cycles in Sy,
Sitn_kSitn_ e Siap—q H1<k<n
Chj = Jtn—k9j+n—k+1 Jj+n—1 . >~ >~ (85)
e iftk=0

where e € S, is the identity element. We shall now prove the following result, that gives a
decomposition of the element of minimal length in O, in terms of such cycles.

Proposition 6.2. If w € O, C Ss, is of minimal length £(w), then there is a multi-index k =
n, kn—1,..., k1] € ZT with the property that

ki < max (kj +i—j+1,1) (86)
i<j<n

(i.e. k is admissible) and such that
W = Ckp,ynChyy_1,n—1"""Chy,1
is a minimal decomposition of w and (w) = 377, k;.
Proof. Consider pairs (m,n) with n € N and 0 < m < n. We order these as
(m1,m1) < (ma,ng), if ng < ng, or if ny = ng and my < ma. (87)

Clearly, this gives a well-ordering on the set of such pairs (m, n).

To every w € O, C Sa, of minimal length ¢(w), we can associate a pair (m,n), where 0 <m <n
is the number of integers n + 1 < j < 2n such that 1 < w(j) < n. It follows that 0 < m < n.
We prove the proposition by induction on (m,n) with the ordering (87)). In the case n = 1, it
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follows that w is either the identity permutation, associated to the pair (0,1), or s; = ( ; i ) ,

associated to (1,1). In both cases it is clear that the proposition holds.

Assume now that the statement holds for all minimal length elements associated to pairs
(m1,n1) < (m,n). Let w € O, C Sy, be of minimal length in O, and associated to (m,n).
Consider the integer w(2n). We claim that n < w(2n) < 2n. In fact, it follows from the proof of
Proposition that

#Hl<i<j<2nl<w() <w(@) <n}=mP +mi5+mi=0+0+0
and a simple argument shows that if 1 < w(2n) < n, then we must have w(2n) = n.

We will split the proof into the two cases
(1) n+1<w(2n) < 2n.
(2) w(2n)=n.
We start with the case (1). If w(2n) = 2n, let v = w. Otherwise, consider the cycle

— _ —1
€= 82n—1"""Sw(2n)+15w(2n) = c2n—w(2n),n

1 2 ... w2n) w2n)+1 ... 2n
(1 2 ... (Qn) (w(Q)n) 2n—1> (88)

and let v = cw.
We claim that v is the element of minimal length in O,. We prove this by showing that
my; = mis = my = myy =mzg =0.

The latter follows directly from the formula

w(j), if 1 <w(j) <w(2n)
v(j) =< w(j) —1, ifw2n) <w(j) <2n (89)
2n, if j =2n

or the observation that ¢ does not change the order of the integers in
{1,2,...,n}Uw({1,2,...,n}).

We have also
fw) = #{1 <i < j < 2nfw(j) < w(i)} =

=#{1 <i<j<2nw(j) <w(@)}+#{1 <i<2nlw2n) <w(i)}. (90)
Since #{1 <i < 2n:w(2n) < w(i)} = 2n —w(2n), it follows from (B9) that
#{1 <i<j<2nw(g) <w(@)} =L(v).
Hence from (@0) we obtain
L(v) = 4(w) — (2n — w(2n)). (91)
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As m¥; = 0 and m is not equal to n, it follows from the proof of Proposition [61] that v fixes {1}.
In S, consider the subgroup of elements that fix {1,2n}. It is clearly isomorphic to Sy(,—1) with
the isomorphism given by

¢ :8; € Sop_g > Si+1 € Son. (92)

It is easy to see that ¢~ (v) € Oy-1(y) C Sa(n—1) is of minimal length and ¢~*(v) is associated to
the pair (m,n — 1) < (m,n). By induction, we have a decomposition

¢ (V) = Chy 1 n—1Cky a2 Chy 1 € Sa(n_1)

such that
kiSmaXi<an_1(kj+i+1—j,i), j=1,....,n—1. (93)

Notice that if ¢y ; is the cycle (88]) in Sp(,,—1), then the image of ¢ ; under ¢ is ¢(cg ;) = cx,;, the
latter is now the cycle [85]) in Say,. It follows that

w=clv= ClypnChp_1,n—1Cky_on—2" " Chky 1
with k, = 2n — w(2n). Moreover, by (@3]
ki <maxicj<n—1(k; +i+1—j,9) <maxcj<n(k; +i+1—754), i=1,...,n—1
and k, = 2n — w(2n) < n, and hence it follows that
k; <maxjcj<n(k;j+i+1—74,4), i=1,...,n

and that (88) holds. Moreover, by (@) and ¢(c) = 2n — w(2n) = k,, it follows by induction that

L(w) = 2n —w(2n) + L(v) = ky + (V) = kp + ni: kj = zn: kj.
j=1 j=1

Let us now assume that (2) holds, so that w(2n) = n. In this case we have to argue slightly

differently. Let
1 2 ... 2n
t_<2n 1 ... 2n—1) (94)

v = t_lc;hwt € Sop.

and consider

We claim that v € O, has minimal length. Notice that ¢, },w(2n) = 2n, which gives v(1) =1 and

as
1 (1 ... m n+l1 ... 2n
on=\ 1 ... 2 m ... 2n—1
we can, for 2 < j < 2n, calculate

w(@@-—1)+1 if2<w(G-1)<n-1

w(yj—1) ifn+1<w(@-1)<2n (95)

v(j) =t~ e Lw(t(h)) = e, (w(i —1)) = {

(as w(2n) = n, these are the only cases). From this it is not hard to see that mY; = m{; = ml; =
ms, = mgs = 0 and that

L(v) = L(w) — n.
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It also follows from (@3] that the number of n +1 < j < 2n such that 1 <v(j) <nism—1,ie v
is associated to (m — 1,n) < (m,n). By induction, we have a minimal decomposition

V= Cjn,ncjn,l,n—l T le,l

such that j; < max;ii<r<n(jr +i+1—r,4). However, we claim that j; = 0. To see this, notice that
if j1 > 0, then as

(1 0 on—5+1 ... n n+1 S 2n
GrT\ 1 . o n—j142 ... n+l n—jii+1 ... 2n

it follows that ¢;, 1(n+1) < ¢j,,1(n). It is not hard to see that this inequality persists when applying
the other cycles, but it follows from ([@5) that v(n) < v(n + 1) and this contradiction gives that
j1=0.For 2 <i<n—1, we have ts;t "' = s;,_1, and hence

Cpmw = tot ™" = (tej, nt ") (tej, o1t Th) e (b 0t = Cna1Ci a1 a2

as no of the cycles ¢j;, ¢ = 2,...,n contains s; and thus tcjiyit’l = ¢j,,i—1- S0 we have the
decomposition
w = ck}n;nck}nflfn_l T ck171

with &k, :=n and k; := ji+1, ¢ = 1,...,n — 1. To show that the sequence k; has the property (8@,
we again notice that the inequality holds trivially for k, = n and also for k,_1, as

'n,fr{l<a'jx§n(kj +n—-141—-jn—-1)= n}{lgj)_(gn(kn +n—n,n—1)=max(n,n—1) =n.

Otherwise, for 1 <i <mn — 2 we get

i« . . o _ . o _
k; ]1+1_i+r1n<arxgn(jr+(z+1)+1 ri+1) KITnSa;(_l(kT—FZ—Fl ryi+1)

max (k,+i+1—-rn+i+1l—n)= max (k,+i+1—7r) < max (k. +i+1—r1)
i<r<n—1 i<r<n i<r<n

and hence (8] is true for k,,. We now calculate the length as

n n—1 n
lw)=n+Ll)=n+Y ji=n+)> k=) kn
i=2 i=1 i=1
and from this it follows that the decomposition w = ¢k, nCk, 1,n—1"""Ck,1 IS a minimal one. O
Proposition 6.3. If we have an admissible sequence k= [ky, ky_1,..., k1] € ZT}, then the element
W = ChpynChy_y,n—1"""Chy,1 € Son

is the unique element of minimal length in O, and the admissible sequence from Proposition
coincides with k.

Proof. First, notice that for any sequence of positive integers [jy, . .., j1] such that 1 < j,, < n, the
product

U= Cj,nCjp1,n—1"""Cji 1
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has the property that for 1 < i < m < n, we have (i) < t(m). In fact, as

(1 . j+n—k j+n—k+1 ... j+n .. 2n
i\ 1 ... jAn—k+1 j+n—k+2 ... j+n—k ... 2n

it follows that cx ; does not change the ordering of (1,...,5+n —1) and as
ckg((L..j+n—1)<c(d,....,n+j),

we can deduce that the composition ¢t = ¢;, ncj,_, n—1---¢j,1 does not change the ordering of
(1,...,n).

Let v € O, be the minimal element and let k' be its associated admissible sequence. We are
going to show w = v by proving k = k’. From Proposition [6.I) we know that there exists h, g € S,
such that w = hvg. Since w does not change the ordering of (1,...,n), it follows from the construc-
tion of g that we can assume g = e. Hence w = hwv.

Notice that we have w(2n) = v(2n), since if n+1 < w(2n) < 2n, then w(2n) = (hv)(2n) = v(2n)
and if 1 < w(2n) < n, then as w(2n) = ¢, »(2n) it follows that k, = n and thus w(2n) = n, and
this implies that also v(2n) = cx »(2n) = n. Hence

kn =2n —w(2n) = 2n —v(2n) = k..

. . . . . —1
We can proceed now in the same manner as in the proof of Proposition (6.2)), by considering ¢, ", w

77,7"

and c;nl U- Again, we split the proof into the two cases 1 < k, <n and k,, = n.

Notice that if 1 < k,, < n, then the condition on k gives 1 < k1 < n and thus
w(l) =v(1) = 1. (96)

From (@) it follows that, as w = hv, we have h(1) = 1 and that c,;nl W, c,:nl ,U are in the image of
¢ : So(n—1) — Son given by ([@2).

The proof can be completed by induction on n. If n = 1, then it is easy to see that the proposition
holds. We get that

¢71(Clznl,nv) € Od)*l(c*l w) (97)

kn,mn

is of minimal length (as h(1) = 1, the inclusion follows, and the minimal length of gb*l(c,;nl’nv)
follows from the proof of Propostion [6.2]). Also

¢_1(C;;n1,nw) = Ck,_1,n—1"""Ck;,1 € Son—2

and k; < max;<j<n(kj+i—j+1,4) < n—1. By induction, it follows that (b’l(c,;nl W) = ¢ et ).

kn,n

If k,, = n, let t be as in ([@4]) and consider the permutations t_lc;ﬁlwt and t_lc;_rlnvt. If is not

hard to see that
t71671 — (Cn_’nt)il — gfl,

. 1 2 ... n n+1l ... 2n
g_(n 1 ... n—1 n+1 ... 2n>€S'
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It follows that t~'c; L v € Oy 1 -1, a5

wt

1

Wt

tilc,ﬂlvt = gut = gh™twt = ghg tgwt = (ghg )t 'c;,

By the proof of Proposition[6.2], we have that ¢~ c;}nvt is the element of minimal length in Ot,lcglnwt
and

-1 -1
t cn)nwt =Ckp_1,n " Cky,2-

From the proof of Proposition [6.2] we get that [k,_1,...,k1,0] is an admissible sequence. If we
continue in this way, we get either

kn=Ky,=kp1=k,_ = =ki=k,=n

or we will eventually end up in the first case, if some 1 < k; < n, and then it will follow by induction
that the remaining integers are equal. (|

Proposition 6.4. Let w € O, be of minimal length and w = c,, nCk, y,n—1""-Ck, 1 the decompo-
sition from Proposition[6.2. For an 1 <1 < n, we have

ki = max (kj +i+1-j,1) (98)

if and only if 1 <w(n +1i) <n.

Proof. Let 1 < i < n be such that (@8) holds. The equality (O8) means that for all i < j < n,
the indices of the factors in ck; j = Sjyn—k;Sj+n—k;+1° " Sj+n—1 are all larger than i +n —k; as
by @8), for all i < j <n,

kj+i+1—j§ki$kj+i—j<ki:>
i+n—ki<j—|—n—kj. (99)
Ascp,i(n+i)=n+i—k; and cp(n+4) =n+i for 1 <m < 4, it follows from (@9) that

w(n + i) = Cr, nCho_y -1 Chyi(N+1) =

ChipnChn_1,n—1"" " Chypit1 (N + i — ki) =n+i—k

and as k; > i by (@), we get 1 <n+i—k; <n.

Let us turn to the other direction. We are now going to prove that 1 < w(n + i) < n, implies
k; = max;<j<n(k;j+i+1—7j,4). This follows a scheme similar to the one used to prove Proposition[G.2
we associate to a minimal length w € O, C Sa,, the pair (m, n), where m, is the number of integers
n+1 < j < 2nsuch that 1 < w(j) < n (0 < m < n), and prove the statement by induction
on (m,n), using the ordering ([87). The claim is easy to see by direct inspection for the identity
1
2 1
hold for minimal length elements associated to pairs (m’,n’) < (m,n). For the minimal length
element w € O, C Sa, associated to (m,n), consider w(2n). As in Proposition [6.2] there are two
options

(1) n+1<w(2n) < 2n.

e € Sy, associated to (0,1) and for s; = ( , associated to (1,1). Assume the proposition

51



(2) w(2n) =n.

If n4+1 <w(2n) < 2n, then k, = 2n — w(2n) < n and we can, as in the proof of Proposition [6.2]
consider

-1/ —1
V=07 (¢, ,W) = Chyyn—1"" Chy1 € S2(n—1)-

If is easy to see that 1 < v(n —141¢) <n —1 and, as v is associated with (m,n — 1) < (m,n), by
induction,
k; = max 1(kj+i+1—j,i) = max (kj+i+1—7j,9)
1<Jjs<n

<j<n—

as kp, = 2n —w(2n) <n and thus k, +i+1—n <4.
If w(2n) = n, we consider
V= tilc,ﬂlwt = Ck,,_1,nChkp_am—1"""Chky,2 € Sop.

As in Proposition 6.2 it follows that v is of minimal length in O, and that v is associated to
(m —1,n) < (m,n). Moreover, is it easy to see that 1 < w(n + i + 1) < n. By induction, if
m; = Kj—1, then

ki = mit1 =i+11n<a;x§n(mj—l—(z—i—l)—i—l—j,z—i—l):ir<nja<xn(kj +i+l—j,i+1)=

l_+r1n<ajxgn(mj+(z—|—1)+1—j,z+1):ir<nja<xn(kj—|—z—|—1—j,n—|—z—|—1—n):

Jnax (kj +i+1—j) = max (k; +i+1-59).

6.2 lrreducible *-representations of Pol(Mat,,),

In this section we will complete the proof on the classification of irreducible %-representations of
Pol(Mat,,), described by Theorem [3.6] and the second part of Theorem (1]

Lemma 6.5. Let o, it € San, 0 # p, and let X, Xy be one-dimensional representations of C[SU,],,
for ¢, € [0,2m)%". Then

(1) (o @ xy) 0 ¢ is an irreducible x-representation of Pol(Maty, ), if and only if o is the element
of minimal length in O,.

(2) If 0 € Oy, € Oy, 0 # 1 are elements of minimal length, then
(e @ X) ©C Z (mu @ xy) © C.
Remark 6.6. Lemma[G0 implies the second part of Theorem [{-1].

Proof. (1) Assume that (7, ® x) o ¢ is irreducible. Let w € O, be of minimal length and assume
that 0 # w. Then we know from Proposition that there are g,h € S so that 0 = gwh is a
minimal decomposition. This gives that 7, = 74 ® 7, ® 7. As minimal decompositions of g and
h contain only s; with 1 < <n — 1, it follows that

mg(tjx) = Th(tje) = Okl
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ifeithern+1<j <2norn+1<k < 2n. From this, it is not hard to see that forn+1 < 5,k < 2n
we have
To(tin) = (g @ T @ mp) (tjk) = 1 @ T (tjr) @ 1

and hence (1, ® x,) o ¢ = 7 is not irreducible.
We will now prove the converse to (1) as well as (2).

First, the properties of the minimal element o € O, implies that n < ¢(2n) < 2n. This can be
deduced from the expansion o = ¢, -+ - Cky 1, since 0(2n) = ¢k, »(2n) = 2n — ky,. Notice also that
(e ® Xa) © ¢ composed with the *-automorphism zJ, zj" is equivalent to (Xa ® Tg—1) 0 (. As
{s71s € Os} = O,-1 and £(s) = £(s71), it follows that if o is of minimal length in O,, then o1
is of minimal length in O,-1. This makes it possible to reduce the proof to the cases when o has
the property that either

e n+1<0(2n)<2nor
e 0(2n) =n and 071 (2n) = n.

We remark that these two cases correspond to the classes A and B respectively.

The proof is by induction on n € N. For n = 1, it is easily seen to be true as there are only two

options o = ( ; % > and the identity element o = e; both are of minimal length and correspond

to the Fock representation and the one-dimensional representation respectively. Assume now that
the statement holds for n — 1 > 1. Suppose first that n + 1 < o(2n) < 2n. If [k,,..., k1] is an
admissible string such that
0 = Ckpn """ Cky, 1,

then it follows from Proposition that k, < n,asn+1 < o(2n) = ¢k, n(2n) = 2n — k,. By
the proof of Proposition 6.2} we have a reduced decomposition o = cx, ¢(s) for some s € Sy(,,_1)
of minimal length in O, and the homomorphism ¢ : Sy;,_1) — S2, determined by ¢(s;) = sit1,
i=1,...,2n— 3 (see (O2)). It follows that

Ty = ek, m @ Te(s) (100)
and hence for j = 1,...,n, we can determine
n

W(Zj ) = (Trckn,n & Te(s) @ Xa) © C(Z;l) = QanTey, (tn+j,2n) ®I=

I® -1 RToo T2 ® -+ ® T2 R, 1fn—kn<j§2n
—_— —_—

kn —n + j — 1 factors n — j factors
— ewzgn X le R ® T12 ®17 lf] =n — kn (101)
i ——
k, factors
0 otherwise.

From (I0I]), we see that

(e0) ® (2(Z4)®H@) = (z2(2+)®kn ® 52(Z+)®E<¢<S>>) N (NI pyy kerm(27)*) =: H. (102)
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We can explicitly determine 7., . (tm;), using Lemma 51T and the diagram

1 n—k, n—k,+1 - n—1

n—k, n—k,+1 - n (103)

We have that for eg € £2(Z,)®*" and j # 2n

Ontm.,j€0, if 1 <m<n-—k, and j # 2n,
Tep, n(tntm,j)€0 = { Ongm, jr1€0, if n—k, <m <nandj#2n, (104)
0, if m=n—k, and j # 2n.

The action of 7, . (tk2n)eo is easily identified from (IOI). We can define the *-representation
n’ : Pol(Mat,—1)q — B(H) by the formula

, - J If1< —kn
() = qZ(zm”H smen (105)
Tr(zm—i-l)lH Ifn—kngmgn_l
(see (B3). If we let
tk_17‘_1 1f2§k,]§2n—1
Y(te ) = {5 ! )
k. otherwise,
then it is easy to see that for any ¢ € Sy(,_1)
To(t) Xy 0. (106)

It then follows from (I04) that for 27, € Pol(Mat,),, m,j=1,...n—1

' (2,) = —qm(z,)|n
n

= (_Q)m_n+leian+j Z Tekp.n (tn+m7l) ® Tp(s) (tl,n-i-j)lH =
=1

elonti(—qym= T ® T (s) (En—1)+(m+1),(n—1)+(+1)) | H =
e (—q)™ "I @ mo (Yt 1) 1), o)+ G0 =
eiOn+ti (_q)m—(n—l)l ® s (t(n_1)4_7”’("_1)_,’_],)))|H7
ifl1<m<n-—k, and

' (#h) = (2 40)|u

n

= (_q)m+1—neian+j Z Tekp.n (tn+m+17l) ® Tp(s) (tlj)|H -
=1
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et (—q)™ I @ w0y (En1) 4 (met1).(n-1)+(G+1) [ =
ez‘anﬂ'(_q)m—(n—l)j ® 7Ts(w(t(n71)+(m+l),(n71)+(j+1)))'H —

eitntj (_q)m—(n—l)I ® Ty (t(n71)+m)(n71)+j)))|H, (107)
if n —k, <m <n—1. It follows that

™ = (ms @ Xa) 0 (- (108)

Let now (7, ® Xa) 0 ¢ and (7, ® xg) © ¢ be equivalent *-representations via a unitary operator U.
Then if

0 =Ck,mn" " "Cki,1, H=Cm,n " "Cmql,

it follows from (I0I) that k, = m,,. Thus if k := k,, = m,, < n, it follows that ¢(2n) =2n — k =
1#(2n) and hence n+ 1 < o(2n) = p(2n) < 2n. Hence

o =cknd(s), p=cknod(t) ,
for s,t € Sy(p,—1) of minimal lengths. As U will map
ker((mo ® Xa) 0 ¢)(27,)" = ker((m, ® xp) © () (25,)" (109)
it follows from (I08) that there are xa, X such that
(s ® Xa) © ¢ = (M ® x5) ¢

By induction s =t and hence o = p.

To see that 7 is irreducible, we observe that by ([0I]), any non-zero operator in B(¢%(Z)®* @
(3(Z1)"®) commuting with the range of 7 = (m, , ® Ty(s) @ X) © ¢ can be written in the form
I® A, for A€ B({?(Z,)®"®)). Restricting I ® A to

H = (o) @ £*(Z4)®"®) = £3(24)")

gives that A commutes with the range of 7’ 2 (75 ® x5) o ¢ and hence by induction, A must be a
constant multiple of I.

Assume now that o(2n) =n and 0~1(2n) = n. We claim that in this case we have
O=Chym " Ciyi, kn=mn, k>1 j=1,...,n—1. (110)

That k, = n follows from n = 0(2n) = ¢x, »(2n) = 2n — k,,. To see that all k; are non-zero, notice
that
cirim)<m+1, jk=1,...,n, m=1,...,2n

and hence, as ¢g, n - - Cry,1(n) = n + n, we obtain the claim.

Recall the *-homomorphism ¢ : C[SUsay, ], — C[SUy(,—1)] from Section 5.4 given by

(00, = th; 1<k j<2n-—2
/ Or;1  otherwise
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and let v : Sy(,—1) — S2,, be the homomorphism determined by s; — s;, @ = 1,...,2(n — 1). For
s € Sy(n—1), it follows that
(111)

s 00 = my(y)-

Let now s € Sy(,,—1) be of minimal length in Oy. with decomposition
S = Chky_ 1 m—1"""Chy1-
Notice that by (83]), the cycle ¢y ; € Sp(,—1) has image
V(ckg) =V(Sj4n—1—k *** Sjtn-1-1) = Sj4n—1-k " Sjtn-1-1 = Ckt1,jSj+n—1 € S2n-
Thus, we can write
V() = (Chy_1+1m—182n—2) "+ (Chy+1,180) = (Chp_y+1,n—1" " Chy41,1) - (Sn -+ S2n—2) (112)

as
Ck;+1,jSj4+n—1 = Sj4+n—k;—1 """ Sj4tn—2

commutes with s,, if m > j4+n — 1.

Next we note that if [k,—1,..., k1] is an admissible string, then so is
[n,kn,1 + 1,...,]{31 + 1]

In fact, if not, let
{@+1,fm1§j<n
mj = o
n, if j =n.

Then there exists 1 < i < n (note that for i = n (80) reads as k,, < n), such that

m; > iriba%xn(mj +i+1—34,19)

and as m, +i+1—n =1+ 1, it follows that for m; = k; + 1
ki-i-l>InaXi<j<n(kj+2+i—j,i), ki+1>1+14
i.e. for all integers i < j < n we have

(1) ki+1>kj—|—2+i—jand
(2) ki+1>i+1.

As [kp—1,..., k1] is an admissible string, we have k; < max;<j<n—1(k; +1+¢ — j,4), and since (1)
holds, we must have k; < i. But this contradicts k; + 1 > ¢ + 1. Hence [n,k,—1 +1,..., k1 + 1] is
an admissible string.

Conversely, if [ky, kn—1,..., k1] is an admissible string such that k, = n and k; > 1 for j =
1,...,n —1, then also [k,—1 — 1,...,k; — 1] is an admissible string. This follows from

ki—1< ki+it+1—j,i)—1= ki+i+l—jiitl)—1=
_”gg(fH+ J>1) max (kj +i+1—ji+1)
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= ki+i+tl—j—1i+1—1)= ki —1)+i+1—ji
mmax (kj +i+1—j—1i+ )KI;lSaggl((g )+i+1—7j,i)

for 1 <j<n.

This gives that every o € Sy, of minimal length, such that the decomposition o = ¢, » -k 1
satisfies (10, can be written in a reduced form as

0= cnnY(8)(sn s2n—2) "' = Cnn¥(8)en (113)

for a unique s € Sy(,,_1) of minimal length. Conversely, for any such s € Sy(,,_1), the element on
the right-hand side of (II3]) is of minimal length. As

Cn,n7(5)0n71,n71(2”) =cnn(2n) =n

Cn,n”Y(S)Cr:il,n—l(”) =cnnY(8)2n —1) = cun(2n —1) =2n
it thus follows that o(2n) = n and o~!(2n) = n hold if and only if (I13)) holds.

Let now o = ¢ ny(8)c 1 € Sap, be such element, then for any x, we let

n—1,n—

7 : Pol(Mat, ), — B({*(Z4)®" ® (2206 @ 2(2,)8 1)

be the x-representation

(T ® Xa) 0 C = (Te,,,, @ Ty(s) @ Tl ® Xa) o ¢ =: . (114)
A similar calculation as in (I0T]) gives that
(Mg ker m(z;)") N (Nfi=y kerm(2f)*) = (eo) @ €3(Z1)*0) @ (eo) =: H. (115)

We can then define a s-representation 7’ of Pol(Mat,,—1)q by

w’:z}Hw(z§)|H, h,j=1,...,n—1. (116)
In fact, (I04) together with
Tt n,l(tmﬂﬂ)eo = (—Q)0m+1,n+je0, if1<j<mnandm#2n—1, (117)
and
Ty (s)(tij) = 0i51, if either ¢ € {2n —1,2n} or j € {2n —1,2n}
give form,j=1,...,n—1

2n
m(2h)lm = e (=)™ Y ey (ngm) @ Toy() (b)) @ =1 (ting i)l =

n—1,n—1

1i=1
. 2n—2
S (=)™ Y W (bnrmt) @ o) (t1) @ e (bineg) 1+
1i=1
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2n

+ eltn+j (_q)mfn Z T n (tn+m,l) RI® Wc;il o (tl,n+j)|H =
1=2n—1

= 0 by (I0) and (1D
2n—2

= ¢lonti(—q)m ! Z Snmar1] @ Tyey(tii) @ iv1majl|m =
li=1

— elomt; (_q)mfnﬁ’ll ® Ty (s) (tn+mfl,n+j71) Iy =
e (=g)" T @ Wy (b 1) tm,(n-1)+5) @ L. (118)

Hence
7' 2 (7 ® Xa) 0 C (119)

for some x5. We can then again use induction, as in the first case, to get that
(T @ Xa) o (= (WM(X)XL?)OC
implies that 0 = p and also that (7, ® Xa) o ¢ is irreducible for every yq. (|

Proposition 6.7. Let o € O, be the element of minimal length and for ¢,0 € [0,27)*", let X, Xo
be one-dimensional representations of C[SUaylq. Then

(o ® Xy) 0 ¢ = (16 ® x0) 0 ¢
if and only if p; = 0; for those i such that
n+1<o(i) <2n.
Proof. First, in the case of the Fock representation, we have by its uniqueness that
TEn =75 0( = (T ® Xyp) 0

for any one-dimensional *-representation x,. As in this case

. 1 ... m n+1l ... 2n
S_<n+1 ... 2n 1 n) (120)

we therefore have
1<s(n+j)<n, forallj=1,...,n.

Assume now that 0 # s. As ¢ is the minimal length element in O,, we have from the proof of
uniqueness in Proposition[6.I] that (1) = 1. Let {41, ..., %} be the integers such that n+1 < i; <
2n and 1 < o(i;) <n,j=1,...,m and let 8 € [0,27)?" be defined by the formula

i, if7 € {ir,... 0im}
B =10, if ¢ {ir,... im}U{1} (121)
- Z;n:l @i; (mod2m), ifi=1

It follows that x, = x5 ® Xa for some a € [0,27)*" with oy, =0 for j =1,...,m, and thus by (20)

W%J(7TU®X90)OC:(7T<T®X,8®Xa)o<g(XU*I(B)@)T‘—U@XQ)OC:(7T<T®Xa)o<
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where the last equality follows from the fact that o=(3); = 0 fori = n+1,...,2n. Clearly by @),
the x-representation (7, ® x)o ¢ does not depend on «; for i = 1, ..., n. Hence, by Proposition [6.4]
if o = ck,n- - Cry 1 then (T, ®Xa)oC only depends on ,,4; such that k; < max;j<n(k;+i+1—7,1).

We now prove that if two x-representations

T = (T @ Xp) 0(, T2 := (T ®Xp)0C

are equivalent, then ,,4; = 0,4, for any n 4 i such that n+ 1 < o(n +1i) < 2n.

Again, we prove this by induction. This can be seen to hold for n = 1, simply by inspection.
Let U be an unitary intertwining 7, and mo. Let us first assume that n + 1 < o(2n) < 2n and let
H,, Hs be given by (I02)) for m; and 7o respectively. By ([I09), the restriction of U is then a unitary
map Hy; — Ho. It follows from (IUI) that we must have @2, = 02,,. Moreover, if (7, ® x3) o ¢ and
(s ® xg) o ¢ are the restrictions of m; and w3 to Hy and Hy respectively, given by (I05), if follows
from ([I07) that we can assume

Qp—1+j = Qnij, Hn_1+j = 9n+j, j=1,....,n—1. (122)
By induction, it follows that

Ontj = Qn—14j = 145 = Oy j

if n <s(n—147) <2n—2. But since 0 = ¢, n¢(s), by the proof of Proposition 6.2l and ([I0T), it
follows from cx,, n({n +1,...,2n}) = {n+1,...,2n} and the definition of ¢ : S5(;,_1) — Say, that
for j=1,...,n—1 we have

n+l1<on+j)<2n

if and only if
n<sn+j)<2n-2.

Consider now the case when o(2n) = n and 0~!(2n) = n. Denote by H; and H, the subspaces
defined by ([[IH) for m; and 7y respectively. As before, the restriction of U is a unitary from H; to
H, intertwining the restricted representations of m; and o, the latter equivalent to (75 ® x5) © ¢
and (ms ® xg) o ¢ respectively. By (II8), we can assume that &,—14; = qnq; and Op_14; = Opqj
for j =1,...,n— 1. It follows again by induction that

Ontj = Qn—14j = 145 = Oy j

ifn <s(n—14j) < 2n—2. By (II8) and (I13)), we have o = cnﬂﬁ(s)c;il)n_l. Forj=1,...n—1,
we have cgfl)nfl(n—l—j) =n—14jand ¢y n(n—1+7) = n+j. Hence it follows from the definition
of v that for j =1,...,n — 1 we have

n+l1<o(n+j)<2n

if and only if
n<sn—14j) <2n-—2.

This completes the proof. O
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Proof of Theorem [3.0. For each admissible k, we have that 7, is irreducible, which follows from
Lemma [6.51 We now prove that the map k, — [m,] is a bijection.

Recall the C*-algebra homomorphism 7, : C*(S) — C determined by 7,(S) = e, for ¢ €
[0, 27). It is not hard to see that for alli =1,...,2n—1, the composition rgom; = € : C[SUy,]q — C
is the co-unit of C[SUs,|,. We can thus write 7, as

T = Trckn,n Y ﬂ-ck @ ® Trckl,l =

n—1:n—1

( TR QMR- RI|Q|T77Q® QMR- RI|® &

n — k, times ky times n — kn,_1 times kn—1 times

TR - Q@mRIQ---1 ) 0 (Tepp @Tepny @ @M, ) =

n — ki1 times k1 times

( TR MRV RI|R|T7Q® QMR- R |® &

n — k, times ky times n — kn,_1 times kn—1 times

e tnels 9l ) O(WCn,n @ ey o ®"'®7Tcn,1)
n — k1 times k1 times

and 7, ; corresponds to the j'th row of the grid ([28). As it was explained in section 3.1, the
application of 7y to a box is visualized by coloring that box dark gray. Assume now that = =
(me @ xg) © C, then, as we showed above, we can assume (; # 0 if and only if ¢ is such that
k; < max;<j<n(kj +i+ 1 — j,4). In particular, we will have k; < n for such ¢’s and hence for this

row we can write

(Tos © Tntioki—1) O Ty, , = | 0® -+ @7 OTo, ®TQ - QI | o, . (123)
n —k; — 1 times k; times

Visually, this row corresponds to the 1 x n block

1 e n_ki... e n

The *-homomorphism 7, o ; is easily seen to be x,), where

—p, ifj=1
o ={p  ifj=itl
0, otherwise

By using (26]), we see that we can write (I23]) as Xp(nti—ki—1) & e, and

Xw(n+i—ki—1) ® chij (tk,n+i) = eikpﬂ'cki,i (tk,n+i)7 k= 15 RS 2n. (124)
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If we now have an irreducible *-representation (7, ® xg) o ¢, with 0 = ¢, n - - - Ck, 1, then consider
the s-representation of Pol(Mat, ), defined as

( TR T T, AL - QL | ® TR Ty OTa, QL QL&
——— — ——— S——

n — ky, — 1 times kn times n —knp—1 — 1 times kn—1 times (125)

Rl TR Ty BTa, QLR - Rt )o(ﬂcnn@)mnnl@-“@mnl),

n — ki1 — 1 times k1 times

For j > i we have 7, ,(tkn4;) = Oknts1 and hence for j =1,...,n
(/n-cn,n ® T‘—Cn,nfl ® T ® 7Tcn,1)(tk37n+j) =

= (ch,n Ty @& ch,j)(tk,nnﬁ) ® 1. (126)
If we combine (I24) with (I26]), then it follows that (I2H) applied to tj 4, becomes

( TR QT Ta, QL QL ]| &® TR QT BTa, QLR QL|®
—— —— —— N——

n — kn, — 1 times ky times n—k,_1— 1 times kn—1 times

R TI® - ® T ®Taj®b®"'®b >O(7Tcn,n®77cn,n1®"'®7Tcn,j)(tk,n+j)_

n —kj — 1 times k;j times

_eia]‘< 7-0®...®7—0 ®Tan®b®"'®b (%) 7—0®...®7—0 ®Tan,1®b®"'®L ®
S——— — S——— SN——

n — k, — 1 times kn times n—knp_1 — 1 times kn—1 times

- ® T0® - QT) RTa;y, QLR QL ) © (ch,n QO Ty g @0 ®70kj,j)(tk,n+j)

n —kjt1 — 1 times kjy1 times

and thus we can determine the constants o; inductively, starting at the largest index, in such way
that (I25) is equivalent to 7, ® xx where A,,4; coincides with 8,1; if n+1 < o(n+ ) < 2n. This,
together with Proposition and Proposition [6.7] shows that every irreducible *-representation of
Pol(Mat,, ), can be written uniquely in the way (I25) and hence can be represented uniquely as an
admissible string

[(kn, O[n), (knfl, O[nfl), ey (kl, 041)]

(subject to the conditions (B3]) and (B7))) as was claimed in Theorem [3.6l O

6.3 Irreducible *-Representations Annihilating The Shilov Boundary

In [2],_the author, together with O. Bernstein and L. Turowska, determined the Shilov boundary
ideal J,, for the closed sub-algebra (note, not a x-algebra)

AD,) C Cr(Dy,)
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generated by the images ‘
mrn(zl), kji=1,2,...,n

to be the closure, under mp,y, of the two-sided ideal J,, C Pol(Mat,,), generated by

E?:l q2n—a—Bz§‘(z§j)* _50‘[37 a,/BZ 1,___777“

From [I4], we have the result
Pol(Maty,)q/Jn = ClUp]q,

where C[U,], is the x-algebra of functions on the quantum U, (see [5]). By Lemma 12 in [2],
every irreducible x-representation that annihilates the Shilov boundary ideal is equivalent to a
*-representation 7 of the form m(z]) = e (—q)*"m,(tx;), k,j = 1,...,n for an irreducible *-
representation 7, : C[SU,], — £2(Z4)®“?) where o € S,,, and some \; € [0, 27). If we let & be the
image of o under the homomorphism S, — Sa,, defined as s; — s,,1; on the adjacent transpositions,
then the *-representation 75 : C[SUs,| — B(£?(Z,)®*(?)) (since £(5) = £(0)) satisfies

T (tntkntj) = To(thj)-

By letting
Spl :...:gpn71 :0
On = — Z Ar (mod 27)
k=1
(Pn-l-j: e j=1,...,n
it follows that the %-representation (75 ® x,,) o ¢ coincides with 7. If we determine the admissible
string [(kn, Bn), - - -, (k1, 51)] corresponding to m, then as & leaves {n+1,...,2n} invariant, it follows
from Proposition that
ki<maXi<an(kj+i+1—j,i), i:l,...,n . (127)
We claim that from ([I21), it follows that
ki<i, 1=1,...,n. (128)

In fact when ¢ = n, we have (I28) from (I21). Assume now that (I28) holds for indices j such that
n > j >, then

ks < ko bitl— i) = ki — (G —1)+1.4) = i
max (kj +i+1—j,0) = max (kj — (j = 1) +4,1) =1
as k;j — (j — 1) +4 < i holds for n > j > ¢ by induction. Thus (I28) holds also for i. It follows that

the diagrams of irreducible *-representations that annihilates the Shilov boundary only contains
white squares in the the strictly lower right sub-triangle

NV

1 2 3 4---n
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