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Abstract

We study ∗-representations of the quantized algebra Pol(Matn)q of polynomials on the space of
n × n-matrices. We prove that any such representation can be lifted to a ∗-representation of the
∗-algebra C[SU2n]q. Using this result we prove the existence of the universal enveloping C∗-algebra
of Pol(Matn)q and show that the Fock representation of Pol(Matn)q can be extended to a faithful
representation of this C∗-algebra; the latter can be considered as a quantization of the algebra of
continuous functions on the unit matrix ball Dn = {x ∈ Matn : x∗x ≤ 1}. Finally, we classify all
irreducible ∗-representations of Pol(Matn)q using a diagram approach.

1 Introduction

Let q ∈ (0, 1). In [12], L. Vaksman and S. Sinelshchikov put forward a construction of a q-analogue
of Hermitian symmetric spaces of non-compact type via a q-analogue of the Harish-Chandra em-
bedding. This construction gives a ∗-algebra that is a q-analogue of the ∗-algebra of polynomial
functions on the bounded symmetric domain that is the image of the Harish-Chandra embedding.
In the simplest case (see [12], section 9), this yields the algebra Pol(C)q, the quantum disc; this is
the ∗-algebra generated by a single generator z subject to the relation

z∗z = q2zz∗ + (1− q2)I.

Another particular case, derived explicitly in [11], gives the algebra Pol(Matn)q, a q-analogue of
polynomial functions on the open matrix ball Dn := {Z ∈ Matn : Z∗Z < I}. In [10, 11, 14, 15],
L. Vaksman et. al. considered Pol(Matn)q more carefully and explicitly developed some of the
more general theory from [12]. In particular, the Fock representation πF,n of Pol(Matn)q was
introduced and proved to exist in [10]. This is the unique (up to equivalence), faithful, irreducible
∗-representation of Pol(Matn)q determined by a non-zero vector v subject to the condition

πF,n(z
j
m)∗v = 0, m, j = 1, . . . , n

for the set of generators {zjm}nm,j=1 ⊆ Pol(Matn)q (see section 2.1). A complete list of irreducible
∗-representations of Pol(Mat2)q was given in [13] and in [8] the inequality

‖π(a)‖ ≤ ‖πF,2(a)‖, ∀a ∈ Pol(Mat2)q (1)
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was derived for any ∗-representation π. As a consequence, this shows that the universal enveloping
C∗-algebra of Pol(Mat2)q exists and is isomorphic to the closure of πF,2(Pol(Matn)q).

In [2], the author, together with O. Bershtein and L. Turowska considered the C∗-algebra
CF (Dn)q, the completion of the image of πF,n. We then described the non-commutative Shilov
boundary (see [1]) for the closed sub-algebra AF (Dn)q ⊆ CF (Dn)q, the closure of the image under
πF,n of the ’analytic polynomials’ in Pol(Matn)q. To do this, we proposed a novel construction of
the Fock representation as the composition πF,n ∼= πu ◦ ζ of an embedding ζ of Pol(Matn)q into
the quantum group C[SU2n]q and an irreducible ∗-representation πu of C[SU2n]q. We introduced
a neat way of calculating the action of the generators of Pol(Matn)q using certain directed paths
and diagrams. Moreover, it was observed that several of the known irreducible ∗-representations
of Pol(Matn)q factors through the C∗-algebra CF (Dn)q. This raises the question of whether for
general n ∈ N, all irreducible ∗-representations could be constructed as quotient representations of
πF,n, or equivalently, if the universal enveloping C

∗-algebra of Pol(Matn)q exists and is isomorphic
to CF (Dn)q.

In this paper we answer this question affirmatively and we also give a complete picture of the
irreducible representations of Pol(Matn)q. The main idea in the proof is to use the previously
mentioned embedding ζ : Pol(Matn)q → C[SU2n]q and to prove that for every irreducible ∗-
representation π of Pol(Matn)q on a Hilbert spaceK, we can lift π to an irreducible ∗-representation
Π of C[SU2n]q on the same space K, such that

π = Π ◦ ζ. (2)

The result (2) is stated more precisely in Theorem 4.1 and the proof makes up Sections 5. In
Corollary 4.2 we then use the lifting result to prove (1) for general n ∈ N. By Soibelman’s result
(see [6]), all irreducible ∗-representations of C[SU2n]q are parametrized by elements in the sym-
metric group S2n (the Weyl group of su2n) and 2n-tuples φ = (φ1, . . . , φ2n) ∈ [0, 2π) such that
∑

j φj ≡ 0 (mod 2π). In Section 6 we use this result to do a more careful analysis of which irre-
ducible ∗-representations Π of C[SU2n]q that give rise to non-equivalent irreducible ∗-representation
π = Π◦ ζ of Pol(Matn)q. It turns out that for π = Π◦ ζ the element s ∈ S2n corresponding to a lift
Π is uniquely determined while the coordinates of the corresponding φ = (φ1, . . . , φ2n) are uniquely
determined only for those indices n+ 1 ≤ j ≤ 2n such that n+ 1 ≤ s(j) ≤ 2n. We then use this to
give a presentation of the irreducible ∗-representations of Pol(Matn)q as quotient representations of
πF,n (see Section 3.1). One advantage of this presentation is that it yields an easy way to calculate
the action of the generators, by use of directed paths and diagrams in a similar way as for πF,n.

This paper is organized as follows: In section 2 we introduce the ∗-algebras Pol(Matn)q and
C[SUn]q and review some of their basic theory.

In Section 3 we explain how to associate ∗-representations of Pol(Matn)q to some kind of directed

diagrams and how to use these diagrams to compute the images of the generators zjk under the
∗-representations. We will also explain there how every irreducible ∗-representation of Pol(Matn)q
can be realized as one of these diagrams and we give a complete classification of irreducible ∗-
representations of Pol(Matn)q.

In Section 4, we state the main result, Theorem 4.1, and we show, in Corollary 4.2, how it
implies that the universal enveloping C∗-algebra of Pol(Matn)q is isomorphic to πF,n(Pol(Matn)q).
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The beginning of Section 5 is devoted to explaining, in a slightly informal way, how we need to
split the proof of the main result into two cases, A and B, and the idea behind the mechanics of
the proof of Theorem 4.1 in both cases. The hope is that this will make the later sections clearer.
Subsections 5.3 and 5.4 complete the proof of Theorem 4.1 for the case A and B respectively.

In Section 6, we use Theorem 4.1 to complete the classification of irreducible ∗-representations
of Pol(Matn)q as it was presented in Section 3.

2 The ∗-algebras Pol(Matn)q and C[SUn]q

2.1 Pol(Matn)q

In what follows C is a ground field and q ∈ (0, 1). We assume that all the algebras under con-
sideration has a unit I. Consider the well known algebra C[Matn]q defined by its generators zαa ,
α, a = 1, . . . , n, and the commutation relations

zαa z
β
b − qzβb z

α
a = 0, a = b & α < β, or a < b & α = β, (3)

zαa z
β
b − zβb z

α
a = 0, α < β & a > b, (4)

zαa z
β
b − zβb z

α
a − (q − q−1)zβa z

α
b = 0, α < β & a < b. (5)

This algebra is a quantum analogue of the polynomial algebra C[Matn] on the space of n × n-
matrices. Let A = (aj,k)j,k ∈ Mn(Z+) be a n × n matrix of positive integers aj,k, and denote by
z(A) the monomial

z(A) :=
(znn)

an,n(zn−1
n )an,n−1 . . . (z1n)

an,1(znn−1)
an−1,n . . . (z1n−1)

an−1,1 . . . (zn1 )
a1,n . . . (z11)

a1,1 .
(6)

It follows from the Bergman diamond lemma that monomials z(A), A ∈Mn(Z+), form a basis
for the vector space C[Matn]q. Hence C[Matn]q admits a natural gradation given by deg(zjk) = 1,
and in general deg(z(A)) = |A|, where

|A| =
n∑

k,j=1

ak,j . (7)

In a similar way, we write C[Matn]q for the algebra defined by generators (zαa )
∗, α, a = 1, . . . , n,

and the relations

(zβb )
∗(zαa )

∗ − q(zαa )
∗(zβb )

∗ = 0, a = b & α < β, or a < b & α = β, (8)

(zβb )
∗(zαa )

∗ − (zαa )
∗(zβb )

∗ = 0, α < β & a > b, (9)

(zβb )
∗(zαa )

∗ − (zαa )
∗(zβb )

∗ − (q − q−1)(zαb )
∗(zβa )

∗ = 0, α < β & a < b. (10)

A gradation in C[Matn]q is given by deg(zαa )
∗ = −1.

3



Consider now the algebra Pol(Matn)q, whose generators are zαa , (z
α
a )

∗, α, a = 1, . . . , n, and the
list of relations is formed by (3) – (10) and

(zβb )
∗zαa = q2 ·

n∑

a′,b′=1

n∑

α′,β′=1

Rb
′a′

ba Rβ
′α′

βα · zα′

a′ (z
β′

b′ )
∗ + (1− q2)δabδ

αβ , (11)

with δab, δ
αβ being the Kronecker symbols, and

Rklij =







q−1, i 6= j & i = k & j = l

1, i = j = k = l

−(q−2 − 1), i = j & k = l & l > j

0, otherwise.

The involution in Pol(Matn)q is introduced in an obvious way: ∗ : zαa 7→ (zαa )
∗.

It is known from [10] (Corollary 10.4) that we have an isomorphism of vector spaces

C[Matn]q ⊗ C[Matn]q → Pol(Matn)q (12)

induced by the linear map a⊗ b 7→ a · b. Thus, we can consider the algebras C[Matn]q and C[Matn]q
as sub-algebras of Pol(Matn)q, if we identify them with the images of C[Matn]q⊗I and I⊗C[Matn]q
respectively.

For the ease of reference, we split (11) into 4 cases that we write down explicitly as

1. If a 6= b, α 6= β
(zβb )

∗zαa = zαa (z
β
b )

∗. (13)

2. If a = b, α 6= β

(zβa )
∗zαa = qzαa (z

β
a )

∗ − (q−1 − q)

n∑

j=a+1

zαj (z
β
j )

∗. (14)

3. If a 6= b, α = β

(zαb )
∗zαa = qzαa (z

α
b )

∗ − (q−1 − q)
n∑

j=α+1

zja(z
j
b)

∗. (15)

4. If a = b, α = β

(zαa )
∗zαa = q2zαa (z

α
a )

∗ − (1− q2)

n∑

j=α+1

zja(z
j
a)

∗ − (1− q2)

n∑

j=a+1

zαj (z
α
j )

∗+

q−2(1− q2)2
n∑

j=α+1,m=a+1

zjm(zjm)∗ + (1− q2)I. (16)
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2.2 The Quantum group C[SUn]q

Recall the definition of the Hopf algebra C[SLn]q. It is defined by the generators {ti,j}i,j=1,...,n

and the relations

tα,atβ,b − qtβ,btα,a = 0, a = b & α < β, or a < b & α = β,

tα,atβ,b − tβ,btα,a = 0, α < β & a > b,

tα,atβ,b − tβ,btα,a − (q − q−1)tβ,atα,b = 0, α < β & a < b,

detq t = 1.

Here detq t is the q-determinant of the matrix t = (ti,j)
n
i,j=1.

It is well known (see [4] or other standard book on quantum groups) that C[SUn]q
def
= (C[SLn]q, ⋆)

is a Hopf ∗-algebra. The co-multiplication ∆, the co-unit ε, the antipode S and the involution ⋆
are defined as follows

∆(ti,j) =
∑

k

ti,k ⊗ tk,j , ε(ti,j) = δij , S(ti,j) = (−q)i−j detq tji,

and
t⋆i,j = (−q)j−i detq tij ,

where tij is the matrix derived from t by discarding its i-th row and j-th column.

Let {ek|k ∈ Z+} be the standard orthonormal basis of ℓ2(Z+) and let S be the isometric shift
Sek = ek+1 on ℓ2(Z+). For q ∈ (0, 1), we now introduce the operators Dq, Cq ∈ B(ℓ2(Z+)) given
by the formulas

Cqem =
√

1− q2mem, Dqem = qmem for all k ∈ Z+.

Now let

T11 = S∗Cq, T12 = −qDq,
T21 = Dq, T22 = CqS

.
(17)

It is not hard to verify the formulas

Dq =
∑∞
j=0 q

jSj(I − SS∗)S∗j , C2
q = I −D2

q .

It follows from this that Dq, Cq ∈ C∗(S), the C∗-algebra generated by S, and therefore Tij ∈ C∗(S),
for i, j = 1, 2.

Notice that the following relations hold

T11 = T ∗
22 T11T22 − qT12T21 = 0 T12T21 = T21T12

T11T12 = qT12T11 T11T21 = qT21T11 T21 =
√
I − T22T11

T11T22 = q2T22T11 + (1− q2)I
(18)

from which we conclude that the operators Tij determine an irreducible ∗-representation π :
C[SU2]q → C∗(S) ⊂ B(ℓ2(Z+))

π(tij) = Tij , 1 ≤ i, j ≤ 2. (19)
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For 1 ≤ i ≤ n− 1, let φi : C[SUn]q → C[SU2]q be the ∗-homomorphism determined by

φi(ti,i) = t1,1, φi(ti+1,i+1) = t2,2,
φi(ti,i+1) = t1,2, φi(ti+1,i) = t2,1

and φi(tk,j) = δk,jI otherwise.
(20)

Then πi = π ◦ φi is a ∗-representation of C[SUn]q on ℓ2(Z+). Moreover πi(C[SUn]) ⊆ C∗(S).

Let si denote the adjacent transposition (i, i+ 1) in the symmetric group Sn.

Definition 2.1. For an element s ∈ Sn consider a reduced decomposition of s = sj1sj2 . . . sjm into
a product of adjacent transposition and put

πs = πj1 ⊗ · · · ⊗ πjm .

It is known that πs is independent of the specific reduced expression of s, in the sense that
another reduced decomposition gives a unitary equivalent ∗-representation.

Recall that the length of s ∈ Sn, denoted by ℓ(s), is the number of adjacent transpositions in a
reduced decomposition of s = sj1sj2 . . . sjℓ(s) . For the identity element e ∈ Sn, we let ℓ(e) = 0. For
s, t ∈ Sn, it is easy to see that the inequality

ℓ(st) ≤ ℓ(s) + ℓ(t).

holds, and that ℓ(s−1) = ℓ(s).

Let ϕ = {ϕ1, . . . , ϕn} ∈ [0, 2π)n be a n-tuple such that

n∑

j=1

ϕj ≡ 0 (mod 2π).

Then we can define a one-dimensional ∗-representation χϕ : C[SUn]q → C by the formula

χϕ(tij) = eiϕjδij . (21)

From the work of Soibelman, the following is known (with Sn the Weyl group of SUn)

Proposition 2.2. [ [6], Theorem 6.2.7] Every irreducible ∗-representation Π of C[SUn]q is equiv-
alent to one of the form

πs ⊗ χϕ (22)

for s ∈ Sn and ϕ = [ϕ1, . . . , ϕn] ∈ [0, 2π)n,
∑n
j=1 ϕj ≡ 0 (mod 2π). Conversly, such pairs give rise

to non-equivalent irreducible ∗-representations of C[SUn]q.

It follows from Proposition 2.2 that for every s ∈ Sn and ϕ = [ϕ1, . . . , ϕn] ∈ [0, 2π)n, such
that

∑n
j=1 ϕj ≡ 0 (mod 2π), there is another n-tuple ϕ′ = [ϕ′

1, . . . , ϕ
′
n] ∈ [0, 2π)n,

∑n
j=1 ϕ

′
j ≡ 0

(mod 2π), such that
πs ⊗ χϕ = χϕ′ ⊗ πs. (23)

A direct calculation, shows that if 〈·, ·〉 is the inner product on (ℓ2(Z+))
⊗ℓ(s) and e0 = e0⊗· · ·⊗e0 ∈

(ℓ2(Z+))
⊗ℓ(s), then for Π = πs ⊗ χϕ

〈Π(tij)e0, e0〉 = eiϕj (−q)lsj δi,s(j), (24)
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with lsj = #({1 ≤ k < j|s(j) < s(k)}) (#(·) denotes the number of element in the set). Notice that
the right-hand side of (24) completely determines s and ϕ. We can use (24) to determine ϕ′ in the
right-hand side of (23) to be

ϕ′ = s−1(ϕ) := [ϕs−1(1), . . . , ϕs−1(n)] (25)

so that
πs ⊗ χϕ ∼= χs−1(ϕ) ⊗ πs. (26)

3 ∗-Representations of Pol(Matn)q

The Fock representation
πF,n : Pol(Matn)q → B(HF,n)

is known to be a ∗-representation of Pol(Matn)q with the property that there exists a cyclic non-zero
unit vector v0 ∈ HF,n, called a vacuum vector, such that

πF,n(z
j
k)

∗v0 = 0, k, j = 1, . . . , n

(see [10]). Strictly speaking, the term vacuum vector refers to the subspace generated by v0, but
we will abuse the terminology slightly by calling a nonzero vector v ∈ H a vacuum vector for
Pol(Matn)q if there exists a ∗-representation π : Pol(Matn)q → B(H) such that π(zjk)

∗v = 0 for all
1 ≤ k, j ≤ n. It is then clear that the sub ∗-representation of π generated by v is isomorphic to the
Fock representation.

The following is known from [2] [Corollary 1].

Proposition 3.1. The set {z(A)v0|A ∈Mn(Z+)} is an orthogonal basis for HF,n and z(A)v0 6= 0
for all A ∈Mn(Z+).

Remark 3.2. The ordering of the generators {zjk} is done slightly different in [ [2],Corollary 1],
but the statements are equivalent as the difference in ordering is restricted to the columns in the
generator matrix (zjk)k,j and the elements in the columns q-commutes by (3).

We collect some results regarding ∗-homomorphisms on Pol(Matn)q.

Lemma 3.3. (1) The map zjk 7→ zj+nk+n uniquely extends to an injective ∗-homomorphism ρ :
Pol(Matn)q → Pol(Mat2n)q.

(2) There is a surjective ∗-homomorphism ξ : Pol(Matn)q → C[SUn]q such that ξ(zjk) = (−q)k−ntk,j .
The integer n in the above ∗-homomorphisms will always be clear from context.

Proof. That ρ is a well defined ∗-homomorphism can be seen by noticing that equation (11) for
zjk only involves generators zlm with m ≥ k and l ≥ j and its form depends only on the relative

difference (n− k, n− j), and not on the particular n. Hence, for all m ≥ n, the map zjk 7→ zj+m−n
k+m−n

can be extended in a unique way to a ∗-homomorphism from Pol(Matn)q to Pol(Matm)q. Ifm = 2n,
we get the ∗-homomorphism ρ. From [14] (Theorem 2.2), we have that the ∗-homomorphism ξ is
well defined and surjective. By [2] (Theorem 2), the Fock representation πF,n is equivalent to a
representation of the form πs◦ξ◦ρ, for a ∗-representation πs of C[SU2n]q. As the Fock representation
is faithful, it follows that ρ must have trivial kernel.
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We also define the ∗-homomorphism ζ : Pol(Matn)q → C[SU2n]q by

ζ := ξ ◦ ρ : zjk 7→ (−q)k−ntn+k,n+j . (27)

As in the proof of Lemma 3.3, πs ◦ζ = πs ◦ξ ◦ρ ∼= πF,n gives that ζ is an injective ∗-homomorphism
from Pol(Matn)q to C[SU2n]q.

In the next subsection, following [2] we present a method that allows one to describe explicitly
the Fock representation by means of diagrams and directed paths. We then show how to modify
these diagrams in order to get a similar description of any irreducible ∗-representation of Pol(Matn)q
up to equivalence.

3.1 Directed Path Presentations of ∗-representations
There is a diagrammatic way of calculating πF,n(z

j
k) that was introduced in [2], using hooks and

arrows on a n× n grid labelled in the following way

1 2 3 4 . . . n

n

...

4

3

2

1

(28)

where every square corresponds to a factor C∗(S) ⊆ B(ℓ2(Z+)) in the tensor product C∗(S)⊗n
2

.
We order the factors by letting the lower left square corresponds to the first factor, the square
directly above corresponds to the second factor, proceeding up the first column, and then once we
are done with the first column we proceed to the second column etc. So for example, in

C∗(S)⊗22 = C∗(S)
1

⊗ C∗(S)
2

⊗ C∗(S)
3

⊗ C∗(S)
4

,

the squares corresponds to the factors

1 2

2

12

1

4

3

We now represent the operators Tij and the identity I graphically as

T12  (29)

T21  (30)

T11  (31)

T22  (32)

I  (33)
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Elementary tensors in C∗(S)⊗n
2

with Tij as factors can then be represented by n × n grids with
hooks and arrows (29)- (33) placed at the corresponding boxes. So, for example, the operator

T21 ⊗ T12 ⊗ T11 ⊗ I ∈ C∗(S)⊗22 will correspond to the diagram

1 2

2

1

To represent the images of generators of Pol(Matn)q under the Fock representation, we are going to
use directed connected paths from the bottom side to the right side of the n×n grid drawn with the
hooks and arrows. The different terms in the image of πF,n(z

j
k) can then be represented as (−q)k−n

times the sum of elementary tensors corresponding to all possible diagrams with connected paths
from the bottom side integer k to the right side integer j. For instance, the image of πF,3(z

1
1) is

(−q)1−3 times the sum of the operators in C∗(S)⊗32 corresponding to the diagrams

1 2 3

1

3

2

1 2 3

1

3

2

1 2 3

1

3

2

1 2 3

1

3

2

1 2 3

1

3

2

1 2 3

1

3

2

Written out, we see that the image of πF,3(z
1
1) in C

∗(S)⊗32 is the operator

(−q)−2(T21 ⊗ T21 ⊗ T22 ⊗ I ⊗ I ⊗ T12 ⊗ I ⊗ I ⊗ T12 + T21 ⊗ T22 ⊗ I ⊗ I ⊗ T11 ⊗ T22 ⊗ I ⊗ I ⊗ T12+

T22 ⊗ I ⊗ I ⊗ T11 ⊗ T21 ⊗ T22 ⊗ I ⊗ I ⊗ T12 + T21 ⊗ T22 ⊗ I ⊗ I ⊗ T12 ⊗ I ⊗ I ⊗ T11 ⊗ T22+

T22 ⊗ I ⊗ I ⊗ T11 ⊗ T22 ⊗ I ⊗ I ⊗ T11 ⊗ T22 + T22 ⊗ I ⊗ I ⊗ T12 ⊗ I ⊗ I ⊗ T11 ⊗ T21 ⊗ T22).

For every ϕ ∈ [0, 2π), we have a ∗-homomorphism τϕ : C∗(S) → C determined by τϕ(S) = eiϕ. If

we apply τϕ to any of the factors in C∗(S)⊗n
2

and compose this with the Fock representation, we get
a new (but not necessarily irreducible!) ∗-representation of Pol(Matn)q. As an example, by applying

τϕ on the n’th factor in C∗(S)⊗32 we can get the so-called coherent representation, determined by
the presence of a cyclic vector Ω such that (zij)

∗Ω = 0, if (i, j) 6= (1, 1) and (z11)
∗Ω = e−iϕΩ . It is

well known [3] (Proposition 1.3.3) that the coherent representation is irreducible and by [2] (Lemma

7) it can be obtained by applying τϕ to one of the factors in C∗(S)⊗n
2

. In what follows we will prove
that all irreducible ∗-representations of Pol(Matn)q can be acquired by applying homomorphisms
τϕi

onto a subset of the factors. In our n × n grid we represent a C∗(S) factor that has had τϕ
applied to it by coloring the corresponding box in gray.

1 2 3

1

3

2

(34)

9



(here, τϕ has been applied to the first tensor factor). Notice that τϕ(T12) = τϕ(T21) = 0 as they
are both compact operators, while τϕ(T11) = e−iϕ and τϕ(T22) = eiϕ and hence paths corre-

sponding to nonzero terms cannot contain any arrow or through the gray boxes. Thus, if
π : Pol(Mat3)q → C∗(S)⊗32−1 denotes the ∗-representation corresponding to the grid (34), then
(−q)2π(z11) will be the sum of the operators given by the diagrams

1 2 3

1

3

2

1 2 3

1

3

2

1 2 3

1

3

2

Explicitly, we get that π(z11) is equal to

(−q)−2(eiϕI ⊗ I ⊗ T11 ⊗ T21 ⊗ T22 ⊗ I ⊗ I ⊗ T12 + eiϕI ⊗ I ⊗ T11 ⊗ T22 ⊗ I ⊗ I ⊗ T11 ⊗ T22+

eiϕI ⊗ I ⊗ T12 ⊗ I ⊗ I ⊗ T11 ⊗ T21 ⊗ T22).

The representation π is not irreducible as no upward pointing arrow can cross the gray square
and hence for all 1 ≤ k, j ≤ 3 the operators π(zjk) will have I’s in the two first tensor factors.
In Section 6 we classify the grids that corresponds to irreducible ∗-representations and show that
such ∗-representations exhaust all irreducible ∗-representations of Pol(Matn)q, up to equivalence.
In general however, an irreducible ∗-representation can be represented as a grid in many different
ways, for example, for suitable chosen τϑ’s, the two grids

1 2 3

1

3

2

1 2 3

1

3

2

correspond to equivalent ∗-representations.
Definition 3.4. A sequence [kn, kn−1, . . . , k1] ∈ Zn+ is said to be admissible if

0 ≤ kj ≤ max
j<i≤n

(ki + j + 1− i, j). (35)

For sequences of positive integers k = [kn, . . . , k1] and numbers ϕ = [ϕn, . . . , ϕ1] ∈ [0, 2π)n, we
shall call the sequence of pairs

kϕ := [(kn, ϕn), (kn−1, ϕn−1), . . . , (k1, ϕ1)] (36)

admissible if k is admissible and
{

ϕj ∈ [0, 2π) if 0 ≤ kj < maxj<i≤n(ki + j + 1− i, j)

ϕj = 0 if kj = maxj<i≤n(ki + j + 1− i, j).
(37)

Notice that it follows from the definitions that

kj ≤ n, j = 1, 2, . . . , n (38)

10



for an admissible sequence [kn, kn−1, . . . , k1].

To each such admissible sequence kϕ we associate a colored n×n grid constructed the following
way: if

kj < max
j<i≤n

(ki + j + 1− i, j),

then the j’th row of the grid consists of kj non-shaded boxes to the right, one lightly shaded box
to the left of the non-shaded boxes and the remaining boxes are dark shaded

︸ ︷︷ ︸

n− kj − 1 boxes

︸ ︷︷ ︸

τϕj

︸ ︷︷ ︸

kj boxes

In the other case, when
kj = max

j<i≤n
(ki + j + 1− i, j),

we replace the lightly shaded box with a dark shaded one. If kj = n, then the whole j’th row
consists of non-shaded boxes. However, if kj = n, then (38) forces kj = maxj<i≤n(ki + j +1− i, j)
and hence ϕj = 0. So this does not give rise to any ambiguity.

Now, to each n×n grid corresponding to an admissible sequence kϕ we associate a ∗-representation
πkϕ

of Pol(Matn)q, kϕ → πkϕ
by starting with the white n × n grid (28) associated to the Fock

representation. Recall that each box corresponds to a tensor-factor of C∗(S). If a box correspond-
ing to a tensor-factor C∗(S) is colored dark gray in the grid for kϕ, then we compose the Fock
representation with the ∗-homomorphism τ0 applied to this factor, and if the box is colored light
gray (and hence has a number ϕj ∈ [0, 2π) associated to it) we compose the Fock representation
with τϕj

applied to the factor. In this way we get a ∗-representation πkϕ
of Pol(Matn)q. Moreover,

it the follows that we can calculate the images of the generators zjk ∈ Pol(Matn)q under πkϕ
using

the hooks-and-arrow diagrams, in the fashion that we outlined in this section.

For instance, the sequence [(0, ϕ), (2, 0), (2, 0)] corresponds to the grid

1 2 3

1

3

2

and [(3, 0), (3, 0), (2, ϕ)] gives the grid

1 2 3

1

3

2

which corresponds to the coherent representation.

Example 3.5. In [13], the 7 different families of irreducible ∗-representations of Pol(Mat2)q was
classified. They corresponds to

[(2, 0), (2, 0)], [(2, 0), (1, ϕ)], [(1, ϕ), (1, 0)], [(2, 0), (0, ϕ)], [(1, ϕ1), (0, ϕ2)],
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[(0, ϕ), (1, 0)], [(0, ϕ1), (0, ϕ2)]

and the grids

1 2

2

1

1 2

2

1

1 2

2

1

1 2

2

1

1 2

2

1

1 2

2

1

1 2

2

1

where ϕ, ϕ1, ϕ2 ∈ [0, 2π) are arbitrary.

For irreducible ∗-representation π, let [π] denote the set of all ∗-representations unitarily equiv-
alent to π. In general, we have the following.

Theorem 3.6. The map kϕ → [πkϕ ] gives a one to one correspondence between admissible sequences
of pairs kϕ = [(kn, ϕn), . . . , (k1, ϕ1)] and equivalence classes of irreducible ∗-representations of
Pol(Matn)q.

We will prove the theorem in section 6. There, we will also give a slightly different interpretation
of an admissible sequence

[kn, kn−1, . . . , k1].

Let S be the subgroup of the symmetric group S2n that fixes the integers n + 1, . . . , 2n and let
σ ∈ S2n be any element. In Proposition 6.1, we show that the orbit set

Oσ := {gσh|g, h ∈ S}

contains a unique element w ∈ Oσ of minimal length ℓ(w) = mint∈Oω
ℓ(t). If we define the cycles

in S2n

ck,j =

{

sj+n−ksj+n−k+1 · · · sj+n−1 if 1 ≤ k ≤ n

e if k = 0

where e ∈ S2n is the identity, then we prove in Proposition 6.2 that there is a unique admissible
sequence of integers

[kn, kn−1, . . . , k1]

such that
w = ckn,nckn−1,n−1 · · · ck1,1 (39)

and the length of w is

ℓ(w) =

n∑

j=1

kj

i.e. the decomposition (39) is minimal. Conversely, if we start with an admissible sequence
[kn, kn−1, . . . , k1], then we prove in Proposition 6.3 that the group-element

w = ckn,nckn−1,n−1 · · · ck1,1

12



is of minimal length in Ow and ℓ(w) =
∑n

j=1 kj . Moreover, by Proposition 6.4

kj = max
j<i≤n

(ki + j + 1− i, j)

if and only if 1 ≤ w(n + j) ≤ n.

For t, r ∈ S2n, either Ot = Or or Ot ∩Or = ∅. Hence S2n is a union of finite number of disjoint
subsets

S2n = Oe ∪Ot1 ∪Ot2 ∪ . . . (40)

If we let An denote the cardinality of the set {Ot : t ∈ S2n}, then it follows that An corresponds
to the number of different irreducible diagrams and hence to the number of different families of
irreducible ∗-representation of Pol(Matn)q. The sequence An (starting with n = 1) is

2, 7, 34, 209, 1546, ... A002720 in OEIS.

One can calculate the generating function for the sequence An

n! as

1 +

∞∑

n=1

An
n!
xn =

1

1− x
e

x
1−x .

4 Main results

Theorem 4.1. For any irreducible ∗-representation π : Pol(Matn)q → B(K), there is an irreducible
∗-representation Π : C[SU2n]q → B(K) such that

π = Π ◦ ζ (41)

and hence π is equivalent to (πw⊗χϕ)◦ζ, for some w ∈ S2n, ϕ ∈ [0, 2π)2n. Moreover, if (πw⊗χϕ)◦ζ,
(πσ ⊗ χψ) ◦ ζ are irreducible ∗-representations of Pol(Matn)q, then

(πw ⊗ χϕ) ◦ ζ ∼= (πσ ⊗ χψ) ◦ ζ

only if w = σ.

The proof of the first item makes up sections 5. The second statement is proved in Section
6 (Lemma 6.5), where we also specify those elements w ∈ S2n which give rise to irreducible ∗-
representations (πw ⊗ χϕ) ◦ ζ of Pol(Matn)q.

We remark here that Theorem 4.1 does not claim that Π maps C[SU2n]q into the C∗-algebra
generated by the image of Pol(Matn)q in B(K). There are many ways to choose the lift Π such
that Π ◦ ζ = π, but in general, it is impossible to find a Π such that

Π(C[SU2n]q) ⊆ π(Pol(Matn)q) (42)

for n ≥ 2.

Let A be a ∗-algebra. We can define a semi-norm || · || on A, with values in [0,∞], by the formula

||a||u = sup
φ

||φ(a)||

13



where the supremum ranges over all ∗-representations A. It follows that || · ||u is a semi C∗-norm
on A, in the sense that

||ab||u ≤ ||a||u||b||u, ||a∗||u = ||a||u, ||aa∗||u = ||a||2u. (43)

If ||a||u <∞ for all a ∈ A, we let I ⊆ A be the subset {a ∈ A; ||a||u = 0}. It follows from (43) that
I is a ∗-ideal. We can then, using || · ||u, define a C∗-norm on A/I (that we again denote by || · ||u).
The universal enveloping C∗-algebra C∗(A) of A is defined to be the closure of A/I under || · ||u.
We have that

• C∗(A) is a C∗-algebra.

• ι : A→ C∗(A) defined by a 7→ a+ I ∈ A/I ⊆ C∗(A) is a ∗-homomorphism.

• If φ : A→ B(H) is a ∗-representation, then there is a unique ∗-homomorphism φ̃ : C∗(A) →
B(H), such that

φ = φ̃ ◦ ι.

For a ∗-representation π : Pol(Matn)q → B(H) and a ∈ Pol(Matn)q, v ∈ H we often denote π(a)v
as av. This is to simplify the notations and no ambiguity will arise from it.

We have the following corollary to Theorem 4.1.

Corollary 4.2. The universal enveloping C∗-algebra of Pol(Matn)q exists and is isomorphic to

CF (Dn) := πF,n(Pol(Matn)q).

Proof. Fix a ∗-representation π of Pol(Matn)q. It is enough to prove the inequality

‖π(a)‖ ≤ ‖πF,n(a)‖

for all a ∈ Pol(Matn)q. By Theorem 4.1, there is a ∗-representation φ of C[SU2n]q such that π = φ◦ζ
and ζ = ξ ◦ ρ where

ξ : Pol(Mat2n)q → C[SU2n]q, ρ : Pol(Matn)q → Pol(Mat2n)q

are the maps defined in Lemma 3.3. As φ ◦ ξ is a ∗-representation of Pol(Mat2n)q that factors
through C[SU2n]q, it must annihilate the Shilov boundary of Pol(Mat2n)q and hence (by Lemma
12 in [2]) it will be dominated by the Fock representation πF,2n, i.e. ‖(φ ◦ ξ)(a)‖ ≤ ‖πF,2n(a)‖ for
all a ∈ Pol(Mat2n)q.

Hence
‖π(a)‖ = ‖φ ◦ ξ ◦ ρ(a)‖ ≤ ‖πF,2n ◦ ρ(a)‖, a ∈ Pol(Matn)q.

Therefore, we only need to show the inequality

‖(πF,2n ◦ ρ)(a)‖ ≤ ‖πF,n(a)‖, a ∈ Pol(Matn)q.

To this end, we are going to prove that the ∗-representation πF,2n ◦ ρ is a direct sum of the Fock

representations πF,n. To see this, we introduce an order on the generators {zjk}k,j : zjk < zlm if

14



either k < m or if k = m, then j < l. We can visualize this ordering using the matrix Z = (zjk)k,j
of generators of Pol(Mat2n)q as










z11 ↓ z12 ↓ . . . z12n−1 ↓ z12n ↓
z21 ↓ z22 ↓ . . . z22n−1 ↓ z22n ↓
...

...
...

...
z2n−1
1 ↓ z2n−1

2 ↓ . . . z2n−1
2n−1 ↓ z2n−1

2n ↓
z2n1 ↓ z2n2 ↓ . . . z2n−1

2n−1 ↓ z2n2n ↓










(44)

where the ordering start with the upper left element, going down the first column, and then move
onto the second column etc.

If we write Z as a block matrix

Z =

(
Z(1,1) Z(1,2)

Z(2,1) Z(2,2)

)

Zi,j being n × n-blocks, then it follows from (4) that for each 1 ≤ k ≤ n the elements in the k’th
column of Z(2,2) commute with all elements in Z(1,2) that preceeds them in our ordering on Z. For
A = (aj,k)j,k ∈M2n(Z+), we let, as in (6), z(A) denote the element

(z2n2n)
an,n(z2n−1

2n )an,n−1 . . . (z21)
a1,2(z11)

a1,1 .

Then for A ∈M2n(Z+), we have z(A) = z(A′)z(A′′), where A = A′ +A′′ and A′ is the matrix with
the same integers as A in the lower right n×n square and zero everywhere else and A′′ is the same
matrix as in A but with zeros in the lower right n× n square, i.e. if

A =

(
A11 A12

A21 A22

)

, Aij ∈Mn(Z+),

then A′ =

(
0 0
0 A22

)

and A′′ =

(
A11 A12

A21 0

)

. Denote these classes of matrices as ML
2n and

MU
2n respectively.

We shall omit πF,2n and write simply a for the image πF,2n(a), a ∈ Pol(Mat2n)q. Let v0 be a

vacuum vector for the representation. We claim that (zjk)
∗z(A′′)v0 = 0 for every zjk ∈ Z(2,2) and

A′′ ∈ MU
2n and hence z(A′′)v0 is a vacuum vector for the ∗-representation πF,2n ◦ ρ. To see this,

notice that by Proposition 3.1 it is enough to show that

〈(zjk)∗z(A′′)v0, z(B)v0〉 = 〈z(A′′)v0, z
j
kz(B)v0〉 = 0

i.e. that z(A′′)v0⊥zjkz(B)v0 for all B ∈ M2n(Z+). Write z(B) = z(B′)z(B′′) as above. It is not

hard to see that the sub-algebra of C[Mat2n]q ⊆ Pol(Mat2n)q generated by the elements zn+jn+k with

1 ≤ k, j ≤ n has a vector space basis given by {z(C′)|C′ ∈ML
2n} and hence, as degzjkz(B

′) = |B′|+1,

we have zjkz(B
′) =

∑

m cmz(C
′
m) for constants cm ∈ C and where each C′

m has norm |C′
m| = |B′|+1.

We can then write
zjkz(B)v0 = zjkz(B

′)z(B′′)v0 =
∑

m

cjz(C
′
m +B′′)v0.
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Since C′
m 6= 0 and hence A′′ 6= C′

m+B′′, we get z(A′′)v0⊥z(C′
m+B′′)v0. Thus z(A

′′)v0⊥zjkz(B)v0.

It follows that for every A′′ ∈MU
2n, we have a ∗-representation equivalent to the Fock represen-

tation on the subspace HA′′ of HF,2n spanned by the orthogonal vectors

{z(A′)z(A′′)v0|A′ ∈ML
2n}.

But as we know that
{z(A′)z(A′′)v0|A ∈ML

2n, A
′′ ∈MU

2n} =

{z(A)v0|A ∈M2n(Z+)}
is an orthogonal basis for HF,2n, it follows that HF,2n = ⊕A′′∈MU

2n
HA′′ and that Pol(Matn)q-

πF,2n ◦ ρ is a direct sum of ∗-representations equivalent to πF,n.

5 Proof of the Main Result: Existence of Lifting

In this section we will prove the first part of Theorem 4.1, the existence of the lift (41). The second
part follows from Lemma 6.5. The proof is by induction on n. The result is well known in the
case of n = 1, as in this case it follows from (3)-(11) that Pol(Matn)q ∼= Pol(C)q, the quantum
disc (see [16]). This is the unital ∗-algebra over C generated by a single element z subject to the
relation

z∗z = q2zz∗ + (1− q2)I.

By [16] (Proposition 1.10), any irreducible ∗-representations of Pol(C)q, up to unitary equivalence,
is either

• πF,1 : Pol(C)q → B(ℓ2(Z+)) determined by z 7→ T22 with T22 as in (17), or

• χϕ : Pol(C)q → C for ϕ ∈ [0, 2π), determined by z 7→ eiϕ.

It is not hard to show that these ∗-representations can be lifted in the way claimed in Theorem 4.1.
Indeed, with πF,1, we let φ be the ∗-representation of C[SU2]q determined by tij 7→ Tij . Then
φ ◦ ζ(z) = φ(t22) = T22 and hence φ ◦ ζ = πF,1.

If we let φϕ : C[SU2]q → C be the ∗-representation of C[SU2]q determined by

(
t11 t12
t21 t22

)

7→
(
e−iϕ 0
0 eiϕ

)

Then φϕ ◦ ζ(z) = φϕ(t22) = eiϕ and therefore φϕ ◦ ζ = χϕ.

We also note that the representation theory of Pol(C)q implies the following lemma.

Lemma 5.1. If X ∈ B(H) satisfies the equation

X∗X = q2XX∗ + (1 − q2)I (45)

then H can be written as a direct sum H = H1 ⊕H2 of subspaces H1, H2, both reducing X, such
that X |H1 is isomorphic to a direct sum of the operator T22 and X |H2 is a unitary isometry. In
particular, if kerX∗ = {0}, then X is a unitary isometry.
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In the general case, when n > 1, the proof is constructed around the fact that every irreducible
∗-representation π of Pol(Matn)q falls into one of two classes:

A There is 1 ≤ k ≤ n such that either kerπ(znk )
∗ = {0} or kerπ(zkn)

∗ = {0};
B kerπ(zkn)

∗ 6= {0} and kerπ(znk )
∗ 6= {0} for all k.

The induction will be applied slightly different in these two cases.

Notice that the map zij 7→ zji is a ∗-automorphism of Pol(Matn)q and hence in the case A, we
can, and will, assume that kerπ(znk )

∗ = {0}.

5.1 Outline of The Proof By Use of Examples

We shall first outline the structure of the proof in two particular examples representing the two
different cases of A and B.

Let π be the ∗-representation of Pol(Mat3)q corresponding to the string

[(1, ϕ3), (2, 0), (1, ϕ1)]

with the associated square diagram given by

1 2 3

1

3

2

i.e. π = Π ◦ ζ, where

Π = (τ0 ⊗ τ0 ⊗ τ0 ⊗ τφ3 ⊗ id⊗τφ1 ⊗ id⊗ id⊗ id) ◦ πs.

So, by considering all possible routes from (3, j) to (i, 3) constructed out of arrows and hooks, we
can recover the action of π(zij). In particular, we have

1 2 3

1

3

2π(z31) = (−q)−2×

1 2 3

1

3

2π(z32) = (−q)−1×

1 2 3

1

3

2π(z33) =

However, observe that if the arrow or happen to fall in a shaded box, then the corresponding

operator is zero. This follows from the fact that and corresponds to the compact operators
T12 and T21 respectively, and hence annihilated by each ∗-representation τϕ. In particular, we have
π(z31) = 0.

As π(z32) = eiφI ⊗T12 ⊗ I ⊗ I, we see that kerπ(z32)
∗ = {0}, and this shows that π falls into the

class (A).
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Let π′ be the ∗-representation of Pol(Mat2)q corresponding to the upper right 2× 2 sub-square

1 2 3

1

3

2

The string associated to π′ is [(2, 0), (1, φ1)]. Next we will relate π′ to the ∗-representation π. To
do this, consider all possible routes from (3, i) to (j, 3) such that i 6= 2 and j 6= 3. Using the
above observations about straight arrows on dark squares, we can easily see that the only routes
corresponding to non-zero operators are those having in the last row either the sub-path

(I)

1 2 3

3 (when i = 1) or

(II)

1 2 3

3 (when i = 3).

Hence all routes corresponding to non-zero summands in π(zj1) (resp π(zj3)) can be obtained by
attaching to sub-path (I) (resp (II)) a path from the positions (2, 1) to (j, 2) (resp (2, 2) to (j, 2))
in the upper right sub-square

1 2

1

2

Next we observe that the operator

1 2 3

1

3

2

is e−φ3I, while the operator

1 2 3

1

3

2 = I ⊗ T21 ⊗ I ⊗ I

is a multiple of the identity (actually the identity) after restricting it to the subspace H :=
kerπ(z32)

∗ = span{ek ⊗ e0 ⊗ em ⊗ el; (k,m, l) ∈ Z3
+} ∼= ℓ2(Z+)⊗ 〈e0〉 ⊗ ℓ2(Z+)⊗ ℓ2(Z+). Therefore,

we have
π(zj1)|H = (−q)1−3e−iϕ3((−q)−(1−2)π′(zj1)) = (−q)−1e−iϕ3π′(zj1)

and
π(zj3)|H = (−q)3−3((−q)2−2π′(zj2)) = π′(zj2).

Moreover, it is easy to see that π(zj2)|H = 0 for j 6= 3 and π(z32)|H = eiϕ3I. In general, being in the
case A with an irreducible ∗-representation π of Pol(Matn)q, such that kerπ(znk )

∗ = {0}, we shall
prove that the subspace

H := ∩ni=k+1 kerπ(z
n
i )

∗
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is invariant with respect to all the operators π(zji ) and π(z
n
k ) = eiϕI for some ϕ ∈ [0, 2π). Further-

more, we can define an irreducible ∗-representation π′ : Pol(Matn−1)q → B(H) by the formula

π′(zji ) =

{

−e−iϕqπ(zji )|H for 1 ≤ i < k and 1 ≤ j ≤ n− 1

π(zji+1) for k ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1.

Returning to the example, we can by induction lift the ∗-representation π′ of Pol(Mat2)q to a ∗-
representation of Π′ : C[SU4]q → B(H). If we let Ψ : C[SU6]q → C[SU4]q be the ∗-homomorphism
determined by

Ψ(tkj) =

{

tk−1,j−1 if 2 ≤ k, j ≤ 5

δk,jI otherwise

then Π′ ◦Ψ ◦ ζ corresponds to the grid

1 2 3

1

3

2 (46)

In fact,
Π′ ◦Ψ ◦ ζ = (τ0 ⊗ τ0 ⊗ τ0 ⊗ τ0 ⊗ id⊗τϕ1 ⊗ τ0 ⊗ id⊗ id) ◦ πs

The replacement of the last row on (46) by

1 2 3

3 will correspond to the tensoring

the ∗-representation Π′ ◦ Ψ of C[SU6]q by a suitable ∗-representation λ of C[SU6]q and taking
the composition (λ ⊗ (Π′ ◦ Ψ)) ◦ ζ, i.e. π ∼= (λ ⊗ (Π′ ◦ Ψ)) ◦ ζ. More precisely, λ is given by
(τ0 ⊗ τ−ϕ ⊗ id) ◦ (π3 ⊗ π4 ⊗ π5) = (τ−ϕ ⊗ id) ◦ (π4 ⊗ π5).

Assume now that π is a ∗-representation of Pol(Mat3)q such that kerπ(z3k) 6= {0} and kerπ(zk3 )
∗ 6=

{0} for any k = 1, 2, 3. If π is the ∗-representation corresponding to a string [(k3, ϕ3), (k2, ϕ2), (k1, ϕ1)],
then the kernel condition is satisfied if and only if the last column and last row of the correspond-
ing grid consist of white boxes. A typical example of such ∗-representation is the one given by the
string [(3, 0), (2, φ), (2, 0)] with the following grid

1 2 3

1

3

2

Here the approach from the caseA fails. Instead we shall construct a ∗-representation of Pol(Mat2)q
corresponding to the left upper 2× 2 sub-grid

1 2 3

1

3

2
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and to show that it can be obtained out of π by restricting the latter to an appropriate subspace,
namely

H :=
(
∩3
k=1 kerπ(z

3
k)

∗
)
∩
(
∩3
k=1 kerπ(z

k
3 )

∗
)
.

We have

π(z31) = (−q)−2 ×

1 2 3

1

3

2 π(z32) = (−q)−1 ×

1 2 3

1

3

2

π(z33) =

1 2 3

1

3

2 π(z13) =

1 2 3

1

3

2

π(z23) =

1 2 3

1

3

2 .

Using the fact that the kernel of the adjoint of T22 = CqS (recall that T22 corresponds to the

arrow) is C〈e0〉 and that the kernels of the operators corresponding to the arrows and are
zero, we can easily see that

H = span{e0 ⊗ e0 ⊗ ek ⊗ ej ⊗ e0 ⊗ e0 ⊗ e0; (k, j) ∈ Z
2
+} ∼=

C〈e0〉 ⊗ C〈e0〉 ⊗ ℓ2(Z+)⊗ ℓ2(Z+)⊗ C〈e0〉 ⊗ C〈e0〉 ⊗ C〈e0〉.
By looking at paths, it is not hard to see that H is invariant with respect to π(zkj ) for k, j 6= 3
(it can also be seen directly from the relations defining Pol(Mat3)q). Consider now the routes
representing the terms in π(z11). They will either start and end at the arrows of the diagram

1 2 3

1

3

2

or they will have to contain a right-up arrow in the last row or the last column. The operators

corresponding to the latter routes will vanish when restricted to the subspace H (as corresponds
to S∗Cq and S∗Cqe0 = 0). Moreover, the operator corresponding to

1 2 3

1

3

2
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becomes a multiple (in fact −q) of the identity when restricted to H. Therefore, by letting π to
be the ∗-representation of Pol(Matn)q corresponding to the upper left 2 × 2 sub-grid, we obtain
π(z11)|H = π′(z11). A similar argument shows that

π(zkj )|H = π′(zkj ) for all 1 ≤ j, k ≤ 2.

Hence, by induction, we can lift π′ to a ∗-representation Π′ of C[SU4]q. Consider now the ∗-
homomorphism Φ : C[SU6]q → C[SU4]q given by

Φ(tij) =

{

tij if 1 ≤ i, j ≤ 4

δijI otherwise.

One can show that Π′ ◦ Φ ◦ ζ is a ∗-representation of Pol(Mat3)q with the corresponding grid as
follows

1 2 3

1

3

2

The original grid can be obtained by tensoring the ∗-representation Π′ ◦ Φ (of C[SU6]q) with the
∗-representations λa = π3 ⊗ π4 ⊗ π5 and λb = π3 ⊗ π4 so that

(λa ⊗ (Π′ ◦ Φ)⊗ λb) ◦ ζ ∼= π.

5.2 Auxiliary Lemmas

Let Z, as above, be the set of generators {zjk}1≤k,j≤n and Z∗ the set {(zjk)∗}1≤k,j≤n. For 1 ≤ l,m ≤
n, we let Zml = {zjk ∈ Z|k 6= l, j 6= m}, and similar we define Zm∗

l = {(zjk)∗ ∈ Z∗|k 6= l, j 6= m}.

Lemma 5.2. Let I = {znk , znk+1, . . . , z
n
n , z

n−1
n , . . . , zmn } ⊆ Z for 1 ≤ k,m ≤ n, and let C(I) ⊆

Pol(Matn)q be the unital ∗-sub-algebra generated by I. Then there exists a unique linear functional
γI on C(I) with the property that for any ∗-representation π : Pol(Matn)q → B(K), with a subspace
H ⊆ K such that kerπ(zlj)

∗ ∩H = H for all zlj ∈ I, we have

〈π(a)u,w〉 = 〈u,w〉γI(a)

for all u,w ∈ H.

Proof. We let
γI(a) := 〈πF,n(a)v0, v0〉

where πF,n is the Fock representation of Pol(Matn)q and v0 a unit vacuum vector. From the
relations in Pol(Matn)q, it is easy to see that the sub-algebra C(I) is generated as a vector space
by elements of the form cb∗ where b, c are either monomials of the generators in I, or the identity
I. It follows from the properties of the Fock representation that for monomials c, b we have

γI(cb
∗) = 〈πF,n(cb∗)v0, v0〉 = 〈πF,n(b)∗v0, πF,n(c)∗v0〉 = 0 if either b or c 6= I
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and also that γI(I) = 〈v0, v0〉 = 1. Thus, the linear functional γI projects onto the vector space V
that is the quotient of C(I) by the subspace generated by elements ab∗, where a, b are monomials
in I, not both equal to I. The vector space V is of dimension at most 1, and since γI 6= 0, we see
that dimV = 1.

For any u,w ∈ H, consider the linear functional γuw defined as a 7→ 〈π(a)u,w〉. From the
properties of H, we get for any two monomials b, c ∈ C(I), not both multiples of I, that

γuw(cb
∗) = 〈π(cb∗)u,w〉 = 〈π(b)∗u, π(c)∗w〉 = 0.

So γuw factors through the subspace V and thus it must be a multiple of γI. Evaluating γuw(I) =
〈u, v〉, we get that γuw = 〈u,w〉γI.

Lemma 5.3. If we let A(I) be the unital algebra generated by the elements in I, then viewing A(I)
as a vector space over C, the functional γI gives a non-degenerate inner product 〈·, ·〉I on A(I) by
〈a, b〉I = γI(b

∗a) for a, b ∈ A(I). Moreover, the monomials in A(I) form an orthogonal basis of
A(I) with respect to the inner product 〈·, ·〉I.

Proof. The monomials obviously span A(I) as a vector space, so we only need to check that they
form an orthogonal basis. Notice that by (3) and (4), the elements in I commute or q-commute.
Thus, every monomial a can be written in the form

a = β(znk )
αk(znk+1)

αk+1 · · · (znn−1)
αn−1(zmn )βm(zm+1

n )βm+1 · · · (znn)βn (47)

for some β ∈ C, αi, βi ∈ Z+. Using the terminology from Corollary 4.2, we have a = βz(A), where
A = (aij)ij ∈ Mn(Z+) with ain = αi if k ≤ i ≤ n, anj = βj if m ≤ j ≤ n and aij = 0 otherwise.
Under the Fock representation, we have πF,n(z(A))v0⊥πF,n(z(B))v0 for any B ∈Mn(Z+) not equal
to A, it follows that πF,n(z(A))v0⊥πF,n(b)v0 for any monomial b ∈ A(I) that is not a multiple of
a. So if a 6= b are monomials in A(I), then we have

〈a, b〉I = γI(b
∗a) = 〈πF,n(b∗a)v0, v0〉 = 〈πF,n(a)v0, πF,n(b)v0〉 = 0

and as πF,n(z(B))v0 6= 0 for any B ∈Mn(Z+), we also get 〈a, a〉I = ||πF,n(a)v0||2 > 0.

Lemma 5.4. Let |I| be the cardinality of I. For any multi-index

m = (m1,m2, . . . ,m|I|) ∈ Z
|I|
+ ,

let
z(m) := (znk )

m1(znk+1)
m2 · · · (znn−1)

mn−k(zmn )mn−k+1(zm+1
n )mn−k+2 · · · (znn)m|I| . (48)

Then the elements of the form z(m)b, where b is a monomial in Z\I, form a vector space basis for
C[Matn]q.

Proof. As the generators zni , z
j
n either commute or q-commute, it is enough to prove the statement

for
I = {zn1 , . . . , znn , zn−1

n , . . . , z1n}.
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Firstly, using the ordering of the generators zjk, we can write any z(A) with A ∈ Mn(Z+) as
z(A′)z(A′′), where A′ has only non-zero values in the last column, A′′ is equal to zero in the last
column and A = A′ +A′′. Notice that for any 1 ≤ k ≤ n− 1, we can use (3)-(5) to see that in the
ordering of the generators, we have that znk commutes with all the generators proceeding it that
is not in the form znm. Hence we can write every z(B) as z(B′)z(B′′)z(B′′′), with B′ only nonzero
in the last column, B′′ only nonzero in the last row , B′′′ equal to zero in the last row and column
and B = B′ +B′′ +B′′′. We can then write z(B′)z(B′′) = z(m) for some m ∈ Z

2n−1
+ .

Lemma 5.5. Given a ∗-representation π of Pol(Matn)q the operators

π(zn1 ), . . . , π(z
n
n), π(z

n−1
n ), . . . , π(z1n)

are all contractions.

Proof. Let I = {zn1 , zn2 , . . . , znn}. Then by (11) we have C(I) ∼= Pol(Cn) with a ∗-isomorphism given
by

znj 7→ zj, 1 ≤ j ≤ n.

The statement now follows from the fact that ||φ(zj)|| ≤ 1 for 1 ≤ j ≤ n and any bounded ∗-
representation φ of Pol(Cn) (see [7], though notice that they defined Pol(Cn) using the generators
ai =

1√
1−q2

zi). The same also holds for I = {z1n, z2n, . . . , znn}.

5.3 The Case A

In this section we prove the existence of the lifting Π : C[SU2n]q → B(K) for a fixed irreducible
∗-representation π : Pol(Matn)q → B(K) such that kerπ(znk )

∗ = {0} for some 1 ≤ k ≤ n. Let us
assume that k is the largest integer with this property.

Throughout this section write

H := ker(π(znk )
∗π(znk )− I)

and fix the set of generators
I := {znk+1, . . . , z

n
n}.

Lemma 5.6. If k = n, then H = K. If 1 ≤ k < n, then H is a non-trivial proper subspace of K
and H = ∩nj=k+1 kerπ(z

n
j )

∗.

Proof. If kerπ(znn)
∗ = 0, then by (16) znn satisfies the equation

(znn)
∗znn = q2znn(z

n
n)

∗ + (1− q2)I.

By Lemma 5.1 π(znn) is a unitary operator and hence ker(π(znn)
∗π(znn)− I) = K.

Assume now 1 ≤ k < n and set H ′ := ∩nj=k+1 kerπ(z
n
j )

∗. For the simplicity, we shall write zlj
for the images π(zlj), 1 ≤ j, l ≤ n. As qznk (z

n
j )

∗ = (znj )
∗znk and znk z

n
j = qznj z

n
k for k < j, we see that

H ′ reduces znk . Moreover, as

(znk )
∗znk = q2znk (z

n
k )

∗ + (1 − q2)(I −
∑

j=k+1

znj (z
n
j )

∗)
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and (znj )
∗H ′ = 0 for k + 1 ≤ j ≤ n, we obtain

(znk )
∗znk |H′ = q2znk (z

n
k )

∗|H′ + (1− q2)I

and, as ker(znk )
∗ = 0, we can use Lemma 45 to see that znk |H′ is a unitary operator and hence

H ′ ⊆ H.

To see the other inclusion, notice that (znj )
∗((znk )

∗znk ) = q2((znk )
∗znk )(z

n
j )

∗ for k < j ≤ n and
hence by Lemma 5.5, we have for v ∈ H

||(znj )∗v|| = ||(znj )∗((znk )∗znk )v|| = q2||((znk )∗znk )(znj )∗v|| ≤

q2||(znk )∗znk || · ||(znj )∗v|| ≤ q2||(znj )∗v||
giving ||(znj )∗v|| = 0 and v ∈ ker(znj )

∗. Thus H = H ′.

We now need to prove that H 6= 0 if 1 ≤ k < n. Assume contrary that

H = ∩nj=k+1 ker(z
n
j )

∗ = 0

and let 1 ≤ m ≤ n be the first integer such that ∩nj=m ker(znj )
∗ 6= 0. Notice that this integer exists

since we assumed that ker(znn)
∗ 6= {0}. The subspace L := ∩nj=m ker(znj )

∗ reduces the operators
zn1 , . . . , z

n
m−1 by the same argument that we used to prove the similar statement for H. Now, the

restriction of znm−1 to L must again satisfy the equation

(znm−1)
∗znm−1|L = q2znm−1(z

n
m−1)

∗|L + (1 − q2)I

and as ker(znm−1)
∗|L = 0, it follows that znm−1|L is unitary.

We then claim that (znl )
∗|L = 0 for 1 ≤ l < m− 1 and hence

L = ∩nj=m ker(znj )
∗ ⊆ ker(znk )

∗.

As k < m− 1, this gives a contradiction. To see the claim, observe first that for m− 2 we have

(znm−2)
∗znm−2|L = q2znm−2(z

n
m−2)

∗|L + (1− q2)(I −
n∑

r=m−1

znr (z
n
r )

∗|L) =

q2znm−2(z
n
m−2)

∗|L + (1− q2)(I − znm−1(z
n
m−1)

∗|L) = q2znm−2(z
n
m−2)

∗|L
as znm−1(z

n
m−1)

∗|L = I. This gives ||znm−2(z
n
m−2)

∗|L|| = ||(znm−2)
∗znm−2|L|| = q2||znm−2(z

n
m−2)

∗|L||
and hence (znm−2)

∗|L = 0.We now use an induction type argument on 1 ≤ j < m−2; if the equation
I −∑n

r=j−1 z
n
r (z

n
r )

∗|L = 0 holds, then we can again deduce that

||znj (znj )∗|L|| = ||(znj )∗znj |L|| = q2||znj (znj )∗|L||

giving (znj )
∗|L = 0 and hence also that I −∑n

r=j−2 z
n
r (z

n
r )

∗|L = 0.
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Lemma 5.7. For 1 ≤ m ≤ n, let

Am := I −
n∑

j=m

znj (z
n
j )

∗.

Then the following relations hold in Pol(Matn)q

Am =
1

1− q2
((znm)∗znm − znm(z

n
m)∗) (49)

znj Am = Amz
n
j , 1 ≤ j < m (50)

q2znj Am = Amz
n
j ,m ≤ j ≤ n. (51)

Furthermore, if Π is a ∗-representation of Pol(Matn)q such that kerΠ(znm)∗ = 0, then also Π(Am) =
0 and

1. π(znm) is normal,

2. π(znj ) = 0 for 1 ≤ j < m.

Proof. The equation (49) follows by subtracting znm(znm)∗ from both side of the equation

(znm)∗znm = q2znm(z
n
m)∗ + (1− q2)(I −

∑

m<j

znj (z
n
j )

∗) (52)

and dividing by (1 − q2). When j 6= m, (50) and (51) follow directly from equations (3) and (15).
When j = m, we have (with An+1 = I)

Amz
n
m = −znm(znm)∗znm +Am+1z

n
m =

−znm(q2znm(znm)∗ + (1− q2)Am+1) + znmAm+1 =

−q2znmznm(znm)∗ + q2znmAm+1 = q2znmAm.

Let Π be a ∗-representation satisfying the conditions of the lemma and write simply zji for the

image Π(zji ), i, j = 1, . . . , n. Let (znm)∗ = U |(znm)∗| be the polar decomposition of (znm)∗, here

|(znm)∗| = (znm(z
n
m)∗)

1
2 and U is an isometry. As

(znm(znm)∗)Am = Am(znm(znm)∗),

we can easily deduce from (51) that
UAm = q2AmU

giving q2U∗AmU = Am and hence Am = 0. From equation (52), it now follows that znm is normal.
As we also have znj (z

n
m(znm)∗) = (znm(znm)∗)znj for 1 ≤ j < m, we get similarly that qznj U = Uznj

giving U∗znj U = q−1znj and hence znj = 0.

In section 3, during our informal discussion, we indicated how to approach the problem of
lifting a ∗-representation π of Pol(Matn)q to a ∗-representations of C[SU2n]q by reducing π to a
∗-representation of Pol(Matn−1)q. In the case A, this was done by isolating the paths not starting
on the integer k, satisfying the condition kerπ(znk )

∗ = {0}. The next proposition is the general
statement of this. However, while the heuristic picture is quite clear, the proof turns out to be
somewhat arduous as we must check that we actually end up with a representation of Pol(Matn−1)q
and hence must verify that the equations (13)- (16) hold.
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Proposition 5.8. For the irreducible ∗-representation π : Pol(Matn)q → B(K) the following holds

1. we have π(znk )|H = eiϕI|H for some ϕ ∈ [0, 2π),

2. there is an irreducible ∗-representation π′ : Pol(Matn−1)q → B(H) such that

π′(zmj ) =

{

−qe−iϕπ(zmj )|H If 1 ≤ j < k

π(zmj+1)|H If k ≤ j ≤ n− 1
(53)

.

Proof. The proof of the irreducibility of π′ is postponed until after Lemma 5.9. Let again I =
{znk+1, z

n
k+1, . . . , z

n
n}. By Lemma 5.6, H = ∩nj=k+1 kerπ(z

n
j )

∗. By Lemma 5.2, there is a linear func-
tional γI on A(I), such that for all v, u ∈ H, and a ∈ A(I), we have 〈av, u〉 = γI(a)〈v, u〉. Again,
we suppress π and write zji instead of π(zji ) for i, j = 1, . . . , n.

It follows from the proof of Lemma 5.6, that the restriction znk |H is unitary. Now, from
Lemma 5.7, we know that the elements zn1 , . . . , z

n
k−1 ∈ Pol(Matn)q are all mapped to zero by π and

this gives that relation (5) reduces to zmj z
n
k = znk z

m
j for j < k and m < n. As also zmj z

n
k = znk z

m
j

for k < j and m < n holds by (5), we get that the elements in Znk commute with both znk and (znk )
∗

(the latter follows from (11)) and hence H is a reducing subspace for the π-images of elements in Znk .

By (11), we have zjk(z
n
m)∗ = (znm)∗zjk for 1 ≤ j ≤ n − 1 and k + 1 ≤ m ≤ n and hence H is

invariant under the operators z1k, z
2
k, . . . , z

n−1
k . As also znk z

j
k = qzjkz

n
k and znk |H is unitary, we must

have
zjk|H = 0 for 1 ≤ j ≤ n− 1. (54)

Let U be the unitary operator in the polar decomposition of znk (that U actually is unitary
follows from the fact that znk is normal and ker(znk )

∗ = {0}). Then we claim that U commutes
with the image of Pol(Matn)q under π. As we already know that znk and (znk )

∗ commutes with
the elements in Znk , it follows that so does also U. So what is left to prove is that U commutes
with z1k, z

2
k, . . . z

n−1
k and the elements in I. However, as znk is normal and q-commutes with these

operators, we can apply the Fuglede-Putnam Theorem (if T,N,M ∈ B(H) and N,M are normal,
then NT = TM implies N∗T = TM∗) with N = znk ,M = qznk and T = zjk to get

(znk )
∗zjk = qzjk(z

n
k )

∗

and hence
((znk )

∗znk )z
j
k = q2zjk((z

n
k )

∗znk ).

This gives |znk |zjk = qzjk|znk | and
Uzjk|znk | = zjkU |znk |U.

As ker |znk | = {0} and hence |znk |K = K, this implies Uzjk = zjkU. By Schur’s Lemma, U = eiϕI.

So it is left to prove that π′ actually defines a ∗-representation of Pol(Matn−1)q. It is easy to
see that relations (3)-(10) hold for the π-images of the generators, so what is left to verify is (11).
We do this by splitting (11) into cases (13)-(16).

It is clear that relation (13) holds.
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For j,m 6= k, we have by (15)

(zαj )
∗zαm|H = qzam(z

a
j )

∗|H − (q−1 − q)
n∑

c=α+1

zcm(z
c
j )

∗|H =

qzαm(zαj )
∗|H − (q−1 − q)

n−1∑

c=α+1

zcm(z
c
j )

∗|H

as znm(znj )
∗|H = 0 when m, j 6= k. Hence π′(zαj ), α, j = 1, . . . , n− 1, satisfy relation (15).

If j ≥ k then it is easy see that (14) and (16) hold for the images

π′(zβj )
∗π′(zαj ) = (zβj+1)

∗zαj+1|H , a, b = 1, . . . n− 1

as they hold for π and as we have znk+1(z
n
k+1)

∗|H , znk+2(z
n
k+2)

∗|H , . . . , znn(znn)∗|H = 0.

In order to verify the remaining relations, which are (14) and (16) for π′(zβj )
∗π′(zαj ) when j < k,

we observe first that as zβk |H = 0 for 1 ≤ β ≤ n− 1, we have (zαk )
∗zβk |H = 0 and by (14)

0 = qzβk (z
α
k )

∗|H − (q−1 − q)

n∑

k<l

zβl (z
α
l )

∗|H (55)

if α 6= β and by (16)

0 = q2zαk (z
α
k )

∗|H − (1− q2)
n∑

k<l

zαl (z
α
l )

∗|H − (1− q2)
n∑

α<β

zβk (z
β
k )

∗|H+

q−2(1− q2)2
n∑

k<l,α<β

zβl (z
β
l )

∗|H + (1− q2)I (56)

if α = β. Assume now that m = j < k and α 6= β then we have

(zαm)∗zβm|H = qzβm(zαm)∗|H − (q−1 − q)

n∑

m<l

zβl (z
α
l )

∗|H =

= (zαm)∗zβm|H = qzβm(zαm)
∗|H − (q−1 − q)

n∑

k<l

zβl (z
α
l )

∗|H − (q−1 − q)zβk (z
α
k )

∗|H−

−(q−1 − q)

k−1∑

m<l

zβl (z
α
l )

∗|H .

By (55), we get

(zαm)∗zβm|H = qzβm(zαm)∗|H − (q−1 − q)

n∑

k<l

zβl (z
α
l )

∗|H−
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−(q−2 − 1)(q − q−1)
n∑

k<l

zβl (z
α
l )

∗|H − (q−1 − q)
k−1∑

m<l

zβl (z
α
l )

∗|H =

= qzβm(zαm)∗|H − (q−1 − q)

n∑

k<l

(−q)−2zβl (z
α
l )

∗|H − (q−1 − q)

k−1∑

m<l

zβl (z
α
l )

∗|H .

Finally if m = j < k and α = β, then

(zαm)∗zαm|H = q2zαm(z
α
m)∗|H − (1 − q2)

n∑

m<l

zαl (z
α
l )

∗|H − (1 − q2)
n∑

a<l

zlk(z
l
k)

∗|H+

+q−2(1− q2)2
n∑

m<l,a<b

zbl (z
b
l )

∗|H + (1− q2)I =

= q2zam(zam)∗|H − (1− q2)
k−1∑

m<l

zal (z
a
l )

∗|H − (1− q2)zak(z
a
k)

∗|H − (1− q2)
n∑

k<l

zal (z
a
l )

∗|H+

+q−2(1− q2)2
k−1∑

m<l

n−1∑

a<b

zbl (z
b
l )

∗|H + q−2(1− q2)2
n∑

α<β

zβk (z
α
k )

∗|H+

+q−2(1− q2)2
n∑

k<l

n∑

α<β

zβl (z
β
l )

∗|H + (1− q2)I.

If, in this last sum, we use (56) to substitute zαk (z
α
k )

∗|H , then a similar calculation as in the case
α 6= β yields the final case.

Lemma 5.9. Assume k < n. For any multi-index m = (m1,m2, . . . ,mn−k) ∈ Z
n−k
+ , let

z(m) := (znk+1)
m1(znk+2)

m2 . . . (znn)
mn−k

and
Hm = π(z(m))H.

Then Hm⊥Hn for m 6= n and

K =
∨

m∈Z
n−k
+

Hm. (57)

Proof. Let u′, v′ ∈ H and v = π(z(n))v′ ∈ Hn, u = π(z(m))u′ ∈ Hm for n 6= m. By Lemma 5.2
and Lemma 5.3 applied to I = {znk+1, z

n
k+1, . . . , z

n
n} and H, we have

〈v, u〉 = 〈π(z(n))v′, π(z(m))u′〉 = γI(z(m)∗z(n))〈v′, u′〉 = 0

and hence Hm⊥Hn whenever m 6= n.

To prove (57), it is enough to prove that the right hand side is reducing Z, as then the equality
follows from the irreducibility of π. By Lemma 5.4, the elements of the form z(m)b, where b
is a monomial of generators in Z\I, is a basis of C[Matn]q and thus for any zlj ∈ Z, we have
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zljz(m) =
∑

i z(mi)bi, where bi is in the unital algebra generated by Z\I. As H is invariant under
the operators in Z\I, we then get

π(zlj)Hm = π(zlj)π(z(m))H ⊆
∨

i

π(z(mi)bi)H ⊆
∨

i

π(z(mi))H ⊆
∨

m∈Z
n−k
+

Hm.

Let us now prove the invariance under the operators in Z∗. If 1 ≤ j ≤ k − 1 and k + 1 ≤ l ≤ n
then (zrj )

∗znl = znl (z
r
j )

∗ if 1 ≤ r ≤ n− 1 and znl (z
n
j )

∗ = q(znj )
∗znl if r = n, and hence the right-hand

side of (57) is invariant under these operators. Now let k + 1 ≤ j ≤ n, if we define the norm
|m| = m1 +m2 + · · ·+mn−k, then from the equations

(zrj )
∗znl = znl (z

r
j )

∗ if j 6= l and r 6= n

(zrj )
∗znl = qzn(zrj )

∗ if j 6= l and r = n

(zrj )
∗znj = qznj (z

r
j )

∗ − (q−1 − q)
∑

j<s

zns (z
r
s )

∗ if r 6= n

(znj )
∗znj = q2znj (z

n
j )

∗ + (1− q2)(I −
∑

j<s

zns (z
n
s )

∗)

and the fact that zns ∈ I if j < s, it is easy to see by induction on m ∈ Z+, that the spaces
Km :=

∨

|m|≤mHm are all invariant under the operators π(zrj )
∗, as K0 = H is invariant with

respect to them (hence establishing the case m = 0).

The final case to consider is the column (zjk)
∗ for 1 ≤ j ≤ n. Notice that as znk z

n
j = qznj z

n
k

and we assumed π(znk )|H = eiϕI, we see that π(znk )|Hm
= eiϕq|m|I. As the set of operators

π(z1k)
∗, π(z2k), . . . , π(z

(n−1)
k )∗ commute with the operators π(znk+1), π(zk+2), . . . , π(z

n
n), (by (13))

we only need to prove that π(zjk)H ⊂ ∨

Z
n−k
+

Hm, for j = 1, . . . , n − 1. Let P be the orthogonal

projection onto the orthogonal complement of
∨

m∈Z
n−k
+

Hm and let v ∈ H. Then

||Pπ(zjk)∗v|| = ||Pπ(zjk)∗π(znk )v|| =

= ||P (qπ(znk )π(zjk)∗ − (q−1 − q)
∑

j<s

π(zns )π(z
j
s)

∗)v|| = q||Pπ(znk )π(zjk)∗v||

by what has already been proven. By induction, we have

||Pπ(zjk)∗v|| = qr||Pπ(znk )rπ(zjk)∗v||.

By Lemma 5.5, π(zjk)
∗ is a contraction, and so we get

||Pπ(zjk)∗v|| ≤ qr||π(zjk)∗|| · ||v|| for all r ∈ Z+

and thus ||Pπ(zjk)∗v|| = 0.

Remark 5.10. Notice that this lemma shows that by applying Lemma 5.2 and Lemma 5.3 to
I = {znk+1, . . . , z

n
n} and H, we get a natural unitary isometry A(I)⊗H → K, where A(I) is equipped

with the inner product 〈·, ·〉I. This unitary isometry is the closure of the linear map determined by
a⊗ v ∈ A(I)⊗H 7→ π(a)v ∈ K.
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We can now prove that π′ is irreducible. Assume that H = H1 ⊕ H2, where H1⊥H2 and
both subspaces reducing π′. Then H1, H2 are actually invariant under Z\I as π(zjk)|H = 0 for
1 ≤ j ≤ n− 1 and π(znk )|H = eiϕI and the invariance under the remaining operators follows from
the way π′ is defined. Now, the same arguments that were used in Lemma 5.9 to show invariance
under Z of the right hand side of (57) can be used to show that the subspaces

∨

m∈Z
n−k
+

π(z(m))H1

and
∨

m∈Z
n−k
+

π(z(m))H2 are both invariant under Z. We also have π(z(m1))H1⊥π(z(m2))H2 for

all m1,m2 ∈ Z
n−k
+ by similar arguments as in Lemma 5.9. By Lemma 5.9, we get

K =
∨

m∈Z
n−k
+

π(z(m))H1 ⊕
∨

m∈Z
n−k
+

π(z(m))H2

and therefore
(
∨

m∈Z
n−k
+

π(z(m))H1

)⊥

=
∨

m∈Z
n−k
+

π(z(m))H2. So both subspaces are actually

invariant under Z∗ too, contradicting irreducibility of π.

For j+ i ≤ m−1, let cji be the cycle sjsj+1 . . . sj+i ∈ Sm. Let us denote the ∗-representation of
C[SUm]q corresponding to cji by πji (see Definition 2.1). In next part of the proof we are going to
reconstruct the original ∗-representation π using the lift of π′, so now we are working in C[SU2n]q
instead. We are going to tensor our reduced and lifted representation π′ with a suitable πji, and
the proof that this ∗-representation is isomorphic to π relies strongly on being able to explicitly
calculate the image πji(tkl), so we will now explain how to do this easily. By the definition of tensor
product of representations of C[SUm]q we have

πji(tkl) =

m∑

k1,k2,...,ki=1

πj(tk,k1 )⊗ πj+1(tk1,k2)⊗ · · · ⊗ πj+i(tki,l) (58)

Notice that since πa(trs) = δrsI unless (r, s) is one of the four pairs of integers (a, a), (a+1, a), (a, a+
1), (a+ 1, a+ 1), we have that a non-zero term in (58) corresponds to a sequence k, k1, . . . , ki−1, l
that can be visualized as paths on the grid

m

...

j + i

...

j

...

2

1

m

...

j + i

...

j

...

2

0

1

1 2 3 . . . . . . i i+ 1 (59)
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starting at vertex (k, 0) on the left-hand side proceeding to (k1, 1) etc, and then ending at vertex
(l, i+ 1). These paths have the property that kr 6= kr+1 if and only if kr = j + r or kr = j + r + 1,
and in the first case, then kr+1 = j + r + 1 and in the second case kr+1 = j + r. As an example,
when m = 8, j = 2, i = 4, a path for t46 can be visualized as

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

0 1 2 3 4 5 (60)

Here the light shadowed boxes indicate the ∗-representations πj , . . . , πj+i. They are drawn so that,
if πl is the m’th tensor-factor in πji, then the box, that is l’th from the top and m’th from the left
is shaded gray. As

π24(t46) =

8∑

k1,...,k4

π2(t2k1)⊗ π3(tk1k2)⊗ π4(tk2k3)⊗ π5(tk3k4)⊗ π6(tk46)

the path chosen in (60) corresponds to k1 = 4, k2 = 4, k3 = 5, k4 = 6 and to the operator

π2(t44)⊗ π3(t44)⊗ π4(t45)⊗ π5(t56)⊗ π6(t66) =

I ⊗ T22 ⊗ T12 ⊗ T12 ⊗ T11.

We define an admissible path in πji(tml) as a sequence of integers {m, k1, k2, . . . , ki, l} such that

πi(tmk1)⊗ πi+1(tk1k2)⊗ · · · ⊗ πi+j(tkil) 6= 0.

In π24, it is not hard to see that the path in (60) corresponding to {4, 4, 4, 5, 6, 6} is the only
admissible path. We also see that there is no possible way to join m with m− 2, as we can traverse
at most once upwards in a diagonal. This holds also in general.

Lemma 5.11. For j + i ≤ m − 1, let πji (resp. πopji ) be the ∗-representation of C[SUm]q corre-
sponding to sjsj+1 . . . sj+i ∈ Sm+1 (resp. sj+isj+i−1 · · · sj ∈ Sm). Then for any 1 ≤ k, l ≤ m,
there is at most one non-zero term in the sum

πji(tml) =

m∑

k1k2,...,ki=1

πj(tmk1)⊗ πj+1(tk1k2)⊗ · · · ⊗ πj+i(tki−1l)
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(resp.

πopji (tml) =
m∑

ki,ki−1,...,k1=1

πj+i(tmki)⊗ πj+i−1(tkiki−1)⊗ · · · ⊗ πj(tki−1l))

and we have πji(tml) = 0 if m− l ≥ 2 (resp. πopji (tml) = 0 if l −m ≥ 2).

The above lemma can be easily seen to be true by drawing diagrams such as (60), and it is not
hard to make the pictorial intuition into a formal proof by, for instance, using induction on i.

Hence by this lemma, it is very easy to calculate the action of πji(tml) explicitly as one only
needs to draw the obvious path. Another way to illustrate the action of πji(tml) is by using diagrams
with arrows and hooks similar to the one that describes the action of the Fock representation of
Pol(Matn)q. Consider the row

2 . . . j + 1 . . . j + i+ 1. . . m

1 m

1 . . . j . . . j + i . . . m− 1

where the dark gray squares again correspond to the trivial ∗-representation of C[SU2]q onto C and
on the white squares the ∗-representation of C[SU2]q into C∗(S) given by (19). Here the tensor
factors are ordered from left to right, and we determine the image πji(tkl) by connecting k on the
left or bottom side to the top or right side with the hooks and arrows. So, in the previous example,
the term corresponding to the admissible path π24(tt46 ), can be represented now as

2 3 4 5 6 7 8

1 8

1 2 3 4 5 6 7

If we instead consider sj+isj+i−1 . . . sj ∈ Sm, we can represent this similarly, but with a vertical
block instead, and where the ordering of factors is made from top to bottom. If we apply τϕ to
one of the C∗(S) factors, then as before, we can calculate the new ∗-representation by putting in a
light gray square in that factor’s place. We leave it up to the readers to convince themselves that
these two ways of doing calculations actually yield the same result.

Some remarks about notations regarding tensor products: the Hilbert space ℓ2(Z+)
⊗j will

be given the basis {em}
m∈Z

j
+
, where m = {m1,m2, . . . ,mj} ∈ Z

j
+ is a multi-index and em =

em1 ⊗ em2 ⊗ · · · ⊗ emj
∈ ℓ2(Z+)

⊗j , where {em}∞m=0 is the standard orthonormal basis of ℓ2(Z+).
For m ∈ Z+ and 1 ≤ l ≤ j, let (m)l ∈ Zk+ be the multi-index with value m at the l’th index and

equal to zero otherwise. Let also 0 = {0, 0, . . . , 0} ∈ Z
j
+, so that e0 = e0⊗ e0⊗· · ·⊗ e0 ∈ ℓ2(Z+)

⊗j .

Let βϕ : Pol(Matn−1)q → Pol(Matn−1)q be the automorphism defined by

βϕ(z
l
j) =

{

zij if j 6= k − 1

eiϕzlj if j = k − 1
(61)
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By induction, we can now assume that π′ ◦ βϕ, where π′ is defined by (53), can be lifted to a
∗-representation µ : C[SU2(n−1)]q → B(H) such that

µ ◦ ζ = π′ ◦ βϕ. (62)

We can then lift µ to a ∗-representation π̃ of C[SU2n]q using the map ψ : C[SU2n]q → C[SU2(n−1)]q
given as

ψ(tk,j) =

{

tk−1,j−1 if 2 ≤ k, j ≤ 2n− 1

δk,j otherwise
(63)

so that
π̃ := µ ◦ ψ. (64)

Remark 5.12. A sudden involvement of βϕ may seem a bit unmotivated, but it is logical, given
our informal discussion in section 3. If we look at the paths starting like

1 2 3

1

3

2

then when we use the scheme in Section 5.1 to express the operators π′(z11), π
′(z21) (π

′ corresponding
to the upper-right 2× 2 square) they get multiplied by e−iϕ coming from they gray square at (2, 3).
So if we want to get the ∗-representation corresponding to the upper right 2 × 2 square, then we
must multiply the first column in Pol(Mat2)q by eiϕ in order to cancel this factor.

Now define a ∗-representation of C[SU2n]q by the formula

λ = (τϕ ◦ πn+k−1)⊗ πn+k ⊗ · · · ⊗ π2n−1 : C[SU2n]q → B(ℓ2(Z+))
⊗n−k (65)

corresponding to the diagram

2 . . . n+ k . . . . . . . . . 2n

1 2n

1 . . .n+ k − 1. . . . . . . . . 2n− 1

(66)

and consider the representation

λ⊗ π̃ : C[SU2n]q → B(ℓ2(Z+))
⊗n−k ⊗B(H),

If we let ∆ := (λ ⊗ π̃) ◦ ζ, then the aim is to show that ∆ ∼= π.

Lemma 5.13. We have ker∆(znk )
∗ = 0 and

∩nj=k+1 ker∆(znj )
∗ = 〈e0〉 ⊗H (67)

and for zjm ∈ Z\I (recall I = {znk+1, . . . , z
n
n}) we have

∆(zjm)(e0 ⊗ v) = e0 ⊗ π(zjm)v. (68)

Moreover, ℓ2(Z+)
⊗n−k ⊗H is the closed linear span of vectors

∆(z(m))(e0 ⊗ v), v ∈ H, m ∈ Z
n−k
+ .
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Proof. We start with (68). We have ζ(zjm) = (−q)m−ntm+n,j+n (see (27)) and hence

∆(zjm) = (−q)m−n
2n∑

r=1

λ(tm+n,r)⊗ π̃(tr,j+n) (69)

If 1 ≤ m ≤ k − 2, then λ(tm+n,r) = δm+n,rI so that, by (61), (62) and (64), the right hand side
of (69) becomes

∆(zjm) = (−q)m−nI ⊗ π̃(tm+n,j+n) = (−q)m−nI ⊗ (µ ◦ ψ)(tm+n,j+n) =

= (−q)m−nI ⊗ µ(tm+n−1,j+n−1) = (−q)−1I ⊗ (π′ ◦ βϕ)(zjm) =

= (−q)−1I ⊗ π′(zjm) = I ⊗ π(zjm)

proving (68) in this case. If m = k − 1, then similar arguments give λ(tk−1+n,r) = e−iϕδk−1+n,rI,
and so

∆(zjk−1) = e−iϕ(−q)k−1−nI ⊗ π̃(tk−1+n,j+n) =

= e−iϕ(−q)k−1−nI ⊗ (µ ◦ ψ)(tk−1+n,j+n) = e−iϕ(−q)k−1−nI ⊗ µ(tk−1+n−1,j+n−1) =

= e−iϕ(−q)−1I ⊗ (π′ ◦ βϕ)(zjk−1) = (−q)−1I ⊗ π′(zjk−1) = I ⊗ π(zjk−1)

proving (68).

When m = k, then as π̃(tr,2n) = δr,2nI, we obtain by (69) that

∆(znk ) = (−q)k−nλ(tk+n,2n)⊗ I = eiϕDq ⊗Dq ⊗ · · · ⊗Dq ⊗ I

(where Dq is given by) proving (68) and that ker∆(znk )
∗ = 0. By Lemma 5.7 we get ∆(znj ) = 0 for

1 ≤ j ≤ k − 1. As π(znj ) = 0 for those values of j, we obtain

∆(znj )(e0 ⊗ v) = 0 = e0 ⊗ π(znj )v

and so (68) holds in this case.

If 1 ≤ j < n then

∆(zjk) = (−q)k−n
2n∑

r=1

λ(tk+n,r)⊗ π̃(tr,j+n) =

(−q)k−n
2n−1∑

r=1

λ(tk+n,r)⊗ π̃(tr,j+n) + λ(tk+n,2n)⊗ π̃(t2n,j+n) =

= (−q)k−n
2n−1∑

r=1

λ(tk+n,r)⊗ π̃(tr,j+n).

A calculation using (66) gives that unless r = 2n, the operator λ(tk+n,r), if non-zero, will contain
T11 as a factor, thus annihilates e0. Hence

(−q)k−n
n+k−1∑

r=2

λ(tk+n,r)⊗ π̃(tr,j+n)(e0 ⊗ v) = 0
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for all v ∈ H, and thus equal to e0 ⊗ π(zjk)v by (54).

Finally, if zjm ∈ Z\{znk+1, . . . , z
n
n} with m ≥ k + 1, then we have

∆(zjm) = (−q)k−n
2n∑

r=1

λ(tm+n,r)⊗ π̃(tr,j+n) =

= (−q)m−n
2n−1∑

r=1

λ(tm+n,r)⊗ π̃(tr,j+n).

Again, we see from (66) that if r 6= m + n − 1, then we have a S∗Cq factor in λ(tm+n,r) if it is
non-zero, and in the case r = m+ n− 1, we have λ(tm+n,r)e0 = e0. We obtain

(−q)m−n
2n−1∑

r=1

λ(tm+n,r)⊗ π̃(tr,j+n)(e0 ⊗ v) =

= (−q)m−nλ(tm+n,m+n−1)⊗ π̃(tm+n−1,j+n)(e0 ⊗ v) =

= e0 ⊗ ((−q)m−nπ̃(tm+n−1,j+n))v = e0 ⊗ ((−q)m−nµ ◦ ψ(tm+n−1,j+n))v =

= e0 ⊗ ((−q)m−nµ(tm+n−2,j+n−1)v) = e0 ⊗ ((−q)(m−1)−(n−1)µ(t(m−1)+(n−1),j+(n−1))v) =

= e0 ⊗ (π ◦ βϕ)(zjm−1))v = e0 ⊗ (π(zjm−1))v =

= e0 ⊗ π(zjm)v.

and hence (68) is proven for all zlj ∈ Z\I.

Now we prove the second claim. We have

∆(znm) = (−q)m−n
2n∑

r=1

λ(tm+n,r)⊗ π̃(tr,2n) =

= (−q)m−nλ(tm+n,2n)⊗ I

as π̃(tr,2n) = δr,2nI. For k + 1 ≤ m ≤ n we use (66) to get

(−q)m−nλ(tm+n,2n)⊗ I = I ⊗ · · · ⊗ I
︸ ︷︷ ︸

m− k + 1 times

⊗CqS ⊗Dq ⊗ · · · ⊗Dq
︸ ︷︷ ︸

n−m times

⊗I

and hence (67). As ∆(z(m))(e0 ⊗ v) is a nonzero multiple of em ⊗ v, and these vectors obviously
span ℓ2(Z+)

⊗n−k ⊗H, we obtain the last statement.

Proposition 5.14. The ∗-representations ∆ and π are equivalent by the unitary isometry U : K →
ℓ2(Z+)

⊗n−k ⊗H given by
π(z(m))v 7→ ∆(z(m))(e0 ⊗ v) (70)

for v ∈ H and m ∈ Z
n−k
+ .
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Proof. By Lemma 5.2 and Lemma 5.3, for all v ∈ H

||π(z(m))v||2 = 〈z(m), z(m)〉I||v||2

and 〈z(m), z(m)〉I 6= 0. Hence π(z(m))v = π(z(m))u u, v ∈ H if and only if v = u. It then follows
from Proposition 5.9 that U is well defined on the dense subspace, and hence if we can show that
U is an isometry on this dense subspace, then it can be extended to an isometry on the whole of
K. By applying Lemma 5.2 again to both (H, I) and (e0 ⊗H, I), we see that

〈π(z(m))v, π(z(m′))u〉 = γI(z(m
′)∗z(m))〈v, u〉 =

= γI(z(m
′)∗z(m))〈e0 ⊗ v, e0 ⊗ u〉 =

= 〈∆(z(m))(e0 ⊗ v),∆(z(m′))(e0 ⊗ u)〉 =
= 〈U(π(z(m))v), U(π(z(m′))u)〉.

Hence, by linearity, we can extend U to an isometry. By Lemma 5.13, we can now conclude that
U is surjective and thus it follows that U is a unitary isometry.

To prove that U induces an isomorphism we only need to prove that Uπ(zjm) = ∆(zjm)U for
all zjm ∈ Z. Note that this is true by the construction of U for the elements in I. By Lemma 5.13,
for zjm ∈ (Z\I) ∩ {zn1 , . . . znk−1} we have π(zjm) = 0 and ∆(zjm) = 0, so obviously in this case
Uπ(zjm) = ∆(zjm)U. If zjm ∈ Z\(I ∪ {zn1 , . . . znk−1}), then first we apply the same arguments that
were used in the proof of Lemma 5.9 to see that

zjmz(m) =
∑

i

z(mi)bi

for some bi in the unital algebra generated by Z\I. Then

Uπ(zjm)π(z(m))v = U
∑

i

π(z(mi))π(bi)v =

=
∑

i

∆(z(mi))(Uπ(bi)v) =

=
∑

i

∆(z(mi))(e0 ⊗ (π(bi)v)) =

(
∑

i

∆(z(mi)bi)

)

· (e0 ⊗ v) =

= ∆(zjm(z(m))(e0 ⊗ v)) = ∆(zjm)U(π(z(m))v)

where in the fourth equality we used (68). This concludes the proof of case A.

5.4 The Case B

Assume now that the irreducible ∗-representation π : Pol(Matn)q → B(K) has the property that
kerπ(zkn)

∗ 6= {0} and kerπ(znk )
∗ 6= {0} for 1 ≤ k ≤ n. In this case the reduction from n to n− 1 is

much more straightforward. We will also be re-using many of the arguments from the case A, so
at some places in the proofs, we will simply refer to Section 5.3.
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Throughout this section, we let

I = {zn1 , . . . , znn−1, z
n
n , . . . , z

1
n}

and, as before, we use the multi-index notation: for m = (m1, . . . ,m2n−1) ∈ Z2n−1

z(m) = (zn1 )
m1 · · · · · (znn−1)

mn−1(znn)
mn · · · · · (z1n)m2n−1 .

We start by proving the following:

Lemma 5.15. The subspace H := (∩nk=1 kerπ(z
k
n)

∗) ∩ (∩nk=1 kerπ(z
n
k )

∗) is non-trivial.

Proof. For the simplicity, we suppress π and write simply a for the image π(a), a ∈ Pol(Matn)q.
Assume that (∩nk=1 ker(z

k
n)

∗) ∩ (∩nk=1 ker(z
n
k )

∗) = {0} and let 0 ≤ m, j < n be integers such that

(∩nk=m+1 ker(z
k
n)

∗) ∩ (∩nk=j+1 ker(z
n
k )

∗) 6= {0}

but
(∩nk=m ker(zkn)

∗) ∩ (∩nk=j+1 ker(z
n
k )

∗) = {0}
if m > 0 and

(∩nk=m+1 ker(z
k
n)

∗) ∩ (∩nk=j ker(znk )∗) = {0}
if j > 0. To be more precise, we assume that m > 0 and let

J := (∩nk=m+1 ker(z
k
n)

∗) ∩ (∩nk=j+1 ker(z
n
k )

∗).

Then as ker(znm)∗ ∩ J = 0 we get, by the same argument as in Lemma 5.6, that J reduces znm and
znm|J is unitary. This shows that the operator

R := znm(z
n
m)∗ − (znm)∗znm

has a non-trivial kernel, as it clearly contains J.

Claim: kerR is reducing for π.
As π is irreducible, the claim would give R = 0 and hence znm is normal. By using Fuglede-Putnam’s
theorem in a similar way as in the proof of Proposition 5.8, we can deduce that the normal partial
isometry U in the polar decomposition of znm is commuting with the image of Pol(Matn)q under π.
This gives that K = kerU ⊕UK is a decomposition of K into orthogonal subspaces, both reducing
π. Hence one of the subspaces must be trivial. But if kerU is trivial, then the kernel of (znm)∗ must
be trivial, contradicting our assumption on π. If UK is trivial, then U = 0 and hence (znm)∗ = 0,
but this contradicts (∩nk=m+1 ker(z

k
n)

∗) ∩ (∩nk=j+1 ker(z
n
k )

∗) 6= {0}.

Proof of the claim: It is easy to see that zlk with k > m and l < n commutes with R. As R is self
adjoint, then zlk must reduce its kernel. Similarly, it is easy to see that znk with k < m commutes
with R. We can then use the arguments from Lemma 5.7 to see that the restriction of such znk to
kerR is zero. Now consider zkm with k < n. Then

Rzkm = znm(znm)∗zkm − (znm)∗znmz
k
m = znm(znm)

∗zkm − q−1(znm)∗zkmz
n
m =

= znm

(

qzkm(z
n
m)∗ − (q − q−1)

n∑

l=m+1

zkl (z
n
l )

∗

)

−
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−q−1

(

qzkm(z
n
m)∗ − (q − q−1)

n∑

l=m+1

zkl (z
n
l )

∗

)

znm =

= (qznmz
k
m(z

n
m)∗ − zkm(znm)∗znm)−

−(q − q−1)

(

znm

n∑

l=m+1

zkl (z
n
l )

∗ − q−1
n∑

l=m+1

zkl (z
n
l )

∗znm

)

.

We consider these two terms separately. The first term reduces to

qznmz
k
m(z

n
m)∗ − zkm(znm)∗znm = zkmz

n
m(znm)∗ − zkm(znm)∗znm = zkmR.

For the second one, we obtain

znm

n∑

l=m+1

zkl (z
n
l )

∗ − q−1
n∑

l=m+1

zkl (z
n
l )

∗znm =

= znm

n∑

l=m+1

zkl (z
n
l )

∗ −
n∑

l=m+1

zkl z
n
m(z

n
l )

∗ =

= znm

n∑

l=m+1

zkl (z
n
l )

∗ −
n∑

l=m+1

znmz
k
l (z

n
l )

∗ = 0

and thus zkmR = Rzkm. For k = n, we get

Rznm = znm((znm)∗znm)− ((znm)∗znm)z
n
m =

= znm

(

q2znm(znm)∗ + (1− q2)

(

I −
n∑

l=m+1

znl (z
n
l )

∗

))

−

−
(

q2znm(z
n
m)∗ + (1− q2)

(

I −
n∑

l=m+1

znl (z
n
l )

∗

))

znm

and as znm commutes with znl (z
n
l )

∗ for l = m + 1, . . . , n (by (3) and (11)), this sum reduces to
q2znmz

n
m(znm)∗− q2znm(znm)∗znm = q2znmR and hence kerR is also reducing znm. Finally, let k < m and

l < n and let v ∈ kerR. We have

Rzlkv = znm(z
n
m)∗zlkv − (znm)∗znmz

l
kv = (znmz

l
k)(z

n
m)∗v − (znm)∗(znmz

l
k)v =

= (zlkz
n
m − (q−1 − q)zlmz

n
k )(z

n
m)∗v − (znm)∗(zlkz

n
m − (q−1 − q)zlmz

n
k )v

= (zlkz
n
m)(znm)∗v − (znm)∗(zlkz

n
m)v = zlk(z

n
m(znm)∗)v − zlk((z

n
m)∗znm)v =

zlkAv = 0

where the fourth equality follows from znk v = 0 and znk (z
n
m)∗v = (znm)∗znk v = 0. The case for (zlk)

∗

is treated similarly.

Lemma 5.16. H is a reducing subspace for π(zij), z
j
k ∈ Z

n
n. Moreover, the map

π′ : zij 7→ π(zij)|H , i, j = 1, . . . , n− 1, (71)

extends to an irreducible ∗-representation of Pol(Matn−1)q.
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Proof. As before, we suppress π and write simply a for the image a ∈ Pol(Matn)q. To see that H

is invariant under the action of (Znn)
∗, pick (zjk)

∗ ∈ Znn. Notice that by (8)-(10), any (zlm)∗ ∈ I∗

either commutes or q-commutes with (zjk)
∗, or (zlm)∗ and (zjk)

∗ satisfy (10). In the first two cases,
it follows that

(zlm)∗(zjk)
∗H = (zjk)

∗(zlm)∗H = {0}
(zlm)

∗(zjk)
∗H = q(zjk)

∗(zlm)∗H = {0}
respectively. In the last case when m < k and l < j, we get

(zlm)∗(zjk)
∗H = ((zjk)

∗(zlm)∗ − (q − q−1)(zjm)∗(zlk)
∗)H = (q − q−1)(zjm)∗(zlk)

∗H

and as (zjm)∗(zlk)
∗ = (zlk)

∗(zjm)∗ and at least one of the integers m or i is equal to n, we get

(q − q−1)(zjm)∗(zlk)
∗H = {0}.

From this it follows that H is invariant with respect to (zjk)
∗. But in this case the action of the

extra term also annihilates H, as one of the factors will be in I∗ and the two factors commute.

To prove the invariance under Znn, we pick again some zjk ∈ Znn. By (11), the only two elements

in I∗ not commuting with zjk are (zjn)
∗ and (znk )

∗. By (11)

(znk )
∗zjkv = qzjk(z

n
k )

∗v − (q − q−1)

n∑

r=k+1

zjr(z
n
r )

∗v = 0, v ∈ H

giving zjkH ⊆ ker(znk )
∗. Similarly zjkH ⊆ ker(zjn)

∗. As zjk commutes with the rest of I∗, we obtain

zjkH ⊆ H.

It is easy to see that (3)-(5) and (8)-(10) hold for the operators π(zjk)|H , as these relations for
the restriction is just the restriction of the original relations, so the only crux is (11). However, if we
look at the equations (14)-(16), then we see that under π, the terms in the sums corresponding to
j = n orm = n annihilateH and disappear in the restriction, thus only leave the equations for n−1.
We will postpone the proof of the irreducibility of π′ untill after the proof of Proposition 5.17.

Proposition 5.17. For m ∈ Z
2n−1
+ , let Hm := π(z(m))H. Then Hm⊥Hm′ for m 6= m

′ and

K =
∨

m∈Z
2n−1
+

Hm. (72)

Proof. The claim that Hm⊥Hm′ if m 6= m′ can be deduced in the same way as the analogous claim
in Proposition 5.9. Similarly, we prove the equality in (72) as before, by showing that the right hand
side is reducing π. Invariance under Z is once again deduced from Lemma 5.4. Invariance under
Z∗ can be seen by combining (12) with Lemma 5.4. We get the result that any a ∈ Pol(Matn)q
can be written as a sum

a =
∑

i

z(mi)ai(a
′
i)

∗z(m′
i)

∗

with ai, b
′
i in the unital algebra generated by Znn. For v ∈ Hm of the form π(z(m))u with u ∈ H,

we then have that for any (zjk)
∗ ∈ Z∗

π(zjk)
∗v = π(zjk)

∗π(z(m))u =
∑

i

π(z(mi)bi(bi)
∗z(m′

i)
∗)u =
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=
∑

i

π(z(mi))(π(bi(bi)
∗z(m′

i)
∗)u) ∈

∨

m∈Z
2n−1
+

Hm

as π(bi(bi)
∗z(m′

i)
∗)u ∈ H.

We now prove that π′ is irreducible. Notice that in the above proof, the only property of H
that is used to prove that the right hand side of (72) is reducing π, is that H is reducing Znn and
is invariant under I∗. If π′ is not irreducible and H can be decomposed into non-trivial orthogonal
subspaces H1 ⊕H2, both reducing π′. Then as H1, H2 are both annihilated by the elements in I∗

(since they are subspaces of H) and reducing Znn by the definition of π′, it follows by the proof
of Proposition 5.17 that the subspaces

∨

m∈Z
2n−1
+

π(z(m))H1 and
∨

m∈Z
2n−1
+

π(z(m))H2 are both

reducing π and as they are not equal, and in fact even orthogonal to each other, we derive a con-
tradiction to the assumption that π is irreducible.

We can now use the induction hypothesis on π′ that it can be lifted to a ∗-representation
Π′ : C[SU2n−2]q → B(H) such that π′ = Π′ ◦ ζ.

We now lift Π′ to a ∗-representation Π of C[SU2n]q by first defining a ∗-homomorphism

δ : C[SU2n]q → C[SU2n−2]q (73)

determined by

δ(tk,j) =

{

tkj if 1 ≤ k, j ≤ 2n− 2

δk,jI otherwise

(this corresponds to putting the matrix (tkj)
2n−2
k,j=1 in the upper left corner of the matrix (tkj)

2n
k,j=1)

and then letting Π = Π′ ◦ δ.

Let us now consider d = snsn+1 . . . s2n−1 and b = s2n−2s2n−3 . . . sn and make the ∗-representation
∆ of Pol(Matn)q given by the formula ∆ = (πd ⊗Π⊗ πb) ◦ ζ. Again we can use the diagram repre-
sentation of πd and πb to calculate easily the images of the generators in C[SU2n]q. We have that
πd and πb correspond to the diagrams

2 . . . n . . . 2n

1 2n

1 . . . n− 1 . . . 2n− 1

1

...

n− 1

...

2n− 2

2n− 1

2n

1

2

...

n

...

2n− 1

2n
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respectively, where in the vertical diagram we calculate the image of πb(tkj) by connecting k on
the left (if k 6= 2n) or bottom side (if k = 2n) with j on the top (if j = 1) or right side (if j 6= 1).

Lemma 5.18. We have

(∩nk=1 ker∆(zkn)
∗) ∩ (∩nk=1 ker∆(znk )

∗) = e0 ⊗H ⊗ e0

and for all v ∈ H, we have
∆(znj )

l(e0 ⊗ v ⊗ e0) =

a(l)e0+(l)j ⊗ v ⊗ e0

for 1 ≤ j ≤ n, where 0+ (l)j means that l is added to the j’th cordinate. Also

∆(zjn)
le0 ⊗ v ⊗ e0 =

a(l)e0 ⊗ v ⊗ e0+(l)n−j

for 1 ≤ j ≤ n− 1 and a(l) =
∏l−1
m=1

√

1− q2m.

Proof. Evidently, if we prove the claims made on the action of the operators on e0 ⊗H ⊗ e0, then
the claims about intersections of the kernels are easy to see. For 1 ≤ k ≤ n− 1, we have

∆(zkn) =

2n∑

r,s=1

πd(t2n,r)⊗Π(tr,s)⊗ πb(ts,n+k) =

2n∑

s=1

2n∑

r=2n−1

πd(t2n,r)⊗Π(tr,s)⊗ πb(ts,n+k)

as πd(t2n,r) = 0 unless r = 2n − 1, 2n. If r = 2n, then Π(tr,s) = δr,sI so that s = 2n, but then
πb(t2n,n+k) = δ2n,n+kI = 0, by the bounds on k. So the sum reduces to

2n∑

s=1

πd(t2n,2n−1)⊗Π(t2n−1,s)⊗ πb(ts,n+k) =

2n∑

s=1

πd(t2n,2n−1)⊗ δ2n−1,sI ⊗ πb(ts,n+k) =

= πd(t2n,2n−1)⊗ I ⊗ πb(t2n−1,n+k)

and since πd(t2n,2n−1)e0 = e0, and T
l
22e0 = a(l)el, it is not hard to see by calculating the action of

πb(t2n−1,n+k) that the lemma holds in this case. On the other hand, if 1 ≤ m ≤ n, then

∆(znm) = (−q)m−n
2n∑

r,s=1

πd(tn+m,r)⊗Π(tr,s)⊗ πb(ts,2n) =

= (−q)m−n
2n∑

r,s=1

πd(tn+m,r)⊗Π(tr,s)⊗ δs,2nI = (−q)m−n
2n∑

r=1

πd(tn+m,r)⊗Π(tr,2n)⊗ I =

= (−q)m−n
2n∑

r=1

πd(tn+m,r)⊗ δr,2nI ⊗ I =

= (−q)m−nπd(tn+m,2n)⊗ I ⊗ I

and a calculation using the diagram for πd confirms the lemma also in this case.
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Corollary 5.19. The linear span of the vectors in ℓ2(Z+)
⊗n ⊗H ⊗ ℓ2(Z+)

⊗n−1 of the form

∆(z(m))(e0 ⊗ v ⊗ e0)

is dense in ℓ2(Z+)
⊗n ⊗H ⊗ ℓ2(Z+)

⊗n−1.

Lemma 5.20. For zjk ∈ Z
n
n and v ∈ H, we have

∆(zjk)(e0 ⊗ v ⊗ e0) = e0 ⊗ π(zjk)v ⊗ e0. (74)

Proof. By the definition of ∆

∆(zjk)(e0 ⊗ v ⊗ e0) = (−q)k−n
2n∑

r,s=1

πd(tn+k,r)⊗Π(tr,s)⊗ πb(ts,n+j)(e0 ⊗ v ⊗ e0)

Using the diagram for πd, it is easy to see that the only value of r such that the path for πd(tn+k,r)

does not contain the hook (i.e. a T11 factor, annihilating e0), is r = n + k − 1 and hence the
sum reduces to

(−q)k−n
2n∑

s=1

πd(tn+k,n+k−1)⊗Π(tn+k−1,s)⊗ πb(ts,n+j)(e0 ⊗ v ⊗ e0) =

(−q)k−n
2n∑

s=1

I ⊗Π(tn+k−1,s)⊗ πb(ts,n+j)(e0 ⊗ v ⊗ e0).

as πd(tn+k,n+k−1)e0 = e0. Likewise, as 1 ≤ j ≤ n− 1, it is easy to see that the only value of s such
that πb(ts,n+j) does not annihilate e0 is s = n + j − 1. Thus the sum contains the only non-zero
term

(−q)k−nI ⊗Π(tn+k−1,n+j−1)⊗ πb(tn+j−1,n+j)(e0 ⊗ v ⊗ e0) =

(−q)k+1−n(I ⊗Π(tn+k−1,n−j−1)⊗ I)(e0 ⊗ v ⊗ e0) =

(I ⊗ (π(tk,j)|H)⊗ I)(e0 ⊗ v ⊗ e0) = e0 ⊗ π(zjk)v ⊗ e0

as πb(tn+j−1,n+j)e0 = (−q)e0 and (−q)k+1−nΠ(tn+k−1,n−j−1) = π(tk,j)|H by the definition of
Π.

Proposition 5.21. ∆ is unitary equivalent to π by the unitary isometry U : K → ℓ2(Z+)
n ⊗H ⊗

ℓ2(Z+)
n−1 determined by

π(z(m))v 7→ ∆(z(m))(e0 ⊗ v ⊗ e0)

for v ∈ H.

Proof. This is shown in a completely analogous way to Proposition 5.14, by first proving that U
defines an isometry. For this one uses Proposition 5.17 to show that U is well defined on a dense
subset and then using lemmas 5.2 and 5.3 to see that it is isometric and hence can be extended to
the whole space. Corollary 5.19 then implies that U is onto and the definition of U shows that it
intertwines the images of the operators in I. We can then use Lemma 5.20 and a similar calculation
as the one that was made in Proposition 5.14, to see that U also intertwines the images of the
operators in Znn.

This completes the proof of the first item of Theorem 4.1.
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6 Irreducible ∗-representations of Pol(Matn)q

6.1 Elements of Minimal Length in Certain Subsets of S2n

Let σ ∈ Sn. By ℓ(σ) we denote the length of σ, that is, the number of elements in the minimal
decomposition of σ as the product of adjacent transpositions σ = sj1sj2 . . . sjℓ(σ)

. It is known that

ℓ(σ) = #{1 ≤ j < i ≤ n|σ(i) < σ(j)}, (75)

where # denotes the number of elements in the set.

Let S ⊆ S2n be the subgroup consisting of permutations that only permutes the first n elements
and leave the rest unchanged. It is clear that S ∼= Sn. For σ ∈ S2n, let

Oσ := {g1σg2|g1, g2 ∈ S}.

We have the following:

Proposition 6.1. There is a unique element w ∈ Oσ of minimal length ℓ(w) and with minimal
decomposition w = sj1sj2 · · · sjℓ(w)

, such that for any other t ∈ Oσ there are h = sk1sk2 · · · skℓ(h)

and g = sl1sl2 · · · slℓ(g) in S such that

t = h · w · g = (sk1sk2 · · · skℓ(h)
)(sj1sj2 · · · sjℓ(w)

)(sl1sl2 · · · slℓ(g))

is a minimal decomposition of t.

Proof. For any t ∈ Oσ we split {1, 2, . . . , n, n+ 1, . . . , 2n} into the four sets

N t
1 = {1 ≤ j ≤ n|1 ≤ t(j) ≤ n}

N t
2 = {1 ≤ j ≤ n|n+ 1 ≤ t(j) ≤ 2n}

N t
3 = {n+ 1 ≤ j ≤ 2n|1 ≤ t(j) ≤ n}

N t
4 = {n+ 1 ≤ j ≤ 2n|n+ 1 ≤ t(j) ≤ 2n}.

By decomposing {1, 2, . . . , 2n} = N t
1 ∪ N t

2 ∪ N t
3 ∪ N t

4 we can for any t ∈ Oσ calculate the length
ℓ(t) as

ℓ(t) = #{1 ≤ i < j ≤ 2n|t(j) < t(i)} =

4∑

m,l=1

#{i ∈ N t
m, j ∈ N t

l , i < j|t(j) < t(i)} =

= #{i ∈ N t
1, j ∈ N t

1, i < j|t(j) < t(i)}+#{i ∈ N t
1, j ∈ N t

3, i < j|t(j) < t(i)}+
+#{i ∈ N t

2, j ∈ N t
1, i < j|t(j) < t(i)} +#{i ∈ N t

2, j ∈ N t
2, i < j|t(j) < t(i)}+

+#{i ∈ N t
2, j ∈ N t

3, i < j|t(j) < t(i)} +#{i ∈ N t
2, j ∈ N t

4, i < j|t(j) < t(i)}+
+#{i ∈ N t

3, j ∈ N t
3, i < j|t(j) < t(i)} +#{i ∈ N t

4, j ∈ N t
3, i < j|t(j) < t(i)}+

+#{i ∈ N t
4, j ∈ N t

4, i < j|t(j) < t(i)}.

(76)

In (76), we have removed the terms we know to be zero. For example, the term #({i ∈ N t
3, j ∈

N t
2, i < j|t(j) < t(i)}) is equal to zero because j < i holds for all i ∈ N t

3 and j ∈ N t
2.
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Notice that |N t
1| = |N t

4| and |N t
2| = |N t

3| = n− |N t
1|. It is not hard to see that if g, h ∈ S then

|Nσ
i | = |Nhσg

i | for i = 1, 2, 3, 4, and also Nhσ
2 = Nσ

2 , N
σg
2 = g−1(Nσ

2 ), N
hσg
3 = Nσ

3 and Nhσg
4 = Nσ

4 .
For all h, g ∈ S, we have

#({i ∈ Nhσg
2 , j ∈ Nhσg

3 |hσg(j) < hσg(i)}) =
|Nhσg

2 |
(

|Nhσg
2 |+ 1

)

2
=

|Nσ
2 | (|Nσ

2 |+ 1)

2
(77)

For any g, h ∈ S, the inequality i < j always holds for i ∈ Nhσg
2 , j ∈ Nhσg

4 and as Nhσg
2 = Nσg

2 =

g−1(Nσ
2 ) and N

hσg
4 = Nσ

4 we get

#{i ∈ Nhσg
2 , j ∈ Nhσg

4 , i < j|hσg(j) < hσg(i)} =

#{i ∈ Nhσg
2 , j ∈ Nhσg

4 |hσg(j) < hσg(i)} =

#{g(i) ∈ Nσ
2 , j ∈ Nσ

4 |σ(j) < σ(g(i))} = #{i ∈ Nσ
2 , j ∈ Nσ

4 |σ(j) < σ(i)}
and hence for any t ∈ Oσ, we have

#{i ∈ N t
2, j ∈ N t

4, i < j|t(j) < t(i)} = #{i ∈ Nσ
2 , j ∈ Nσ

4 , i < j|σ(j) < σ(i)}. (78)

A very similar reasoning gives that for all t ∈ Oσ,

#{i ∈ N t
4, j ∈ N t

3, i < j|t(j) < t(i)} = #{i ∈ Nσ
4 , j ∈ Nσ

3 , i < j|σ(j) < σ(i)}. (79)

For t ∈ Oσ, let
mt
lk = #{i ∈ N t

l , j ∈ N t
k, i < j|t(j) < t(i)},

then we can rewrite (76) as

ℓ(t) = mt
11 +mt

13 +mt
21 +mt

22 +mt
23 +mt

24 +mt
33 +mt

43 +mt
44. (80)

From the equalities (77), (78), (79) we get, for any t ∈ Oσ, the lower bound

mσ
44 +mσ

43 +mσ
24 +mσ

23 ≤ ℓ(t). (81)

We claim that there is a unique element w ∈ Oσ such that equality holds in (81). We show the
existence first. We are going to do this by showing that there exist g, h ∈ S such that

mhσg
11 = mhσg

13 = mhσg
21 = mhσg

22 = mhσg
33 = 0. (82)

If we then let w := hσg, then as (81) holds for any t ∈ Oσ, it follows from (80) that the element w
would be of minimal length in Oσ.

Consider {σ(1), σ(2), . . . , σ(n)} = Nσ
1 ∪Nσ

2 . There is a unique permutation g ∈ S such that

σg(1) < σg(2) < · · · < σg(n)

and hence mσg
11 = mσg

21 = mσg
22 = 0. Now, consider

{(σg)−1(1), (σg)−1(2), . . . , (σg)−1(n)} = Nσg
1 ∪Nσg

3 .

There is h ∈ S such that for all 1 ≤ j, k ≤ n we have (σg)−1(j) < (σg)−1(k) if and only if

h(j) < h(k). We claim that (82) holds for hσg. To see this, first notice that Nσg
2 = Nhσg

2 , since
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h fixes n + 1, . . . , 2n. Hence mhσg
22 = mσg

22 = 0. Also, we have mhσg
11 = mhσg

13 = mhσg
33 = 0 by the

definition of h.We need to check that hσg preserves the ordering of {1, 2, . . . , n}, so that mhσg
21 = 0.

Let 1 ≤ i < j ≤ n, then by the definition of g, we have σg(i) < σg(j), If n+ 1 ≤ σg(j) ≤ 2n, then
h fixes σg(j) and σg(i) can at most be mapped by h to another integer less than n, and so we have
hσg(i) < hσg(j). If 1 ≤ σg(j) ≤ n, then

{i, j} = {(σg)−1(σg(i)), (σg)−1(σg(j))} ⊆ Nσg
1 ∪Nσg

3 ,

and hence h(σg(i)) < h(σg(j)) by the definition of h. This shows that also mhσg
12 = 0 and we can

now let w = hσg. Hence, there exists an elements w ∈ Oσ, such that equality holds in (81).

To prove the uniqueness of w, we will show that the equality in (81) determines w completely.
If

mw
13 = #{i ∈ Nw

1 , j ∈ Nw
3 , i < j|w(j) < w(i)} = 0,

then as w(Nw
1 ∪Nw

3 ) = {1, 2, . . . , n}, it follows that the image ofNw
1 under wmust be {1, 2, . . . , |Nw

1 |}.
Furthermore, as w(j) < w(i) holds automatically for j ∈ Nw

1 and i ∈ Nw
2 , we have that

mw
21 = #{i ∈ Nw

2 , j ∈ Nw
1 , i < j|w(j) < w(i)} = 0

implies
#{i ∈ Nw

2 , j ∈ Nw
1 , i < j} = 0. (83)

From (83), it follows that w(Nw
1 ) = Nw

1 = {1, . . . , |Nw
1 |}. As mw

11 = 0, we can then deduce that
w(j) = j for j ∈ Nw

1 . Moreover, we have Nw
2 = {Nw

1 + 1, . . . n}. Thus w : Nw
3 → Nw

2 and
w : Nw

2 → {n+1, n+2, . . . , 2n}\w(Nw
4 ) are bijective maps that preserves the ordering i.e they are

uniquely determined. Finally, the action of w on Nw
4 are the same for all elements in Oσ.

To prove the second part, it is clear that we only need to prove this claim for σ, as Ot = Oσ for
any t ∈ Oσ. We will show that

ℓ(σ) = ℓ(w) + ℓ(g) + ℓ(h), (84)

with g, h ∈ S as above. Notice that by the definition of g, we have

ℓ(g) = ℓ(g−1) = #{1 ≤ i < j ≤ n|σ(j) < σ(i)}

and as {1, 2, . . . , n} = Nσ
1 ∪Nσ

2 , we get that

ℓ(g) = mσ
11 +mσ

12 +mσ
21 +mσ

22 = mσ
11 +mσ

21 +mσ
22

as mσ
12 = 0. While, by the definition of h, we have

ℓ(h) = #{i, j ∈ Nσg
1 ∪Nσg

3 , i < j|σg(j) < σg(i)} =

mσg
11 +mσg

13 +mσg
31 +mσg

33 = mσg
11 +mσg

13 +mσg
33

as mσg
31 = 0. By the definition of g, we have #{i ∈ Nσg

1 , j ∈ Nσg
1 , i < j|σg(j) < σg(i)} = 0.

Moreover, we have

#{i ∈ Nσg
3 , j ∈ Nσg

3 , i < j|σg(j) < σg(i)} = #{i ∈ Nσ
3 , j ∈ Nσ

3 , i < j|σ(j) < σ(i)}

45



as g does not permute any of the integers in Nσ
3 . We will now show the equality

#{i ∈ Nσg
1 , j ∈ Nσg

3 , i < j|σg(j) < σg(i)} = #{i ∈ Nσ
1 , j ∈ Nσ

3 , i < j|σ(j) < σ(i)}.

We have that i < j already holds for all i ∈ Nσg
1 , j ∈ Nσg

3 and hence

#{i ∈ Nσg
1 , j ∈ Nσg

3 , i < j|σg(j) < σg(i)} = #{i ∈ Nσg
1 , j ∈ Nσg

3 |σg(j) < σg(i)} =

#{i ∈ Nσg
1 , j ∈ Nσ

3 |σ(j) < σg(i)}
as, again, σg(j) = σ(j) and Nσg

3 = Nσ
3 . If i ∈ Nσg

1 , then g(i) ∈ Nσ
1 and hence

#{i ∈ Nσg
1 , j ∈ Nσ

3 |σ(j) < σ(g(i))} = #{i ∈ Nσ
1 , j ∈ Nσ

3 |σ(j) < σ(i)} =

#{i ∈ Nσ
1 , j ∈ Nσ

3 , i < j|σ(j) < σ(i)} = mσ
13.

This shows that ℓ(σ) = ℓ(w) + ℓ(g) + ℓ(h) and hence if w = sj2 · · · sjℓ(w)
, g = sl1sl2 · · · slℓ(g) , h =

sk1sk2 · · · skℓ(h)
are minimal decompositions, then so is

σ = (sk1sk2 · · · skℓ(h)
)(sj1sj2 · · · sjℓ(w)

)(sl1sl2 · · · slℓ(g)).

For integers 1 ≤ j ≤ n and 0 ≤ k ≤ n we define the cycles in S2n

ck,j =

{

sj+n−ksj+n−k+1 · · · sj+n−1 if 1 ≤ k ≤ n

e if k = 0
(85)

where e ∈ S2n is the identity element. We shall now prove the following result, that gives a
decomposition of the element of minimal length in Oσ in terms of such cycles.

Proposition 6.2. If w ∈ Oσ ⊆ S2n is of minimal length ℓ(w), then there is a multi-index k =
[kn, kn−1, . . . , k1] ∈ Z

n
+ with the property that

ki ≤ max
i<j≤n

(kj + i− j + 1, i) (86)

(i.e. k is admissible) and such that

w = ckn,nckn−1,n−1 · · · ck1,1

is a minimal decomposition of w and ℓ(w) =
∑n
j=1 kj .

Proof. Consider pairs (m,n) with n ∈ N and 0 ≤ m ≤ n. We order these as

(m1, n1) < (m2, n2), if n1 < n2, or if n1 = n2 and m1 < m2. (87)

Clearly, this gives a well-ordering on the set of such pairs (m,n).

To every w ∈ Oσ ⊆ S2n of minimal length ℓ(w), we can associate a pair (m,n), where 0 ≤ m ≤ n
is the number of integers n + 1 ≤ j ≤ 2n such that 1 ≤ w(j) ≤ n. It follows that 0 ≤ m ≤ n.
We prove the proposition by induction on (m,n) with the ordering (87). In the case n = 1, it
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follows that w is either the identity permutation, associated to the pair (0, 1), or s1 =

(
1 2
2 1

)

,

associated to (1, 1). In both cases it is clear that the proposition holds.

Assume now that the statement holds for all minimal length elements associated to pairs
(m1, n1) < (m,n). Let w ∈ Oσ ⊆ S2n be of minimal length in Oσ and associated to (m,n).
Consider the integer w(2n). We claim that n ≤ w(2n) ≤ 2n. In fact, it follows from the proof of
Proposition 6.1 that

#{1 ≤ i < j ≤ 2n|1 ≤ w(j) < w(i) ≤ n} = mw
11 +mw

13 +mw
33 = 0 + 0 + 0

and a simple argument shows that if 1 ≤ w(2n) ≤ n, then we must have w(2n) = n.

We will split the proof into the two cases

(1) n+ 1 ≤ w(2n) ≤ 2n.

(2) w(2n) = n.

We start with the case (1). If w(2n) = 2n, let v = w. Otherwise, consider the cycle

c := s2n−1 · · · sw(2n)+1sw(2n) = c−1
2n−w(2n),n =

(
1 2 . . . w(2n) w(2n) + 1 . . . 2n
1 2 . . . 2n w(2n) . . . 2n− 1

)

(88)

and let v = cw.

We claim that v is the element of minimal length in Ov. We prove this by showing that

mv
11 = mv

13 = mv
21 = mv

22 = mv
33 = 0.

The latter follows directly from the formula

v(j) =







w(j), if 1 ≤ w(j) < w(2n)

w(j)− 1, if w(2n) < w(j) < 2n

2n, if j = 2n

(89)

or the observation that c does not change the order of the integers in

{1, 2, . . . , n} ∪w({1, 2, . . . , n}).

We have also
ℓ(w) = #{1 ≤ i < j ≤ 2n|w(j) < w(i)} =

= #{1 ≤ i < j < 2n|w(j) < w(i)} +#{1 ≤ i < 2n|w(2n) < w(i)}. (90)

Since #{1 ≤ i < 2n : w(2n) < w(i)} = 2n− w(2n), it follows from (89) that

#{1 ≤ i < j < 2n|w(j) < w(i)} = ℓ(v).

Hence from (90) we obtain
ℓ(v) = ℓ(w) − (2n− w(2n)). (91)
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As mv
11 = 0 and m is not equal to n, it follows from the proof of Proposition 6.1 that v fixes {1}.

In S2n, consider the subgroup of elements that fix {1, 2n}. It is clearly isomorphic to S2(n−1) with
the isomorphism given by

φ : si ∈ S2n−2 7→ si+1 ∈ S2n. (92)

It is easy to see that φ−1(v) ∈ Oφ−1(v) ⊆ S2(n−1) is of minimal length and φ−1(v) is associated to
the pair (m,n− 1) < (m,n). By induction, we have a decomposition

φ−1(v) = ckn−1,n−1ckn−2,n−2 · · · ck1,1 ∈ S2(n−1)

such that
ki ≤ maxi<j≤n−1(kj + i+ 1− j, i), j = 1, . . . , n− 1. (93)

Notice that if ck,j is the cycle (85) in S2(n−1), then the image of ck,j under φ is φ(ck,j) = ck,j , the
latter is now the cycle (85) in S2n. It follows that

w = c−1v = ckn,nckn−1,n−1ckn−2,n−2 · · · ck1,1
with kn = 2n− w(2n). Moreover, by (93)

ki ≤ maxi<j≤n−1(kj + i+ 1− j, i) ≤ maxi<j≤n(kj + i+ 1− j, i), i = 1, . . . , n− 1

and kn = 2n− w(2n) < n, and hence it follows that

ki ≤ maxi<j≤n(kj + i+ 1− j, i), i = 1, . . . , n

and that (86) holds. Moreover, by (91) and ℓ(c) = 2n− w(2n) = kn, it follows by induction that

ℓ(w) = 2n− w(2n) + ℓ(v) = kn + ℓ(v) = kn +

n−1∑

j=1

kj =

n∑

j=1

kj .

Let us now assume that (2) holds, so that w(2n) = n. In this case we have to argue slightly
differently. Let

t =

(
1 2 . . . 2n
2n 1 . . . 2n− 1

)

(94)

and consider
v = t−1c−1

n,nwt ∈ S2n.

We claim that v ∈ Ov has minimal length. Notice that c−1
n,nw(2n) = 2n, which gives v(1) = 1 and

as

c−1
n,n =

(
1 . . . n n+ 1 . . . 2n
1 . . . 2n n . . . 2n− 1

)

we can, for 2 ≤ j ≤ 2n, calculate

v(j) = t−1c−1
n,nw(t(j)) = tc−1

n,n(w(j − 1)) =

{

w(j − 1) + 1 if 2 ≤ w(j − 1) ≤ n− 1

w(j − 1) if n+ 1 ≤ w(j − 1) ≤ 2n
(95)

(as w(2n) = n, these are the only cases). From this it is not hard to see that mv
11 = mv

13 = mv
21 =

mv
22 = mv

33 = 0 and that
ℓ(v) = ℓ(w)− n.
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It also follows from (95) that the number of n+ 1 ≤ j ≤ 2n such that 1 ≤ v(j) ≤ n is m− 1, i.e. v
is associated to (m− 1, n) < (m,n). By induction, we have a minimal decomposition

v = cjn,ncjn−1,n−1 · · · cj1,1

such that ji ≤ maxi+1<r≤n(jr+ i+1− r, i). However, we claim that j1 = 0. To see this, notice that
if j1 > 0, then as

cj1,1 =

(
1 . . . n− j1 + 1 . . . n n+ 1 . . . 2n
1 . . . n− j1 + 2 . . . n+ 1 n− j1 + 1 . . . 2n

)

it follows that cj1,1(n+1) < cj1,1(n). It is not hard to see that this inequality persists when applying
the other cycles, but it follows from (95) that v(n) < v(n + 1) and this contradiction gives that
j1 = 0. For 2 ≤ i ≤ n− 1, we have tsit

−1 = si−1, and hence

c−1
n,nw = tvt−1 = (tcjn,nt

−1)(tcjn−1,n−1t
−1) · · · (tcj2,2t−1) = cjn,n−1cjn−1,n−1 · · · cj2,2

as no of the cycles cji , i = 2, . . . , n contains s1 and thus tcji,it
−1 = cji,i−1. So we have the

decomposition
w = ckn,nckn−1,n−1 · · · ck1,1

with kn := n and ki := ji+1, i = 1, . . . , n− 1. To show that the sequence ki has the property (86),
we again notice that the inequality holds trivially for kn = n and also for kn−1, as

max
n−1<j≤n

(kj + n− 1 + 1− j, n− 1) = max
n−1<j≤n

(kn + n− n, n− 1) = max(n, n− 1) = n.

Otherwise, for 1 ≤ i ≤ n− 2 we get

ki = ji+1 ≤ max
i+1<r≤n

(jr + (i+ 1) + 1− r, i+ 1) = max
i<r≤n−1

(kr + i+ 1− r, i+ 1) =

max
i<r≤n−1

(kr + i+ 1− r, n+ i+ 1− n) = max
i<r≤n

(kr + i+ 1− r) ≤ max
i<r≤n

(kr + i+ 1− r, i)

and hence (86) is true for kn. We now calculate the length as

ℓ(w) = n+ ℓ(v) = n+

n∑

i=2

ji = n+

n−1∑

i=1

kn =

n∑

i=1

kn

and from this it follows that the decomposition w = ckn,nckn−1,n−1 · · · ck1,1 is a minimal one.

Proposition 6.3. If we have an admissible sequence k = [kn, kn−1, . . . , k1] ∈ Zn+, then the element

w = ckn,nckn−1,n−1 · · · ck1,1 ∈ S2n

is the unique element of minimal length in Ow and the admissible sequence from Proposition 6.2
coincides with k.

Proof. First, notice that for any sequence of positive integers [jn, . . . , j1] such that 1 ≤ jm ≤ n, the
product

t = cjn,ncjn−1,n−1 · · · cj1,1
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has the property that for 1 ≤ i < m ≤ n, we have t(i) < t(m). In fact, as

ck,j =

(
1 . . . j + n− k j + n− k + 1 . . . j + n . . . 2n
1 . . . j + n− k + 1 j + n− k + 2 . . . j + n− k . . . 2n

)

it follows that ck,j does not change the ordering of (1, . . . , j + n− 1) and as

ck,j((1, . . . , j + n− 1)) ⊆ (1, . . . , n+ j),

we can deduce that the composition t = cjn,ncjn−1,n−1 · · · cj1,1 does not change the ordering of
(1, . . . , n).

Let v ∈ Ow be the minimal element and let k
′ be its associated admissible sequence. We are

going to show w = v by proving k = k′. From Proposition 6.1, we know that there exists h, g ∈ S,
such that w = hvg. Since w does not change the ordering of (1, . . . , n), it follows from the construc-
tion of g that we can assume g = e. Hence w = hv.

Notice that we have w(2n) = v(2n), since if n+1 ≤ w(2n) ≤ 2n, then w(2n) = (hv)(2n) = v(2n)
and if 1 ≤ w(2n) ≤ n, then as w(2n) = ckn,n(2n) it follows that kn = n and thus w(2n) = n, and
this implies that also v(2n) = ck′n,n(2n) = n. Hence

kn = 2n− w(2n) = 2n− v(2n) = k′n.

We can proceed now in the same manner as in the proof of Proposition (6.2), by considering c−1
kn,n

w

and c−1
kn,n

v. Again, we split the proof into the two cases 1 ≤ kn < n and kn = n.

Notice that if 1 ≤ kn < n, then the condition on k gives 1 ≤ k1 < n and thus

w(1) = v(1) = 1. (96)

From (96) it follows that, as w = hv, we have h(1) = 1 and that c−1
kn,n

w, c−1
kn,n

v are in the image of
φ : S2(n−1) → S2n given by (92).

The proof can be completed by induction on n. If n = 1, then it is easy to see that the proposition
holds. We get that

φ−1(c−1
kn,n

v) ∈ Oφ−1(c−1
kn,n

w) (97)

is of minimal length (as h(1) = 1, the inclusion follows, and the minimal length of φ−1(c−1
kn,n

v)
follows from the proof of Propostion 6.2). Also

φ−1(c−1
kn,n

w) = ckn−1,n−1 · · · ck1,1 ∈ S2n−2

and ki ≤ maxi<j≤n(kj+i−j+1, i) ≤ n−1. By induction, it follows that φ−1(c−1
kn,n

w) = φ−1(c−1
kn,n

v).

If kn = n, let t be as in (94) and consider the permutations t−1c−1
n,nwt and t

−1c−1
n,nvt. If is not

hard to see that
t−1c−1

n,n = (cn,nt)
−1 = g−1,

where

g =

(
1 2 . . . n n+ 1 . . . 2n
n 1 . . . n− 1 n+ 1 . . . 2n

)

∈ S.
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It follows that t−1c−1
n,nv ∈ Ot−1c

−1
n,nwt

as

t−1c−1
n,nvt = gvt = gh−1wt = ghg−1gwt = (ghg−1)t−1c−1

n,nwt.

By the proof of Proposition 6.2, we have that t−1c−1
n,nvt is the element of minimal length inOt−1c

−1
n,nwt

and
t−1c−1

n,nwt = ckn−1,n · · · ck1,2.
From the proof of Proposition 6.2, we get that [kn−1, . . . , k1, 0] is an admissible sequence. If we
continue in this way, we get either

kn = k′n = kn−1 = k′n−1 = · · · = k1 = k′1 = n

or we will eventually end up in the first case, if some 1 ≤ kj < n, and then it will follow by induction
that the remaining integers are equal.

Proposition 6.4. Let w ∈ Oσ be of minimal length and w = ckn,nckn−1,n−1 · · · ck1,1 the decompo-
sition from Proposition 6.2. For an 1 ≤ i ≤ n, we have

ki = max
i<j≤n

(kj + i+ 1− j, i) (98)

if and only if 1 ≤ w(n + i) ≤ n.

Proof. Let 1 ≤ i ≤ n be such that (98) holds. The equality (98) means that for all i < j ≤ n,
the indices of the factors in ckj ,j = sj+n−kjsj+n−kj+1 · · · sj+n−1 are all larger than i + n − ki as
by (98), for all i < j ≤ n,

kj + i+ 1− j ≤ ki ⇒ kj + i− j < ki ⇒

i+ n− ki < j + n− kj . (99)

As cki,i(n+ i) = n+ i− ki and cm(n+ i) = n+ i for 1 ≤ m < i, it follows from (99) that

w(n+ i) = ckn,nckn−1,n−1 · · · cki,i(n+ i) =

ckn,nckn−1,n−1 · · · cki+1,i+1(n+ i− ki) = n+ i− ki

and as ki ≥ i by (98), we get 1 ≤ n+ i− ki ≤ n.

Let us turn to the other direction. We are now going to prove that 1 ≤ w(n + i) ≤ n, implies
ki = maxi<j≤n(kj+i+1−j, i).This follows a scheme similar to the one used to prove Proposition 6.2;
we associate to a minimal length w ∈ Oσ ⊆ S2n the pair (m,n), where m, is the number of integers
n + 1 ≤ j ≤ 2n such that 1 ≤ w(j) ≤ n (0 ≤ m ≤ n), and prove the statement by induction
on (m,n), using the ordering (87). The claim is easy to see by direct inspection for the identity

e ∈ S2, associated to (0, 1) and for s1 =

(
1 2
2 1

)

, associated to (1, 1). Assume the proposition

hold for minimal length elements associated to pairs (m′, n′) < (m,n). For the minimal length
element w ∈ Oσ ⊆ S2n associated to (m,n), consider w(2n). As in Proposition 6.2, there are two
options

(1) n+ 1 ≤ w(2n) ≤ 2n.
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(2) w(2n) = n.

If n+ 1 ≤ w(2n) ≤ 2n, then kn = 2n− w(2n) < n and we can, as in the proof of Proposition 6.2,
consider

v := φ−1(c−1
kn,n

w) = ckn−1,n−1 · · · ck1,1 ∈ S2(n−1).

If is easy to see that 1 ≤ v(n − 1 + i) ≤ n− 1 and, as v is associated with (m,n− 1) < (m,n), by
induction,

ki = max
i<j≤n−1

(kj + i+ 1− j, i) = max
i<j≤n

(kj + i+ 1− j, i)

as kn = 2n− w(2n) < n and thus kn + i+ 1− n ≤ i.

If w(2n) = n, we consider

v := t−1c−1
n,nwt = ckn−1,nckn−2,n−1 · · · ck1,2 ∈ S2n.

As in Proposition 6.2, it follows that v is of minimal length in Ov and that v is associated to
(m − 1, n) < (m,n). Moreover, is it easy to see that 1 ≤ v(n + i + 1) ≤ n. By induction, if
mj = kj−1, then

ki = mi+1 = max
i+1<j≤n

(mj + (i+ 1) + 1− j, i+ 1) = max
i<j<n

(kj + i+ 1− j, i+ 1) =

max
i+1<j≤n

(mj + (i + 1) + 1− j, i+ 1) = max
i<j<n

(kj + i+ 1− j, n+ i+ 1− n) =

max
i<j≤n

(kj + i+ 1− j) = max
i<j≤n

(kj + i+ 1− j, i).

6.2 Irreducible ∗-representations of Pol(Matn)q

In this section we will complete the proof on the classification of irreducible ∗-representations of
Pol(Matn)q described by Theorem 3.6 and the second part of Theorem 4.1.

Lemma 6.5. Let σ, µ ∈ S2n, σ 6= µ, and let χϕ, χψ be one-dimensional representations of C[SUn]q,
for ϕ, ψ ∈ [0, 2π)2n. Then

(1) (πσ ⊗ χϕ) ◦ ζ is an irreducible ∗-representation of Pol(Matn)q if and only if σ is the element
of minimal length in Oσ.

(2) If σ ∈ Oσ, µ ∈ Oµ, σ 6= µ are elements of minimal length, then

(πσ ⊗ χϕ) ◦ ζ 6∼= (πµ ⊗ χψ) ◦ ζ.

Remark 6.6. Lemma 6.5 implies the second part of Theorem 4.1.

Proof. (1) Assume that (πσ ⊗ χϕ) ◦ ζ is irreducible. Let w ∈ Oσ be of minimal length and assume
that σ 6= w. Then we know from Proposition 6.1 that there are g, h ∈ S so that σ = gwh is a
minimal decomposition. This gives that πσ = πg ⊗ πw ⊗ πh. As minimal decompositions of g and
h contain only si with 1 ≤ i ≤ n− 1, it follows that

πg(tjk) = πh(tjk) = δjkI
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if either n+1 ≤ j ≤ 2n or n+1 ≤ k ≤ 2n. From this, it is not hard to see that for n+1 ≤ j, k ≤ 2n
we have

πσ(tjk) = (πg ⊗ πw ⊗ πh)(tjk) = I ⊗ πw(tjk)⊗ I

and hence (πσ ⊗ χϕ) ◦ ζ = π is not irreducible.

We will now prove the converse to (1) as well as (2).

First, the properties of the minimal element σ ∈ Oσ implies that n ≤ σ(2n) ≤ 2n. This can be
deduced from the expansion σ = ckn,n · · · ck1,1, since σ(2n) = ckn,n(2n) = 2n− kn. Notice also that
(πσ ⊗ χα) ◦ ζ composed with the ∗-automorphism zjm 7→ zmj is equivalent to (χα ⊗ πσ−1 ) ◦ ζ. As
{s−1|s ∈ Oσ} = Oσ−1 and ℓ(s) = ℓ(s−1), it follows that if σ is of minimal length in Oσ, then σ

−1

is of minimal length in Oσ−1 . This makes it possible to reduce the proof to the cases when σ has
the property that either

• n+ 1 ≤ σ(2n) ≤ 2n or

• σ(2n) = n and σ−1(2n) = n.

We remark that these two cases correspond to the classes A and B respectively.

The proof is by induction on n ∈ N. For n = 1, it is easily seen to be true as there are only two

options σ =

(
1 2
2 1

)

and the identity element σ = e; both are of minimal length and correspond

to the Fock representation and the one-dimensional representation respectively. Assume now that
the statement holds for n − 1 ≥ 1. Suppose first that n + 1 ≤ σ(2n) ≤ 2n. If [kn, . . . , k1] is an
admissible string such that

σ = ckn,n · · · ck1,1,
then it follows from Proposition 6.4 that kn < n, as n + 1 ≤ σ(2n) = ckn,n(2n) = 2n − kn. By
the proof of Proposition 6.2, we have a reduced decomposition σ = cknφ(s) for some s ∈ S2(n−1)

of minimal length in Os and the homomorphism φ : S2(n−1) → S2n determined by φ(si) = si+1,
i = 1, . . . , 2n− 3 (see (92)). It follows that

πσ ∼= πckn,n
⊗ πφ(s) (100)

and hence for j = 1, . . . , n, we can determine

π(znj ) := (πckn,n
⊗ πφ(s) ⊗ χα) ◦ ζ(znj ) = α2nπckn (tn+j,2n)⊗ I =

= eiα2n ×







I ⊗ · · · ⊗ I
︸ ︷︷ ︸

kn − n + j − 1 factors

⊗T22 ⊗ T12 ⊗ · · · ⊗ T12
︸ ︷︷ ︸

n− j factors

⊗I, if n− kn < j ≤ 2n

T12 ⊗ · · · ⊗ T12
︸ ︷︷ ︸

kn factors

⊗I, if j = n− kn

0 otherwise.

(101)

From (101), we see that

〈e0〉 ⊗ ℓ2(Z+)
⊗ℓ(φ(s)) =

(

ℓ2(Z+)
⊗kn ⊗ ℓ2(Z+)

⊗ℓ(φ(s))
)

∩
(
∩nj=k+1 kerπ(z

n
j )

∗
)
=: H. (102)
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We can explicitly determine πckn,n
(tmj), using Lemma 5.11 and the diagram

. . . n− kn n− kn + 1 . . . . . . n

1 n

1 . . . n− kn n− kn + 1 . . . n− 1

(103)

We have that for e0 ∈ ℓ2(Z+)
⊗kn and j 6= 2n

πckn,n
(tn+m,j)e0 =







δn+m,je0, if 1 ≤ m < n− kn and j 6= 2n,

δn+m,j+1e0, if n− kn < m ≤ n and j 6= 2n,

0, if m = n− kn and j 6= 2n.

(104)

The action of πckn,n
(tk,2n)e0 is easily identified from (101). We can define the ∗-representation

π′ : Pol(Matn−1)q → B(H) by the formula

π′(zjm) =

{

−qπ(zjm)|H If 1 ≤ m < n− kn

π(zjm+1)|H If n− kn ≤ m ≤ n− 1
(105)

(see (53)). If we let

ψ(tk,j) =

{

tk−1,j−1 if 2 ≤ k, j ≤ 2n− 1

δk,j otherwise,

then it is easy to see that for any t ∈ S2(n−1)

πφ(t) ∼= πt ◦ ψ. (106)

It then follows from (104) that for zjm ∈ Pol(Matn)q, m, j = 1, . . . n− 1

π′(zjm) = −qπ(zjm)|H

= (−q)m−n+1eiαn+j

n∑

l=1

πckn,n
(tn+m,l)⊗ πφ(s)(tl,n+j)|H =

eiαn+j(−q)m−(n−1)I ⊗ πφ(s)(t(n−1)+(m+1),(n−1)+(j+1))|H =

eiαn+j(−q)m−(n−1)I ⊗ πs(ψ(t(n−1)+(m+1),(n−1)+(j+1)))|H =

eiαn+j(−q)m−(n−1)I ⊗ πs(t(n−1)+m,(n−1)+j)))|H ,
if 1 ≤ m < n− kn and

π′(zjm) = π(zjm+1)|H

= (−q)m+1−neiαn+j

n∑

l=1

πckn,n
(tn+m+1,l)⊗ πφ(s)(tlj)|H =
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eiαn+j(−q)m−(n−1)I ⊗ πφ(s)(t(n−1)+(m+1),(n−1)+(j+1))|H =

eiαn+j(−q)m−(n−1)I ⊗ πs(ψ(t(n−1)+(m+1),(n−1)+(j+1)))|H =

eiαn+j(−q)m−(n−1)I ⊗ πs(t(n−1)+m,(n−1)+j)))|H , (107)

if n− kn ≤ m ≤ n− 1. It follows that

π′ ∼= (πs ⊗ χᾱ) ◦ ζ. (108)

Let now (πσ ⊗ χα) ◦ ζ and (πµ ⊗ χβ) ◦ ζ be equivalent ∗-representations via a unitary operator U .
Then if

σ = ckn,n · · · ck1,1, µ = cmn,n · · · cm1,1,

it follows from (101) that kn = mn. Thus if k := kn = mn < n, it follows that σ(2n) = 2n − k =
µ(2n) and hence n+ 1 ≤ σ(2n) = µ(2n) ≤ 2n. Hence

σ = ck,nφ(s), µ = ck,nφ(t) ,

for s, t ∈ S2(n−1) of minimal lengths. As U will map

ker((πσ ⊗ χα) ◦ ζ)(zjm)∗ → ker((πµ ⊗ χβ) ◦ ζ)(zjm)∗ (109)

it follows from (108) that there are χᾱ, χβ̄ such that

(πs ⊗ χᾱ) ◦ ζ ∼= (πt ⊗ χβ̄) ◦ ζ.

By induction s = t and hence σ = µ.

To see that π is irreducible, we observe that by (101), any non-zero operator in B(ℓ2(Z+)
⊗k ⊗

ℓ2(Z+)
ℓ(s)) commuting with the range of π = (πck,n

⊗ πφ(s) ⊗ χβ) ◦ ζ can be written in the form

I ⊗A, for A ∈ B(ℓ2(Z+)
⊗ℓ(s)). Restricting I ⊗A to

H = 〈e0〉 ⊗ ℓ2(Z+)
⊗ℓ(s) ∼= ℓ2(Z+)

⊗ℓ(s)

gives that A commutes with the range of π′ ∼= (πs ⊗ χᾱ) ◦ ζ and hence by induction, A must be a
constant multiple of I.

Assume now that σ(2n) = n and σ−1(2n) = n. We claim that in this case we have

σ = ckn,n · · · ck1,1, kn = n, kj ≥ 1, j = 1, . . . , n− 1 . (110)

That kn = n follows from n = σ(2n) = ckn,n(2n) = 2n− kn. To see that all kj are non-zero, notice
that

cj,k(m) ≤ m+ 1, j, k = 1, . . . , n, m = 1, . . . , 2n

and hence, as ckn,n · · · ck1,1(n) = n+ n, we obtain the claim.

Recall the ∗-homomorphism δ : C[SU2n]q → C[SU2(n−1)]q from Section 5.4 given by

δ(tkj) =

{

tkj if 1 ≤ k, j ≤ 2n− 2

δk,jI otherwise
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and let γ : S2(n−1) → S2n be the homomorphism determined by si → si, i = 1, . . . , 2(n − 1). For
s ∈ S2(n−1), it follows that

πs ◦ δ ∼= πγ(s). (111)

Let now s ∈ S2(n−1) be of minimal length in Os. with decomposition

s = ckn−1,n−1 · · · ck1,1.

Notice that by (85), the cycle ck,j ∈ S2(n−1) has image

γ(ck,j) = γ(sj+n−1−k · · · sj+n−1−1) = sj+n−1−k · · · sj+n−1−1 = ck+1,jsj+n−1 ∈ S2n.

Thus, we can write

γ(s) = (ckn−1+1,n−1s2n−2) · · · (ck1+1,1sn) = (ckn−1+1,n−1 · · · ck1+1,1) · (sn · · · s2n−2) (112)

as
ckj+1,jsj+n−1 = sj+n−kj−1 · · · sj+n−2

commutes with sm if m > j + n− 1.

Next we note that if [kn−1, . . . , k1] is an admissible string, then so is

[n, kn−1 + 1, . . . , k1 + 1].

In fact, if not, let

mj =

{

kj + 1, for 1 ≤ j < n

n, if j = n.

Then there exists 1 ≤ i < n (note that for i = n (86) reads as kn ≤ n), such that

mi > max
i<j≤n

(mj + i+ 1− j, i)

and as mn + i+ 1− n = i+ 1, it follows that for mi = ki + 1

ki + 1 > maxi<j<n(kj + 2 + i− j, i), ki + 1 > 1 + i

i.e. for all integers i < j < n we have

(1) ki + 1 > kj + 2 + i − j and

(2) ki + 1 > i+ 1.

As [kn−1, . . . , k1] is an admissible string, we have ki ≤ maxi<j≤n−1(kj + 1+ i− j, i), and since (1)
holds, we must have ki ≤ i. But this contradicts ki + 1 > i + 1. Hence [n, kn−1 + 1, . . . , k1 + 1] is
an admissible string.

Conversely, if [kn, kn−1, . . . , k1] is an admissible string such that kn = n and kj ≥ 1 for j =
1, . . . , n− 1, then also [kn−1 − 1, . . . , k1 − 1] is an admissible string. This follows from

ki − 1 ≤ max
i<j≤n

(kj + i+ 1− j, i)− 1 = max
i<j<n

(kj + i+ 1− j, i + 1)− 1 =
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= max
i<j<n

(kj + i+ 1− j − 1, i+ 1− 1) = max
i<j≤n−1

((kj − 1) + i+ 1− j, i)

for 1 ≤ j < n.

This gives that every σ ∈ S2n of minimal length, such that the decomposition σ = ckn,n · · · ck1,1
satisfies (110), can be written in a reduced form as

σ = cn,nγ(s)(sn · · · s2n−2)
−1 = cn,nγ(s)c

−1
n−1,n−1 (113)

for a unique s ∈ S2(n−1) of minimal length. Conversely, for any such s ∈ S2(n−1), the element on
the right-hand side of (113) is of minimal length. As

cn,nγ(s)c
−1
n−1,n−1(2n) = cn,n(2n) = n

cn,nγ(s)c
−1
n−1,n−1(n) = cn,nγ(s)(2n− 1) = cn,n(2n− 1) = 2n

it thus follows that σ(2n) = n and σ−1(2n) = n hold if and only if (113) holds.

Let now σ = cn,nγ(s)c
−1
n−1,n−1 ∈ S2n be such element, then for any χα we let

π : Pol(Matn)q → B(ℓ2(Z+)
⊗n ⊗ ℓ2(Z+)

⊗ℓ(γ(s)) ⊗ ℓ2(Z+)
⊗n−1)

be the ∗-representation

(πσ ⊗ χα) ◦ ζ ∼= (πcn,n
⊗ πγ(s) ⊗ πc−1

n−1,n−1
⊗ χα) ◦ ζ =: π. (114)

A similar calculation as in (101) gives that

(∩nk=1 kerπ(z
k
n)

∗) ∩ (∩nk=1 kerπ(z
n
k )

∗) = 〈e0〉 ⊗ ℓ2(Z+)
⊗ℓ(γ(s)) ⊗ 〈e0〉 =: H. (115)

We can then define a ∗-representation π′ of Pol(Matn−1)q by

π′ : zij 7→ π(zij)|H , i, j = 1, . . . , n− 1. (116)

In fact, (104) together with

πc−1
n−1,n−1

(tm,n+j)e0 = (−q)δm+1,n+je0, if 1 ≤ j < n and m 6= 2n− 1, (117)

and
πγ(s)(tij) = δijI, if either i ∈ {2n− 1, 2n} or j ∈ {2n− 1, 2n}

give for m, j = 1, . . . , n− 1

π(zjm)|H = eiαn+j (−q)m−n
2n∑

l,i=1

πcn,n
(tn+m,l)⊗ πγ(s)(tli)⊗ πc−1

n−1,n−1
(ti,n+j)|H =

eiαn+j(−q)m−n
2n−2∑

l,i=1

πcn,n
(tn+m,l)⊗ πγ(s)(tli)⊗ πc−1

n−1,n−1
(ti,n+j)|H+
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+ eiαn+j(−q)m−n
2n∑

l=2n−1

πcn,n
(tn+m,l)⊗ I ⊗ π

c
−1
n−1,n−1

(tl,n+j)|H
︸ ︷︷ ︸

= 0 by (104) and (117)

=

= eiαn+j (−q)m−n+1
2n−2∑

l,i=1

δn+m,l+1I ⊗ πγ(s)(tli)⊗ δi+1,n+jI|H =

= eiαn+j (−q)m−n+1I ⊗ πγ(s)(tn+m−1,n+j−1)⊗ I|H =

eiαn+j (−q)m−n+1I ⊗ πs(t(n−1)+m,(n−1)+j)⊗ I|H . (118)

Hence
π′ ∼= (πs ⊗ χᾱ) ◦ ζ (119)

for some χᾱ. We can then again use induction, as in the first case, to get that

(πσ ⊗ χα) ◦ ζ ∼= (πµ ⊗ χβ) ◦ ζ

implies that σ = µ and also that (πσ ⊗ χα) ◦ ζ is irreducible for every χα.

Proposition 6.7. Let σ ∈ Oσ be the element of minimal length and for ϕ, θ ∈ [0, 2π)2n, let χϕ, χθ
be one-dimensional representations of C[SU2n]q. Then

(πσ ⊗ χϕ) ◦ ζ ∼= (πσ ⊗ χθ) ◦ ζ

if and only if ϕi = θi for those i such that

n+ 1 ≤ σ(i) ≤ 2n.

Proof. First, in the case of the Fock representation, we have by its uniqueness that

πF,n ∼= πs ◦ ζ ∼= (πs ⊗ χϕ) ◦ ζ

for any one-dimensional ∗-representation χϕ. As in this case

s =

(
1 . . . n n+ 1 . . . 2n

n+ 1 . . . 2n 1 . . . n

)

(120)

we therefore have
1 ≤ s(n+ j) ≤ n, for all j = 1, . . . , n.

Assume now that σ 6= s. As σ is the minimal length element in Oσ, we have from the proof of
uniqueness in Proposition 6.1 that σ(1) = 1. Let {i1, . . . , im} be the integers such that n+1 ≤ ij ≤
2n and 1 ≤ σ(ij) ≤ n, j = 1, . . . ,m and let β ∈ [0, 2π)2n be defined by the formula

βi =







ϕi, if i ∈ {i1, . . . , im}
0, if i /∈ {i1, . . . , im} ∪ {1}
−∑m

j=1 ϕij (mod 2π), if i = 1

(121)

It follows that χϕ = χβ ⊗χα for some α ∈ [0, 2π)2n with αij = 0 for j = 1, . . . ,m, and thus by (26)

π ∼= (πσ ⊗ χϕ) ◦ ζ = (πσ ⊗ χβ ⊗ χα) ◦ ζ ∼= (χσ−1(β) ⊗ πσ ⊗ χα) ◦ ζ = (πσ ⊗ χα) ◦ ζ

58



where the last equality follows from the fact that σ−1(β)i = 0 for i = n+1, . . . , 2n. Clearly by (21),
the ∗-representation (πσ⊗χα)◦ζ does not depend on αi for i = 1, . . . , n. Hence, by Proposition 6.4,
if σ = ckn,n · · · ck1,1 then (πσ⊗χα)◦ζ only depends on αn+i such that ki < maxi<j≤n(kj+i+1−j, i).

We now prove that if two ∗-representations

π1 := (πσ ⊗ χϕ) ◦ ζ, π2 := (πσ ⊗ χθ) ◦ ζ

are equivalent, then ϕn+i = θn+i for any n+ i such that n+ 1 ≤ σ(n+ i) ≤ 2n.

Again, we prove this by induction. This can be seen to hold for n = 1, simply by inspection.
Let U be an unitary intertwining π1 and π2. Let us first assume that n + 1 ≤ σ(2n) ≤ 2n and let
H1, H2 be given by (102) for π1 and π2 respectively. By (109), the restriction of U is then a unitary
map H1 → H2. It follows from (101) that we must have ϕ2n = θ2n. Moreover, if (πs ⊗ χϕ̄) ◦ ζ and
(πs ⊗ χθ̄) ◦ ζ are the restrictions of π1 and π2 to H1 and H2 respectively, given by (105), if follows
from (107) that we can assume

ᾱn−1+j = αn+j , θ̄n−1+j = θn+j , j = 1, . . . , n− 1. (122)

By induction, it follows that

αn+j = ᾱn−1+j = θ̄n−1+j = θn+j

if n ≤ s(n− 1 + j) ≤ 2n− 2. But since σ = ckn,nφ(s), by the proof of Proposition 6.2 and (107), it
follows from ckn,n({n+ 1, . . . , 2n}) = {n+ 1, . . . , 2n} and the definition of φ : S2(n−1) → S2n, that
for j = 1, . . . , n− 1 we have

n+ 1 ≤ σ(n+ j) ≤ 2n

if and only if
n ≤ s(n+ j) ≤ 2n− 2.

Consider now the case when σ(2n) = n and σ−1(2n) = n. Denote by H1 and H2 the subspaces
defined by (115) for π1 and π2 respectively. As before, the restriction of U is a unitary from H1 to
H2 intertwining the restricted representations of π1 and π2, the latter equivalent to (πs ⊗ χϕ̄) ◦ ζ
and (πs ⊗ χθ̄) ◦ ζ respectively. By (118), we can assume that ᾱn−1+j = αn+j and θ̄n−1+j = θn+j
for j = 1, . . . , n− 1. It follows again by induction that

αn+j = ᾱn−1+j = θ̄n−1+j = θn+j

if n ≤ s(n−1+ j) ≤ 2n−2. By (118) and (113), we have σ = cn,nγ(s)c
−1
n−1,n−1. For j = 1, . . . n−1,

we have c−1
n−1,n−1(n+ j) = n−1+ j and cn,n(n−1+ j) = n+ j. Hence it follows from the definition

of γ that for j = 1, . . . , n− 1 we have

n+ 1 ≤ σ(n+ j) ≤ 2n

if and only if
n ≤ s(n− 1 + j) ≤ 2n− 2.

This completes the proof.

59



Proof of Theorem 3.6. For each admissible kϕ we have that πkϕ
is irreducible, which follows from

Lemma 6.5. We now prove that the map kϕ → [πkϕ
] is a bijection.

Recall the C∗-algebra homomorphism τϕ : C∗(S) → C determined by τϕ(S) = eiϕ, for ϕ ∈
[0, 2π). It is not hard to see that for all i = 1, . . . , 2n−1, the composition τ0 ◦πi = ǫ : C[SU2n]q → C

is the co-unit of C[SU2n]q. We can thus write πσ as

πσ = πckn,n
⊗ πckn−1,n−1

⊗ · · · ⊗ πck1,1
=

(

τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn times

⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

kn times



 ⊗




τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn−1 times

⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

kn−1 times




⊗ · · · ⊗



τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− k1 times

⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

k1 times





)

◦ (πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πcn,1) =

(

τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn times

⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

kn times



 ⊗




τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn−1 times

⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

kn−1 times




⊗ · · · ⊗



τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− k1 times

⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

k1 times





)

◦ (πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πcn,1)

and πcn,j
corresponds to the j’th row of the grid (28). As it was explained in section 3.1, the

application of τ0 to a box is visualized by coloring that box dark gray. Assume now that π ∼=
(πσ ⊗ χβ) ◦ ζ, then, as we showed above, we can assume βi 6= 0 if and only if i is such that
ki < maxi<j≤n(kj + i + 1 − j, i). In particular, we will have ki < n for such i’s and hence for this
row we can write

(ταi
◦ πn+i−ki−1)⊗ πcki,i =



 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n − ki − 1 times

⊗ταi
⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

ki times



 ◦ πcn,i
. (123)

Visually, this row corresponds to the 1× n block

1 . . . n− ki . . . . . . n

i

The ∗-homomorphism τϕ ◦ πi is easily seen to be χϕ(i) , where

ϕ
(i)
j =







−ϕ, if j = i

ϕ, if j = i + 1

0, otherwise

By using (26), we see that we can write (123) as χϕ(n+i−ki−1) ⊗ πcki,i and

χϕ(n+i−ki−1) ⊗ πcki,i(tk,n+i) = eiϕπcki,i(tk,n+i), k = 1, . . . , 2n. (124)
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If we now have an irreducible ∗-representation (πσ ⊗ χβ) ◦ ζ, with σ = ckn,n · · · ck1,1, then consider
the ∗-representation of Pol(Matn)q defined as

(

 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn − 1 times

⊗ταn
⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kn times



⊗




 τ0 ⊗ · · · ⊗ τ0

︸ ︷︷ ︸

n− kn−1 − 1 times

⊗ταn−1 ⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kn−1 times




⊗

· · · ⊗



 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n − k1 − 1 times

⊗τα1 ⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

k1 times





)

◦ (πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πcn,1),

(125)

For j > i we have πcn,i
(tk,n+j) = δk,n+jI and hence for j = 1, . . . , n

(πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πcn,1)(tk,n+j) =

= (πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πcn,j

)(tk,n+j)⊗ I. (126)

If we combine (124) with (126), then it follows that (125) applied to tk,n+j becomes

(

 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn − 1 times

⊗ταn
⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kn times



⊗




 τ0 ⊗ · · · ⊗ τ0

︸ ︷︷ ︸

n− kn−1 − 1 times

⊗ταn−1 ⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kn−1 times




⊗

· · · ⊗




 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kj − 1 times

⊗ταj
⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kj times






)

◦ (πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πcn,j

)(tk,n+j) =

= eiαj

(

 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kn − 1 times

⊗ταn
⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kn times



⊗




 τ0 ⊗ · · · ⊗ τ0

︸ ︷︷ ︸

n− kn−1 − 1 times

⊗ταn−1 ⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kn−1 times




⊗

· · · ⊗




 τ0 ⊗ · · · ⊗ τ0
︸ ︷︷ ︸

n− kj+1 − 1 times

⊗ταj+1 ⊗ ι⊗ · · · ⊗ ι
︸ ︷︷ ︸

kj+1 times






)

◦ (πcn,n
⊗ πcn,n−1 ⊗ · · · ⊗ πckj ,j

)(tk,n+j)

and thus we can determine the constants αj inductively, starting at the largest index, in such way
that (125) is equivalent to πσ ⊗ χλ where λn+i coincides with βn+i if n+ 1 ≤ σ(n+ i) ≤ 2n. This,
together with Proposition 6.5 and Proposition 6.7 shows that every irreducible ∗-representation of
Pol(Matn)q can be written uniquely in the way (125) and hence can be represented uniquely as an
admissible string

[(kn, αn), (kn−1, αn−1), . . . , (k1, α1)]

(subject to the conditions (35) and (37)) as was claimed in Theorem 3.6.

6.3 Irreducible ∗-Representations Annihilating The Shilov Boundary

In [2], the author, together with O. Bernstein and L. Turowska, determined the Shilov boundary
ideal J̄n for the closed sub-algebra (note, not a ∗-algebra)

A(Dn) ⊆ CF (Dn)
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generated by the images
πF,n(z

j
k), k.j = 1, 2, . . . , n

to be the closure, under πF,n, of the two-sided ideal Jn ⊆ Pol(Matn)q generated by

∑n
j=1 q

2n−α−βzαj (z
β
j )

∗ − δαβ , α, β = 1, . . . , n.

From [14], we have the result
Pol(Matn)q/Jn ∼= C[Un]q,

where C[Un]q is the ∗-algebra of functions on the quantum Un (see [5]). By Lemma 12 in [2],
every irreducible ∗-representation that annihilates the Shilov boundary ideal is equivalent to a
∗-representation π of the form π(zjk) = eiλj (−q)k−nπσ(tk,j), k, j = 1, . . . , n for an irreducible ∗-
representation πσ : C[SUn]q → ℓ2(Z+)

⊗ℓ(σ), where σ ∈ Sn, and some λj ∈ [0, 2π). If we let σ̃ be the
image of σ under the homomorphism Sn → S2n defined as sj 7→ sn+j on the adjacent transpositions,
then the ∗-representation πσ̃ : C[SU2n] → B(ℓ2(Z+)

⊗ℓ(σ)) (since ℓ(σ̃) = ℓ(σ)) satisfies

πσ̃(tn+k,n+j) = πσ(tk,j).

By letting
ϕ1 = · · · = ϕn−1 = 0

ϕn ≡ −
n∑

k=1

λk (mod 2π)

ϕn+j = λj , j = 1, . . . , n

it follows that the ∗-representation (πσ̃ ⊗ χϕ) ◦ ζ coincides with π. If we determine the admissible
string [(kn, βn), . . . , (k1, β1)] corresponding to π, then as σ̃ leaves {n+1, . . . , 2n} invariant, it follows
from Proposition 6.4 that

ki < maxi<j≤n(kj + i+ 1− j, i), i = 1, . . . , n . (127)

We claim that from (127), it follows that

ki < i, i = 1, . . . , n. (128)

In fact when i = n, we have (128) from (127). Assume now that (128) holds for indices j such that
n ≥ j > i, then

ki < max
i<j≤n

(kj + i+ 1− j, i) = max
i<j≤n

(kj − (j − 1) + i, i) = i

as kj − (j − 1) + i ≤ i holds for n ≥ j > i by induction. Thus (128) holds also for i. It follows that
the diagrams of irreducible ∗-representations that annihilates the Shilov boundary only contains
white squares in the the strictly lower right sub-triangle

1 2 3 4 . . . n

n

...

4

3

2

1
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