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Abstract

Provided by a complete set of putative k-body reductions of a multipartite quantum state,
can one determine if a joint state exists? We derive necessary conditions for this to be true. In
contrast to what is known as the quantum marginal problem, we consider a setting where the
labeling of the subsystems is unknown. The problem can be seen in analogy to Ulam’s recon-
struction conjecture in graph theory. The conjecture – still unsolved – claims that every graph
can uniquely be reconstructed from the set of its vertex-deleted subgraphs. When considering
quantum states, we demonstrate that the non-existence of joint states can, in some cases, already
be inferred from a set of marginals having the size of just more than half of the parties. We
apply these methods to graph states, where many constraints can be evaluated by knowing the
number of stabilizer elements of certain weights that appear in the reductions. This perspective
links with constraints that were derived in the context of quantum error-correcting codes and
polynomial invariants. Some of these constraints can be interpreted as monogamy-like relations
that limit the correlations arising from quantum states.

1 Introduction

The relationship of the whole to its parts lies at the heart of the theory of quantum entanglement.
A pure quantum state is said to be entangled if it can not be written as the tensor product of its
reductions. A particularly intriguing and important consequence of this mathematical definition
is, that given a set of quantum marginals, it is not clear from the outset if and how they can be
assembled into a pure joint state. Understanding this problem is not only important in the theory
of entanglement, but also for applications in solid-state physics and quantum chemistry, such as
calculating the energies of ground states [1, 2].

These kind of reconstruction questions have a long tradition in the mathematics literature. From
our side, a particularly interesting context is the 1960’s Ulam graph reconstruction conjecture [3–
6]. Indeed, since graphs as well as quantum states can both be represented by positive semi-
definite matrices – the Laplacian and the density matrix respectively – this highlights a common
theme. Moreover, it may be valuable to notice that in the quantum mechanical setting, relational
information is associated with correlations between subsystems. The family of graphs states allows
to directly encode such relational information in pure quantum states. Using approaches from
quantum mechanics, this may provide new insights into certain aspects of graph theory.
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Informally, the Ulam reconstruction conjecture is as follows: given a complete set of vertex-
deleted subgraphs, is the original graph (without vertex labels) the only possible joint graph? Over
the last decade a substantial amount of research focused on this problem. However, this remains
one of the outstanding unsolved questions in graph theory.

In this work, we start by providing background to the so-called quantum marginal problem
(QMP), which asks analogous questions for the case that the labels of the individual subsystems
are known [1, 7, 8]. This is in contrast to the question which we will investigate later, namely a
setting in which the labels are unknown to us. Originally coined the N -representability problem
by Coleman, its first formulation asks how to recognize when a putative two-party reduced density
matrix is in fact the reduction of an N -particle system of indistinguishable Fermions [1]. In fact, the
N -representability problem has been highlighted as one of the most prominent research challenges in
theoretical and computational chemistry [2]. This question was subsequently expanded to the case
of distinguishable particles, and in particular, to qubits. In the case of the marginals being disjoint,
the conditions for the existence of a joint state have been completely characterized: considering
the existence of a pure joint qubit state, the characterization is given by the so-called Polygon
inequalities, which constrain the spectra of pure state reductions [9]. Constraints for the existence
of a mixed joint state on two qubits have been subsequently been obtained by Bravyi [10]. Solving
the QMP in case of disjoint marginals completely, Klyachko extended the spectral conditions to the
existence to a mixed joint state on n parties of arbitrary local dimensions [7].

The QMP problem in the case of overlapping marginals has turned out to be an even harder
problem. Only few necessary conditions for the general case are known [11–14], of which many
are based on entropic inequalities such as the strong subadditivity. Other constraints are posed
by monogamy (in)equalities [15–17], some of which will also be used in our work. Interestingly,
the special case of the symmetric extension of two qubits, where a two-party density matrix %AB
is extended to a tripartite state %ABB′ with %AB = %AB′ , has completely been characterized [18].
Despite many efforts, a general necessary and sufficient condition for the QMP with overlapping
marginals is still lacking.

A question related to the QMP are the conditions uniqueness of the joint state, given its
marginals. This is motivated by a naturally arising physical question: Considering a Hamilto-
nian with local interactions only, its groundstate is non-degenerate only if no other states with the
same local reductions exist. In this context, Linden et al. showed that almost every pure state of
three qubits is completely determined by its two-particle reduced density matrices [19, 20]. This
result has been subsequently been expanded to systems of n qubits, where having access to a cer-
tain subset of all marginals of size bn/2c+ 1 is almost always sufficient to uniquely specify a joint
pure state [21]. Finally, it is useful to remark that, while the QMP can in principle be stated as a
semidefinite program [22], its formulation scales exponentially in system size. In fact, the QMP has
been shown to be QMA-complete [23].

In contrast to previous work on the QMP, we consider in this work only unlabeled marginals, that
is, marginals whose corresponding subsystems are unknown to us. Thus, one is free to arrange them
as necessary in order to obtain a joint state. Should the reductions to one party be all different (e.g.
when considering reductions of random states), such labels can naturally be restored by comparing
the one-body reductions. However, we are here mainly considering a special type of quantum states
called graph states. These have proven to be useful for certain tasks in quantum information such as
quantum error correction [24, 25] and measurement-based quantum computation [26–28]. The few-
body reductions of this type of states are typically maximally mixed, so the strategy of comparing
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one-body reductions does not find an immediate application. Thus the quantum marginal problem
amounts to a kind of jigsaw puzzle: we are given overlapping parts, the task being to determine
whether or not they indeed can be assembled to one or many different puzzles.

Here, we address similar questions in the case of unlabeled marginals and derive necessary
constraints for the Ulam reconstruction problem for quantum graph states. These are based solely
on the number of so-called stabilizer elements present in the complete set of reductions having a
given size. Our results connect with constraints that were derived in the context of quantum error-
correcting codes that involve polynomial invariants. These can be interpreted as monogamy-like
relations that limit the correlations that can arise from quantum states.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the classical Ulam
conjecture. In Secs. 3 and 4, we introduce the basic notions of many-qubit systems and graph states
that will be useful in our context. The main tool of this paper, the so-called weight distribution,
is introduced in Sec. 5. We derive constraints on the weight distribution in Sec. 6. These are then
applied in Secs. 7 and 8 to state legitimacy conditions on marginals to originate from a putative
joint state. We conclude and provide an outlook in Sec. 9.

2 Realizability and uniqueness in graphs

Consider a simple graph G = (V,E) on n vertices. Denote by N(i) the neighborhood of vertex i,
that is, the vertices adjacent to i. By deleting a single vertex j ∈ V and deleting each edge e incident
with j, one obtains the vertex-deleted subgraph Gj = (V \{j}, E\{e}|j ∈ e) on (n− 1) vertices. By
forming all vertex-deleted subgraphs Gj induced by G, the so-called cards, we obtain its unordered
deck, the multi-set D(G) = {G1, . . . , Gn}.

The Ulam reconstruction problem can be stated as follows: given a deck D(G), is there, up to
graph isomorphisms, a unique graph corresponding to it? The Ulam graph reconstruction conjecture
states that this must indeed be the case for all graphs.

Conjecture 1 (Ulam [29–31]). We have D(G) = D(H) if and only if G is isomorphic to H.

Let us remark that one can also consider the situation where a given deck does not necessarily
need to originate from an existing graph. Suppose we are given a putative deck containing n cards of
size (n−1) each, whose origin is unknown to us. A naturally arising question is: can this deck indeed
be obtained from a graph on exactly n vertices? This is also called the legitimate deck problem,
and is a type of realizability problem [3]. It is useful to state a legitimacy condition introduced by
Bondy for this to be the case, called Kelly’s condition [6]:

Theorem 1 (Bondy [6], Kelly’s condition). Let D = {Gi} be a complete deck of a putative graph
of n vertices. For any graph F with less than n vertices, denote by s(F,Gi) the number of induced
subgraphs of Gi that are isomorphic to F . Then the following expression must be an integer,∑n

i=1 s(F,Gi)

n− |V (F )|
. (1)

Clearly, whenever the above expression is not an integer, the deck cannot originate from a graph.
This seems to detect already a majority of illegitimate decks.

Interestingly, a specific set of three cards is sufficient to uniquely reconstruct the original graph
for most decks [32]. This type of asymptotic result shows that most graphs are easy to specify, in
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analogy with the WL-method for graph isomorphism. In the following, we aim to treat the Ulam
graph reconstruction and the legitimate deck problem for a special type of quantum states called
graph states. Given a collection of graph state marginals, we ask for a corresponding realization as
a joint state. Conversely, if a joint state exists, we are interested in its uniqueness.

3 Set up

A few definitions concerning multipartite quantum states are in order. Denote by I,X, Y , and Z
the Pauli matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2)

The single qubit Pauli group is defined as G1 = 〈i,X, Y, Z〉, from which the n-qubit Pauli group is
constructed by its n-fold tensor product Gn = G1⊗ · · · ⊗ G1 (n times). By forming tensor products
of Pauli matrices, we obtain an orthonormal basis P = {P} of Hermitian operators acting on
(C2)⊗n, with tr(PαPβ) = δαβ2

n. We will write Xj , Yj , Zj for the Pauli matrices acting on particle
j alone. Denote by supp(P ) the support of an operator P ∈ P, that is, the parties on which P
acts non-trivially with X, Y , or Z. The weight of an operator is then the size of its support,
wt(E) = | supp(E)|.

Pure quantum states |ψ〉 of n qubits are represented by unit vectors in (C2)⊗n. Their cor-
responding density matrix % = |ψ〉〈ψ| on n qubits can be expanded in terms of Pauli matrices
as

% = 2−n
∑
P∈P

tr[P †%]P . (3)

Given a quantum state %, we obtain its marginal (also called reduction) on subset A by acting with
the partial trace on its complement Ac, %A = trAc(%). In the Bloch decomposition [Eq. (3)], the
reduction onto subsystem A tensored by the identity on Ac can also be written as

%A ⊗ 1Ac =
∑

supp(P )⊆A

tr[P †%]P . (4)

This follows from trAc(E) = 0 if supp(E) 6⊆ A.
A pure multipartite state is called entangled, if it cannot be written as the tensor product of

single-party states,
|ψ〉ent 6= |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 . (5)

For a mixed state, entanglement is present if it cannot be written as a convex combination of product
states,

%ent 6=
∑
i

pi%1 ⊗ %2 ⊗ · · · ⊗ %n , (6)

for all single-party states %1 . . . %n and probabilities pi with
∑

i pi = 1, pi ≥ 0. Note that for a pure
product state, all reductions are pure too, having the purity tr(%2A) = 1.

Lastly, we note that any pure state can, for every bipartition A|B, be written as

|ψAB〉 =
∑
i

√
λi|iA〉 ⊗ |iB〉 , (7)
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where {|iA〉} and {|iB〉} are orthonormal bases for subsystemsA andB, and
√
λi ≥ 0 with

∑
i λi = 1.

This is called the Schmidt decomposition.
We are now able to introduce the analogue of a graph deck for quantum states.

Definition 1. A quantum k-deck is a collection of quantum marginals, also called quantum cards,
of size k each. The marginals are unlabeled and thus not associated to any specific subsystems. A
deck is called complete if it contains

(
n
k

)
cards, and legitimate if it originates from a joint state.

Thus, given a quantum state |ψ〉, its corresponding k-deck is given by the collection of all its
marginals of size k,

D(|ψ〉) = {%A | |A| = k,A ⊆ {1 . . . n}} . (8)

4 Graph states

To approach Ulam type problems in the quantum setting, let us introduce graph states. These are
a type of pure quantum states which are completely characterized by corresponding graphs. Of
course we could also approach a more general setting by considering generic pure states. Our choice
is suggested by the immediate connection between graph states and graphs. Our hope is that the
mathematical richness of graph states could highlight some new perspective on Ulam’s problem,
even when we restrict our attention to graph states only.

Definition 2 ([28]). Given a simple graph G = (V,E) having n vertices, its corresponding graph
state |G〉 is defined as the common (+1)-eigenstate of the n commuting operators {gi},

gi = Xi

⊗
j∈N(i)

Zj . (9)

Thus gi|G〉 = |G〉 for all gi. The set {gi} is called the generator of the graph state.

To obtain |G〉〈G| explicitly, the notion of its stabilizer is helpful. The stabilizer S is the Abelian
group obtained by the multiplication of generator elements,

S =
{
s =

∏
i∈I

gi | I ⊆ {1, . . . , n}
}
. (10)

Each of its 2n elements stabilize the state, gi|G〉 = |G〉 for all gi. Naturally, the stabilizer forms a
subgroup of the n-party Pauli-group which consists of all elements in P in addition to a complex
phase {±1,±i}. With this, the graph state can be written as [28]

|G〉〈G| = 1

2n

∑
s∈S

s . (11)

On the other hand, it can be shown that the graph state can also be written as

|G〉 =
∏
e∈E

Ce|+〉V , (12)

where |+〉V =
⊗

j∈V (|0〉j + |1〉j)/
√
2. The controlled-Z gate acting on parties i and j of edge

e = (i, j) reads Ce = diag(1, 1, 1− 1).
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In this picture, it is evident that graph states can be described as real equally weighted states:
by initializing in |+〉V , an equal superposition of all computational basis states is created. The
subsequent application of Ce gates then only changes certain signs in this superposition.

To understand when two non-isomorphic graphs give different but comparable quantum states,
let us take a small detour. The first step is to clarify the meaning of comparable. When looking at
similarities between quantum states, the equivalence up to local unitaries (LU) is often considered.
Two n-qubit states σ and % are said to be LU-equivalent, if there exist unitaries U1, . . . , Un ∈ SU(2),
such that σ = U1⊗ · · · ⊗Un % U †1 ⊗ · · · ⊗U

†
n. If no such matrices exist the states are said to be LU-

inequivalent. An interesting subset of unitaries to consider is the so-called local Clifford group Cn.
It is obtained by the n-fold tensor product of the one-qubit Clifford group C1,

C1 =
〈 1√

2

(
1 1
1 −1

)
,

(
1 0
0 i

)〉
. (13)

The group C1 maps the one-qubit Pauli group G1 = 〈i,X, Y, Z〉 to itself under conjugation. The
n-qubit local Clifford group Cn = C1⊗ . . .⊗C1 (n times) then similarly maps the n-qubit Pauli group
Gn to itself under conjugation. Interestingly, it was shown that the action of local Clifford operations
on a graph state can be understood as a sequence of local complementations on the corresponding
graph [33]. This works in the following way: given a graph G, its local complementation with
respect to vertex j is defined as the complementation of the subgraph in G consisting of all vertices
in its neighborhood N(j) and their common edges. We conclude that if two graphs are in the same
local complementation orbit, then their corresponding graph states must be equivalent under the
action of local Clifford operations, and vice versa. Thus they must also be LU-equivalent. The
contrary however is not necessarily true. Indeed, it has been shown that there exist LU-equivalent
graph states which are not local Clifford equivalent [34, 35].

We begin our analysis with an observation concerning the reductions of graph states onto n− 1
parties [36]. For this, let us define a vertex-shrunken graph: the vertex-shrunken graph Si is obtained
by deleting vertex i and by shrinking all of its incident edges (i, j) to so-called one-edges (j). For
a simple graph, the operation simply marks all vertices adjacent to i. To clarify the meaning of
this notion, it is useful to look at a generalization to hypergraphs. Hypergraphs can have edges
containing more than two vertices. Consider now deleting a single vertex i from a hypergraph: an
incident hyperedge e can, instead of simply being discarded, be shrunken such as to still contain all
remaining vertices. The shrunken edge then reads e\{i}. In that way, a k-edge, initially connected
k vertices, becomes a (k − 1)-edge. Consequently, shrinking a 2-edge yields a one-edge. One has

Si = (V \i, {e\i|i ∈ e} ∪ {e|i /∈ e}) , (14)

and the notion of a one-edge is well-motivated. The following Proposition is concerned with ex-
pressing reductions of graph states in terms of vertex-deleted and -shrunken graphs.

Proposition 1 (Lyons et al. [28]). Consider the quantum (n− 1)-deck of a graph state |G〉. Then,
each of its cards can be represented by two graphs: a vertex-deleted graph Gj and a vertex-shrunken
graph Sj, each having (n− 1) vertices.

Proof. In Eq. (12), let us single out vertex j to be traced over.

|G〉 =
∏
e∈E

Ce|+〉V =

|0〉j +
∏

e∈E | j∈e

Ce\{j}|1〉j

 ⊗ ∏
e′∈E | j /∈e′

Ce′ |+〉V \{j} . (15)
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Note that if Ce is a controlled Z-gate acting on parties i and j, then Ce\{j} is the local Zi gate
acting on party i alone. Thus performing a partial trace over subsystem j yields

trj [|G〉〈G|] = 〈0j |G〉〈G|0j〉+ 〈1j |G〉〈G|1j〉

=
1

2

( ∏
e∈E | j /∈e

Ce (|+〉〈+|)V \{j}
∏

e′∈E | j /∈e′
Ce′︸ ︷︷ ︸

delete

+
∏

i∈N(j)

Zi
∏

e∈E | j /∈e

Ce (|+〉〈+|)V \{j}
∏

e′∈e | j /∈e′
Ce′

∏
i∈N(j)

Zi︸ ︷︷ ︸
shrink

)
. (16)

The reduction of a graph state onto (n− 1) parties is thus given by the equal mixture of two graph
states: a vertex-deleted graph state |Gi〉, whose graph is the vertex-deleted subgraph of G, and a
vertex-shrunken graph state |Sj〉, whose graph is a vertex-deleted subgraph with additional one-
edges on N(j) caused by shrinking all edges adjacent to j. These one-edges correspond to local
Zj-gates. One obtains

|Gj〉 =
∏

e∈E | j /∈e

Ce|+〉V \{j} , (17)

|Sj〉 =
∏

i∈N(j)

Zi
∏

e∈E | j /∈e

Ce|+〉V \{j} , (18)

and we can write
trj(|G〉〈G|) =

1

2
(|Gj〉〈Gj |+ |Sj〉〈Sj |) . (19)

This ends the proof.

If the graph G is fully connected, then 〈Gj |Sj〉 = 0 for all j. This follows from the fact that all
stabilizer elements corresponding to a fully connected graph must have weights larger or equal than
two. Thus the one-body reductions are maximally mixed, and the complementary (n − 1)-body
reductions must be proportional to projectors of rank two. When tracing out more than one party,
this procedure of substituting each graph by the equal mixture of its vertex-deleted and vertex-
shrunken subgraphs is iteratively repeated. Thus the reduction of a graph state of size n − k is
represented by a collection of 2k graphs.

Let us now consider a specific formulation of the Ulam graph problem in the quantum setting
where all (n− 1)-body reductions of a graph state are given in the computational basis. What can
one say about the joint state?

Proposition 2 (Lyons et al. [36]). Given a legitimate (n − 1)-deck of a graph state |G〉 in the
computational basis, the joint state |G〉 can be reconstructed up to local Zj gates from any single
card.

Proof. Let us expand the graph states |Gj〉 and |Sj〉 as appearing in (19) in the computational
basis. Due to our ignorance about the joint state, denote them by |α〉 and |β〉, where either one
could be the vertex-deleted graph state, with the other one being the vertex-shrunken graph state.
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From Eq. (12) follows that all graph states are real equally weighted states. Thus it is possible to
expand

|α〉 = 1√
N

N−1∑
i=0

αi|i〉 , |β〉 = 1√
N

N−1∑
i=0

βi|i〉 , (20)

where N = 2n, αi, βi ∈ {−1, 1}, and {|i〉} being the computational basis for V \{j}. We can
therefore write the card Ck = trk(|G〉〈G|) as

Ck =
1

2N

N−1∑
i,j=0

(αiαj + βiβj)|i〉〈j| . (21)

Because of αi, βi ∈ {−1, 1}, 2NCkij can only be 0 or ±1. Because |0 . . . 0〉 remains unaffected by
conditional phase gates, α1 = β1 = 1. Furthermore, αj = βj = sign(Ck1j) for all j where Ck1j 6= 0.
On the other hand, when Ck1l = 0, then αl = −βl. Without loss of generality, set αm = −βm = 1
for the first instance of m where this happens. The remaining but yet undetermined coefficients
αl = −βl ∈ {±1} are given from the entries Ckml,

αmαl + βmβl = αl − βl = 2αl = 2NCkml . (22)

This completely determines the remaining coefficients of |α〉 and |β〉. Now the task is to reconstruct
the graphs corresponding to |α〉 and |β〉. This can be done by iteratively erasing all minus signs
in the computational basis expansion [37]: first, minus signs in front of terms having a single
excitation only, e.g. |0 . . . 010 . . . . . . 0〉, are removed by local Zj gates. Then, conditional phase
gates are applied to erase minus signs in front of terms having two excitations, and so on. By this
procedure, one obtains the state |+〉⊗n and all the gates necessary to obtain the original graph
state, thus determining the graph.

Note that the symmetric difference of the two graphs corresponding to |α〉 and |β〉 yields all
edges that were severed under the partial trace operation,∏

j∈e
Ce∈E | e\{j}

∏
e′∈E | j /∈e′

Ce′︸ ︷︷ ︸
shrink

∏
e′′∈E | j /∈e′′

Ce′′︸ ︷︷ ︸
delete

=
∏

e∈E | j∈e

Ce\{j}︸ ︷︷ ︸
edges connected to j

=
∏

i∈N(j)

Zj . (23)

The original graph state can then only be one of the following

|G〉〈G| =
∏

e∈E | j∈e

Ce |α〉 ⊗ |+〉j , or

|G〉〈G| =
∏

e∈E | j∈e

Ce |β〉 ⊗ |+〉j . (24)

This proves the claim.

5 Weight distribution

In order to determine whether or not, given a quantum k-deck, a joint graph state could possibly
exist, we introduce the weight distribution of quantum states. This is a tool from the theory of
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quantum error-correcting codes, and can be used to characterize the number of errors a code can
correct. A partial weight distribution can be obtained from a complete quantum k-deck already,
and no knowledge of the labeling of the individual parties is needed. This makes this tool useful
for legitimate deck type problems. With it it is possible to detect certain illegitimate decks, that is,
collections of marginals that are incompatible with any pure joint state.

Definition 3 ([38–40]). The weight distribution of a multipartite qubit quantum state % is given
by

Aj(%) =
∑
P∈P

wt(P )=j

tr(P%) tr(P †%) , (25)

where the sum is over all elements P of weight j in the n-qubit Pauli basis P.

Note that for higher dimensional quantum systems any appropriate orthonormal tensor-product
basis can be chosen instead of the Pauli basis, e.g. the Heisenberg-Weyl or Gell-Mann basis. The
weights Aj , being quadratic in the coefficients of the density matrix and invariant under local
unitaries, are so-called polynomial invariants of degree two. They characterize the distance of
quantum error-correcting codes [38, 41] and can be used to detect entanglement [42]. For graph
states, the weight distribution is particularly simple: because tr[P |G〉〈G|] can only be either 0 or
±1, the weight distribution of |G〉 is simply given by the number of its stabilizer elements having
weight j,

Aj(|G〉) = |{s ∈ S|wt(s) = j}| . (26)

Let us give an example.

Example 1. The three-qubit graph state corresponding to the fully connected graph of three vertices
has the generator G = {XZZ,ZXZ,ZZX} 1. Its stabilizer reads

S = {III, IY Y, Y IY, Y Y I,XZZ,ZXZ,ZZX,−XXX} . (27)

Accordingly, its weight distribution is A = [A0, A1, A2, A3] = [1, 0, 3, 4]. By normalization, A0 =
tr(%) = 1 must hold for all states. Because % is pure, tr(%2) = 1, and thus

∑n
j=0Aj(|ψ〉) = 2n.

As a warm-up, let us derive a result known from quantum error correction [43] by using properties
of Pauli matrices only.

Proposition 3. Given a graph state, the sum Ae =
∑bn/2c

j=0 A2j can only take two possible values,

Ae =

{
2n−1 (type I) ,
2n (type II) .

(28)

Proof. Note that a graph state % = |G〉〈G| can be decomposed into

% =
1

2n

( ∑
P∈P

wt(P ) even

tr[P †M ]P +
∑
P∈P

wt(P ) odd

tr[P †M ]P
)
=

1

2n
(Pe + Po) , (29)

where Pe and Po are the sums of all stabilizer elements having even and odd weight respectively.
Because of s% = % for all s ∈ S, also Pe and Po have % as an eigenvector. We apply this decomposition

1This is a state that is LU-equivalent to the Greenberger-Horne-Zeilinger state (|000〉+ |111〉)/
√
2.
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Figure 1: A hypergraph state that cannot be transformed into a graph state with local unitaries.
All of its three-body marginals are maximally mixed.

to % = %2, making use of Lemma 1 from Ref. [44] regarding the anti-commutators of elements
from P: the term {Pe, Po} appearing in %2 = {%, %}/2 can only contribute to terms of odd weight
in %, yielding {Pe, Po} = 2nPo . Consequently, one obtains

tr({Pe, Po}%) = tr(2nPo%) . (30)

Accordingly, 2AeAo = 2nAo , where Ae and Ao are the number of terms in the stabilizer that have
even and odd weight respectively. Consider first Ao 6= 0. Then Ae = 2n−1. Conversely, if Ao = 0,
then Ae = 2n, because % is pure and must thus satisfy

∑
Aj = Ae + Ao = 2n. This ends the

proof.

The same argument can be done for reductions of graph states that happen to be proportional
to projectors of rank 2q. There, either Ae = 2n−q−1 or Ae = 2n−q holds.

These two cases, that is, graph states of type I and type II, are also known from the theory of
classical self-dual additive codes over GF (4) [45, 43]. If only stabilizer elements of even weight are
present the code is said to be of type II, while codes having both even and odd correlations in equal
amount are of type I. It can be shown that all type II codes must have even length, and conversely,
self-dual additive codes of odd length n are always of type I. This is also a direct consequence of
the monogamy relation derived in Ref. [17] which is known to vanish for an odd number of parties,
implying Ae = Ao = 2n−1. Let us note that any graph states whose every vertex is connected to
an odd number of other vertices is of type II 2. For example, Greenberger-Horne-Zeilinger states
of an even number of qubits are of this type, being LU-equivalent to fully connected graph states.

This result can be used to show that a particular state cannot be LU-equivalent to any graph
state. Let us consider the state depicted in Fig. 5, which is a so-called hypergraph state [37]. It can
be obtained by applying the additional gate C138 = diag(1, 1, 1, 1, 1, 1, 1,−1) between particles 1, 3,
and 8 to the graph state of a cube, |H〉 = C138|Gcube〉. Its weight distribution reads

A = [1, 0, 0, 0, 30, 48, 96, 48, 33] , (31)

with Ae =
∑

j even = 160. This is incompatible with being a graph state of type I or type II,
these having either Ae = 128 or Ae = 256 respectively. Because the weight distribution is invariant
under LU-operations, the state must be LU-inequivalent to graph states. Let us add that all the
three-body marginals of |H〉 are maximally mixed, and the state can thus be regarded as being
highly entangled [43].

One could ask whether or not the presence of entanglement can be detected from the weight
distribution of a state. This is indeed the case.

2See Theorem 15 in Ref. [46].
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Proposition 4. Let |ψ〉 be a pure product state on n qubits. Then Aj(|ψ〉) =
(
n
j

)
.

Proof. Let us assume that we are given a product state on m − 1 qubits with weights denoted by
A

(m−1)
j . Tensoring it by a pure state on the last qubit, the weight A(m)

j of the resulting state on m
qubits is

A
(m)
j = A

(m−1)
j A

(1)
0 +A

(m−1)
j−1 A

(1)
1 = A

(m−1)
j +A

(m−1)
j−1 , (32)

because of A0 = A1 = 1 for a pure one-qubit state. But this is exactly the recurrence relation that
is satisfied by the binomial coefficients, namely(

m

j

)
=

(
m− 1

j

)
+

(
m− 1

j − 1

)
, (33)

together with the initial condition A
(1)
j =

(
1
j

)
= 1. Thus a pure product state on n qubits has

Aj =
(
n
j

)
.

If |ψ〉 is entangled across a partition of one party versus the rest, then above relation takes the
form of a strict inequality

A
(n)
j > A

(n−1)
j +A

(n−1)
j−1 . (34)

This can be seen by considering the purity of the reductions and of the full state. Considering
entanglement across a partition of m ≤ bn/2c versus (n − m) parties, one obtains in a similar
fashion the inequality

A
(n)
j > A

(n−m)
j A

(m)
0 +A

(n−m)
j−1 A

(m)
1 + · · ·+A

(n−m)
j−m A(m)

m . (35)

Further inequalities to detect entanglement from the weight distribution can be found in Ref. [42].

6 Constraints on the weight distribution

In the following, we derive further relations on the weight distribution of pure states. These are
obtained from the Schmidt decomposition along bipartitions having fixes sizes and from monogamy-
like relations. As we are dealing with Ulam type problems, not the complete weight distribution
is given. Thus, let us define the reduced weight distribution, which is proportional to the average
distribution that marginals of size m of a given quantum state % show. This notion is useful for the
Ulam type problems that we consider in this article, as the reduced weight distribution Amj (%) can
already be obtained from a complete set of unlabeled marginals of size m. We refer to Sect. 7 for
details how this can be achieved.

Definition 4. Let % be a quantum state on n parties. Given its weight distribution Aj(%), define
its associated reduced weight distribution Amj (%) for 0 ≤ j ≤ m as

Amj (%) =

(
n

m

)(
m

j

)/(n
j

)
Aj(%) =

(
n− j
n−m

)
Aj(%) . (36)

For the following proofs we also need the weight distribution on some subsystem S ⊆ {1 . . . n},

ASj =
∑
P∈P

supp(P )⊆S
wt(S)=j

tr(P%) tr(P †%) . (37)
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We now state a first constraint on the weight distribution of pure states that arises from the
Schmidt decomposition.

Proposition 5 (Cut-relations). Let |ψ〉 be a pure state of n qubits. For all 1 ≤ m ≤ n, the reduced
weight distributions Amj (|ψ〉) satisfy

2−m
m∑
j=0

Amj (|ψ〉) = 2−(n−m)
n−m∑
j=0

An−mj (|ψ〉) . (38)

Proof. In the following, let us write Aj for Aj(|ψ〉). From the Schmidt decomposition of pure states,
it follows that the purities of reductions on complementary subsystems must be equal,

tr(%2S) = tr(%2Sc) . (39)

Summing Eq. (39) over all bipartitions S, Sc having fixed size m ≤ bn/2c and (n−m), one obtains

2−m
∑
|S|=m

m∑
j=0

ASj = 2−(n−m)
∑

|Sc|=n−m

n−m∑
j=0

AS
c

j . (40)

In the case of graph states, ASj is just the number of stabilizer elements of weight j having support
in S. Note that in Eq. (40), the dimensional prefactor results from the difference in normalization of
%S and %Sc . By summing over all subsystem pairs of fixed size, elements of weight j are overcounted
by factors of

(
n
m

)(
m
j

)(
n
j

)−1
=
(
n−j
n−m

)
and

(
n

n−m
)(
n−m
j

)(
n
j

)−1
=
(
n−j
m

)
respectively. We arrive at

2−m
m∑
j=0

(
n− j
n−m

)
Aj = 2−(n−m)

n−m∑
j=0

(
n− j
m

)
Aj . (41)

In terms of the reduced weight distribution, this simply reads as

2−m
m∑
j=0

Amj = 2−(n−m)
n−m∑
j=0

An−mj . (42)

This proves the claim.

These are b(n− 1)/2c independent linear equations that the weight distributions of pure states
have to satisfy. We note that these relations can be seen as an alternate formulation of the so-called
quantum MacWilliams identity for quantum codes in the special case of pure states [38, 41], and
generalize naturally to states of higher local dimensions.

We now obtain further constraints on the reduced weight distributions that are obtained from the
so-called universal state inversion and generalizations thereof [17, 41, 47, 48]. In the case of qubits
it can simply be attained through a spin-flip, where every Pauli matrix in the Bloch decomposition
changes sign, mapping I 7→ I, Y 7→ −Y , X 7→ −X, and Z 7→ −Z 3. When expanding a state % in
the Bloch representation as

% =
1

2n

n∑
j=0

∑
P∈P

wt(P )=j

tr(P †%)P , (43)

3 It is not hard to convince oneself that this spin-flip can be obtained by %̃ = Y ⊗n%TY ⊗n, where %T is the transpose
of the given state %.
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the spin-flipped state thus simply acquires a sign flip for all odd-body correlations,

%̃ =
1

2n

n∑
j=0

(−1)j
∑
P∈P

wt(P )=j

tr(P †%)P . (44)

Note that because %̃ is positive semi-definite, the expression tr(%%̃) must necessarily be non-negative.
This leads to our next proposition.

Proposition 6. Let % be a state of n qubits. For all 1 ≤ m ≤ n, the reduced weight distributions
Amj (%) satisfy the inequality

m∑
j=0

(−1)jAmj (%) ≥ 0 . (45)

Proof. We evaluate tr(%%̃) ≥ 0 in the Bloch decomposition.

tr(%%̃) =
1

22n
tr
[( n∑

j=0

(−1)j
∑
P∈P

wt(P )=j

tr(P%)P †
)( n∑

j′=0

∑
P ′∈P

wt(P )=j′

tr(P ′†%)P ′
)]

=
1

22n

n∑
j=0

(−1)j
∑
P∈P

wt(P )=j

tr(P%) tr(P †%) tr(P †P )

=
1

2n

n∑
j=0

(−1)jAj ≥ 0 . (46)

Applying the same method to all reductions %S of fixed size |S| = m, one obtains

∑
|S|=m

tr[%S %̃S ] = 2−m
∑
|S|=m

m∑
j=0

(−1)jASj = 2−m
m∑
j=0

(−1)j
(
n− j
n−m

)
Aj ≥ 0 . (47)

Up to a dimensional constant, this can be rewritten as
∑m

j=0(−1)jAmj ≥ 0 . This ends the proof.

For pure states, the expression tr(%%̃) is an entanglement monotone called n-concurrence [49].
In light of Refs. [50, 41] on the shadow enumerator of quantum codes, Eq. (45) can also be restated
as the requirement that the zeroth shadow coefficient S0(%S) = tr(%S %̃S) be non-negative when
averaged over all m-body marginals %S . In the case of graph states and stabilizer codes, this
expression must necessarily be integer, as it is obtained by counting elements of the stabilizer with
integer prefactors.

Let us point to the most general form of these inequalities, the so-called shadow inequality:

Theorem 2 (Rains, shadow inequality [38, 41]). Let M and N be non-negative operators on n
qubits. For any subset T ⊆ {1 . . . n} it holds that∑

S⊆{1...n}

(−1)|S∩T | tr[trSc(M) trSc(N)] ≥ 0 , (48)

where the sum is taken over all subsets S in {1 . . . n}.
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For M = N = %, the shadow inequality represents consistency conditions for quantum states
in terms of purities of reductions, and for T = {1 . . . n}, it simply corresponds to tr(%%̃) ≥ 0. By
symmetrizing the shadow inequality over all subsets T c of some fixed size 0 ≤ j ≤ n one obtains
the following constraints on the weight distribution of n-qubit states 4 [38, 45, 41],

Sj(%) =
∑

0≤k≤n
(−1)kKj(k, n)Ak(%) ≥ 0 . (49)

The Krawtchouk polynomial above is given by

Kj(k, n) =
∑

0≤α≤j
(−1)α3j−α

(
n− k
j − α

)(
k

α

)
. (50)

Naturally, Theorem 2 must also hold for all reductions of a joint state %, these being quantum states
themselves. Demanding this condition for all reductions %S of a fixed size m, we obtain following
proposition for the reduced weight distribution:

Proposition 7. Let % be a state of n qubits. For all 1 ≤ m ≤ n, the reduced weight distributions
Amk (%) must satisfy

Smj (%) =
∑

0≤k≤m
(−1)kKj(k,m)Amk (%) ≥ 0 . (51)

Proof. Consider Eq. (49) for a m-body reduction of an n-qubit state. Summing over all marginals
of size m, one obtains∑

S⊆{1...n}
wt(S)=m

∑
0≤k≤m

(−1)kKj(k,m)ASk (%S) =
∑

0≤k≤m
(−1)kKj(k,m)

(
n− j
n−m

)
Ak(%)

=
∑

0≤k≤m
(−1)kKj(k,m)Amk (%) ≥ 0 . (52)

This ends the proof.

Finally, let us note that constraints on weight distributions such as Eq. (48) can also be expressed
in terms of purities or linear entropies of reductions, and vice versa. The linear entropy approximates
the von Neumann entropy to its first order, and is defined as SL(%S) = 2[1− tr(%2S)]. The quantity
tr(%2S) is called the purity, measuring the pureness of a state.

As an example, let us show how the universal state inversion imposes constraints on the linear
entropies of the two- and one-party reductions of a joint state.

Corollary 1. Let % be a multipartite quantum state, and denote by %i and %ij its one- and two-body
reductions. The following inequality holds,

(n− 1)
∑
i

SL(%i)−
∑
i<j

SL(%ij) ≥ 0 . (53)

4By convention, the shadow inequality is summed over the complement T c of T , such that S0(%) = tr(%%̃).
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Proof. It has been shown in Ref. [48] that the universal state inversion can also be written as

%̃ =
∑

S⊆{1...n}

(−1)|S|%S ⊗ 1Sc . (54)

Considering the state inversion on the two-party reductions, one obtains∑
i<j

tr[%ij %̃ij ] =
∑
i<j

tr[%ij(1− %i ⊗ 1j − 1i ⊗ %j + %ij)]

=
∑
i<j

(1− tr[%2i ]− tr[%2j ] + tr[%2ij ])

= (n− 1)
∑
i

SL(%i)−
∑
i<j

SL(%ij) ≥ 0 . (55)

This ends the proof.

Let us derive another relation involving three-body reductions.

Corollary 2. Let % be a multipartite quantum state. Denote by %i, %ij, and %ijk its one-, two-, and
three-body reductions. The following inequality holds,∑

i

SL(%i) +
∑
i<j

SL(%ij)−
∑
i<j<k

SL(%ijk) ≥ 0 . (56)

Proof. Consider the shadow inequality [Eq. (48)] on a single three-body reduction %ABC . Choosing
T = {AB} and M = N = %ABC , one obtains

1− tr(%2A)− tr(%2B) + tr(%2C) + tr(%2AB)− tr(%2AC)− tr(%2BC) + tr(%2ABC) ≥ 0 . (57)

This can be rewritten in terms of linear entropies

SL(%A) + SL(%B)− SL(%C)− SL(%AB) + SL(%AC) + SL(%BC)− SL(%ABC) ≥ 0 . (58)

Summing this inequality over all three-body reductions of a multipartite quantum state % proves
the claim.

Note that Corollary 1 simply corresponds to Propositon 7 for m = 2 and j = 0, expressed in
terms of linear entropies, and Corollary 2 corresponds to the case of m = 3 and j = 1. Further
relations can be obtained for other values of m and j, and in turn, these give consistency equations
on decks of quantum marginals. Lastly, let us point out that the shadow inequality [Eq. (48)] also
holds in operator form for any multipartite system having finite local dimensions [51]. For every
T ⊆ {1 . . . n}, the following expression is positive semidefinite,∑

S⊆{1...n}

(−1)|S∩T |%S ⊗ 1Sc ≥ 0 . (59)

For T = {1 . . . n}, the expression reduces to the universal state inversion [Eq. (44)].
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7 Detecting illegitimate decks

In the following, we use the relations derived in the previous section to detect illegitimate quantum
decks. Let us first show how having access to all reduced states of size m directly yields the reduced
weights Amj , and thus also all Aj with j ≤ m.

Proposition 8. Given a complete quantum m-deck D = {%S | |S| = m}, the weights A1, . . . , Am of
the weight distribution of a putative joint state can be obtained.

Proof. Given a complete deck D, we calculate

∑
%S∈D

∑
P∈P

wt(P )=j

tr(%SP ) tr(%SP
†) =

∑
S, |S|=m

ASj =

m∑
j=0

(
n− j
n−m

)
Aj =

m∑
j=0

Amj . (60)

From Amj , the weights Aj can be obtained for 0 ≤ j ≤ m from Eq. (36). This ends the proof.

Note that for decks of putative joint graph states, Amj is exactly equal to the total number of
stabilizer elements of weight j appearing in the quantum m-deck. To see how the cut-relations
(Proposition 5) can help to decide compatibility of a quantum deck, let us provide some examples.

Example 2. Consider the case of a pure three qubit state. Setting a = 1 in Proposition 5 yields the
condition A2 = 3. From the normalization of the state, tr(%) = 1, it follows that A1+A3 = 4. Thus
it is not possible to join three Bell states together, as each one has the weights A = [1, 0, 3] already.

Example 3. Let us consider a more elaborate example, the ring-cluster state of five qubits which is
depicted in Fig. 7. Those of its three-body marginals that can be obtained by tracing out nearest
neighbors are an equal mixture of the four graph states that are shown in Fig. 7, where the circles
denote local Z-gates. Modifying the reductions to be the equal mixture of the states shown in
the bottom row, it can be seen that no compatible joint state exists. This follows from their
corresponding weight distribution: the ring-cluster state has

(
5
3

)
= 10 reductions on three qubits

with A = [1, 0, 0, 1]. This is consistent with the cut-relations of Proposition 5, which read

−2A1 +A2 +A3 = 10 (61)
−4A1 + 3A2 + 2A3 +A4 = 35 . (62)

Slightly modifying some reductions to be an equal mixture of the four other states that are depicted
in the lower row of Fig. 7, we obtain an illegitimate deck: these reductions have the weight distri-
bution A = [1, 0, 3/8, 11/8], and together with the rest of the deck, they do not satisfy Eq. (61).
Thus no compatible joint state on five qubits exists.

Example 4. Let us ask whether or not a pure state % on ten qubits could exist, that has all reductions
on six qubits equal to

p|GHZ6〉〈GHZ6|+ (1− p)1 . (63)

Above, the Greenberger-Horner-Zeilinger state on six qubits is defined as |GHZ6〉 = (|000000〉 +
|111111〉/

√
2. Its weights are A = [1, 0, 15, 0, 15, 0, 33]. From it, we can obtain a part of the weight

distribution of the putative joint state, namely

Aj≤6(%) =

(
10

j

)(
6

j

)−1
Aj(|GHZ6〉) . (64)
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Figure 2: Left: the ring-cluster state on five qubits. Right, top row: the three-qubit reductions of the
five qubit ring-cluster state that are obtained by tracing out nearest neighbors are the equal mixture
of these graph states. Right, bottom row: modifying some reductions to be the equal mixture of
the graph states shown in the bottom row, no compatible joint state on five qubits exists.

Thus the putative pure joint state must have A = [1, 0, 45p, 0, 210p, 0, 6930p, . . . ]. Let us now see
what value p can have, in order to satisfy Proposition 5. The cut-relation which involves the weights
up to A6 only requires that

− 210A1 − 42A2 + 7A3 + 11A4 + 5A5 +A6 = 630 . (65)

This can only be fulfilled if p = 3/35.

Note that in above examples, one does not require to know the labeling of the parties. Despite
that it is possible to make statements whether a joint state might exist, and to already detect
illegitimate decks when provided by a deck whose cards have size (bn/2c+ 1) only.

8 When is a weight distribution graphical?

Even when given the complete weight distribution A0, . . . , An, one cannot always decide whether
or not it can be realized by a graph state, that is, whether the weight distribution is graphical: the
criteria derived in the previous sections are necessary but not sufficient for a realization. One can
find weight distributions that satisfy all of the relations derived above, but for which it is known
that no corresponding quantum state exists. As an example, consider a hypothetical pure state of
seven qubits, having all three-body reductions maximally mixed 5. Its weights distribution reads [43]
A = [1, 0, 0, 0, 35, 42, 28, 22]. While it was known by exhaustive search that the distribution cannot
be realized by a graph state, it was only recently shown that no state with such property exists [44].
Interestingly, weight distributions are known whose realizations as a graph states are unresolved.
As an example, the existence of a graph state on 24 qubits, having all 9-body reductions maximally
mixed, is a long-standing open problem 6. Putative weights for such a state of type II, having even
weights only, are 7

[A10, A12, A14, . . . A24] =

[18216, 156492, 1147608, 3736557, 6248088, 4399164, 1038312, 32778] . (66)

5This a so-called absolutely maximally entangled state, having the code parameters ((7, 1, 4))2.
6Such state is equivalent to a self-dual additive code over GF4, and corresponds to a quantum code having the

parameters [[24, 0, 10]]2. See also Research Problem 13.3.7 in Ref. [52] and the code tables of Ref. [53].
7This weight distribution can also be found in the On-Line Encyclopedia of Integer Sequences, see http://oeis.

org/A030331.
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Figure 3: Two graph states on seven qubits that share the same weight distribution, but which can
be shown to be inequivalent under local unitaries and graph isomorphism. These correspond to
graphs No. 42 and 43 of Fig. 5 in Ref. [28].

Finally, we note that a weight distribution does not uniquely identify the corresponding graph
state, as states inequivalent under LU-transformations and graph isomorphism can indeed have
the same weight distribution. As an example, consider the two graph states on seven qubits that
are depicted in Fig. 8. These can be shown to be inequivalent under local unitaries and graph
isomorphism, but they share the same weight distribution of A = [1, 0, 0, 7, 21, 42, 42, 15] 8. We
conclude that graph states are not uniquely identified by their weight distribution.

9 Conclusion

We have introduced the Ulam graph reconstruction problem to the case of quantum graph states.
In contrast to classical graph decks, the full graph state can (up to local Z-gates) be reconstructed
from a single card in the deck. As in the classical setting, the question of detecting illegitimate
decks is of interest. Here, consistency equations can be derived which can detect some but not all
illegitimate quantum decks from their weight distribution; in some cases it is already possible to
detect the illegitimacy of decks containing marginals of size bn/2c + 1. It would be interesting to
see whether similar relations can also be obtained for classical decks of graphs.

The result by Bollobás [32], namely, that almost every graph can uniquely be reconstructed by
a specific set of three cards, has an interesting counterpart in the quantum setting: It has been
shown that almost all pure states are already uniquely determined amongst all pure states by three
marginals of size (n− 2) [54]. It would be desirable to understand if similar results also hold for the
special case of graph states.
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