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Abstract A connected graph G is of QE class if it admits a quadratic

embedding in a Hilbert space, or equivalently if the distance matrix

is conditionally negative definite, or equivalently if the quadratic em-

bedding constant QEC(G) is non-positive. For a finite star product of

(finite or infinite) graphs G = G1 ⋆ · · · ⋆ Gr an estimate of QEC(G)

is obtained after a detailed analysis of the minimal solution of a cer-

tain algebraic equation. For the path graph Pn an implicit formula for

QEC(Pn) is derived, and by limit argument QEC(Z) = QEC(Z+) =

−1/2 is shown. During the discussion a new integer sequence is

found.
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1 Introduction

Let G = (V, E) be a (finite or infinite) connected graph. A map ϕ from V into a

Hilbert space H (of finite or infinite dimension) is called a quadratic embedding

if it fulfills

‖ϕ(x) − ϕ(y)‖2 = d(x, y), x, y ∈ V, (1.1)

where ‖ · ‖ stands for the norm of H , and d(x, y) the graph distance between two

vertices x, y ∈ V , i.e., the length of a shortest walk (or path) connecting x and y. A
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graph G is said to be of QE class if it admits a quadratic embedding. Graphs of QE

class have been studied along with graph theory [2], [3], [12], Euclidean distance

geometry [8], [9], [10], [11], and so forth. They have appeared also in quantum

probability and non-commutative harmonic analysis [4], [5], [6], [7], [13], [14].

It follows from the result of Schoenberg [17], [18] (also Young–Householder

[19]). that G is of QE class if and only if the distance matrix D = [d(x, y)] is

conditionally negative definite. It is then natural to consider, as a quantitative

approach, the QE constant of a graph G defined by

QEC(G) = sup{〈 f ,D f 〉 ; f ∈ C0(V), 〈 f , f 〉 = 1, 〈1, f 〉 = 0}, (1.2)

where C0(V) is the space of R-valued functions on V with finite supports, and 〈·, ·〉
is the canonical inner product on C0(V). Moreover, 〈1, f 〉 = ∑

x∈V f (x) by overuse

of symbols, where 1(x) = 1 for all x ∈ V . Obviously, G is of QE class if and

only if QEC(G) ≤ 0. The QE constant has been introduced in the recent paper

[15], where graph operations preserving the property of QE class are discussed

and the QE constants of graphs on n ≤ 5 vertices are listed. Moreover, for a

particular class of graphs distance spectrum (for generalities see [1]) is useful for

calculating the QE constants, but the relation is not clear in general.

In this paper, we focus on the star product as one of the most elementary

graph operations. Given graphs G j = (V j, E j) with distinguished vertices o j ∈ V j,

1 ≤ j ≤ r, the star product

G1 ⋆ · · · ⋆Gr = (G1, o1) ⋆ · · · ⋆ (Gr, or)

is by definition a graph obtained by glueing graphs G j at the vertices o j. It is

known (see e.g., [15] for an explicit statement) that a star product of two graphs

of QE class is again of QE class. An equivalent property appears in the study

of length functions on Cayley graphs, of which the root traces back to Haagerup

[6], see also Bożejko–Januszkiewicz–Spatzier [4] and Bożejko [5]. However, a

concise formula for the QE constant of a star product is not known. Our goal of

this paper is to derive an implicit description of QEC(G1 ⋆ · · · ⋆Gr) and obtain a

sufficiently good estimate of it in terms of Q j = QEC(G j). The main results are

stated in Theorems 4.4, 4.5 and their corollaries.

This paper is organized as follows. In Section 2 we derive some estimates of

the minimal solution of an algebraic equation of the following type:

r
∑

j=1

d j

a jd j + a j − λ
=

1

λ
. (1.3)

In Section 3 we study the conditional minimum of a quadratic function of the
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following type:

φ(x0,x1, . . . ,xr) =

r
∑

j=1

a j

(

〈x j,x j〉 + 〈1 j,x j〉2
)

(1.4)

subject to conditions:

x2
0 +

r
∑

j=1

〈x j,x j〉 = 1, x0 +

r
∑

j=1

〈1 j,x j〉 = 0. (1.5)

We show that the conditional minimum of (1.4) coincides with the minimal so-

lution of (1.3). With these results we prove the main theorem in Section 4 and

mention some relevant results and problems. In Section 5 we discuss infinite

graphs, in particular, infinite path graphs Z+ and Z. The QE constant of a finite

path Pn for a general n is not known explicitly. We derive an indirect formula for

QEC(Pn) and by taking limit we obtain QEC(Z+) = QEC(Z) = −1/2. Finally, in

Section 6 we study some combinatorial identities used in the estimate of QEC(Pn)

and find a new integer sequence which is interesting for itself.
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2 Preliminaries

Given a natural number r ≥ 1 and a pair of parameter vectors

a = (a1, a2, . . . , ar), d = (d1, d2, . . . , dr),

we consider an algebraic equation of the following type:

r
∑

j=1

d j

a jd j + a j − λ
=

1

λ
. (2.1)

The parameters a and d are always assumed to fulfill the following conditions:

(i) a1, . . . , ar are positive real numbers,

(ii) d1, . . . , dr are positive real numbers or∞. If d j = ∞, we understand that

d j

a jd j + a j − λ
=

∞
a j · ∞ + a j − λ

=
1

a j

.
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2.1 Separation of solutions

Given a = (a1, a2, . . . , ar) and d = (d1, d2, . . . , dr), arranging a jd j+a j in order, we

write

{a1d1 + a1, . . . , ardr + ar} = {c1 < · · · < cs}
and set c0 = 0. It may happen that cs = ∞.

Proposition 2.1. Every open interval (ci−1, ci), 1 ≤ i ≤ s, contains exactly one

solution λi of (2.1). Moreover, these λ1, . . . , λs are all the solutions of (2.1).

Proof. We set

f (λ) =

r
∑

j=1

d j

a jd j + a j − λ
− 1

λ
, (2.2)

which becomes

f (λ) =

s
∑

i=1

d′i
ci − λ

− 1

λ
(2.3)

with some d′i > 0. If cs = ∞, then d′s/(cs − λ) becomes a positive constant. Hence,

for any 1 ≤ i ≤ s, the function f (λ) is strictly increasing on the interval (ci−1, ci) as

a sum of increasing functions. Moreover, for any 1 ≤ i ≤ s with ci < ∞ we have

lim
λ→ci−1+0

f (λ) = −∞, lim
λ→ci−0

f (λ) = +∞.

If cs = ∞, we have limλ→∞ f (λ) > 0. While, if cs < ∞, we have f (λ) < 0 for all

λ > cs. Hence every interval (ci−1, ci), 1 ≤ i ≤ s, contains exactly one solution λi

of (2.1). Since the equation (2.1) is equivalent to an algebraic equation of degree

s as is seen from (2.3), {λ1, . . . , λs} exhaust its solutions. �

2.2 Estimate of the minimal solution

Let λ1(d,a) denote the minimal solution of (2.1), which verifies λ1(d,a) > 0 by

Proposition 2.1. In fact, for r = 1 we have

λ1(d,a) = a1 (2.4)

and for r = 2,

λ1(d,a) =
2a1a2

a1 + a2 +

√

(a1 + a2)2 − 4(d1 + d2 + 1)

(d1 + 1)(d2 + 1)
a1a2

=
2a1a2

a1 + a2 +

√

(a1 − a2)2 +
4d1d2

(d1 + 1)(d2 + 1)
a1a2

. (2.5)
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It is difficult to obtain a concise description of λ1(d,a) for r ≥ 3 in general.

Instead, we will obtain good estimates for λ1(d,a) useful in applications.

Proposition 2.2. Let r ≥ 2. The minimal solution λ1(d,a) of (2.1) satisfies

(

1

a1

+ · · · + 1

ar

)−1

≤ λ1(d,a) < min{a1, . . . , ar}, (2.6)

where the equality holds if and only if d1 = · · · = dr = ∞.

Proof. We first show the right-half of (2.6). Let a j0 = min{a1, . . . , ar}. Since

a j0 ≤ a j < a jd j + a j for all j, we have 0 = c0 < a j0 < c1. Moreover, letting f (λ)

be as in (2.2), we have

f (a j0) =
d j0

a j0d j0 + a j0 − a j0

+

r
∑

j=1,
j, j0

d j

a jd j + a j − a j0

− 1

a j0

=

r
∑

j=1,
j, j0

d j

a jd j + a j − a j0

> 0.

Since f (λ) is increasing on the interval (0, c1), we see that λ1(d,a) < a j0 .

Now we are going to prove the left-half of (2.6). For simplicity we set

λ0 =

(

1

a1

+ · · · + 1

ar

)−1

.

Obviously, for 1 ≤ j ≤ r we have 0 < λ0 < a j and hence

d j

a jd j + a j − λ0

≤ 1

a j

,

where the equality holds if and only if d j = ∞. Taking the sum over 1 ≤ j ≤ r we

get
r

∑

j=1

d j

a jd j + a j − λ0

≤
r

∑

j=1

1

a j

=
1

λ0

,

from which we see that f (λ0) ≤ 0 and the equality holds if and only if d1 = · · · =
dr = ∞. Since 0 < λ0 < a j0 < c1 and f (λ) is increasing on the interval (0, c1), we

have λ0 ≤ λ1(d,a), which shows the left-half of (2.6). �
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2.3 Sharper estimates

We will sharpen the estimate (2.6). For a = (a1, . . . , ar) and a′ = (a′
1
, . . . , a′r) we

write a ≤ a′ if a j ≤ a′j for all 1 ≤ j ≤ r. Similarly, we define d ≤ d′. The

following comparison is useful.

Proposition 2.3. If d ≥ d′ and a ≤ a′, then λ1(d,a) ≤ λ1(d′,a′). Moreover, if

d , d′ or a , a′ in addition, we have λ1(d,a) < λ1(d′,a′).

Proof. Suppose that 0 < d′
j
≤ d j ≤ ∞ and 0 < a j ≤ a′

j
. Then, by elementary

algebra we obtain

d j

a jd j + a j − λ
≥

d′j

a′
j
d′

j
+ a′

j
− λ, 0 < λ < a j. (2.7)

Moreover, the strict inequality holds if 0 < d′j < d j ≤ ∞ or 0 < a j < a′j. Put

f (λ) =

r
∑

j=1

d j

a jd j + a j − λ
− 1

λ
, g(λ) =

r
∑

j=1

d′j

a′
j
d′

j
+ a′

j
− λ −

1

λ
.

Now suppose that d ≥ d′ and a ≤ a′. It then follows from (2.7) that f (λ) ≥ g(λ)

for 0 < λ < min{a1, . . . , ar}, and hence for 0 < λ ≤ λ1(d,a). Therefore, λ1(d,a) ≤
λ1(d′,a′). If d , d′ or a , a′, we have f (λ) > g(λ) for 0 < λ ≤ λ1(d,a), which

yields λ1(d,a) < λ1(d′,a′). �

As an immediate consequence of Proposition 2.3, we have

(

1

a1

+ · · · + 1

ar

)−1

= λ1(∞,a) < λ1(d,a) (2.8)

for any d ,∞ = (∞, . . . ,∞). Note that (2.8) is reproduction of Proposition 2.2.

Proposition 2.4. We have

λ1(d,a) = inf

{

λ1(e,a) ;
e = (e1, . . . , er) ≤ d,

e1 < ∞, . . . , er < ∞

}

,

or equivalently,

λ1(d,a) = lim
n→∞
λ1(d ∧ n,a),

where d ∧ n = (d1 ∧ n, . . . , dr ∧ n).
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Proof. Here a = (a1, . . . , ar) is fixed. Substituting d j 7→ 1/u j we define

F(u1, . . . , ur, λ) =

r
∑

j=1

1

a ju j + a j − λu j

− 1

λ
.

Then the equation F(u1, . . . , ur, λ) = 0 gives rise to an implicit function λ =

g(u1, . . . , ur) with the initial condition g(0, . . . , 0) = λ0 = (1/a1 + · · · + 1/ar)
−1. It

suffices to show that g is well-defined and is continuous on [0,∞)r. We know that

the minimal solution

λ = g(u1, . . . , ur) = λ1

(

1

u1

, . . . ,
1

ur

,a

)

exists for all u ∈ [0,∞)r. On the other hand for such u and λ we have

∂F

∂λ
=

r
∑

j=1

u j

(a ju j + a j − λu j)2
+

1

λ2
> 0,

which implies that g is continuous on [0,∞)r. �

Hereafter in this subsection we assume that d ,∞, namely, d = (d1, . . . , dr)

with d j < ∞ for some j. As before, we put

c1 = min{a1d1 + a1, . . . , ardr + ar}.

Proposition 2.5. We have

















1

c1

+

r
∑

j=1

d j

d ja j + a j

















−1

≤ λ1(d,a) <

















r
∑

j=1

d j

d ja j + a j

















−1

(2.9)

and the equality holds if and only if d1a1 + a1 = · · · = drar + ar.

Proof. Let λ′ and λ′′ denote the left- and right-hand sides of (2.9), respectively.

First we note that for 0 < λ < c1 we have

d j

d ja j + a j − λ
≤

d jc1

(c1 − λ)(d j + 1)a j

,

where the equality holds if and only if c1 = d ja j + a j. Therefore the solution of

(2.1) in the interval (0, c1) is greater than the solution of

r
∑

j=1

d jc1

(c1 − λ)(d j + 1)a j

=
1

λ
,
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which is exactly λ′. For the second inequality in (2.9) we can assume that λ′′ < c1

(for otherwise λ1(d,a) < min{a1, . . . , ar} < c1 ≤ λ′′). Then we have

d j

d ja j + a j − λ′′
≥

d j

d ja j + a j

,

with equality only when d j = ∞. Taking the sum over j = 1, . . . , r we get

r
∑

j=1

d j

d ja j + a j − λ′′
>

1

λ′′
,

which implies λ1(d,a) < λ′′ �

Here is slightly more precise estimation from below.

Proposition 2.6. We have

c1

















1 +

r
∑

j=1

d j(c1 − λ0)

d ja j + a j − λ0

















−1

≤ λ1(d,a), (2.10)

where

λ0 =

(

1

a1

+ · · · + 1

ar

)−1

and the equality holds if and only if d1a1 + a1 = · · · = drar + ar.

Proof. For 1 ≤ j ≤ r and λ0 < λ < c1 we have

d j

d ja j + a j − λ
≤

d j(c1 − λ0)

(d ja j + a j − λ0)(c1 − λ)
,

where the equality holds if and only if c1 = d ja j + a j. Therefore the minimal

solution of (2.1) is greater (or equal if d1a1 + a1 = · · · = drar + ar) than the

solution of
r

∑

j=1

d j(c1 − λ0)

(d ja j + a j − λ0)(c1 − λ)
=

1

λ
,

which is the left hand side of (2.10). �

One can check that (2.10) gives a more precise estimate of λ1(d,a) from below

than (2.9), which is still better than (2.8), i.e.,
















r
∑

j=1

1

a j

















−1

<

















1

c1

+

r
∑

j=1

d j

d ja j + a j

















−1

≤ c1

















1 +

r
∑

j=1

d j(c1 − λ0)

d ja j + a j − λ0

















−1

≤ λ1(d,a),

with equalities if and only if d1a1 + a1 = · · · = drar + ar.
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3 Conditional Minimum of a Quadratic Function

Given a natural number r ≥ 1, and a pair of parameter vectors

a = (a1, a2, . . . , ar), d = (d1, d2, . . . , dr),

satisfying conditions:

(i) a1, . . . , ar ≥ 0 are non-negative real numbers,

(ii) d1, . . . , dr ≥ 1 are natural numbers or∞,

we consider a quadratic function in 1 + d1 + · · · + dr variables of the following

form:

φ(x0,x) = φ(x0,x1, . . . ,xr) =

r
∑

j=1

a j

(

〈x j,x j〉 + 〈1 j,x j〉2
)

, (3.1)

where x0 ∈ R, x j ∈ Rd j , 1 j = [1 . . . 1]T ∈ Rd j , and 〈·, ·〉 stands for the canonical

inner product. In case of d j = ∞ we always assume that vectors x j ∈ Rd j have

finite supports, that is, the entries of x j vanish except finitely many ones. For such

vectors 〈x j,x j〉 and 〈1 j,x j〉 are defined as finite sums and φ(x0,x) is defined on

the set of vectors with finite supports. Note also that the right-hand side of (3.1)

is free from the variable x0.

Let M(d,a) denote the conditional infimum:

M(d,a) = inf φ(x0,x),

where the infimum is taken over the vectors (x0,x) with finite supports, fulfilling

the conditions:

x2
0 +

r
∑

j=1

〈x j,x j〉 = 1, (3.2)

x0 +

r
∑

j=1

〈1 j,x j〉 = 0. (3.3)

If d j < ∞ for all 1 ≤ j ≤ r, we prefer to call M(d,a) the conditional mimimum

rather than infimum.

Although M(d,a) itself is defined for any choice of real numbersa = (a1, . . . , ar),

the condition (i) above is posed for our application.
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3.1 Elementary properties of M(d,a)

Proposition 3.1. We have 0 ≤ M(d,a) ≤ min{a1, . . . , ar}.

Proof. It is obvious from definition that φ(x0,x) ≥ 0 for all x0 and x, so that

M(d,a) ≥ 0. Setting x2 = · · · = xr = 0 and taking x0 and x1 in such a way that

x2
0 + 〈x1,x1〉 = 1, x0 + 〈11,x1〉 = 0,

we see that φ(x0,x) becomes

a1

(

〈x1,x1〉 + 〈11,x1〉2
)

= a1

(

(1 − x2
0) + (−x0)2

)

= a1 .

Hence the function φ(x0,x) attains the value a1 under conditions (3.2) and (3.3).

Similarly, it attains the value a j for 1 ≤ j ≤ r. Therefore, the conditional infimum

verifies M(d,a) ≤ min{a1, . . . , ar}. �

Proposition 3.2. If a ≤ b and d ≤ e, we have

M(e,a) ≤ M(d,a) ≤ M(d, b).

Proof. Straightforward by definition. �

Proposition 3.3. If a j = 0 for some 1 ≤ j ≤ r, we have M(d,a) = 0.

Proof. Immediate from Proposition 3.1. �

Proposition 3.4. For r = 1 we have M(d,a) = a1.

Proof. In fact, φ(x0,x) is constant under (3.2) and (3.3) as

φ(x0,x) = a1

(

〈x1,x1〉 + 〈11,x1〉2
)

= a1

(

(1 − x2
0) + (−x0)2

)

= a1.

Therefore, M(d,a) = a1. �

3.2 A Characterization of M(d,a)

Theorem 3.5. Let r ≥ 1. Assume that a j > 0 and 1 ≤ d j ≤ ∞ for all 1 ≤ j ≤ r.

Then M(d,a) coincides with the minimal solution of

r
∑

j=1

d j

a jd j + a j − λ
=

1

λ
. (3.4)

In other words, with the notations introduced in Section 2, we have

M(d,a) = λ1(d,a). (3.5)
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For r = 1 the assertion in Theorem 3.5 is immediate. In fact, the unique

solution of
d1

a1d1 + a1 − λ
=

1

λ

is λ = a1. On the other hand, we have M(d,a) = a1 by Proposition 3.4.

In the rest of this subsection, we will prove Theorem 3.5 under the condition

that r ≥ 2, a j > 0 and 1 ≤ d j < ∞ for all 1 ≤ j ≤ r. The limit case will be treated

in the next subsection.

Employing the method of Lagrange multipliers, we set

F(x0,x, λ, µ) = φ(x0,x) − λ(g(x0,x) − 1) − µh(x0,x),

where

g(x0,x) = x2
0 +

r
∑

j=1

〈x j,x j〉, (3.6)

h(x0,x) = x0 +

r
∑

j=1

〈1 j,x j〉. (3.7)

Let S be the set of stationary points of F(x0,x, λ, µ), namely, the set of solutions

of the system of equations:

∂F

∂x0

= 0, (3.8)

∂F

∂x j

= 0, 1 ≤ j ≤ r, (3.9)

∂F

∂λ
=
∂F

∂µ
= 0, (3.10)

where
∂

∂x j

=

[

∂

∂x j1

. . .
∂

∂x jd j

]T

, x j =
[

x j1 . . . x jd j

]T

.

Since conditions (3.2) and (3.3) determine a smooth compact manifold (in fact, a

sphere of dimension d1 + · · ·+ dr − 1 ≥ 1), the conditional minimum of φ(x0,x) is

found from the stationary points of F(x0,x, λ, µ) in such a way that

M(d,a) = min{φ(x0,x) ; (x0,x, λ, µ) ∈ S}. (3.11)

We will first obtain explicit forms of (3.8) and (3.9). Applying elementary

calculus to (3.1), we come to

∂

∂x0

φ(x0,x) = 0,
∂

∂x j

φ(x0,x) = 2a jx j + 2a j〈1 j,x j〉1 j .
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Similarly, from (3.6) and (3.7) we obtain

∂

∂x0

g(x0,x) = 2x0,
∂

∂x j

g(x0,x) = 2x j,

∂

∂x0

h(x0,x) = 1,
∂

∂x j

h(x0,x) = 1 j .

Thus, (3.8) and (3.9) are respectively equivalent to

2λx0 + µ = 0, (3.12)

and

2a jx j + 2a j〈1 j,x j〉1 j = 2λx j + µ1 j , 1 ≤ j ≤ r. (3.13)

We now employ matrix-notation for (3.13). The matrix whose entries are all one is

denoted by J without explicitly mentioning its size. Similarly, the identity matrix

is denoted by I. Using the obvious relation

〈1 j,x j〉1 j = Jx j ,

(3.13) becomes

(2a jJ + (2a j − 2λ)I)x j = µ1 j ,

or equivalently,

(

J −
(

λ

a j

− 1

)

I

)

x j =
µ

2a j

1 j , 1 ≤ j ≤ r. (3.14)

On the other hand, (3.10) is equivalent to conditions (3.2) and (3.3). Consequently,

we have

S = {(x0,x, λ, µ) satisfying (3.2), (3.3), (3.12) and (3.14)}.

Lemma 3.6. If (x0,x, λ, µ) ∈ S, then φ(x0,x) = λ. In particular,

M(d,a) = min{λ ; (x0,x, λ, µ) ∈ S}. (3.15)

Proof. Taking the inner product of (3.13) with x j, we get

2a j〈x j,x j〉 + 2a j〈1 j,x j〉2 = 2λ〈x j,x j〉 + µ〈1 j,x j〉.

Taking the sum over j and applying conditions (3.2) and (3.3), we obtain

2φ(x0,x) = 2λ(1 − x2
0) + µ(−x0) = 2λ − 2λx2

0 − µx0

and hence φ(x0,x) = λ by (3.12). Then (3.15) is immediate from (3.11). �
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Upon solving the linear equation (3.14) the following elementary result is use-

ful.

Lemma 3.7. Let m ≥ 1. Let J denote the m × m matrix whose entries are all one,

and I the m × m identity matrix. For α, β ∈ R we consider the linear equation:

(J − αI)x = β1.

(i) If α = 0, then the solution is given by

x =
β

m
1 + y, y ∈ Ker J.

Moreover, dim Ker J = m − 1. In particular, the solution is unique when

m = 1.

(ii) If α = m and β = 0, the solution is given by x = c1 with c ∈ R. In this case,

m is an eigenvalue of J and x is an associated eigenvector.

(iii) If α = m and β , 0, there is no solution.

(iv) If α , 0 and α , m, the solution is unique and given by

x =
β

m − α 1.

Suppose that a real number λ appears in S, i.e., (x0,x, λ, µ) ∈ S for some

x0,x, µ, and that λ < {a j , a jd j + a j ; 1 ≤ j ≤ r}. It then follows from Lemma 3.7

(iv) that (3.14) admits a unique solution

x j =
µ

2(a jd j + a j − λ)
1 j, 1 ≤ j ≤ r. (3.16)

Since λ , 0, which is directly verified or by Proposition 3.1, (3.12) becomes

x0 = −
µ

2λ
. (3.17)

Inserting (3.16) and (3.17) into condition (3.3), we have

r
∑

j=1

d jµ

2(a jd j + a j − λ)
− µ

2λ
= 0. (3.18)

We see from (3.16) and (3.17) together with (3.2) that µ , 0. Hence (3.18) is

equivalent to
r

∑

j=1

d j

a jd j + a j − λ
=

1

λ
. (3.19)

13



Thus, λ is a solution of (3.19).

Conversely, with any solution λ of (3.19) we may associate µ in such a way

that (3.16) and (3.17) satisfy condition (3.2). In other words, every solution λ of

(3.19) appears in S. Consequently,

{λ1, . . . , λs} ⊂ {λ ; (x0,x, λ, µ) ∈ S}
⊂ {λ1, . . . , λs} ∪ {a j , a jd j + a j ; 1 ≤ j ≤ r}, (3.20)

where λ1 < · · · < λs are the solutions of (3.19), see Proposition 2.1.

We are now in a position to determine

M(d,a) = min{λ ; (x0,x, λ, µ) ∈ S},

see Lemma 3.6. Since

M(d,a) ≤ min{a1, . . . , ar}
by Proposition 3.1, it follows from (3.20) that

min{λ ; (x0,x, λ, µ) ∈ S} = min{λ1, . . . , λs} = λ1 ,

where λ1 is the minimal solution of (3.19). Consequently, M(d,a) = λ1 as de-

sired.

3.3 An infinite case

Proposition 3.8. Let r ≥ 2. Assume that a j > 0 and 1 ≤ d j ≤ ∞ for all 1 ≤ j ≤ r.

Then

M(d,a) = inf

{

M(e,a) ;
e = (e1, . . . , er) ≤ d,

e1 < ∞, . . . er < ∞

}

(3.21)

Moreover,

M(d,a) = lim
n→∞

M(d ∧ n,a), (3.22)

where d ∧ n = (d1 ∧ n, . . . , dr ∧ n).

Proof. Denote by µ the right-hand side of (3.21). If e = (e1, . . . , er) satisfies

e j < ∞ and e j ≤ d j for all 1 ≤ j ≤ r, by definition we have M(d,a) ≤ M(e,a).

Therefore, the inequality M(d,a) ≤ µ holds. On the other hand, for any ǫ > 0

there exists a vector (x0,x) with finite supports such that φ(x0,x) ≤ M(d,a) + ǫ.

Choosing e = (e1, . . . , er) with e j < ∞ and e j ≤ d j for all 1 ≤ j ≤ r such that

x ∈ Re1 ×· · ·×Rer , we have M(e,a) ≤ φ(x0,x). Hence µ ≤ M(e,a) ≤ M(d,a)+ǫ

so that µ ≤ M(d,a). Consequently, µ = M(d,a) and (3.21) is proved. Then (3.22)

is now immediate. �
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We now complete the proof of Theorem 3.5. Let r ≥ 2 and suppose that a j > 0

and 1 ≤ d j ≤ ∞ for all 1 ≤ j ≤ r. It follows from the proved part of Theorem 3.5

that

M(d ∧ n,a) = λ1(d ∧ n,a).

Letting n→∞ with the help of Propositions 2.4 and 3.8 we obtain

M(d,a) = λ1(d,a),

as desired.

3.4 Estimates of M(d,a)

Having established in Theorem 3.5 the relation M(d,a) = λ1(d,a), we may apply

the results in Section 2 to obtain various estimates of M(d,a). Here we only

mention the most basic result, which follows directly from Proposition 2.2.

Theorem 3.9. Let r ≥ 2. Assume that a j > 0 and 1 ≤ d j ≤ ∞ for all 1 ≤ j ≤ r.

Then we have

(

1

a1

+ · · · + 1

ar

)−1

≤ M(d,a) < min{a1, . . . , ar}, (3.23)

where the equality holds if and only if d1 = · · · = dr = ∞.

4 Star product graphs

Let r ≥ 1 be a natural number. For each 1 ≤ j ≤ r let G j = (V j, E j) be a connected

graph with distinguished vertex o j ∈ V j. The star product

(G1, o1) ⋆ · · · ⋆ (Gr, or) (4.1)

is by definition a graph G = (V, E) obtained by glueing graphs G j at the vertices

o j. Although the star product depends on the choice of the distinguished vertices,

we write

G = G1 ⋆ · · · ⋆Gr

whenever there is no danger of confusion. It is convenient to understand the set V

of vertices of G = G1 ⋆ · · · ⋆Gr as a disjoint union:

V = {o} ∪
r

⋃

j=1

V j\{o j},
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where o is identified with the glued vertices o j ∈ V j. Let D j = [d j(x, y)] and

D = [d(x, y)] be the distance matrices of G j and G, respectively. Apparently,

d(x, y) =















d j(x, y), if x, y ∈ V j,

di(x, o) + d j(o, y), if x ∈ Vi and y ∈ V j, i , j.
(4.2)

We are interested in a good estimate of QEC(G1 ⋆ · · · ⋆ Gr) in terms of Q j =

QEC(G j).

We need a general notion. Let G = (V, E) be a connected graph and H =

(W, F) a connected subgraph. Let D and DH be the distance matrices of G and H,

respectively. We say that H is isometrically embedded in G if DH(x, y) = D(x, y)

for any x.y ∈ W. In that case, H is the induced subgraph of G spanned by W, but

the converse assertion is not true.

Proposition 4.1. Let G be a connected graph and H a connected subgraph. If H

is isometrically embedded in G, we have QEC(H) ≤ QEC(G).

Proof. Straightforward from definition, see also [15]. �

Proposition 4.2. Let r ≥ 1. For 1 ≤ j ≤ r let G j = (V j, E j) be a (finite or infinite)

connected graph. Then we have

max{Q1, . . . ,Qr} ≤ QEC(G1 ⋆ · · · ⋆Gr).

Proof. It is obvious by definition of star product each G j is isometrically embed-

ded in G = G1 ⋆ · · · ⋆ Gr, see also (4.2). Then by Proposition 4.1, we have

Q j ≤ QEC(G) for all 1 ≤ j ≤ r and hence max{Q1, . . . ,Qr} ≤ QEC(G). �

An estimate QEC(G1⋆ · · ·⋆Gr) from above is much harder to obtain. We start

with the case where all factors G j are finite graphs.

Proposition 4.3. Let r ≥ 1. For 1 ≤ j ≤ r let G j = (V j, E j) be a connected

graph on n j + 1 = |V j| ≥ 2 vertices (n j = ∞ may happen) with QE constant

Q j = QEC(G j). Let M = M(n1, . . . , nr;−Q1, . . . ,−Qr) be the conditional infimum

of

φ(x0,x) =

r
∑

j=1

(−Q j)
{

〈x j,xj〉 + 〈1,x j〉2
}

, x0 ∈ R, x j ∈ Rn j , (4.3)

subject to

x2
0 +

r
∑

j=1

〈x j,x j〉 = 1, (4.4)

x0 +

r
∑

j=1

〈1 j,x j〉 = 0. (4.5)
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Then we have

QEC(G1 ⋆ · · · ⋆Gr) ≤ −M. (4.6)

Proof. Set G = G1 ⋆ · · · ⋆Gr and Q = QEC(G) for simplicity. We keep the nota-

tions introduced in the first paragraph of this section. Given f ∈ C0(V) satisfying

〈 f , f 〉 = 1, 〈1, f 〉 = 0, (4.7)

we define f j ∈ C0(V) by

f j(x) =











































f (x), x ∈ V j\{o j},

−
∑

x∈V j\{o j}
f (x), x = o,

0, otherwise.

(4.8)

Using 〈1, f 〉 = 0 we obtain easily

f (x) =

r
∑

j=1

f j(x), x ∈ V. (4.9)

We show that

〈 f ,D f 〉 =
r

∑

j=1

〈 f j,D j f j〉V j
. (4.10)

In fact, using (4.9) we have

〈 f ,D f 〉 =
r

∑

i, j=1

〈 fi,D f j〉 =
r

∑

j=1

〈 f j,D f j〉 +
∑

i, j

〈 fi,D f j〉 (4.11)

Since f j vanishes outside V j, we have

〈 f j,D f j〉 =
∑

x,y∈V j

d(x, y) f j(x) f j(y)

=
∑

x,y∈V j

d j(x, y) f j(x) f j(y) = 〈 f j,D j f j〉V j
. (4.12)
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On the other hand, for i , j using (4.2) and (4.14) we obtain

〈 fi,D f j〉 =
∑

x,y∈V
d(x, y) fi(x) f j(y)

=
∑

x∈Vi

∑

y∈V j

(di(x, o) + d j(o, y)) fi(x) f j(y)

=
∑

x∈Vi

di(x, o) fi(x)
∑

y∈V j

f j(y) +
∑

x∈Vi

fi(x)
∑

y∈V j

d j(o, y) f j(y)

= 〈1 j, f j〉V j

∑

x∈Vi

di(x, o) fi(x) + 〈1i, fi〉Vi

∑

y∈V j

d j(o, y)) f j(y)

= 0. (4.13)

Inserting (4.12) and (4.13) into (4.11), we obtain (4.10).

Each f j defined by (4.8) being regarded as a function in C0(V j), we have

〈1 j, f j〉V j
=

∑

x∈V j

f j(x) = 0. (4.14)

Then we have

〈 f j,D j f j〉V j
≤ Q j〈 f j, f j〉V j

.

and by (4.10),

〈 f ,D f 〉 ≤
r

∑

j=1

Q j〈 f j, f j〉V j
. (4.15)

Employing vector-notation, we associate (x0,x1, . . . ,xr) with each f ∈ C0(V) in

such a way that

x0 = f (o), x j =
[

f (x) ; x ∈ V j\{o}
] ∈ Rn j .

Then every x j has a finite support, and we come to

〈 f j, f j〉V j
= 〈x j,xj〉 + f j(o)2

= 〈x j,xj〉 +
(

−
∑

x∈V j\{o j}
f (x)

)2

= 〈x j,xj〉 + 〈1 j,x j〉2.

Then (4.15) becomes

〈 f ,D f 〉 ≤
r

∑

j=1

Q j

{

〈x j,xj〉 + 〈1,x j〉2
}

, (4.16)
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or equivalently,

〈 f ,D f 〉 ≤ −φ(x0,x), (4.17)

for any f ∈ C0(V) satisfying (4.7), which is equivalent to (4.4) and (4.5). By

definition of the QE constant, for any ǫ > 0 there exists f ∈ C0(V) satisfying (4.7)

such that

Q − ǫ ≤ 〈 f ,D f 〉.
In view of (4.17) we obtain

Q − ǫ ≤ −φ(x0,x) ≤ −M,

where we used the obvious inequality φ(x0,x) ≥ M for any (x0,x) satisfying (4.4)

and (4.5). Consequently, Q ≤ −M as desired. �

We are now in a position to state the main results.

Theorem 4.4. Let r ≥ 1. For 1 ≤ j ≤ r let G j = (V j, E j) be a connected graph

on |V j| ≥ 2 vertices (|V j| = ∞ may happen). Assume that every G j is of QE

class with QE constant Q j = QEC(G j) ≤ 0. If Q j = 0 for some j, we have

QEC(G1 ⋆ · · · ⋆Gr) = 0.

Proof. We apply Proposition 4.3. By assumption the coefficients −Q j in the right-

hand side of (4.3) are all non-negative, and at least one −Q j vanishes. It then

follows from Proposition 3.3 that the conditional infimum is zero, that is, M = 0.

Hence by (4.6) we have QEC(G1 ⋆ · · · ⋆ Gr) ≤ 0. On the other hand, it follows

from Proposition 4.2 that

0 = max{Q1, . . . ,Qr} ≤ QEC(G1 ⋆ · · · ⋆Gr).

Hence QEC(G1 ⋆ · · · ⋆Gr) = 0. �

Theorem 4.5. Let r ≥ 1. For 1 ≤ j ≤ r let G j = (V j, E j) be a connected graph on

n j + 1 = |V j| ≥ 2 vertices (n j = ∞ may happen). Assume that every G j is of QE

class with QE constant Q j = QEC(G j) < 0. Then we have

max{Q1, . . . ,Qr} ≤ QEC(G1 ⋆ · · · ⋆Gr) ≤ −Λ, (4.18)

where Λ is the minimal solution of

r
∑

j=1

n j

−Q jn j − Q j − λ
=

1

λ
. (4.19)
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Proof. The left half of (4.18) is already shown in Proposition 4.2. We will show

the right half. We first see from Proposition 4.3 that

QEC(G1 ⋆ · · · ⋆Gr) ≤ −M,

where M = M(n1, . . . , nr;−Q1, . . . ,−Qr) is the conditional infimum of (4.3) sub-

ject to (4.4) and (4.5). On the other hand, in case where Q j < 0 for all 1 ≤ j ≤ r,

M coincides with the minimal solution of (4.19) by Theorem 3.5. Thus, (4.18)

follows. �

Corollary 4.6. We keep the notations and assumptions as in Theorem 4.5. If r ≥ 2,

we have

QEC(G1 ⋆ · · · ⋆Gr) ≤
(

1

Q1

+ · · · + 1

Qr

)−1

< 0. (4.20)

Proof. Immediate from Theorems 3.9 and 4.5. �

Corollary 4.7. For j = 1, 2 let G j = (V j, E j) be a (finite or infinite) connected

graph on n j + 1 = |V j| ≥ 2 vertices. Assume that each G j is of QE class with QE

constant Q j = QEC(G j) < 0. Then we have

max{Q1,Q2} ≤ QEC(G1 ⋆G2) ≤ Q12, (4.21)

where Q12 is defined by

Q12 =
2Q1Q2

Q1 + Q2 −
√

(Q1 + Q2)2 − 4(n1 + n2 + 1)

(n1 + 1)(n2 + 1)
Q1Q2

. (4.22)

Moreover,

max{Q1,Q2} < Q12 < 0. (4.23)

Proof. (4.21) is a direct consequence of Theorem 4.5 and (4.23) is verified di-

rectly. �

Remark 4.8. If n1 < n2 = ∞, the right-hand side of (4.22) is replaced with the

limit as n2 → ∞. If n1 = n2 = ∞, (4.22) is understood as

Q12 =
Q1Q2

Q1 + Q2

.

We give some examples in connection with inequality (4.21).
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Example 4.9. Let K3 be the complete graph on three vertices. The star product

K3 ⋆ K3 is illustrated in Figure 1. It is known that QEC(K3) = −1. Inserting

Q1 = Q2 = −1 and n1 + 1 = n2 + 1 = 3 into (4.22), we have

Q12 = −
3

5
.

On the other hand, by a direct verification we have

QEC(K3 ⋆ K3) = −3

5
,

see also [15, Sect. 5.2, No. 11]. In this case we have

max{Q1,Q2} < QEC(K3 ⋆ K3) = Q12 < 0.

Figure 1: K3 ⋆ K3 (left), G1 (middle) and G2 (right)

Example 4.10. We consider K3⋆P3, where P3 is the path on three vertices. There

are two non-isomorphic star products in this case, say, G1 and G2 as shown in

Figure 1. It is known that QEC(K3) = −1 and QEC(P3) = −2/3. Inserting

Q1 = −1, Q2 = −2/3, n1 + 1 = n2 + 1 = 3 into (4.22), we have

Q12 =
−15 +

√
105

10
= − 12

15 +
√

105
≈ −0.4753.

On the other hand, it follows by a direct calculation (see also [15, Sect. 5.2, No. 4

and No. 7]) that

QEC(G1) = − 6

6 +
√

21
≈ −0.5670, QEC(G2) = − 12

15 +
√

105
.

Thus, we obtain an interesting contrast:

max{Q1,Q2} < QEC(G1) < Q12 < 0,

max{Q1,Q2} < QEC(G2) = Q12 < 0.
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Figure 2: K2 ⋆ C4

Example 4.11. It is known that QEC(K2) = −1 and QEC(C4) = 0, where C4 is

the cycle on four vertices. It follows from Theorem 4.4 that QEC(K2 ⋆ C4) = 0.

On the other had, inserting Q1 = −1, Q2 = 0, n1+1 = 2 and n2+1 = 4 into (4.22),

we have Q12 = 0. Thus we have

max{Q1,Q2} = QEC(K2 ⋆ C4) = Q12 = 0.

Along with the above observation, a natural question arises to determine the

extremal classes of star products G1 ⋆G2 such that

QEC(G1 ⋆G2) = Q12

and

QEC(G1 ⋆G2) = max{Q1,Q2}.
Remind that the star product depends also on the choice of distinguished vertices

o1 and o2, as is illustrated in Example 4.10.

5 Infinite graphs

5.1 A limit formula

Proposition 5.1. Let G = (V, E) be a connected graph. Let Hn = (Wn, Fn) be a

sequence of connected subgraphs of G such that W1 ⊂ W2 ⊂ · · · and V =
⋃∞

n=1 Wn.

If each Hn is isometrically embedded in G, we have

QEC(G) = lim
n→∞

QEC(Hn). (5.1)

Proof. Let D denote the distance matrix of G. By definition, for any ǫ > 0 there

exists f ∈ C0(V) such that 〈 f , f 〉 = 1, 〈1, f 〉 = 0 and 〈 f ,D f 〉 ≥ QEC(G) − ǫ. By

assumption we may choose n0 such that f (x) = 0 outside of Wn for all n ≥ n0.

Then QEC(Hn) ≥ 〈 f ,D f 〉 for all n ≥ n0 and we have

QEC(G) − ǫ ≤ QEC(Hn), n ≥ n0.
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On the other hand, it follows from Proposition 4.1 that

QEC(Hn) ≤ QEC(G)

Consequently, (5.1) holds. �

Proposition 5.2. Any (finite or infinite) tree is of QE class.

Proof. For any tree we may choose a sequence of finite subtrees of which the

union covers the whole tree. Note that any subtree of a tree is isometrically em-

bedded. Then, in view of Proposition 5.1 it is sufficient to show that every finite

tree is of QE class. More precisely, for a finite tree G = (V, E) on |V | ≥ 3 vertices

we have

QEC(G) < − 1

|V | − 1
. (5.2)

In fact, a tree on n vertices is represented as G = G1⋆ · · ·⋆Gn−1, where each G j is

isomorphic to K2. Note that Q j = QEC(G j) = QEC(K2) = −1. Then by Corollary

4.6 we obtain

QEC(G) = QEC(G1 ⋆ · · · ⋆Gn−1) <

(

1

Q1

+ · · · + 1

Qn−1

)−1

= − 1

n − 1
,

as desired. �

The above result is a reproduction of Haagerup [6]. The estimate (5.2) is far

from best possible. It is an interesting question to determine the QE constant of a

tree.

Proposition 5.3. Let K∞ be the infinite complete graph, that is, the graph on a

countably infinite set such that any pair of distinct vertices are connected by an

edge. Then QEC(K∞) = −1.

Proof. Every finite subgraph of K∞ is of the form Kn and QEC(Kn) = −1. Now

we apply Proposition 5.1. �

5.2 The path graphs Pn

For n ≥ 1 let Pn be the path graph on the vertex set V = {0, 1, 2, . . . , n − 1} and

edge set E = {{0, 1}, {1, 2}, . . . , {n − 2, n − 1}}. Let D = [d(i, j)] be the distance

matrix as usual. Note that d(i, j) = |i − j| for i, j ∈ V . We start with the following

Proposition 5.4. For n ≥ 1 let cn be the maximal number c such that the n × n

matrix
[

2 min{i, j} − c − c · δi j

]n

i, j=1
(5.3)

is positive definite. Then QEC(Pn+1) = −cn.
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Proof. Suppose f ∈ C(V) satisfies 〈1, f 〉 = 0. Then we have

〈 f ,D f 〉 =
n

∑

i, j=0

|i − j| f (i) f ( j)

=

n
∑

i=1

i f (i) f (0) +

n
∑

j=1

j f (0) f ( j) +

n
∑

i, j=1

|i − j| f (i) f ( j). (5.4)

For 1 ≤ i ≤ n we set xi = f (i). Since f (0) = −x1 − · · · − xn, (5.4) becomes

〈 f ,D f 〉 =
n

∑

i, j=1

(−i − j + |i − j|)xix j = −
n

∑

i, j=1

2 min{i, j} xix j (5.5)

On the other hand, we have

〈 f , f 〉 =
n

∑

i=0

f (i)2 =















n
∑

i=1

xi















2

+

n
∑

i=1

x2
i =

n
∑

i, j=1

(1 + δi j)xix j. (5.6)

The QE constant is the minimal constant Q ∈ R such that 〈 f ,D f 〉 ≤ Q〈 f , f 〉 for

all f ∈ C(V) with 〈1, f 〉 = 0, or using (5.5) and (5.6),

−
n

∑

i, j=1

2 min{i, j}xix j ≤ Q

n
∑

i, j=1

(1 + δi j)xix j

holds for every choice of x1, . . . , xn ∈ R, In other words, Q coincides with −c,

where c ∈ R is the maximal constant such that
n

∑

i, j=1

(2 min{i, j} − c(1 + δi j))xi x j ≥ 0

for every choice of x1, . . . , xn ∈ R. This completes the proof. �

By direct application of Proposition 5.4 we obtain

−QEC(P2) = 1,

−QEC(P3) = 2/3,

−QEC(P4) = 2 −
√

2 = 0.585786 . . . ,

−QEC(P5) = (5 −
√

5)/5 = 0.552786 . . . ,

−QEC(P6) = 4 − 2
√

3 = 0.535898 . . . ,

−QEC(P7) = 0.526048 . . . ,

−QEC(P8) = 4 + 2
√

2 −
√

20 + 14
√

2 = 0.519783 . . . ,

−QEC(P9) = 0.515546 . . . ,

−QEC(P10) = 6 + 2
√

5 −
√

50 + 22
√

5 = 0.512543 . . . .
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The numbers −QEC(P7) and −QEC(P9) are the smallest real roots of the cubic

equations

7c3 − 28c2 + 28c − 8 = 0, 3c3 − 18c2 + 24c − 8 = 0,

respectively.

Now define a family of matrices: An =
[

4 min{i, j} − 1 − δi j

]n

i, j=1
, where 1 ≤

n ≤ ∞. In particular

A∞ =























































2 3 3 3 3 · · ·
3 6 7 7 7 · · ·
3 7 10 11 11 · · ·
3 7 11 14 15 · · ·
3 7 11 15 18 · · ·
...
...
...
...
...
. . .























































.

Proposition 5.5. For n ≥ 1,

det An = n + 1.

Consequently, A∞ is positive definite as well as An for all n ≥ 1.

Proof. We are going to prove a slightly more general statement. For n ≥ 1 and

u ∈ R we define an auxiliary matrix An(u) = [ui j]
n
i, j=1

, where

ui j =















4 min{i, j} − 1 − δi j , (i, j) , (n, n),

u, (i, j) = (n, n).

Then An = An(4n − 2). We will prove that

det An(u) = nu − (n − 1)(4n + 1). (5.7)

This is true for n = 1. Assume that (5.7) holds for n − 1. Let k j denote the jth

column of An(u). Then

det An(u) = det[k1 , . . . ,kn] = det[k1 , . . . ,kn−1 ,kn − kn−1].

Now we observe that

kn − kn−1 = [0, . . . , 0, 1, u − 4n + 5]T,

so expanding the determinant over the last column and applying the inductive

assumption we get

det An(u) = (u − 4n + 5) det An−1 − det An−1(4n − 5)

= (u − 4n + 5)n − (n − 1)(4n − 5) + (n − 2)(4n − 3)

= nu − (n − 1)(4n + 1),

hence (5.7) holds for n. �
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Theorem 5.6. For n ≥ 2 we have

− 2n4 + 20n2 − 7 + 15(−1)n

4n4 − 4 + 15n + 15n(−1)n
≤ QEC(Pn) ≤ −1

2
. (5.8)

Proof. For the right half of (5.8) it suffices to note that for c = 1/2 the matrix An

is a multiple by 2 of the matrix given by (5.3).

We will prove the left half of (5.8). Suppose that the matrix

[

2 min{i, j} − c − c · δi j

]n−1

i, j=1

is positive definite. Then for a
(n)

i
= i(n − i)(−1)i we have

n−1
∑

i, j=1

(

2 min{i, j} − c − c · δi j

)

a
(n)

i
a

(n)

j
≥ 0. (5.9)

The above sum is calculated with the help of Lemma 6.1 in the Appendix as

follows:

n−1
∑

i, j=1

(

2 min{i, j} − c − c · δi j

)

a
(n)

i
a

(n)

j

= 2

n−1
∑

i, j=1

min{i, j} i(n − i) j(n − j)(−1)i+ j

− c

n−1
∑

i, j=1

i(n − i) j(n − j)(−1)i+ j − c

n−1
∑

i=1

i2(n − i)2

=
n

120

{

2n4 + 20n2 − 7 + 15(−1)n
}

− c

8
{1 + (−1)n} n2 − c

n5 − n

30
.

Then, (5.9) yields

c ≤ 2n4 + 20n2 − 7 + 15(−1)n

4n4 − 4 + 15n + 15n(−1)n
,

which, in view of Proposition 5.4, proves (5.8). �

Let Z be the one-dimensional integer lattice, i.e., the two-sided infinite path

on the integers, and Z+ be the one-sided infinite path on {0, 1, 2, . . . }.

Theorem 5.7. QEC(Z+) = QEC(Z) = −1

2
.

Proof. Every finite connected subgraph of Z+ and Z is of the form Pn and n can

be arbitrarily large. Therefore our statement is a consequence of Theorem 5.6 and

Proposition 5.1. �
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6 Appendix

6.1 Some combinatorial identities

In this part we are going to prove three identities which were used in the proof of

Theorem 5.6.

Lemma 6.1. For n ≥ 1 we have

n
∑

i, j=1

min{i, j} i(n − j) j(n − j)(−1)i+ j =
n

240

{

2n4 + 20n2 − 7 + 15(−1)n
}

, (6.1)

n
∑

i, j=1

i(n − i) j(n − j)(−1)i+ j =
1

8
(1 + (−1)n) n2, (6.2)

n
∑

i=1

i2(n − i)2 =
n5 − n

30
. (6.3)

Proof. For n = 0 the identities remain true understanding that the left-hand sides

are zero. The above three identities are used in the proof of Theorem 5.6. For the

proofs we will apply well-known formulas for the sums:

n
∑

i=1

i =
1

2
n(n + 1),

n
∑

i=1

i2 =
1

6
n(n + 1)(2n + 1),

n
∑

i=1

i3 =
1

4
n2(n + 1)2,

n
∑

i=1

i4 =
1

30
(n + 1)(2n + 1)(3n2 + 3n − 1),

and also the following elementary identities:

n
∑

i=1

i(−1)i =
1

4
(2n(−1)n + (−1)n − 1) ,

n
∑

i=1

i2(−1)i =
1

2
n(n + 1)(−1)n,

n
∑

i=1

i3(−1)i =
1

8

{

4n3(−1)n + 6n2(−1)n − (−1) j + 1
}

.

Now we prove (6.1). Put

A j =

j
∑

i=1

i2(n − i) j(n − j)(−1)i+ j,

B j =

n
∑

i= j+1

i(n − i) j2(n − j)(−1)i+ j.
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By elementary calculations we find that

A j =
j(n − j)

8

{

4 j2n + 4 jn − 4 j3 − 6 j2 + 1 − (−1) j
}

,

B j =
j2(n − j)

4

{

2 j2 + 2 j − n − 2 jn − (−1) j+nn
}

.

Then we have

A j + B j =

n
∑

i=1

min{i, j} i(n − i) j(n − j)(−1)i+ j

=
1

8
j(n − j)

{

2 jn − 2 j2 + 1 − 2(−1) j+n jn − (−1) j
}

.

Summing up both sides over j = 1, 2, . . . , n, we get (6.1).

Relation (6.2) follows from

n
∑

i, j=1

i(n − i) j(n − j)(−1)i+ j =















n
∑

i=1

i(n − i)(−1)i















2

=

(

− (1 + (−1)n) n

4

)2

=
(1 + (−1)n) n2

8
.

Relation (6.3) can be shown in a similar manner. �

6.2 A new integer sequence

For n ≥ 0 let an be the number given by (6.1), i.e.,

an =

n
∑

i, j=1

min{i, j} i(n − j) j(n − j)(−1)i+ j

=
n

240

{

2n4 + 20n2 − 7 + 15(−1)n
}

. (6.4)

Then the sequence {an}∞n=0
begins with

0, 0, 1, 4, 14, 36, 83, 168, 316, 552, 917, 1452, 2218, 3276, 4711, 6608, . . .

and is absent in OEIS [16]. Applying formula

∞
∑

n=1

nNzn =
zPN(z)

(1 − z)N+1
,
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where PN(z) are the classical Eulerian polynomials, we can compute the generat-

ing function:
∞
∑

n=0

anzn =
z2(1 + z2)2

(1 + z)2(1 − z)6
. (6.5)

Denote the ceiling of n2/2 by bn = ⌈n2/2⌉. This sequence appears in OEIS

as A000982. Now we observe that an is the convolution of the sequence bn with

itself.

Proposition 6.2. For every n ≥ 0 we have an =
∑n

k=0 bkbn−k.

Proof. The generating function for an is the square of

z(1 + z2)

(1 + z)(1 − z)3
,

which is the generating function for bn, see entry A000982 in OEIS. �
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