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Abstract. In this paper, we study certain combinatorial expansions of descent polynomials

by using the change of context-free grammars method. We provide a unified approach to study

the γ-positivity and the partial γ-positivity of the descent polynomials of several combinatorial

structures, including the descent polynomials of permutations, derangements, Stirling permuta-

tions, Legendre-Stirling permutations and Jacobi-Stirling permutations. Moreover, we study a

group action on Stirling permutations and Jacobi-Stirling permutations due to Foata and Strehl.
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1. Introduction

In the past decades, symbolic methods have been developed extensively in combinatorics,

including umbral calculus [32], species [26, 38]), generating trees [13, 37] and context-free gram-

mars [8, 14]. In this paper, we shall study descent polynomials by using context-free grammars.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in

monomials formed from letters in A. Following Chen [8], a context-free grammar over A is a

function G : A → Q[[A]] that replaces a letter in A by a formal function over A. The formal

derivative D is a linear operator defined with respect to a context-free grammar G. More

precisely, the derivative D = DG: Q[[A]] → Q[[A]] is defined as follows: for x ∈ A, we have

D(x) = G(x); for a monomial u in Q[[A]], D(u) is defined so that D is a derivation, and for

a general element q ∈ Q[[A]], D(q) is defined by linearity. For example, if A = {x, y} and

G = {x → xy, y → y}, then D(x) = xy,D2(x) = D(xy) = xy2 + xy. The Chen’s grammar

has been found extremely useful in studying various combinatorial structures, including set

partitions, permutations, increasing trees, perfect matchings and so on. The reader is referred

to [10, 20, 30] for recent progress on this subject.

Let f(x) =
∑n

i=0 fix
i be a symmetric polynomial, i.e., hi = hn−i. Then f(x) can be expanded

uniquely as f(x) =
∑bn

2
c

k=0 γkx
k(1 + x)n−2k, and it is said to be γ-positive if γk ≥ 0 (see [21]).

The γ-positivity provides a natural approach to study symmetric and unimodal polynomials in

combinatorics (see [4, 6, 27, 35] for instance).

The purpose of this paper is to present a systematic method for studying certain expansions of

symmetric polynomials and asymmetric polynomials. The following definition is fundamental.
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Definition 1. Let pn(x, y, z) be a three-variable polynomial. Suppose pn(x, y, z) has the following

expansion:

pn(x, y, z) =
∑
i

∑
j

γn,i,jqn,i,j(x, y, z)rn,i,j(x+ y),

where qn,i,j(x, y, z) are three-variable polynomials and rn,i,j(x) are one-variable polynomials. If

the coefficient of zi in the expansion is a γ-positive polynomial for any i, then we say that

pn(x, y, z) is a partial γ-positive polynomial.

The partial γ-positive polynomials occur very often in the study of the expansions of multi-

variable generalization of symmetric polynomials and asymmetric polynomials, see [27, 33, 35]

for instance.

Let [n] = {1, 2, . . . , n}. Let Sn denote the symmetric group of all permutations of [n] and

let π = π(1)π(2) · · ·π(n) ∈ Sn. Let Des (π) = {i ∈ [n] : π(i) > π(i + 1)}. For a subset

S ⊆ [n], we define the characteristic monomial uS in the noncommutative monomial variables

uS = u1u2 · · ·un−1, where

ui =

{
a, if i /∈ S;

b, if i ∈ S.

The ab-index of Sn is defined by

Ψn(a, b) =
∑
π∈Sn

uDes (π).

A classical result says that there exists a polynomial Φn(c, d) in the noncommuting variable c

and d such that

Ψn(a, b) = Φn(a+ b, ab+ ba). (1)

The polynomial Φn(c, d) is called the cd-index of Sn (see [25] for instance). Motivated by (1),

the type of change of grammars considered in this paper is given as follows:{
u = a+ b,

v = ab,

where a, b, u, v are commuting variables. We show that descent polynomials can be systemati-

cally studied by using the change of context-free grammars method.

This paper is organized as follows. In Section 2, we collect some definitions, notation and

results that will be needed throughout this paper. In Section 3, we study derangement polyno-

mials of type B. In Section 4, we study the descent polynomials of Stirling permutations. In

Section 5, we study the descent polynomials of Legendre-Stirling permutations. In Section 6,

we study the descent polynomials of Jacobi-Stirling permutations.

2. Preliminary

A descent (resp. an ascent) of a permutation π ∈ Sn is a position i such that π(i) > π(i+1)

(resp. π(i) < π(i + 1)), where 1 ≤ i ≤ n − 1. Denote by des (π) and asc (π) the numbers of

descents and ascents of π, respectively. Then the equations

An(x) =
∑
π∈Sn

xdes (π)+1 =
∑
π∈Sn

xasc (π)+1 =
n∑
k=1

〈
n

k

〉
xk,
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define the Eulerian polynomial An(x) and the Eulerian number
〈
n
k

〉
(see [36, A008292]). The

following identity was attributed to Euler:

∞∑
n=0

nkxn =
Ak(x)

(1− x)k+1
.

We say that a permutation π ∈ Sn is a derangement if π(i) 6= i for any i ∈ [n]. Let Dn be

the set of derangements in Sn. An excedance of a permutation π ∈ Sn is a position i such that

π(i) > i, where 1 ≤ i ≤ n− 1. Denote by exc (π) the number of excedances of π. For any n ≥ 1,

the derangement polynomial is defined by

dn(x) =
∑
π∈Dn

xexc (π).

The hyperoctahedral group Bn is the group of signed permutations of ±[n] such that π(−i) =

−π(i) for all i, where ±[n] = {±1,±2, . . . ,±n}. Set π(0) = 0. For each π ∈ Bn, we define

desB(π) = #{i ∈ {0, 1, 2, . . . , n− 1} | π(i) > π(i+ 1)}. Let

Bn(x) =
∑
π∈Bn

xdes B(π) =
n∑
k=0

B(n, k)xk.

The polynomial Bn(x) is called an Eulerian polynomial of type B, while B(n, k) is called an

Eulerian number of type B (see [36, A060187]).

The γ-positivity of An(x) was first studied by Foata and Schützenberger [18]. Let π =

π(1)π(2) · · ·π(n) ∈ Sn with π(0) = π(n + 1) = 0. An index i ∈ [n] is a peak (resp. double

descent) of π if π(i − 1) < π(i) > π(i + 1) (resp. π(i − 1) > π(i) > π(i + 1)). Let a(n, k)

be the number of permutations in Sn with k peaks and without double descent. Foata and

Schützenberger [18] discovered that

An(x) =

b(n+1)/2c∑
k=1

a(n, k)xk(1 + x)n+1−2k. (2)

Moreover, the numbers a(n, k) satisfy the recurrence

a(n, k) = ka(n− 1, k) + (2n− 4k + 4)a(n− 1, k − 1),

with the initial conditions a(1, 1) = 1 and a(1, k) = 0 for k ≥ 2 (see [36, A101280]). Subse-

quently, Foata and Strehl [19] introduced the well known Foata-Strehl group action, by which

they partition Sn into equivalence classes, so that for each class C,∑
π∈C

xdes (π) = xi(1 + x)n−1−2i.

The γ-positivity of Bn(x) was extensively studied by Petersen [31] and Chow [11]. The γ-

positivity of dn(x) was studied by Shin and Zeng [35]. In recent years, γ-positivity attracted

much attention, see [4, 6, 27, 33, 34] and references therein.

The idea of change of grammars is illustrated in the proof of the following well known result.

Proposition 2 ([18, 31, 35]). The polynomials An(x), Bn(x) and dn(x) are all γ-positive.

Proof. We divide the proof into three parts.
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(i) Following Dumont [14, Section 2.1], if A = {x, y} and

G = {x→ xy, y → xy},

then Dn(x) =
∑n

k=1

〈
n
k

〉
xkyn+1−k for n ≥ 1. Note that D(xy) = xy(x+y) and D(x+y) =

2xy. Set u = xy and v = x + y. Then D(u) = uv and D(v) = 2u. It is easy to verify

that if A = {x, u, v} and

G = {x→ u, u→ uv, v → 2u},

then there exist nonnegative integers â(n, k) such that

Dn(x) =

b(n+1)/2c∑
k=0

â(n, k)ukvn+1−2k. (3)

From Dn+1(x) = D(Dn(x)), we see that numbers â(n, k) and a(n, k) satisfy the same

recurrence relation and initial conditions. Thus â(n, k) = a(n, k). When y = 1, then (3)

reduces to (2).

(ii) According to [28, Theorem 10], if A = {x, y} and G = {x → xy2, y → x2y}, then

Dn(xy) =
∑n

k=0B(n, k)x2k+1y2n−2k+1. Note that

D(xy) = xy(x2 + y2), D(x2 + y2) = 4x2y2.

Set u = xy and v = x2 + y2. Then D(u) = uv,D(v) = 4u2. It is routine to check that if

A = {u, v} and

G = {u→ uv, v → 4u2}, (4)

then there exist nonnegative integers b(n, k) such that Dn(u) = u
∑bn/2c

k=0 b(n, k)u2kvn−2k.

When y = 1, we get u = x and v = 1 + x2. Hence Bn(x) =
∑bn/2c

k=0 b(n, k)xk(1 + x)n−2k.

(iii) For π ∈ Sn, we define fix (π) = #{i ∈ [n] : π(i) = i} and dc (π) = #{i ∈ [n] : π(i) < i}.
Following Dumont [14, Section 2.2], if A = {x, y, z, e} and G = {x → xy, y → xy, z →
xy, e→ ez}, then

Dn(e) = e
∑
π∈Sn

xexc (π)ydc (π)zfix (π).

We set u = xy, v = x+ y. Then D(u) = uv,D(v) = 2u. If A = {e, z, u, v} and

G = {e→ ez, z → u, u→ uv, v → 2u},

then there exist nonnegative integers d(n, k) such thatDn(e)|z=0 = e
∑bn/2c

k=1 d(n, k)ukvn−2k.

When y = 1, we get u = x and v = 1 + x. Then for n ≥ 2, we get

dn(x) =

bn/2c∑
k=1

d(n, k)xk(1 + x)n−2k.

This completes the proof. �

In the following sections, we will focus our attention on certain multivariate extension of

asymmetric polynomials. In particular, using modified Foata and Strehl’s group action, we

consider the group action on derangements of Bn, Stirling permutations and Jacobi-Stirling

permutations.
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3. Derangement polynomials of type B

3.1. Basic definitions and notation.

Let π ∈ Bn. We say that i ∈ [n] is a weak excedance of π if π(i) = i or π(|π(i)|) > π(i) (see [7,

p. 431]). Let wexc (π) be the number of weak excedances of π. From [7, Theorem 3.15],

Bn(x) =
∑
π∈Bn

xwexc (π).

A fixed point of π ∈ Bn is an index i ∈ [n] such that π(i) = i. A derangement of type B is a

signed permutation π ∈ Bn with no fixed points. Let DBn be the set of derangements of Bn.

Following [12], the derangement polynomials of type B are defined by

dB0 (x) = 1, dBn (x) =
∑
π∈DB

n

xwexc (π).

The first few terms of dBn (x) are given as follows:

dB1 (x) = 1, dB2 (x) = 1 + 4x, dB3 (x) = 1 + 20x+ 8x2, dB4 (x) = 1 + 72x+ 144x2 + 16x3.

Given π ∈ DBn . Then wexc (π) = #{i ∈ [n] | π(|π(i)|) > π(i)}. We say that i is an anti-

excedance of π if π(|π(i)|) < π(i). Let aexc (π) be the number of anti-excedances of π. We say

that i is a singleton if (i) is a cycle of π. Let single (π) be the number of singletons of π. Hence

wexc (π) + aexc (π) + single (π) = n.

In the following discussion, we always write π by using its standard cycle decomposition, in

which each cycle is written with its largest entry last and the cycles are written in ascending

order of their last entry. For example, 351726 4 ∈ DB7 can be written as (6)(7, 4)(3, 1)(2, 5). Let

(c1, c2, . . . , ci) be a cycle of π. We say that cj is called

• a cycle ascent in the cycle if cj < cj+1, where 1 ≤ j < i;

• a cycle descent in the cycle if cj > cj+1, where 1 ≤ j ≤ i and we set ci+1 = c1;

• a cycle double ascent in the cycle if cj−1 < cj < cj+1, where 1 < j < i;

• a cycle double descent in the cycle if cj−1 > cj > cj+1, where 1 < j < i;

Denote by cda (π) (resp. cdd (π)) the number of cycle double ascents (resp. cycle double descents)

of π. As pointed out by Chow [12, p. 819], if π ∈ DBn with no singletons, then wexc (π) equals

the number cycle ascents and aexc (π) equals the number of cycle descents.

3.2. Main results.

Let

En(x, y, z) =
∑
π∈DB

n

xwexc (π)yaexc (π)zsingle (π).

Very recently, we discovered the following lemma.

Lemma 3 ([30]). If A = {x, y, z, e} and

G = {x→ xy2, y → x2y, z → x2y2z−3, e→ ez4}, (5)

then

Dn(e) = eEn(x2, y2, z4). (6)



6 S.-M. MA, J. MA, AND Y.-N. YEH

Now we present the first main result of this paper.

Theorem 4. The polynomial En(x, y, z) is a partial γ-positive polynomial. More precisely, for

n ≥ 0, we have

En(x, y, z) =

n∑
i=0

zi
b(n−i)/2c∑

j=0

gn(i, j)(xy)j(x+ y)n−i−2j , (7)

where the numbers gn(i, j) satisfy the recurrence relation

gn+1(i, j) = gn(i− 1, j) + 4(1 + i)gn(i+ 1, j − 1) + 2jgn(i, j) + 4(n+ 2− i− 2j)gn(i, j − 1), (8)

with the initial conditions g1(1, 0) = 1 and g1(1, j) = 0 for j 6= 0.

Proof. Consider the grammar (5). If we set s = e, t = z4, u = xy and v = x2 + y2, then

D(s) = st,D(t) = 4u2, D(u) = uv, D(v) = 4u2.

Thus, if A = {s, t, v, u} and

G = {s→ st, t→ 4u2, u→ uv, v → 4u2}. (9)

then

Dn(s) = s
∑
i,j,k

fn(i, j, k)4j+kti−ju2(j+k)vn−i−j−2k,

where i, j, k range nonnegative integers satisfying i ≥ j and i+ j+ k = n. Setting i− j = α and

j + k = β, we have α+ 2β = i+ j + 2k = n+ k. Hence k = α+ 2β − n. Therefore,

Dn(s) = s
n∑

α=0

tα
b(n−α)/2c∑

β=0

∑
k≤β

k=α+2β−n

fn(α+ β − k, β − k, k)4βu2βvn−α−2β.

Setting

gn(α, β) =
∑
k≤β

k=α+2β−n

fn(α+ β − k, β − k, k)4β,

we obtain

Dn(s) = s
n∑

α=0

b(n−α)/2c∑
β=0

gn(α, β)tαu2βvn−α−2β. (10)

Comparing (6) with (10), we get (7). Notice that

Dn+1(s) = D(Dn(s))

= D

s n∑
α=0

b(n−α)/2c∑
β=0

gn(α, β)tαu2βvn−α−2β


= s

∑
α,β

gn(α, β)(tα+1u2βvn−α−2β + 4αtα−1u2β+2vn−α−2β

+ 2βtαu2βvn+1−α−2β + 4(n− α− 2β)tαu2β+2vn−1−α−2β).

By comparing coefficients on the both sides of Dn+1(s) = D(Dn(s)), we get (8). �
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Let gn(x, y) =
∑

i,j gn(i, j)xiyj . Multiplying both sides of the recurrence relation (8) by xiyj

and summing over all i, j, we get that the polynomials gn(x, y) satisfy the recurrence relation

gn+1(x, y) = (x+ 4ny)gn(x, y) + 4y(1− x)
∂

∂x
gn(x, y) + 2y(1− 4y)

∂

∂y
gn(x, y),

with the initial condition g0(x, y) = 1. The first few of terms of gn(x, y) are given as follows:

g1(x, y) = x, g2(x, y) = x2+4y, g3(x, y) = x3+12xy+8y, g4(x, y) = x4+32xy+24x2y+16y+80y2.

Let an(x) =
∑

k≥1 a(n, k)xk, where the numbers a(n, k) are defined by (2).

Corollary 5. For ≥ 0, we have

gn+1(x, y) = xgn(x, y) +
n−1∑
k=0

(
n

k

)
2n+1−kgk(x, y)an−k(y).

Proof. Let G be the grammar (9). Note that D(t) = 4u2, D2(t) = 8u2v. Assume that

Dn(t) = 2n+1
∑
k≥1

â(n, k)u2kvn+1−2k.

for n ≥ 1. Hence

Dn+1(t) = D(Dn(t))

= D

2n+1
∑
k≥1

â(n, k)u2kvn+1−2k


= 2n+2

∑
k≥1

â(n, k)
(
ku2kvn+2−2k + 2(n+ 1− 2k)u2k+2vn−2k

)
.

Therefore, â(n + 1, k) = kâ(n, k) + 2(n + 3 − 2k)â(n, k − 1). It is clear that â(1, 1) = 1 and

â(1, k) = 0 for k 6= 1. Since a(n, k) and â(n, k) satisfy the same recurrence relation and initial

conditions, so they agree. Using the Leibniz’s formula, we get

Dn+1(s) = Dn(st) = tDn(s) +
n−1∑
k=0

(
n

k

)
Dk(s)Dn−k(t),

which yields the desired recurrence relation. �

Let

gn =
n∑
i=0

b(n−i)/2c∑
j=0

gn(i, j).

The first few terms of gn are g0 = 1, g1 = 1, g2 = 5, g3 = 21, g4 = 153, g5 = 1209. It should be

noted that the numbers gn appear as A182825 in [36].

Theorem 6. For n ≥ 1, we have

gn(i, j) = #{π ∈ DBn | single (π) = i,wexc (π) = j, cda (π) = 0}. (11)

Proof. By using Foata-Strehl’s group action (see [19, 27] for instance), we define the action ϕi

on DBn as follows. Let c = (c1, c2, . . . , ci) be a cycle of π ∈ DBn . Since ci = max{c1, c2, . . . , ci},
we set c0 = +∞ and c̃ = (c0, c1, c2 . . . , ci).
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• If ck is a cycle double ascent in c, then ϕi(c̃) is obtained by deleting ck and then inserting

ck between cj and cj+1, where j is the largest index satisfying 0 ≤ j < k and cj > ck >

cj+1;

• If ck is a cycle double descent in c, then ϕi(c̃) is obtained by deleting ck and then

inserting ck between cj and cj+1, where j is the smallest index satisfying k < j < i and

cj < ck < cj+1;

Given π ∈ DBn . We define the Foata-Strehl’s group action on DBn by

ϕ′i(π) =

{
ϕi(π), if i is a cycle double ascent or cycle double descent;

π, otherwise.

It is clear that the ϕ′i’s are involutions and that they commute. For any subset S ⊆ [n], we

may define the function ϕ′S : DBn 7→ DBn by ϕ′S(π) =
∏
i∈S

ϕ′i(π). Hence the group Z2n
2 acts on DBn

via the function ϕ′S , where S ⊆ [n]. Let Dasc (π) and Ddes (π) denote the sets of cycle double

ascents and cycle double descents of π, respectively. Let S = S(π) = Dasc (π) ∪Ddes (π). Note

that Dasc (ϕ′S(π)) = Ddes (π), Ddes (ϕ′S(π)) = Dasc (π). We call two permutations in DBn are

equivalent if one can be obtained from the other by using ϕ′S . It is clear that each equivalence

class contains exactly one element with no cycle double ascent. This completes the proof. �

4. Stirling permutations

4.1. Basic definitions and notation.

The Stirling numbers of the second kind
{
n
k

}
count the number of ways to partition [n] into k

non-empty subsets. Counting all functions from [n] to {1, 2, . . . , x} yields

xn =
n∑
k=0

{
n

k

} k−1∏
i=0

(x− i).

In [23], Gessel and Stanley considered the polynomial Ck(x) defined by

∞∑
n=0

{
n+ k

n

}
xn =

Ck(x)

(1− x)2k+1
,

and they found that Ck(x) is the descent polynomial of Stirling permutations of order k. The

first few terms of Ck(x) are given as follows:

C1(x) = x,C2(x) = x+ 2x2, C3(x) = x+ 8x2 + 6x3, C4(x) = x+ 22x2 + 58x3 + 24x4.

A Stirling permutation of order n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such

that for each i, 1 ≤ i ≤ n, all entries between the two occurrences of i are larger than i.

Denote by Qn the set of Stirling permutations of order n. Let σ = σ1σ2 · · ·σ2n ∈ Qn and set

σ0 = σ2n+1 = 0. For 0 ≤ i ≤ 2n, we say that an index i is a descent (resp. ascent, plateau) of

σ if σi > σi+1 (resp. σi < σi+1, σi = σi+1). Let des (σ), asc (σ) and plat (σ) be the numbers of

descents, ascents and plateaus of σ, respectively. A classical result of Bóna [5] says that descents,

ascents and plateaus have the same distribution over Qn, i.e.,

Cn(x) =
∑
σ∈Qn

xdesσ =
∑
σ∈Qn

xascσ =
∑
σ∈Qn

xplatσ. (12)
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Let Cn(x) =
∑n

k=1C(n, k)xk. Chen and Fu [10, Theorem 2.3] discovered that if A = {x, y} and

G = {x→ xy2, y → xy2}, then Dn(x) =
∑n

k=1C(n, k)xky2n+1−k.

4.2. Main results.

Define

Cn(x, y, z) =
∑
σ∈Qn

xascσydes (σ)zplatσ.

The following lemma will be used in our discussion, which implies (12)

Lemma 7 ([9]). If A = {x, y, z} and

G = {x→ xyz, y → xyz, z → xyz}, (13)

then Dn(x) = Cn(x, y, z).

Proof. We first introduce a grammatical labeling of σ ∈ Qn as follows:

(L1) If i is an ascent, then put a superscript label x right after σi;

(L2) If i is a descent, then put a superscript label y right after σi;

(L3) If i is a plateau, then put a superscript label z right after σi.

Note that the weight of σ is given by w(σ) = xasc (σ)ydes (σ)zplat (σ). We proceed by induction on

n. For n = 1, we have Q1 = {x1z1y} and Q2 = {x1z1x2z2y,x 1x2z2y1y,x 2z2y1z1y}. Note that

D(x) = xyz,D2(x) = D(xyz) = xy2z2 + x2yz2 + x2y2z. Then the weight of x1z1y is given by

D(x), and the sum of weights of the elements in Q2 is given by D2(x). Hence the result holds

for n = 1, 2. Suppose we get all labeled permutations in Qn−1, where n ≥ 3. Let σ′ be obtained

from σ ∈ Qn−1 by inserting the pair nn. Then the changes of labeling are illustrated as follows:

· · ·σxi σi+1 · · · 7→ · · ·σxi nznyσi+1 · · · ;

· · ·σyi σi+1 · · · 7→ · · ·σxi nznyσi+1 · · · ;

· · ·σzi σi+1 · · · 7→ · · ·σxi nznyσi+1 · · · .

In each case, the insertion of nn corresponds to the operator D. It is easy to check that the

action of D on elements of Qn−1 generates all elements of Qn. This completes the proof. �

We can now present the second main result of this paper.

Theorem 8. For n ≥ 1, we have

Cn(x, y, z) =
n∑
i=1

xi
b(2n+1−i)/2c∑

j=0

γn,i,j(yz)
j(y + z)2n+1−i−2j . (14)

Let γn(x, y) =
∑n

i=1

∑
j≥0 γn,i,jx

iyj. Then the polynomials γn(x, y) satisfy the recurrence rela-

tion

γn+1(x, y) = (4n+ 2)xyγn(x, y) + xy(1− 2x)
∂

∂x
γn(x, y) + xy(1− 4y)

∂

∂y
γn(x, y), (15)

with the initial condition γ1(x, y) = xy.
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Proof. We first consider a change of the grammar (13). Setting w = x, u = yz and v = y + z,

we get D(w) = wu,D(u) = wuv,D(v) = 2wu. If A = {w, u, v} and

G = {w → wu, u→ wuv, v → 2wu},

then it is routine to verify that

Dn(w) =
n∑
i=1

b(2n+1−i)/2c∑
j=1

γn,i,jw
iujv2n+1−i−2j .

Then upon taking w = x, u = yz and v = y + z, we get (14). Note that

Dn+1(w) = D

∑
i,j

γn,i,jw
iujv2n+1−i−2j


=
∑
i,j

γn,i,j
(
iwiuj+1v2n+1−i−2j + jwi+1ujv2n+2−i−2j + 2(2n+ 1− i− 2j)wi+1uj+1v2n−i−2j

)
.

Then the numbers γn,i,j satisfy the recurrence relation

γn+1,i,j = iγn,i,j−1 + jγn,i−1,j + 2(2n+ 4− i− 2j)γn,i−1,j−1, (16)

with the initial conditions γ1,1,1 = 1 and γ1,i,j = 0 for (i, j) 6= (1, 1). Multiplying both sides of

this recurrence relation by xiyj and summing over all i, j, we get (15). �

The first few terms of γn(x, y) are given as follows:

γ1(x, y) = xy,

γ2(x, y) = xy2 + x2y,

γ3(x, y) = x3y + 4x2y2 + xy3 + 2x3y2,

γ4(x, y) = x4y + 11x3y2 + 11x2y3 + xy4 + 8x4y2 + 14x3y3.

Recall that the Eulerian numbers satisfy the recurrence relation〈
n+ 1

i

〉
= i

〈
n

i

〉
+ (n+ 2− i)

〈
n

i− 1

〉
,

with the initial conditions
〈

1
1

〉
= 1 and

〈
1
i

〉
= 0 for i 6= 1. We have the following result.

Proposition 9. For n ≥ 1, we have γn,i,n+1−i =
〈
n
i

〉
.

Proof. Set F (n, i) = γn,i,n+1−i. Then F (n, i− 1) = γn,i−1,n+2−i. Using (16), it is easy to verify

that γn,i,j = 0 for i+ j ≤ n. Thus the numbers F (n, i) satisfy the recurrence relation

F (n+ 1, i) = iF (n, i) + (n+ 2− i)F (n, i− 1),

which yields the desired result. �
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4.3. Partial γ-coefficients.

Let σ = σ0σ1σ2 · · ·σ2nσ2n+1 ∈ Qn, where σ0 = σ2n+1 = 0. A double ascent (resp. double

descent, left ascent-plateau, descent-plateau) of σ is an index i such that σi−1 < σi < σi+1 (resp.

σi−1 > σi > σi+1, σi−1 < σi = σi+1, σi−1 > σi = σi+1), where i ∈ [2n − 1]. Denote by dasc (σ)

(resp. ddes (σ), laplat (σ), desp (σ)) the number of double ascents (resp. double descents, left

ascent-plateaus, descent-plateaus) of σ.

Theorem 10. For n ≥ 1, we have

γn,i,j = #{σ ∈ Qn | des (σ) = i, laplat (σ) = j,desp (σ) = 0}.

Proof. Let Qn;i,j = {σ ∈ Qn | des (σ) = i, laplat (σ) = j,desp (σ) = 0}. Let σ ∈ Qn. We first

define two operations on σ. For any 0 ≤ k ≤ 2n, let θn+1,k(σ) denote the element of Qn+1

obtained from σ by inserting the pair (n+ 1)(n+ 1) between σk and σk+1, and let ψn(σ) denote

the element of Qn−1 obtained from σ by deleting the pair nn. We define

Des (σ) = {k ∈ [2n] | σk > σk+1},

Laplat (σ) = {k ∈ [2n] | σk−1 < σk = σk+1},

Dasc (σ) = {k ∈ [2n] | σk−1 < σk < σk+1}.

For any σ ∈ Qn;i,j , we have |Des (σ)| + 2|Laplat (σ)| + |Dasc (σ)| = 2n + 1, since desp (σ) = 0.

Thus, |Dasc (σ)| = 2n+ 1− i− 2j.

For any σ ∈ Qn+1;i,j , denote by r = r(σ) the index of the first occurrence of n + 1 in σ. In

other words, σr = σr+1 = n+ 1. Then we partition the set Qn+1;i,j into four subsets:

Q1
n+1;i,j = {σ ∈ Qn+1;i,j | σr−1 > σr+2}

Q2
n+1;i,j = {σ ∈ Qn+1;i,j | σr−2 < σr−1 = σr+2}

Q3
n+1;i,j = {σ ∈ Qn+1;i,j | σr−1 < σr+2 < σr+3}

Q4
n+1;i,j = {σ ∈ Qn+1;i,j | σr−2 > σr−1 = σr+2}.

Claim 1. There is a bijection φ1 : Q1
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i,j−1 and k ∈ Des (σ)}.

For any σ ∈ Q1
n+1;i,j , note that ψn+1(σ) ∈ Qn;i,j−1 and r(σ)− 1 ∈ Des (ψn+1(σ)). We define

the map φ1 : Q1
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i,j−1 and k ∈ Des (σ)} by letting

φ1(σ) = (ψn+1(σ), r(σ)− 1).

The inverse of φ−1
1 is given by φ−1

1 (σ, k) = θn+1,k(σ).

Claim 2. There is a bijection φ2 : Q2
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i−1,j and k ∈ Laplat (σ)}.

For any σ ∈ Q2
n+1;i,j , note that ψn+1(σ) ∈ Qn;i−1,j and r(σ) − 1 ∈ Laplat (ψn+1(σ)). We

define the map φ2 : Q2
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i−1,j and k ∈ Laplat (σ)} by letting

φ2(σ) = (ψn+1(σ), r(σ)− 1).

The inverse of φ−1
2 is given by φ−1

2 (σ, k) = θn+1,k(σ).

Claim 3. There is a bijection φ3 : Q3
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i−1,j−1 and k ∈ Dasc (σ)}.
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For any σ ∈ Q3
n+1;i,j , note that ψn+1(σ) ∈ Qn;i−1,j−1 and r(σ) − 1 ∈ Dasc (ψn+1(σ)). We

define the map φ3 : Q3
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i−1,j−1 and k ∈ Dasc (σ)} by letting φ3(σ) =

(ψn+1(σ), r(σ)− 1). The inverse of φ−1
3 is given by φ−1

3 (σ, k) = θn+1,k(σ).

Claim 4. There is a bijection φ4 : Q4
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i−1,j−1 and k ∈ Dasc (σ)}.

Let k ∈ [2n] and let σ ∈ Qn. We define a modified Foata-Strehl’s group action ϕk as follows:

• If k is a double ascent then ϕk(σ) is obtained by moving σk to the left of the second σk,

which forms a new pleateau σkσk;

• If k is a descent-plateau then ϕk(σ) is obtained by moving σk to the right of σj , where

j = max{s ∈ {0, 1, 2, . . . , k − 1} : σs < σk}.

For instance, if σ = 2447887332115665, then

ϕ1(σ) = 4478873322115665, ϕ4(σ) = 2448877332115665,

ϕ9 ◦ ϕ1(σ) = σ and ϕ6 ◦ ϕ4(σ) = σ, where ◦ denote the composition operation.

For any σ ∈ Q4
n+1;i,j , note that the index r(σ) − 1 is the unique descent-plateau in ψn+1(σ)

and ϕr(σ)−1◦ψn+1(σ) ∈ Qn;i−1,j−1. Let σ′ = ϕr(σ)−1◦ψn+1(σ). Read σ′ from left to right and let

p be the index of the first occurrence of the integer σr(σ)−1. Then p ∈ Dasc (ϕr(σ)−1 ◦ ψn+1(σ)).

Therefore, we define the map φ4 : Q4
n+1;i,j 7→ {(σ, k) | σ ∈ Qn;i−1,j−1 and k ∈ Dasc (σ)} by

letting φ4(σ) = (ϕr(σ)−1 ◦ ψn+1(σ), p). For any σ ∈ Qn;i−1,j−1 and k ∈ Dasc (σ), the inverse of

φ−1
4 is given by φ−1

4 (σ, k) = θn+1,r(ϕk(σ)), where r is the unique descent-plateau in ϕk(σ). Thus

φ4 is the desired bijection.

In conclusion, we have

|Qn+1;i,j | = |Q1
n+1;i,j |+ |Q2

n+1;i,j |+ |Q3
n+1;i,j |+ |Q4

n+1;i,j |

= i|Qn;i,j−1|+ j|Qn;i−1,j |+ 2(2n+ 4− i− 2j)|Qn;i−1,j−1|.

It is clear that Q1;1,1 = {11} and Q1,i,j = ∅ for (i, j) 6= (1, 1). So, γ1;1,1 = 1 = |Q1;1,1|
and γ1;i,j = 0 = |Q1,i,j | for (i, j) 6= (1, 1). By induction, we get |Qn+1;i,j | = γn+1,i,j and this

completes the proof. �

5. Legendre-Stirling permutations

5.1. Basic definitions and notation.

The Legendre-Stirling numbers of the second kind LS (n, k) first arose in the study of a certain

differential operator related to Legendre polynomials (see [16]). The numbers LS (n, k) can be

defined as follows:

xn =
n∑
j=0

LS (n, k)
k−1∏
i=0

(x− i(i+ 1)),

and satisfy the recurrence relation LS (n, k) = LS (n− 1, k− 1) + k(k+ 1)LS (n− 1, k), with the

initial conditions LS (0, 0) = 1 and LS (0, k) = 0 for k ≥ 1. Andrews and Littlejohn [3] discovered

that LS (n, k) is the number of Legendre-Stirling set partitions of the set {1, 1, 2, 2, . . . , n, n} into

k blocks. Subsequently, Egge [15] considered the polynomial Lk(x) defined by

∞∑
n=0

LS (n+ k, n)xn =
Lk(x)

(1− x)3k+1
,
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and found that Lk(x) is the descent polynomial of Legendre-Stirling permutations of order k.

The reader is referred to [2] for further properties of the Legendre-Stirling numbers.

For n ≥ 1, let Nn denote the multiset {1, 1, 1, 2, 2, 2, . . . , n, n, n}, in which we have two

unbarred copies and one barred copy of each integer i, where 1 ≤ i ≤ n. In this section, we

always assume that the elements of Nn are ordered by 1 = 1 < 2 = 2 < · · · < n = n. Here the

k = k means that kk count as a plateau.

A Legendre-Stirling permutation of order n is a permutation of Nn such that if i < j < k,

πi and πk are both unbarred and πi = πk, then πj > πi. Let LS n denote the set of Legendre-

Stirling permutations of order n. Let π = π1π2 · · ·π3n ∈ LS n, and we always set π0 = π3n+1 = 0.

An index i is a descent (resp. ascent, plateau) of π if πi > πi+1 (resp. πi < πi+1, πi = πi+1).

Hence the index i = 1 is always an ascent and i = 3k is always a descent. Denote by des (π)

(resp. asc (π), plat (π)) the number of descents (resp. ascents, plateaus) of π. Let Ln(x) =∑
π∈LS n

xdes (π). The first few terms of Ln(x) are given as follows:

L1(x) = 2x, L2(x) = 4x+ 24x2 + 12x3, L3(x) = 8x+ 240x2 + 984x3 + 864x4 + 144x5.

Let LSD n be the set of Legendre-Stirling permutations of the multiset NDn = Nn \ {n, n},
i.e., NDn = {1, 1, 1, 2, 2, 2, . . . , n− 1, n− 1, n− 1, n}.

5.2. Main results.

For n ≥ 1, we define

Hn(x, y, z) =
∑

π∈LSD n

xasc (π)−1ydes (π)−1zplat (π),

Ln(x, y, z) =
∑

π∈LS n

xasc (π)ydes (π)zplat (π).

Lemma 11. Let A = {u, v, x, y, z} and

G1 = {x→ uv, y → uv, z → uv}, (17)

G2 = {x→ x2y2z

uv
, y → x2y2z

uv
, z → x2y2z

uv
, u→ xyz2

v
, v → xyz2

u
}. (18)

Then for n ≥ 1, we have

D1(D2D1)n−1(x) = uvHn(x, y, z), (D2D1)n(x) = Ln(x, y, z),

where D2D1 is a composition operation, i.e., (D2D1)n(x) = D2

(
D1

(
(D2D1)n−1(x)

))
.

Proof. Note that every permutations in LS n can be obtained from a permutation in LS n−1 by

first inserting n between two entries, and then inserting the pair nn between two entries of this

new permutation. We first introduce a grammatical labeling of π ∈ LSD n as follows:

(L1) Put a superscript label u immediately before the entry n and a superscript label v right

after n;

(L2) If i is an ascent and πi+1 6= n, then put a superscript label x right after πi;

(L3) If i is a descent and πi 6= n, then put a superscript label y right after πi;

(L4) If i is a plateau, then put a superscript label z right after πi.



14 S.-M. MA, J. MA, AND Y.-N. YEH

Thus, the weight of π ∈ LSD n is given by w(π) = uvxasc (π)−1ydes (π)−1zplat (π). We then intro-

duce a grammatical labeling of π ∈ LS n as follows:

(L1) If i is an ascent, then put a superscript label x right after πi;

(L2) If i is a descent, then put a superscript label y right after πi;

(L3) If i is a plateau, then put a superscript label z right after πi.

Thus, the weight of π ∈ LS n is given by w(π) = xasc (π)ydes (π)zplat (π).

We proceed by induction on n. When n = 1, we have LSD 1 = {u1
v}, LS 1 = {x1

z
1z1y,x 1z1z1

y}.
Note that D1(x) = uv, (D2D1)(x) = D2(D1(x)) = D2(uv) = 2xyz2. Then the weight of 1 is

given by D1(x), and the sum of weights of the elements in LS 1 is given by (D2D1)(x). Hence

the results hold for n = 1. Suppose we get all labeled permutations in LS n−1, where n ≥ 2. Let

π′ be obtained from π ∈ LS n−1 by inserting the entry n to a position with a label x, y or z. The

changes of labeling are illustrated as follows:

· · ·πxi πi+1 · · · 7→ · · ·πui nvπi+1 · · · ,

· · ·πyi πi+1 · · · 7→ · · ·πui nvπi+1 · · · ,

· · ·πzi πi+1 · · · 7→ · · ·πui nvπi+1 · · · .

In each case, the insertion of n corresponds to the operator D1 defined by (17). Let π̂ be obtained

from π ∈ LSD n by inserting the pair nn. We distinguish the following cases:

(c1) If nn is inserted at a position with the label x, y or z, then the changes of labeling can

be illustrated as follows:

· · ·u nv · · ·πxi πi+1 · · · 7→ · · ·x ny · · ·πxi nznyπi+1 · · · ;

· · ·u nv · · ·πyi πi+1 · · · 7→ · · ·x ny · · ·πxi nznyπi+1 · · · ;

· · ·u nv · · ·πzi πi+1 · · · 7→ · · ·x ny · · ·πxi nznyπi+1 · · · ;

(c2) If nn is inserted at a position with the label u, then the change of labeling is illustrated

as follows: · · ·u nv · · · 7→ · · ·x nznzny · · · .
(c2) If nn is inserted at a position with the label v, then the change of labeling is illustrated

as follows: · · ·u nv · · · 7→ · · ·x nznzny · · · .

In each case, the insertion of the pair nn corresponds to the operator D2 defined by (18). It is

routine to check that the action of D2D1 on Legendre-Stirling permutations of LS n−1 generates

all the Legendre-Stirling permutations of LS n. This completes the proof. �

We can now present the third main result of this paper.

Theorem 12. For n ≥ 1, we have

Hn(x, y, z) =
2n−2∑
i=1

zi
b(3n−3−i)/2c∑

j=0

hn(i, j)(xy)j(x+ y)3n−3−i−2j ,

Ln(x, y, z) =

2n∑
i=1

zi
b(3n+1−i)/2c∑

j=1

`n(i, j)(xy)j(x+ y)3n+1−i−2j ,
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where the numbers hn(i, j) and `n(i, j) satisfy the recurrence relations

`n(i, j) = 2hn(i− 2, j − 1) + ihn(i, j − 2) + (j − 1)hn(i− 1, j − 1)+

2(3n+ 2− i− 2j)hn(i− 1, j − 2),

hn+1(i.j) = (i+ 1)`n(i+ 1, j) + (j + 1)`n(i, j + 1) + 2(3n+ 1− i− 2j)`n(i, j),

with the initial conditions h1(0, 0) = 1 and h1(i, j) = 0 for (i, j) 6= (0, 0), `1(2, 1) = 2 and

`1(i, j) = 0 for (i, j) 6= (2, 1).

Proof. Consider the grammars (17) and (18). Setting a = x+ y, b = xy, we get

D1(a) = 2uv,D1(b) = auv,D2(x) =
zb2

uv
,D2(y) =

zb2

uv
,D2(z) =

zb2

uv
,

D2(u) =
z2b

v
,D2(v) =

z2b

u
,D2(a) =

2zb2

uv
,D2(b) =

zab2

uv
.

Then the change of grammars are given as follows: A = {a, b, x, y, z, u, v} and

G3 = {x→ uv, z → uv, a→ 2uv, b→ auv}, (19)

G4 = {x→ zb2

uv
, y → zb2

uv
, z → zb2

uv
, u→ z2b

v
, v → z2b

u
, a→ 2zb2

uv
, b→ zab2

uv
}. (20)

It is routine to verify that there exist nonnegative integers hn(i, j) and `n(i, j) such that

D3(D4D3)n−1(x) = uv
2n−2∑
i=1

zi
b(3n−3−i)/2c∑

j=0

hn(i, j)bja3n−3−i−2j ,

(D4D3)n(x) =

2n∑
i=1

zi
b(3n+1−i)/2c∑

j=1

`n(i, j)bja3n+1−i−2j .

Then upon taking a = x + y and b = xy, we get the expansions of Hn(x, y, z) and Ln(x, y, z).

From

D4(D3(D4D3)n−1(x)) = D4

∑
i,j

hn(i, j)uvzibja3n−3−i−2j


=
∑
i,j

hn(i, j)(2zi+2bj+1a3n−3−i−2j + izibj+2a3n−3−i−2j)+

∑
i,j

hn(i, j)(jzi+1bj+1a3n−2−i−2j + 2(3n− 3− i− 2j)zi+1bj+2a3n−4−i−2j),

and

D3((D4D3)n(x)) = D3

∑
i,j

`n(i, j)zibja3n+1−i−2j


= uv

∑
i,j

`n(i, j)izi−1bja3n+1−i−2j + uv
∑
i,j

`n(i, j)jzibj−1a3n+2−i−2j+

uv
∑
i,j

`n(i, j)2(3n+ 1− i− 2j)zibja3n−i−2j ,
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we get the desired recurrence relations. In particular, D3(x) = uv,D4D3(x) = 2z2b,D3(2z2b) =

4zbuv + 2z2auv. Thus, h1(0, 0) = 1, h2(1, 1) = 4, h2(2, 0) = 2 and `1(2, 1) = 2. This completes

the proof. �

Using (19) and (20), it is not hard to verify that `n(i, j) satisfy the recurrence relation

`n+1(i, j) = i(i+ 1)`n(i+ 1, j − 2) + 2i(j − 1)`n(i, j − 1) + j(j − 1)`n(i− 1, j)+

2j`n(i− 2, j) + 4i(3n+ 5− i− 2j)`n(i, j − 2) + 4(3n+ 5− i− 2j)`(i− 2, j − 1)+

4(3n+ 6− i− 2j)(3n+ 5− i− 2j)`n(i− 1, j − 2)+

2((2j − 2)(3n+ 4− i− 2j) + i+ j − 2)`n(i− 1, j − 1),

with the initial conditions `1(2, 1) = 2 and `1(i, j) = 0 for (i, j) 6= (2, 1).

We define

hn(x, y) =

2n−2∑
i=1

b(3n−3−i)/2c∑
j=0

hn(i, j)xiyj , `n(x, y) =

2n∑
i=1

b(3n+1−i)/2c∑
j=1

`n(i, j)xiyj .

Using Theorem 12, multiplying both sides of the recurrence relations of hn(i, j) and `n(i, j) by

xiyj and summing over all i, j, we get that

`n(x, y) = xy(6ny − 6y + 2x)hn(x, y) + xy2(1− 2x)
∂

∂x
hn(x, y) + xy2(1− 4y)

∂

∂y
hn(x, y),

hn+1(x, y) = (6n+ 2)`n(x, y) + (1− 2x)
∂

∂x
`n(x, y) + (1− 4y)

∂

∂y
`n(x, y).

The first few terms of the polynomials hn(x, y) and `n(x, y) are given as follows:

h1(x, y) = 1,

`1(x, y) = 2x2y,

h2(x, y) = 4xy + 2x2,

`2(x, y) = 4xy3 + 8x2y2 + 12x3y2 + 4x4y,

h3(x, y) = 4y3 + 28xy2 + 16x2y + 52x2y2 + 40x3y + 8x4y + 4x4.

6. Jacobi-Stirling permutations

6.1. Definitions and notation.

The Jacobi-Stirling numbers JS (n, k; z) were discovered as a result of a problem involving the

spectral theory of powers of the classical second-order Jacobi differential expression (see [3, 17]),

and they can be defined as follows:

xn =
n∑
k=0

JS (n, k; z)
k−1∏
i=0

(x− i(z + i)).

In particular, JS (n, k; 1) = LS (n, k). The reader is referred to Andrews et al. [1] for further

properties of the Jacobi-Stirling numbers. The Jacobi-Stirling polynomial of the second kind is
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defined by fk(n; z) = JS (n+k, n; z). The coefficient pk,i(n) of zi in fk(n; z) is called the Jacobi-

Stirling coefficient of the second for 0 ≤ i ≤ k. Gessel, Lin and Zeng [22] found a combinatorial

interpretation of the polynomial Ak,i(x) defined by∑
n≥0

pk,i(n)xn =
Ak,i(x)

(1− x)3k−i+1
.

Define the multiset Mk = {1, 1, 1, 2, 2, 2, . . . , k, k, k}, in which we have two unbarred copies

and one barred copy of each integer i, where 1 ≤ i ≤ k. In this section, we always assume that

the elements of Mk are ordered by

1 < 1 < 2 < 2 < · · · < k < k.

A permutation of Mk is a Jacobi-Stirling permutation if for each i, 1 ≤ i ≤ k, all entries between

the two occurrences of the unbarred i are larger than i. Let JSP k denote the set of Jacobi-

Stirling permutations of Mk. For example, JSP 1 = {111, 111}. Let π = π1π2 · · ·π3k ∈ JSP k.

As usual, we always set π0 = π3k+1 = 0. In the same way as in Legendre-Stirling permutation,

we define

des (π) = #{i ∈ [3n] | πi > πi+1},

asc (π) = #{i ∈ {0, 1, 2, . . . , 3n− 1} | πi < πi+1},

plat (π) = #{i ∈ [3n− 1] | πi = πi+1}.

It follow from [22, Theorem 2] that

(1− x)3k+1
∑
n≥0

pk,0(n)xn =
∑

π∈JSP k

xdes (π).

6.2. Main results.

Define

Sn(x, y, z) =
∑

π∈JSP n

xasc (π)ydes (π)zplat (π).

The first few terms of Sn(x, y, z) are given as follows:

S1(x, y, z) = xy(x+ y)z,

S2(x, y, z) = (xy)2(3x2 + 10xy + 3y2)z + xy(x3 + 11x2y + 11xy2 + y3)z2,

S3(x, y, z) = (xy)3(17x3 + 119x2y + 119xy2 + 17y3)z+

(xy)2(18x4 + 284x3y + 644x2y2 + 284xy2 + 18y4)z2+

(xy)(x5 + 57x4y + 302x3y2 + 302x2y3 + 57xy4 + y5)z3.

Lemma 13. Let A = {x, y, z} and

G1 = {x→ xy, y → xy, z → xy}, G2 = {x→ xyz, y → xyz, z → xyz}. (21)

Then for n ≥ 1, we have (D2D1)n(x) = (D2D1)n(y) = (D2D1)n(z) = Sn(x, y, z).

Proof. We first introduce a grammatical labeling of π ∈ JSP n as follows:

(L1) If i is an ascent, then put a superscript label x right after πi;

(L2) If i is a descent, then put a superscript label y right after πi;
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(L3) If i is a plateau, then put a superscript label z right after πi.

Note that the weight of π is given by w(π) = xasc (π)ydes (π)zplat (π).

We proceed by induction on n. For n = 1, we have JSP 1 = {x1
x
1z1y, x1z1y1

y}. Note that

(D2D1)(x) = (D2D1)(y) = (D2D1)(z) = xy2z + x2yz.

Hence the result holds for n = 1. Note that any permutation of JSP n is obtained from a

permutation of JSP n−1 by first inserting the element n and then inserting the pair nn.

We first insert n and the changes of labeling are illustrated as follows:

· · ·πxi πi+1 · · · 7→ · · ·πxi nyπi+1 · · · ;

· · ·πyi πi+1 · · · 7→ · · ·πxi nyπi+1 · · · ;

· · ·πzi πi+1 · · · 7→ · · ·πxi nyπi+1 · · · .

In each case, the insertion of n corresponds to the operator D1. We then insert the pair nn and

the changes of labeling are illustrated as follows:

· · ·πxi πi+1 · · · 7→ · · ·πxi nznyπi+1 · · · ;

· · ·πyi πi+1 · · · 7→ · · ·πxi nznyπi+1 · · · ;

· · ·πzi πi+1 · · · 7→ · · ·πxi nznyπi+1 · · · .

In each case, the insertion of the pair nn corresponds to the operator D2. It is easy to check that

the action of D2D1 on Jacobi-Stirling permutations of JSP n−1 generates all te Jacobi-Stirling

permutations of JSP n. This completes the proof. �

We can now present the fouth main result of this paper.

Theorem 14. For n ≥ 1, we have

Sn(x, y, z) =

n∑
i=1

zi
b(3n+1−i)/2c∑

j=1

sn(i, j)(xy)j(x+ y)3n+1−i−2j , (22)

where the numbers sn(i, j) satisfy the recurrence relation

sn+1(i, j) = i(i+ 1)sn(i+ 1, j − 2) + i(2j − 1)sn(i, j − 1) + 4i(3n+ 5− i− 2j)sn(i, j − 2)+

j2sn(i− 1, j) + (4(j − 1)(3n+ 4− i− 2j) + 6n+ 6− 2i− 2j)sn(i− 1, j − 1)+

4(3n+ 6− i− 2j)(3n+ 5− i− 2j)sn(i− 1, j − 2),

with the initial conditions s0(1, 0) = 1 and s0(i, j) = 0 for (i, j) 6= (1, 0).

Proof. Consider the grammars (21). Setting a = z, b = x+ y, c = xy, we get D1(a) = c,D1(b) =

2c,D1(c) = bc and D2(a) = ac,D2(b) = 2ac,D2(c) = abc. Then the change of grammars are

given as follows: A = {a, b, c} and

G3 = {a→ c, b→ 2c, c→ bc}, G4 = {a→ ac, b→ 2ac, c→ abc}. (23)

Thus, we have (D4D3)n(a) =
∑

i,j,k Tn(i, j, k)aibjck. This expansion can be written in the form

(D4D3)n(z) =
∑
i,j,k

Tn(i, j, k)zi(x+ y)j(xy)k.
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By Lemma 13, we see that the degree of each term of
∑

i,j,k Tn(i, j, k)zi(x+ y)j(xy)k is 3n+ 1

and 1 ≤ deg(z) ≤ n is from 1 to n. Thus, we can set sn(i, j) = Tn(i, j, k) and write (D4D3)n(a)

as follows:

(D4D3)n(a) =
n∑
i=1

b(3n+1−i)/2c∑
j=0

sn(i, j)aicjb3n+1−i−2j . (24)

Then upon taking a = z, b = x+y and c = xy, we get (22). It follows from (23) that sn(i, j) ≥ 0.

In particular, since D4D3(a) = D4(c) = abc and (D4D3)2(a) = a(3b2c2 + 4c3) + a2(b3c + 8bc2),

we have s1(1, 1) = 1, s2(1, 2) = 3, s2(1, 3) = 4, s2(2, 1) = 1, s2(2, 2) = 8. For convenience, set k =

3n+1− i−2j. Note that D3(D4D3)n(a) =
∑

i,j sn(i, j)(iai−1cj+1bk+jaicjbk+1 +2kaicj+1bk−1).

It follows that

D4 (D3(D4D3)n(a))

= D4

∑
i,j

sn(i, j)(iai−1cj+1bk + jaicjbk+1 + 2kaicj+1bk−1)


=
∑
i,j

sn(i, j)
(
i(i− 1)ai−1cj+2bk + i(j + 1)aicj+1bk+1 + 2ikaicj+2bk−1

)
+

∑
i,j

sn(i, j)
(
ijaicj+1bk+1 + j2ai+1cjbk+2 + 2j(k + 1)ai+1cj+1bk

)
+

∑
i,j

sn(i, j)
(

2ikaicj+2bk−1 + 2(j + 1)kai+1cj+1bk + 4k(k − 1)ai+1cj+2bk−2
)
.

On the other hand, (D4D3)n+1(a) =
∑

i,j sn+1(i, j)aicjbk+3. Comparing the coefficient of

aicjbk+3 in both sides of (D4D3)n+1(a) = D4 (D3(D4D3)n(a)), we get the desired recurrence

relation. �

Define JSP n,k = {π ∈ JSP n : plat (π) = k}. Let ϑ(π) be the permutation obtained from

π ∈ JSP n by deleting all of the first unbarred i from left to right, where i ∈ [n]. For example,

ϑ(13311 224424 3) = 311 2424 3. Let ĴSP n,n = {ϑ(π) : π ∈ JSP n,n}. Note that #ĴSP n,n =

(2n)!. Then ϑ is a bijection from JSP n,n to S2n. Therefore,

b(2n+1)/2c∑
j=1

sn(n, j)(xy)j(x+ y)2n+1−2j =
∑
π∈S2n

xdes (π)+1yasc (π)+1.

Let JSPD n denote the set of Jacobi-Stirling permutations of the multiset MDn = Mn\{n, n}.
In particular, JSPD 1 = {1} and JSPD 2 = {2 111, 1 211, 1121, 1112, 2111, 1211, 112 1, 111 2}.
We define

Tn(x, y, z) =
∑

π∈JSPD n

xasc (π)ydes (π)zplat (π).

Along the same lines of the proof of Theorem 14, one can derive that for n ≥ 1,

D1(D2D1)n−1(x) = D1(D2D1)n−1(y) = D1(D2D1)n−1(z) = Tn(x, y, z),

where

Tn(x, y, z) =

n−1∑
i=0

zi
b(3n−1−i)/2c∑

j=1

tn(i, j)(xy)j(x+ y)3n−1−i−2j .
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In particular,

b2n−1c/2∑
j=1

tn(n− 1, j)(xy)j(x+ y)2n−2j =
∑

π∈S2n−1

xdes (π)+1yasc (π)+1.

Define

sn(x, y) =

n∑
i=1

b(3n+1−i)/2c∑
j=0

sn(i, j)xiyj ,

tn(x, y) =
n−1∑
i=0

b(3n−1−i)/2c∑
j=1

tn(i, j)xiyj .

It follows from (23) that

D3(D4D3)n−1(a) =

n−1∑
i=0

b(3n−1−i)/2c∑
j=1

tn(i, j)aicjb3n−1−i−2j . (25)

Combining (24) and (25), we get the following result.

Proposition 15. For n ≥ 1, the numbers sn(i, j) and tn(i, j) satisfy the recurrence relation

sn(i, j) = itn(i, j − 1) + jtn(i− 1, j) + 2(3n+ 2− i− 2j)tn(i− 1, j − 1),

tn+1(i, j) = (i+ 1)sn(i+ 1, j − 1) + jsn(i, j) + 2(3n+ 3− i− 2j)sn(i, j − 1),

with the initial conditions t1(0, 1) = 1 and t1(i, j) = 0 for (i, j) 6= (0, 1). Equivalently, the

polynomials sn(x, y) and tn(x, y) satisfy the recurrence relatoion

sn(x, y) = 2(3n− 1)xytn(x, y) + xy(1− 2x)
∂

∂x
tn(x, y) + xy(1− 4y)

∂

∂y
tn(x, y),

tn+1(x, y) = 2(3n+ 1)ysn(x, y) + y(1− 2x)
∂

∂x
sn(x, y) + y(1− 4y)

∂

∂y
sn(x, y),

with the initial condition t1(x, y) = y.

The first few terms of the polynomials sn(x, y) and tn(x, y) are given as follows:

s1(x, y) = xy,

t2(x, y) = xy + 2xy2 + y2,

s2(x, y) = x2y + 8x2y2 + 3xy2 + 4xy3,

t3(x, y) = x2y + 22x2y2 + 16x2y3 + 8xy2 + 3y3 + 40xy3 + 4y4.

6.3. Partial γ-coefficients and a modified Foata-Strehl’s group action.

For the grammars (23), notice that the insertion of n corresponds to the operator D3, and

the insertion of the pair nn corresponds to the operator D4. Figure 1 provides a diagram of the

grammars (23). Using this diagram, we discover some statistics on Jacobi-Stirling permutations,

and then we can present combinatorial interpretations of the numbers sn(i, j) and tn(i, j).
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Figure 1.

Let π = π1π2 · · ·π3n ∈ JSP n. As usual, set π0 = π3n+1 = 0. An unbarred descent of π is an

index i ∈ [3n] such that πi > πi+1 and πi is unbarred. A double ascent (resp. peak, left ascent-

plateau) of π is an index i such that πi−1 < πi < πi+1 (resp. πi−1 < πi > πi+1, πi−1 < πi = πi+1),

where i ∈ [3n − 1]. It is clear that if i is a peak, then πi is barred. A barred double descent of

π is an index i ∈ [3n] such that πi−1 > πi > πi+1 and πi is barred. A descent plateau of π is an

index i such that πi−1 > πi = πi+1. In the same way, we define the same statistics on JSPD n.

Let

ubdes (π) = #{i | πi > πi+1, πi is unbarred},

dasc (π) = #{i | πi−1 < πi < πi+1},

expk (π) = #{i | πi−1 < πi > πi+1 or πi−1 < πi = πi+1},

bddes (π) = #{i | πi−1 > πi > πi+1, πi is barred},

desp (π) = #{i | πi−1 > πi = πi+1}.

We can now state the following result.

Theorem 16. For n ≥ 1, we have

sn(i, j) = #{π ∈ JSP n : ubdes (π) = i, expk (π) = j,bddes (π) = 0,desp (π) = 0},

tn(i, j) = #{π ∈ JSPD n : ubdes (π) = i, expk (π) = j,bddes (π) = 0, desp (π) = 0}.

Given a permutation π ∈ JSPD n. For any k ∈ {0, 1, . . . , 3n−2}, let θn,k(π) be the permutation

in JSP n obtained from π by inserting the pair nn between πk and πk+1, and let ψn(π) denote

the permutation in JSP n−1 obtained from π by deleting the entry n.

Given a permutation π ∈ JSP n. For any k ∈ {0, 1, . . . , 3n}, let θn+1,k(π) be the permutation

in JSPD n+1 obtained from π by inserting n+ 1 between πk and πk+1, and let ψn(π) denote the

permutation in JSPD n obtained from π by deleting the pair nn.

We define

JSP n;i,j = {π ∈ JSP n : ubdes (π) = i, expk (π) = j,bddes (π) = desp (π) = 0},

JSPD n;i,j = {π ∈ JSPD n : ubdes (π) = i, expk (π) = j,bddes (π) = desp (π) = 0}.

In order to prove Theorem 16, we need two lemmas.
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Lemma 17. For n ≥ 1, we have

|JSPD n+1;i,j | = (i+ 1)|JSP n;i+1,j−1|+ j|JSP n;i,j |+ 2(3n+ 3− i− 2j)|JSP n;i,j−1|.

Proof. We define

Ubdes (π) = {k | πk > πk+1, πk is unbarred},

Expk (π) = {k | πk−1 < πk > πk+1 or πk−1 < πk = πk+1},

Dasc (π) = {k | πk−1 < πk < πk+1}.

For π ∈ JSPD n;i,j , we have |Ubdes (π)| + 2|Expk (π)| + |Dasc (π)| = 3n − 1, since bddes (π) =

desp (π) = 0.

For any π ∈ JSPD n+1;i,j , let r = r(π) be the index such that πr = n+ 1. We now partition

the set JSPD n+1;i,j into the following six subsets:

JSPD 1
n+1;i,j = {π ∈ JSPD n+1;i,j | πr−1 > πr+1, πr−1 is unbarred},

JSPD 2
n+1;i,j = {π ∈ JSPD n+1;i,j | πr−2 < πr−1 > πr+1, πr−1 is barred},

JSPD 3
n+1;i,j = {π ∈ JSPD n+1;i,j | πr−2 < πr−1 = πr+1},

JSPD 4
n+1;i,j = {π ∈ JSPD n+1;i,j | πr−1 < πr+1 < πr+2},

JSPD 5
n+1;i,j = {π ∈ JSPD n+1;i,j | πr−2 > πr−1 = πr+1},

JSPD 6
n+1;i,j = {π ∈ JSPD n+1;i,j | πr−2 > πr−1 > πr+1, πr−1 is barred}.

Claim 1. There is a bijection

φ1 : JSPD 1
n+1;i,j 7→ {(π, k) | π ∈ JSP n;i+1,j−1 and k ∈ Ubdes (σ)}.

For any π ∈ JSPD 1
n+1;i,j , notice that ψn+1(π) ∈ JSP n;i+1,j−1 and r(π)−1 ∈ Ubdes (ψn+1(π)).

Thus, we define the map φ1 by letting φ1(π) = (ψn+1(π), r(π) − 1). Then the inverse of φ1 is

given by φ−1
1 (π, k) = θn+1,k(π).

Claim 2. There is a bijection

φ2 : JSPD 2
n+1;i,j ∪ JSPD 3

n+1;i,j 7→ {(σ, k) | σ ∈ JSP n;i,j and k ∈ Expk (π)}.

For any π ∈ JSPD 2
n+1;i,j ∪ JSPD 3

n+1;i,j , notice that ψn+1(π) ∈ JSP n;i,j and r(σ) − 1 ∈
Expk (ψn+1(σ)). Thus, we define the map φ2 by letting φ2(π) = (ψn+1(π), r(π)− 1). Then the

inverse of φ2 is given by φ−1
2 (π, k) = θn+1,k(π).

Claim 3. There is a bijection φ3 : JSPD 4
n+1;i,j 7→ {(π, k) | π ∈ JSP n;i,j−1 and k ∈ Dasc (π)}.

For any π ∈ JSPD 4
n+1;i,j , notice that ψn+1(π) ∈ JSP n;i,j−1 and r(π) ∈ Dasc (ψn+1(π)). Thus,

we define the map φ3 by letting φ3(π) = (ψn+1(π), r(π)). Then the inverse of φ3 is given by

φ−1
3 (π, k) = θn+1,k−1(π).

Claim 4. There is a bijection

φ4 : JSPD 5
n+1;i,j ∪ JSPD 6

n+1;i,j 7→ {(π, k) | π ∈ JSP n;i,j−1 and k ∈ Dasc (π)}.

Let k ∈ {0, 1, . . . , 3n + 1} and let π = π1π2 . . . π3n+1 ∈ JSPD n+1. We define a modified

Foata-Strehl’s group action ϕk as follows:
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• If k is a double ascent, then ϕk(π) is obtained from π by deleting πk and then inserting πk

immediately before the integer πj , where j = min{s ∈ {k+1, k+2, . . . , 3n+2} | πs ≤ πk};
• If k satisfies either (i) it is a descent-plateau or (ii) it is a double descent and πk is

barred, then ϕk(π) is obtained from π by deleting πk and then inserting πk right after

the integer πj , where j = max{s ∈ {0, 1, 2, . . . , k − 1} : πs < πk}.

For any π ∈ JSPD 5
n+1;i,j , notice that the index r(π) − 1 is the unique descent-plateau of

ψn+1(π) and ϕr(π)−1 ◦ ψn+1(π) ∈ JSP n;i,j−1. Read ϕr(π)−1 ◦ ψn+1(π) from left to right and let

p be the index of the first occurrence of the integer πr(π)−1. Then p ∈ Dasc (ϕr(π)−1 ◦ ψn+1(π)).

For any π ∈ JSPD 6
n+1;i,j , notice that πr(π)−1 has a bar and the index r(π) − 1 is a double-

descent in ψn+1(π), and ϕr(π)−1 ◦ ψn+1(π) ∈ JSP n;i,j−1. Read ϕr(π)−1 ◦ ψn+1(π) from left to

right and let p be the index of the occurrence of the integer πr(π)−1. Then

p ∈ Dasc (ϕr(π)−1 ◦ ψn+1(π)).

Therefore, we define the map φ4 by letting φ4(σ) = (ϕr(π)−1 ◦ ψn+1(π), p), and the inverse of

φ4 is given by φ−1
4 (π, k) = θn+1,r−1 ◦ϕk(π), where r− 1 is the unique descent-plateau or barred

double descent of ϕk(π).

In conclusion, we get that

|JSPD n+1;i,j | = |JSPD 1
n+1;i,j |+ |JSPD 2

n+1;i,j |+ |JSPD 3
n+1;i,j |+

|JSPD 4
n+1;i,j |+ |JSPD 5

n+1;i,j |+ |JSPD 6
n+1;i,j |

= (i+ 1)|JSP n;i+1,j−1|+ j|JSP n;i,j |+ 2(3n+ 3− i− 2j)|JSP n;i,j−1|.

This completes the proof. �

Lemma 18. For n ≥ 1, we have

|JSP n;i,j | = i|JSPD n;i,j−1|+ j|JSPD n;i−1,j |+ 2(3n+ 2− i− 2j)|JSPD n;i−1,j−1|.

Proof. For any π ∈ JSP n;i,j , we have |Ubdes (π)| + 2|Expk (π)| + |Dasc (π)| = 3n + 1, since

bddes (π) = desp (π) = 0. Let r = r(π) be the index of the first occurrence of the entry n, i.e.,

πr = πr+1 = n. We partition the set JSP n;i,j into the following six subsets:

JSP 1
n;i,j = {π ∈ JSP n;i,j | πr−1 > πr+2, πr−1 is unbarred}

JSP 2
n;i,j = {π ∈ JSP n;i,j | πr−2 < πr−1 > πr+2, πr−1 is barred}

JSP 3
n;i,j = {π ∈ JSP n;i,j | πr−2 < πr−1 = πr+2}

JSP 4
n;i,j = {π ∈ JSP n;i,j | πr−1 < πr+2 < πr+3}

JSP 5
n;i,j = {π ∈ JSP n;i,j | πr−2 > πr−1 = πr+2}

JSP 6
n;i,j = {π ∈ JSP n;i,j | πr−2 > πr−1 > πr+2, πr−1 is barred}.

Claim 1. There is a bijection Φ1 : JSP 1
n;i,j 7→ {(π, k) | π ∈ JSPD n;i,j−1 and k ∈ Ubdes (σ)}.

For any π ∈ JSP 1
n;i,j , notice that ψn(π) ∈ JSPD n;i,j−1 and (r(π)−1) ∈ Ubdes (ψn(π)). Thus,

we define the map Φ1 by letting Φ1(π) = (ψn(π), r(π)− 1). Then the inverse of Φ1 is given by

Φ−1
1 (π, k) = θn,k(π).
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Claim 2. There is a bijection

Φ2 : JSP 2
n;i,j ∪ JSP 3

n;i,j 7→ {(π, k) | π ∈ JSPD n;i−1,j and k ∈ Expk (π)}.

For any π ∈ JSP 2
n;i,j∪JSP 3

n;i,j , notice that ψn(π) ∈ JSPD n;i−1,j and r(π)−1 ∈ Expk (ψn(π)).

Thus, we define the map Ψ2 by letting Ψ2(π) = (ψn(π), r(π) − 1). Then the inverse of Φ2 is

given by Φ−1
2 (π, k) = θn,k(π).

Claim 3. There is a bijection Φ3 : JSP 4
n;i,j 7→ {(π, k) | π ∈ JSPD n;i−1,j−1 and k ∈ Dasc (π)}.

For any π ∈ JSP 4
n;i,j , notice that ψn(π) ∈ JSPD n;i−1,j−1 and r(π) ∈ Dasc (ψn(π)). Thus, we

define the map Φ3 by letting Φ3(π) = (ψn(π), r(π)). Then the inverse of Φ3 is given by

Φ−1
3 (π, k) = θn,k−1(π).

Claim 4. There is a bijection

Φ4 : JSP 5
n;i,j ∪ JSP 6

n;i,j 7→ {(π, k) | π ∈ JSPD n;i−1,j−1 and k ∈ Dasc (π)}.

Let k ∈ {0, 1, . . . , 3n} and let π = π1π2 . . . π3n ∈ JSP n. We define a modified Foata-Strehl’s

group action ϕk as follows:

• If k is a double ascent then ϕk(π) is obtained from π by deleting πk and then inserting πk

immediately before the integer πj , where j = min{s ∈ {k+1, k+2, . . . , 3n+1} : πs ≤ πk};
• If k satisfies either (i) it is a descent-plateau or (ii) it is a double descent and πk is

barred, then ϕk(π) is obtained from π by deleting πk and then inserting πk right after

the integer πj , where j = max{s ∈ {0, 1, 2, . . . , k − 1} : πs < πk}.

For any π ∈ JSP 5
n;i,j , note that the index r(π)− 1 is the unique descent-plateau in ψn(π) and

ϕr(π)−1 ◦ ψn(π) ∈ JSPD n;i−1,j−1.

Read the permutation ϕr(π)−1 ◦ ψn(π) from left to right and let p be the index of the first

occurrence of the integer πr(π)−1. Then p ∈ Dasc (ϕr(π)−1 ◦ ψn(π)).

For any π ∈ JSP 6
n;i,j , notice that πr(π)−1 is barred and the index r(π)− 1 is a double-descent

of ψn(π), and ϕr(π)−1 ◦ ψn(π) ∈ JSPD n;i−1,j−1. Read ϕr(π)−1 ◦ ψn(π) from left to right and let

p be the index of the first occurrence of the integer πr(π)−1. Then p ∈ Dasc (ϕr(π)−1 ◦ ψn(π)).

Therefore, we define the map Φ4 by letting Φ4(π) = (ϕr(π)−1 ◦ ψn(π), p). Then the inverse of

Φ4 is given by Φ−1
4 (π, k) = θn,r−1 ◦ ϕk(π), where r − 1 is the unique descent-plateau or barred

double descent of ϕk(π).

In conclusion, we get that

|JSP n;i,j | = |JSP 1
n;i,j |+ |JSP 2

n;i,j |+ |JSP 3
n;i,j |+ |JSP 4

n;i,j |+ |JSP 5
n;i,j |+ |JSP 6

n;i,j |

= i|JSPD n+1;i,j−1|+ j|JSPD n;i−1,j |+ 2(3n+ 2− i− 2j)|JSPD n;i−1,j−1|.

This complete the proof. �

A proof Theorem 16:

Proof. Notice that JSPD 1;0,1 = {1̄} and JSP 1;1,1 = {1̄11}. Moreover, JSPD 1;i,j = ∅ for any

(i, j) 6= (0, 1) and JSP 1;i,j = ∅ for any (i, j) 6= (1, 1). So,

t1(0, 1) = 1 = |JSPD 1;0,1| and s1(1, 1) = 1 = |JSP 1;1,1|.
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Combining Proposition 15, Lemma 17 and Lemma 18, we obtain

|JSP n;i,j | = i|JSPD n;i,j−1|+ j|JSPD n;i−1,j |+ 2(3n+ 2− i− 2j)|JSPD n;i−1,j−1|

= itn(i, j − 1) + jtn(i− 1, j) + 2(3n+ 2− i− 2j)tn(i− 1, j − 1)

= sn(i, j),

|JSPD n+1;i,j | = (i+ 1)|JSP n;i+1,j−1|+ j|JSP n;i,j |+ 2(3n+ 3− i− 2j)|JSP n;i,j−1|

= (i+ 1)sn(i+ 1, j − 1) + jsn(i, j) + 2(3n+ 3− i− 2j)sn(i, j − 1)

= tn+1(i, j).

This complete the proof. �

Let [k] = {1, 2, . . . , k}. For any subset S ⊆ [k], let Mk,S = Mk \ S. Denote by JSP k,S the set

of Jacobi-Stirling permutations of Mk,S . Let

JSP k,i =
⋃
S⊆[k]
|S|=i

JSP k,S .

We define

JSP k,i(x, y, z) =
∑

π∈JSP k,i

xasc (π)ydes (π)zplat (π).

It is clear that

JSP k,k(x, y, z) =
∑
π∈Qk

xasc (π)ydes (π)zplat (π),

JSP k,0(x, y, z) =
∑

π∈JSP k

xasc (π)ydes (π)zplat (π).

Based on empirical evidence, we propose the following conjecture.

Conjecture 19. For any k ≥ 1 and 1 ≤ i ≤ k − 1, the polynomial JSP k,i(x, y, z) is a partial

γ-positive polynomial.

7. Concluding remarks

In this paper, we introduce the change of grammars method and we show that it is an

effective method for studying γ-positivity and partial γ-positivity. Along the same lines, one

may study multivariate extensions of asymmetric polynomials, such as multivariate orthogonal

polynomials. Since there is a bijection between Stirling permutations and perfect matchings

(see [29] for instance), it would be interesting to study the partial γ-positivity of multivariate

polynomials of perfect matchings. Recall that a perfect matching of [2n] can be seen as a fixed-

point free involution in S2n. Let I n be the set of all involutions in Sn and In(x) =
∑

π∈I n
xdes (π).

It is now well known that In(x) is symmetric and unimodal (see [6, 24] for instance). Let

In(x) =

b(n−1)/2c∑
k=0

a(n, k)xk(1 + x)n−1−2k.

Guo and Zeng [24] conjectured that a(n, k) ≥ 0. This conjecture still open. We end our paper

by proposing the following.
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Problem 20. Is there a statistic st on I n that makes the polynomial
∑

π∈I n
xdes (π)yasc (π)zst (π)

a partial γ-positive polynomial?
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[6] P. Brändén, Actions on permutations and unimodality of descent polynomials European J. Combin., 29

(2008), 514–531.

[7] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin., 15 (1994), 417–441.

[8] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci.,

117 (1993), 113–129.

[9] W.Y.C. Chen, R.X.J. Hao, H.R.L. Yang, Context-free grammars and multivariate stable polynomials over

Stirling permutations, arXiv:1208.1420.

[10] W.Y.C. Chen, A.M. Fu, Context-free grammars for permutations and increasing trees, Adv. in Appl. Math.,

82 (2017), 58–82.

[11] C.-O. Chow, On certain combinatorial expansions of the Eulerian polynomials, Adv. in Appl. Math., 41

(2008), 133–157.

[12] C.-O. Chow, On derangement polynomials of type B. II, J. Combin. Theory Ser. A, 116 (2009), 816–830.

[13] F.R.K. Chung, R.L. Graham, V.E. Hoggatt Jr., M. Kleiman, The number of Baxter permutations, J. Combin.

Theory Ser. A, 24 (1978), 382–394.
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