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ON CERTAIN COMBINATORIAL EXPANSIONS OF DESCENT
POLYNOMIALS AND THE CHANGE OF GRAMMARS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

ABSTRACT. In this paper, we study certain combinatorial expansions of descent polynomials
by using the change of context-free grammars method. We provide a unified approach to study
the y-positivity and the partial y-positivity of the descent polynomials of several combinatorial
structures, including the descent polynomials of permutations, derangements, Stirling permuta-
tions, Legendre-Stirling permutations and Jacobi-Stirling permutations. Moreover, we study a

group action on Stirling permutations and Jacobi-Stirling permutations due to Foata and Strehl.
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1. INTRODUCTION

In the past decades, symbolic methods have been developed extensively in combinatorics,
including umbral calculus [32], species [26], [38]), generating trees [13, 37] and context-free gram-
mars [8, [I4]. In this paper, we shall study descent polynomials by using context-free grammars.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in
monomials formed from letters in A. Following Chen [8], a context-free grammar over A is a
function G : A — Q[[A]] that replaces a letter in A by a formal function over A. The formal
derivative D is a linear operator defined with respect to a context-free grammar G. More
precisely, the derivative D = Dg: Q[[A]] — Q[[A]] is defined as follows: for x € A, we have
D(xz) = G(z); for a monomial u in Q[[A]], D(u) is defined so that D is a derivation, and for
a general element ¢ € Q[[A]], D(q) is defined by linearity. For example, if A = {z,y} and
G = {r — zy,y — y}, then D(z) = 2y, D*(z) = D(zy) = zy* + zy. The Chen’s grammar
has been found extremely useful in studying various combinatorial structures, including set
partitions, permutations, increasing trees, perfect matchings and so on. The reader is referred
to [10} 20} B0] for recent progress on this subject.

Let f(z) = Y1, fiz' be a symmetric polynomial, i.e., h; = h,_;. Then f(x) can be expanded
uniquely as f(z) = Z,ﬁjo Yex®(1 4+ 2)"~2¢ and it is said to be y-positive if v, > 0 (see [21]).
The v-positivity provides a natural approach to study symmetric and unimodal polynomials in
combinatorics (see [4] [6], 27, [35] for instance).

The purpose of this paper is to present a systematic method for studying certain expansions of

symmetric polynomials and asymmetric polynomials. The following definition is fundamental.
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Definition 1. Let p,(z,y, 2) be a three-variable polynomial. Suppose py,(x,y, z) has the following

expansion:
pn(xvyvz) = § E ’Yn,i,jQH,i,j(xayuZ)rmi,j(x+y)7
i

where qn; j(2,y,2) are three-variable polynomials and 1y, ; j(x) are one-variable polynomials. If
the coefficient of ' in the expansion is a ~y-positive polynomial for any i, then we say that

pn(x,y, 2) is a partial y-positive polynomial.

The partial y-positive polynomials occur very often in the study of the expansions of multi-
variable generalization of symmetric polynomials and asymmetric polynomials, see [27, [33], [35]
for instance.

Let [n] = {1,2,...,n}. Let &,, denote the symmetric group of all permutations of [n] and
let 7 = w(1)w(2)---7w(n) € &,. Let Des(m) = {i € [n] : w(i) > w(i +1)}. For a subset

S C [n], we define the characteristic monomial ug in the noncommutative monomial variables

{ a, ifi¢sS;
U; =

uUg = UjU * + + Uy_1, Where

b, ifies.
The ab-index of &,, is defined by
\I/n(av b) = Z UDes ()
71'6671

A classical result says that there exists a polynomial ®,(c,d) in the noncommuting variable ¢
and d such that

U, (a,b) = ®,(a + b,ab+ ba). (1)
The polynomial ®,(c,d) is called the cd-index of &,, (see [25] for instance). Motivated by (I,

the type of change of grammars considered in this paper is given as follows:

u=a+b,
{ v = ab,
where a, b, u,v are commuting variables. We show that descent polynomials can be systemati-
cally studied by using the change of context-free grammars method.
This paper is organized as follows. In Section [2] we collect some definitions, notation and
results that will be needed throughout this paper. In Section [3} we study derangement polyno-
mials of type B. In Section [4, we study the descent polynomials of Stirling permutations. In

Section [5] we study the descent polynomials of Legendre-Stirling permutations. In Section [6]

we study the descent polynomials of Jacobi-Stirling permutations.

2. PRELIMINARY

A descent (resp. an ascent) of a permutation m € &,, is a position ¢ such that m(i) > m(i+1)
(resp. m(i) < m(i + 1)), where 1 < i < n — 1. Denote by des(7) and asc (7) the numbers of

descents and ascents of 7, respectively. Then the equations

An(x) = Z xdes(ﬂ)+1 — Z xasc(w)+1 _ Zn: <Z>xk7

TeES, TeES, k=1
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define the Eulerian polynomial Ay(x) and the Fulerian number (}) (see [36, A008292]). The

following identity was attributed to Euler:
o0
an‘rn B (1Ak§f§2+1-
n=0
We say that a permutation 7 € &,, is a derangement if (i) # ¢ for any i € [n]. Let D, be
the set of derangements in &,. An excedance of a permutation m € &,, is a position ¢ such that
m(i) > i, where 1 <1i < n—1. Denote by exc () the number of excedances of 7. For any n > 1,
the derangement polynomial is defined by
dp(z) = Z gexe(m),
€Dy
The hyperoctahedral group By, is the group of signed permutations of +[n] such that m(—i) =
—m(i) for all 7, where +[n] = {£1,£2,...,4n}. Set m(0) = 0. For each m € B, we define
desp(m) =#{i€{0,1,2,...,n—1} | w(i) > w(i+ 1)}. Let

B, (z) = Z gdesB(m) — ZB(n,k;)xk.
k=0

mweBy,
The polynomial B, (x) is called an Eulerian polynomial of type B, while B(n,k) is called an
Eulerian number of type B (see [36, A060187]).

The ~-positivity of A, (x) was first studied by Foata and Schiitzenberger [18]. Let m =
m(D)m(2)---m(n) € &, with 7(0) = m(n+ 1) = 0. An index ¢ € [n] is a peak (resp. double
descent) of m if (i — 1) < w(i) > 7w(i + 1) (vesp. 7(i —1) > 7(i) > w(i + 1)). Let a(n,k)
be the number of permutations in &, with k& peaks and without double descent. Foata and
Schiitzenberger [18] discovered that

L(n+1)/2]

An(@)= > a(n,k)a"(1 4 z)"H 2, (2)
k=1

Moreover, the numbers a(n, k) satisfy the recurrence
a(n,k) = ka(n —1,k) + (2n — 4k + 4)a(n — 1,k — 1),

with the initial conditions a(1,1) = 1 and a(1,k) = 0 for £ > 2 (see [36, A101280]). Subse-
quently, Foata and Strehl [19] introduced the well known Foata-Strehl group action, by which
they partition &,, into equivalence classes, so that for each class C,

Z 2965 (1) — (1 4 g)n12,

weC
The ~-positivity of B,(xz) was extensively studied by Petersen [3I] and Chow [II]. The ~-
positivity of d,,(z) was studied by Shin and Zeng [35]. In recent years, y-positivity attracted
much attention, see [4 6], 27, 33| [34] and references therein.

The idea of change of grammars is illustrated in the proof of the following well known result.
Proposition 2 ([18, 31l 35]). The polynomials A, (z), Bn(z) and d,(x) are all y-positive.

Proof. We divide the proof into three parts.
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(i) Following Dumont [14, Section 2.1], if A = {z,y} and
G ={z—ay,y = ay},

then D" (z) = Y_)_; {})a*y" =% for n > 1. Note that D(zy) = zy(z+y) and D(z+y) =
2zy. Set u = xy and v = z +y. Then D(u) = wv and D(v) = 2u. It is easy to verify
that if A ={z,u,v} and

G ={zx — u,u — uv,v — 2u},

then there exist nonnegative integers a(n, k) such that

[(n+1)/2]
Dn(iﬁ) _ Z (n k) k n+1 Qk. (3)

k=0
From D""(z) = D(D"(z)), we see that numbers a(n, k) and a(n, k) satisfy the same
recurrence relation and initial conditions. Thus a(n, k) = a(n, k). When y = 1, then

reduces to (2).
(ii) According to [28, Theorem 10], if A = {z,y} and G = {x — xy?,y — 2%y}, then
D™(xy) = >.1_o B(n, k)z?k+1y2n=2k+1 Note that
D(xy) = wy(=® + y*), D(2* + y*) = 4a*y’
Set u = xy and v = 22 + y?. Then D(u) = uv, D(v) = 4u?. It is routine to check that if
A ={u,v} and
G = {u — w,v — 4}, (4)
then there exist nonnegative integers b(n, k) such that D" (u) = Zm/ 2} b(n, k)ukon—2k,
When y = 1, we get u = x and v = 1 + 2. Hence B, (z) = Ekn:/OQJ b(n, k)z* (1 4 z)" 2k,
(iii) For m € &,,, we define fix (1) = #{i € [n] : 7(i) =i} and dc (7w) = #{i € [n] : 7(i) < i}.
Following Dumont [14], Section 2.2], if A = {z,y,z,e} and G = {x — 2y, y — zy,z —

—e Z xexc ) ﬁx (7r)

7T€6n
We set u = zy,v =z +y. Then D(u) = wv, D(v) = 2u. If A ={e,z,u,v} and

xy,e — ez}, then

G={e—ez,z— uu— uw,v— 2u},

then there exist nonnegative integers d(n, k) such that D" (e)|,—o = e Z,EZ/EJ d(n, k)uFon=2k,
When y =1, we get u =2 and v =1+ z. Then for n > 2, we get

n/2]
Z d(n, k)z®(1 + z)" 2k

This completes the proof. ]

In the following sections, we will focus our attention on certain multivariate extension of
asymmetric polynomials. In particular, using modified Foata and Strehl’s group action, we
consider the group action on derangements of B,, Stirling permutations and Jacobi-Stirling

permutations.
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3. DERANGEMENT POLYNOMIALS OF TYPE B

3.1. Basic definitions and notation.

Let m € B,,. We say that i € [n] is a weak excedance of  if w(i) =i or w(|mw(i)|) > 7 (i) (see [T,
p. 431]). Let wexc (m) be the number of weak excedances of w. From [7, Theorem 3.15],

Bn(a:) _ Z pvexe (7r)
TEBR
A fized point of m € B,, is an index i € [n] such that 7(i) = i. A derangement of type B is a
signed permutation 7 € B,, with no fixed points. Let D2 be the set of derangements of B,,.
Following [12], the derangement polynomials of type B are defined by
af () =1, i) = 3 v,

neDE

The first few terms of d2(z) are given as follows:
dP(x) = 1,d8 (x) = 1+ 4x,dP (2) = 1 + 202 + 822, dP (x) = 1 + 72z + 1442” + 1623,

Given 7 € DE. Then wexc () = #{i € [n] | n(|7(i)|]) > 7(i)}. We say that i is an anti-
excedance of 7 if w(|m(i)|) < 7(i). Let aexc (m) be the number of anti-excedances of m. We say

that i is a singleton if (i) is a cycle of 7. Let single () be the number of singletons of 7. Hence
wexc (7) + aexc () + single (7) = n.

In the following discussion, we always write m by using its standard cycle decomposition, in
which each cycle is written with its largest entry last and the cycles are written in ascending
order of their last entry. For example, 351726 4 € D2 can be written as (6)(7,4)(3,1)(2,5). Let
(c1,c2,...,¢) be a cycle of m. We say that c; is called

e a cycle ascent in the cycle if ¢; < ¢jq1, where 1 < j <

a cycle descent in the cycle if ¢; > ¢j11, where 1 < j <7 and we set ¢; 41 = cy;

e a cycle double ascent in the cycle if ¢;_1 < ¢j < ¢j11, where 1 < j < 4;

e a cycle double descent in the cycle if ¢;_1 > ¢; > ¢j11, where 1 < j < 4;
Denote by cda (7) (resp. cdd (7)) the number of cycle double ascents (resp. cycle double descents)
of 7. As pointed out by Chow [I2} p. 819], if 7 € D2 with no singletons, then wexc (7) equals

the number cycle ascents and aexc (7) equals the number of cycle descents.

3.2. Main results.
Let
En(.%', n Z) _ Z pvexe () yaexc () Zsingle (ﬂ')
reDB

Very recently, we discovered the following lemma.
Lemma 3 ([30]). If A ={z,y,2,¢e} and
G={z—azy’y— 2y z— 22?273 e > ez}, (5)

then
D"(e) = eEn(xQ, y2, 24). (6)



6 S-M. MA, J. MA, AND Y.-N. YEH
Now we present the first main result of this paper.

Theorem 4. The polynomial E,(x,y, z) is a partial vy-positive polynomial. More precisely, for

n > 0, we have
[(n—i)/2] o
(,y, 2 Zz > gni )@y (x+y)" T, (7)
7=0

where the numbers gy (i,7) satisfy the recurrence relation
gn+1(1,7) = gn(i = 1,5) + 41+ i) gn(i + 1,5 — 1) + 2iign(i, j) + 4(n+ 2 —i = 2j)gn(i,j — 1), (8)
with the initial conditions ¢g1(1,0) =1 and g1(1,7) =0 for j # 0.
Proof. Consider the grammar . If we set s = e, t = 2%, u = 2y and v = 2% + 32, then
D(s) = st, D(t) = 4u?, D(u) = uv, D(v) = 4u?.
Thus, if A = {s,t,v,u} and
G = {s— st,t = 4u* u — uwv,v — 4u’}. 9)
then
Dn(S) — SZ fn(i,j, k)le'—‘,—lctz’—ju2(j—i—k:)Un—i—j—2l€7
i7j7k
where ¢, j, k range nonnegative integers satisfying ¢ > j and ¢+ j + k = n. Setting i — j = « and
j+k=p,wehave a+268=1i+j+ 2k =n+ k. Hence k = o + 28 — n. Therefore,

n_ L)/
() =s) t° Z > fala+ B =k B -k k)aPurmeP,
a=0

k<p
k=a+28—n

Setting
gn(aaﬁ) = Z fn(a+/8_k>/8_k>k)4ﬂ

k<pB
k=a+28—n

we obtain

n |(n-a)/2]

= SZ Z gnla, Bt uPyn—a=28, (10)
a=0 =

Comparing @ with , we get . Notlce that
D"(s) = D(D"(s))

n |(n—a)/2]

Z Z gn tau25vnfa726
— Szgn(avﬁ)(ta+lu2ﬂvn—a—2ﬁ + 4ata—1u25+2vn—a—2ﬂ

+ Qﬂtau2,8vn+1—a—2,8 + 4(n —a— 25)tau26+2vn—1—a—26)_

By comparing coefficients on the both sides of D""1(s) = D(D"(s)), we get . g
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Let gp(z,y) = Zz j gn(i,7)z'y’. Multiplying both sides of the recurrence relation by ziy?

and summing over all 7, j, we get that the polynomials g, (z,y) satisfy the recurrence relation

gn1(z,y) = (z + 4ny)gn(z,y) + 4y(1 - l‘)a%gn(w, y) +2y(1 - 4y)§ygn(:v, y),
with the initial condition gg(z,y) = 1. The first few of terms of g,(x,y) are given as follows:
g1(z,y) =z, go(x,y) = %44y, g3(z,y) = 2°+122y+8y, ga(x,y) = x+322y+2422y+16y+80y>.
Let an(z) =3 )5 a(n, k)z*, where the numbers a(n, k) are defined by (2).

Corollary 5. For > 0, we have

n—1

g1 (5,9) = 2gn(,9) + 3 (Z) 2K gy, )i ().

k=0
Proof. Let G be the grammar (9). Note that D(t) = 4u?, D*(t) = 8u?v. Assume that
Dn(t) _ 2n+1 Za(n, k)u%vnﬂf%.
k>1

for n > 1. Hence

D"FY(t) = D(D"(t))

- D 2n+1 Za(njk)u%evn+172k
k>1

— gn+2 Za(m k) <ku2kvn+272k ron+1— Qk)u2k+27)n72k> _
k>1
Therefore, a(n + 1,k) = ka(n,k) + 2(n + 3 — 2k)a(n,k — 1). It is clear that a(1,1) = 1 and
a(l,k) =0 for k # 1. Since a(n, k) and a(n, k) satisfy the same recurrence relation and initial

conditions, so they agree. Using the Leibniz’s formula, we get

D" (s) = D"(st) = tD"(s +Z< ) s)D" (1),

which yields the desired recurrence relation. O
Let
n [(n—i)/2]
=Y > gnlisi)
i=0  j=0

The first few terms of g, are g = 1,91 = 1,92 = 5,93 = 21,94 = 153, g5 = 1209. It should be
noted that the numbers g,, appear as A182825 in [36].
Theorem 6. Forn > 1, we have

gn(i, ) = #{m € DB | single (1) = i, wexc (1) = j,cda (1) = 0}. (11)
Proof. By using Foata-Strehl’s group action (see [19, 27] for instance), we define the action ¢;

on DB as follows. Let ¢ = (c1,c2,...,¢;) be a cycle of 7 € DB, Since ¢; = max{cy,ca,...,¢},

we set ¢g = 400 and ¢ = (co,c1,¢2...,6).
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e If ¢ is a cycle double ascent in ¢, then ¢;(¢) is obtained by deleting ¢ and then inserting
cx between c¢; and c¢j41, where j is the largest index satisfying 0 < j < k and ¢j > ¢; >
Cj+1;

e If ¢; is a cycle double descent in ¢, then ¢;(¢) is obtained by deleting ¢ and then
inserting ¢, between c; and c¢j;1, where j is the smallest index satisfying k < j < ¢ and
Cj < Cp < Cjt1;

Given m € DB, We define the Foata-Strehl’s group action on DZ by

/() = wi(m), if i is a cycle double ascent or cycle double descent;
vi m, otherwise.

It is clear that the ¢)’s are involutions and that they commute. For any subset S C [n], we

may define the function ¢ : DZ — DB by ¢ls(m) = [] #}(7). Hence the group Z3" acts on DZ
€S

via the function ¢y, where S C [n]. Let Dasc (7) and Ddes () denote the sets of cycle double

ascents and cycle double descents of 7, respectively. Let S = S(m) = Dasc (7) U Ddes (7). Note

that Dasc (¢5(m)) = Ddes (), Ddes (¢’s(m)) = Dasc (7). We call two permutations in DF are

equivalent if one can be obtained from the other by using ¢’. It is clear that each equivalence

class contains exactly one element with no cycle double ascent. This completes the proof. [

4. STIRLING PERMUTATIONS

4.1. Basic definitions and notation.

The Stirling numbers of the second kind {Z} count the number of ways to partition [n] into k

non-empty subsets. Counting all functions from [n] to {1,2,...,z} yields
n n k—1
k=0 =0

In [23], Gessel and Stanley considered the polynomial Cj(z) defined by
i n+k o Ci(x)
| T (1)t

and they found that Cj(z) is the descent polynomial of Stirling permutations of order k. The

first few terms of Cy(z) are given as follows:
Ci(z) = x,Co(x) = z + 222, C3(2) = = + 82° + 623, Cy(x) = = + 2222 + 582> + 242",

A Stirling permutation of order n is a permutation of the multiset {1,1,2,2,... ,n,n} such
that for each i, 1 < ¢ < n, all entries between the two occurrences of ¢ are larger than i.
Denote by Q,, the set of Stirling permutations of order n. Let 0 = o102 09, € Q, and set
00 = oon+1 = 0. For 0 < i < 2n, we say that an index i is a descent (resp. ascent, plateau) of
o if o; > 0441 (resp. o; < 041, 0; = 0i+1). Let des (o), asc (o) and plat (o) be the numbers of
descents, ascents and plateaus of o, respectively. A classical result of Bona [5] says that descents,

ascents and plateaus have the same distribution over Q,,, i.e.,

C’n(w): Z xdesaz Z 7ASCo Z xplata‘ (12)

c€Qn 0c€Qn 0€Qn
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Let Cp(z) =Y p_, C(n, k;)xk Chen and Fu [10, Theorem 2.3] discovered that if A = {z,y} and
G = {z — zy?,y — xy?}, then D™(z) = S}, C(n, k)aky?n+1-F,

4.2. Main results.

Define

Cn($7 Y, Z) — Z xascoydes (U)Zplata‘
0€Qn

The following lemma will be used in our discussion, which implies
Lemma 7 ([9]). If A= {z,y,2z} and

G ={z — zyz,y = zyz,z — zyz}, (13)
then D™ (z) = Cp(x,y, 2).

Proof. We first introduce a grammatical labeling of o € Q,, as follows:

(Ly) If 7 is an ascent, then put a superscript label z right after o;;
(Lo) If i is a descent, then put a superscript label y right after o;;
(L3) If i is a plateau, then put a superscript label z right after o;.

Note that the weight of o is given by w(o) = £ (@) yydes (9) zplat (o) We proceed by induction on
n. For n = 1, we have Q; = {*171¥} and Qy = {¥1717272¥ ¥ 172%2Y1¥ * 272Y1%1¥}. Note that
D(z) = xyz, D*(z) = D(zyz) = 2y?2? + 2%y2? + 2%y?2. Then the weight of “171¥ is given by
D(z), and the sum of weights of the elements in Qs is given by D?(x). Hence the result holds
for n = 1,2. Suppose we get all labeled permutations in Q,,_1, where n > 3. Let ¢’ be obtained

from o € Q,_1 by inserting the pair nn. Then the changes of labeling are illustrated as follows:
0T OOy
0y 0T
"'Ufai—i-l"' — ---anznyai+1--- .

In each case, the insertion of nn corresponds to the operator D. It is easy to check that the

action of D on elements of Q,,_1 generates all elements of Q,. This completes the proof. O
We can now present the second main result of this paper.

Theorem 8. Forn > 1, we have

|(2n+1—i)/2]

n
Co(z,y,2) =Y &' D> ymag(yz) (y+2)> %, (14)
i=1 §=0
Let vy (z,y) = >y ijo Ynyij@'y’. Then the polynomials v, (x,y) satisfy the recurrence rela-
tion
0 0
Tn+1(2,y) = (40 + 22y (@, y) + 2y(l = 22) 5o yn (@, y) +2y(l - 4y)8fy7n(x, y),  (15)

with the initial condition vy1(z,y) = zy.
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Proof. We first consider a change of the grammar . Setting w = z,u = yz and v = y + 2z,
we get D(w) = wu, D(u) = wuv, D(v) = 2wu. If A= {w,u,v} and

G = {w — wu,u = wuv,v — 2wu},

then it is routine to verify that

n (2n+1-1)/2]
Dn(w) — Z Z ,yn7i’jw1ujv2n+17272]'
i=1 j=1

Then upon taking w = z,u = yz and v = y + 2z, we get . Note that

Dn+1(,w) - D § :,yn’i7jwiujv2n+l—i—2j
i?j
— § :’Yn,i,j (iwzu]+lv2n+17172j +jwz+1ujv2n+271723 + 2(277, B [ 2j)wz+1u]+1v2n71723) )

i7j
Then the numbers v, ; ; satisfy the recurrence relation
Ynt1ij = Vnij—1 + Jni—1,5 + 220 +4 — i — 2§)vni-1,5-1, (16)

with the initial conditions v1,1,1 = 1 and ~v;,;; = 0 for (¢,7) # (1,1). Multiplying both sides of
this recurrence relation by 2%y’ and summing over all 4, j, we get . O

The first few terms of v, (x,y) are given as follows:

7(z,y) = 2y,

el y) = zy® + 2y,

v3(x,y) = 23y + 42’y + xy® + 223y,

a(z,y) = aty + 1123y% + 11223 + 2y + 82192 + 142393,

Recall that the Eulerian numbers satisfy the recurrence relation
n+1 /n (22— n
=1 n —1
i i i—1/’
with the initial conditions <i> =1 and <1> = 0 for ¢ # 1. We have the following result.

Proposition 9. Forn > 1, we have Yy int1—i = <7;>

Proof. Set F(n,i) = Ynin+t1—i- Then F(n,i—1) = y5i-1,n42—i. Using , it is easy to verify

that 7,5 = 0 for i + j < n. Thus the numbers F'(n, i) satisfy the recurrence relation
Fn+1,i)=iF(n,i)+ (n+2—14)F(n,i— 1),

which yields the desired result. g
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4.3. Partial v-coefficients.

Let 0 = 090102 - 09,0941 € Qn, Where o9 = oap+1 = 0. A double ascent (resp. double
descent, left ascent-plateau, descent-plateau) of o is an index i such that o;_1 < 0; < 041 (resp.
Oi1 > 0; > 0it1, 0i—1 < 03 = 04y1, 0j—1 > 0; = 0i+1), where ¢ € [2n — 1]. Denote by dasc (o)
(resp. ddes (o), laplat (o), desp (¢)) the number of double ascents (resp. double descents, left
ascent-plateaus, descent-plateaus) of o.

Theorem 10. Forn > 1, we have
Yn,ij = #{0 € Q| des (o) = i,laplat (o) = j,desp (o) = 0}.

Proof. Let Q. ; = {0 € Q| des(0) = i,laplat (o) = j,desp (¢) = 0}. Let 0 € Q,,. We first
define two operations on ¢. For any 0 < k < 2n, let 6,41 1(0) denote the element of Q11
obtained from o by inserting the pair (n+ 1)(n+ 1) between oy and o1, and let ¥, (o) denote
the element of Q,_1 obtained from ¢ by deleting the pair nn. We define

Des (o) ={k € 2n] | ok > 0k41},
Laplat (o) = {k € [2n] | ox—1 < 0k = 41},
Dasc (O’) = {/ﬂ € [QTL] ‘ Ok—1 < O < Jk+1}.
For any o € Q. j, we have |Des (0)| + 2|Laplat (¢)| + |Dasc (¢)| = 2n + 1, since desp (o) = 0.
Thus, |Dasc (o) =2n+1—i — 2j.

For any o € Qpy1.i,;, denote by r = 7(o) the index of the first occurrence of n+ 1 in o. In

other words, 0, = 0,41 = n + 1. Then we partition the set Q,1.;; into four subsets:

1

Oni14; =10 € Qny1iij | 0r—1 > 0ry2}
2

Qi1 =10 € Q14

3
Qi = {0 € Qniriyj

Or—2 < Op—1 = 0r+2}

Or—1 < Opy2 < 0r43}
i1y = 10 € Qurij | or—2 > 021 = 042}
Claim 1. There is a bijection ¢y : Q}Hlﬂ.,j — {(0,k) | 0 € Qnij—1 and k € Des (0)}.

For any o € Q7lt+1;i,jv note that ¢,41(0) € Qp.ij—1 and 7(0) — 1 € Des (¥p+1(0)). We define
the map ¢1: Q)1 ; — {(0,k) | 0 € Qi j—1 and k € Des (o)} by letting

d)l(a) = (¢n+1(0)7r(0) - 1)'

The inverse of ¢; ' is given by ¢; (0, k) = Op11 4(0).

Claim 2. There is a bijection ¢ : Q?L-‘rl;i,j — {(0,k) | 0 € Qn:i—1,; and k € Laplat (0)}.

For any o € QzH*l;i,j’ note that ¢,41(0) € Qp;i—1; and r(o) — 1 € Laplat (¢,41(0)). We
define the map ¢ : Qiﬂ;i,j — {(0,k) | 0 € Qni—1,; and k € Laplat (o)} by letting

¢2(0) = (Yny1(0),7(0) = 1).

The inverse of ¢, ' is given by ¢5 (0, k) = Opr1 1(0).
Claim 3. There is a bijection ¢3 : Qi_ﬂm — {(0,k) |0 € Qnii—1,—1 and k € Dasc (0)}.
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For any o € Qiﬂ;i,j, note that ¥n41(0) € Qpii—1,j—1 and r(o) — 1 € Dasc (¢Yp4+1(0)). We
define the map ¢3 : Qi—&—l;i,j — {(0,k) | 0 € Qpnii—1,j—1 and k € Dasc (o)} by letting ¢3(0) =
(n+1(0),7(c) — 1). The inverse of ¢5 " is given by ¢3* (0, k) = Opy14(0).

Claim 4. There is a bijection ¢4 : Qiﬂﬂ.,j — {(0,k) | 0 € Qn;i—1,j—1 and k € Dasc (0)}.

Let k € [2n] and let 0 € Q,,. We define a modified Foata-Strehl’s group action ¢ as follows:

e If k is a double ascent then ¢y (0) is obtained by moving oy to the left of the second oy,
which forms a new pleateau oioy;

e If k is a descent-plateau then ¢y (o) is obtained by moving o}, to the right of o, where
j=max{s €{0,1,2,...,k — 1} : 05 < o} }.

For instance, if o = 2447887332115665, then
p1(0) = 4478873322115665, ¢4(0) = 2448877332115665,

w9 0 pi(0) =0 and pg 0 p4(0) = o, where o denote the composition operation.
4

n+15i,5°
and @,(5)—19Un+1(0) € Qnii—1,j-1- Let 0’ = ¢p(5)—10¥nt1(0). Read o' from left to right and let

For any o0 € Q note that the index (o) — 1 is the unique descent-plateau in ;41 (o)
p be the index of the first occurrence of the integer 0,(,)_1. Then p € Dasc (¢,(5)—1 © Pn+1(0))-
Therefore, we define the map ¢4 : Qflﬂm — {(0,k) | 0 € Qn;i—1,j—1 and k € Dasc (o)} by
letting ¢4(0) = (¢r(g)=1 © PYn+1(0),p). For any o € Qyi—1,j-1 and k € Dasc (o), the inverse of
oyt is given by ¢; (0, k) = Opy1.-(pr(0)), where 7 is the unique descent-plateau in ¢y, (c). Thus
¢4 is the desired bijection.

In conclusion, we have

|Qnt 1504l = |Qnetsigl + 19| + 190151 + Qi
= 1| Qi j—1| + 7|CQnsi—1,5] +2(2n + 4 — i = 25)| Qnii—1,5-1/-

It is clear that 91;171 = {11} and Ql,i,j = @ for (2,]) 7& (1,1) SO, Y111 = 1= |Ql;171|
and v1,,; = 0 = |Qq, ;| for (4,7) # (1,1). By induction, we get |Qp41:i| = Yn+1,i,; and this
completes the proof. O

5. LEGENDRE-STIRLING PERMUTATIONS

5.1. Basic definitions and notation.

The Legendre-Stirling numbers of the second kind LS (n, k) first arose in the study of a certain
differential operator related to Legendre polynomials (see [16]). The numbers LS (n, k) can be
defined as follows:

n k—1
2" = LS (n,k) [[(z —i(i + 1)),

§=0 i=0
and satisfy the recurrence relation LS (n,k) =LS(n — 1,k —1) + k(k+ 1)LS (n — 1, k), with the
initial conditions LS (0,0) = 1 and LS (0, k) = 0 for £ > 1. Andrews and Littlejohn [3] discovered
that LS (n, k) is the number of Legendre-Stirling set partitions of the set {1,1,2,2,...,n,n} into
k blocks. Subsequently, Egge [15] considered the polynomial Ly (z) defined by
Li(x)

n=0
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and found that Ly(z) is the descent polynomial of Legendre-Stirling permutations of order k.
The reader is referred to [2] for further properties of the Legendre-Stirling numbers.

For n > 1, let N,, denote the multiset {1,1,1,2,2,2,...,n,n,7}, in which we have two
unbarred copies and one barred copy of each integer i, where 1 < i < n. In this section, we
always assume that the elements of N,, are ordered by 1 =1<2 =2 < --- < = n. Here the
k = k means that kk count as a plateau.

A Legendre-Stirling permutation of order n is a permutation of N,, such that if i < j < k,
m; and 7, are both unbarred and m; = m, then 7; > m;. Let LS,, denote the set of Legendre-
Stirling permutations of order n. Let m = mymy - - - w3, € LS, and we always set mg = 73,41 = 0.
An index i is a descent (resp. ascent, plateau) of m if m; > w1 (resp. m; < Wig1, T = Tit1)-
Hence the index i = 1 is always an ascent and i = 3k is always a descent. Denote by des ()
(resp. asc(m), plat (7)) the number of descents (resp. ascents, plateaus) of m. Let Ly(x) =

> orels, 249e (™) The first few terms of L, (z) are given as follows:
Li(x) = 2z, Ly(z) = 4z 4 242 4 1223, Ls(z) = 8z + 24022 + 984> + 864z* + 14425,

Let LSD,, be the set of Legendre-Stirling permutations of the multiset ND,, = N, \ {n,n},
ie., ND, ={1,1,1,2,2,2,...,n—1,n— 1,n — 1,n}.

5.2. Main results.

For n > 1, we define

Hn(x,% z) — Z e (ﬂ)flydes (ﬂ)*lzplat (71-)7
7eLSD ,,

Ly(x,y,2) = Z 25¢ () des () plat ()
TELS

Lemma 11. Let A = {u,v,x,y, 2} and

G1 = {z = uwv,y = uv, z — uv}, (17)
2,2 2,2 2,2 2 2

Go={z Y2y 2V 2, JTVZ, 2% 55 (18)
e uv s v u

Then for n > 1, we have
DI(DQDl)nil(x) - uan(‘r7y7 Z)u (DQDl)n(x) = Ln(fE, Y, 2)7
where Dy Dy is a composition operation, i.e., (DaD1)"(x) = Dy (D1 ((D2D1)"())).

Proof. Note that every permutations in LLS,, can be obtained from a permutation in L.S,,_1 by
first inserting 7 between two entries, and then inserting the pair nn between two entries of this

new permutation. We first introduce a grammatical labeling of = € LSD ,, as follows:

(L1) Put a superscript label u immediately before the entry 7 and a superscript label v right
after m;

(L2) If i is an ascent and m;+1 # 7, then put a superscript label x right after m;;

(L3) If i is a descent and 7; # 7, then put a superscript label y right after ;;

(L4) If i is a plateau, then put a superscript label z right after ;.
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Thus, the weight of 7 € LSD,, is given by w(r) = uvx?s (M) —1ydes(m)=1,plat (7)  We then intro-
duce a grammatical labeling of w € LS, as follows:

(Ly) If i is an ascent, then put a superscript label x right after m;

(Lo) If i is a descent, then put a superscript label y right after 7;;

(L3) If i is a plateau, then put a superscript label z right after ;.

Thus, the weight of m € LS, is given by w(m) = 225 (7)gdes (r) zplat (r)

We proceed by induction on n. When n = 1, we have LSD; = {“1"}, LS; = {*T°171¥,* 1?1*1"}.
Note that Di(x) = uv, (DoD1)(x) = Do(D1(x)) = Da(uv) = 2xyz?. Then the weight of T is
given by Dp(z), and the sum of weights of the elements in LS is given by (D2D;)(z). Hence
the results hold for n = 1. Suppose we get all labeled permutations in LS ,_1, where n > 2. Let
7' be obtained from 7 € LS,,_1 by inserting the entry 7 to a position with a label z,y or z. The

Changes of labeling are illustrated as follows:
T U=V
Y =

z U=V

In each case, the insertion of @ corresponds to the operator D; defined by . Let 7 be obtained
from 7 € LSD ,, by inserting the pair nn. We distinguish the following cases:

(c1) If nn is inserted at a position with the label z,y or z, then the changes of labeling can

be illustrated as follows:

xT

x

xT

¥4 = L2 .

(c2) If nn is inserted at a position with the label u, then the change of labeling is illustrated

u

as follows: ---¥|V o= - TRy ...,

(c2) If nn is inserted at a position with the label v, then the change of labeling is illustrated

uﬁvaﬁznzny

as follows: - - -
In each case, the insertion of the pair nn corresponds to the operator Dy defined by . It is
routine to check that the action of Dy Dy on Legendre-Stirling permutations of LS ,,_1 generates

all the Legendre-Stirling permutations of LS ;. This completes the proof. O

We can now present the third main result of this paper.

Theorem 12. Forn > 1, we have

-2 | (3n—3—1i)/2]

Hy(z,y,z) = Z P Z ho (i, §) (zy) (z + y)3n—8-i=2,
i=1

j=0

2n [(3n+1—i)/2]

Ln(z,y,2) = Z St Z 0o (i, §) () (z + y) 312

i=1 j=1
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where the numbers hy(i,7) and £,(i,7) satisfy the recurrence relations
ln(iy3) =2hp(i — 2,5 — 1) +ihp(i,j —2)+ (j — Dhp(i — 1,5 — 1)+
23n+2—i— 2))hn(i — 1,5 — 2),
hnt1(i7) = (@ + Dl (i +1,5)+ (G + D)ln(i, 7+ 1) +2Bn+ 1 — i — 25)0,(1,7),
with the initial conditions h1(0,0) = 1 and hi(i,j) = 0 for (i,5) # (0,0), ¢1(2,1) = 2 and
61(6,3) = 0 for (i,7) # (2,1).
Proof. Consider the grammars and . Setting a = z + y,b = xy, we get

b? b? b?
Di(a) = 2uv, Di(b) = auv, Dy(x) =~ Daly) =~ Da(z) =~

22b 2%b 22b2 zab?
Ds(u) = TDQ() 7»D2(G) , Dy (b) =

uv
Then the change of grammars are given as follows: A = {a, b,z,y,z,u,v} and

Gs ={z = uv,z = uwv,a — 2uv,b — auv}, (19)
2b? b? b? b &) 22b° b?
G4_{x—>—y—>z—z—>z— —>Z—,v—>z—,a—> : ,b—>w }. (20)
uv uw v u uw uw

It is routine to verify that there exist nonnegative integers hy(i,7) and £,(4, 7) such that

-2 [(3n-3-i)/2] | N
D3(DyD3)" H(z) = uv Z 2" Z B (i, )07 a3 3772

i=1 j=0
2n A L(3n+1—i)/2j A A A
(DaDs)™ (@) => 2" > lu(i, )t a®

Jj=1

Then upon taking a = x + y and b = zy, we get the expansions of H,(x,y,z) and L,(x,y, z).

From
Dy(D3(DyD3)"( Zh (i, ) uvz'l g3 3712

_ Z h(i, §) (221207 T30 =3=1=21 | jipi+23n—3=i=2j) 4

Z h(iy §) (G210 27172 4 9(3p — 3 — j — 2j) i+ Lpit2g3n—1-i=2))
and

D3((D4D3)"(z)) = D3 Zﬁn(z’,j)zibja?mﬂ—i—m
i,J

= uv Zen(i7j)iziflbja3n+lfi72j T ww ZEn(i7j)jzibjfla3n+27if2j+
bJ irj
uvZf i, 7)2(3n + 1 — i — 2§)2 b a2
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we get the desired recurrence relations. In particular, D3(z) = uv, DyD3(x) = 222b, D3(222b) =
dzbuv + 22%auv. Thus, h1(0,0) = 1,he(1,1) = 4,h(2,0) = 2 and ¢1(2,1) = 2. This completes
the proof. O

Using and , it is not hard to verify that ¢, (i, j) satisfy the recurrence relation

lpt1(3,j) =i(i+ Dlp(i + 1,5 —2) + 2i(j — 1)ln (3,5 — 1) + 57 — D)lp(i — 1,5)+
2§l (i —2,5)+4i(Bn+5—1—2j)0p(i,j —2) +4(Bn+5—i—25)0(i — 2,5 — 1)+
A4Bn+6—i—25)Bn+5—i—25)l,(i — 1,5 —2)+
202 —2)Bn+4—i—2j)+i+j—2)0, (i — 1,5 —1),

with the initial conditions ¢1(2,1) = 2 and ¢;(i,7) = 0 for (i,7) # (2,1).

We define
2n—2 | (3n—3—1)/2) 2n [ (3n+1—i)/2] o
holz,y) =Y > hali,f)a'y, Z Z i, 7).
=1 j=0

Using Theorem multiplying both sides of the recurrence relations of hy (i, ) and £,(i,j) by
x'y’ and summing over all 4, j, we get that

0 0
U2, y) = 2y(6ny — 6y + 22)hy(7,y) + 2y*(1 — 20) 5 hn(,y) + zy?(1 — 4y)afyhn(m, Y),

hnt1(z,y) = (6n+2)0,(z,y) + (1 — 2x)aax€n(az, y)+ (11— 4y)§y€n(a:, Y).

The first few terms of the polynomials h,(z,y) and ¢,(z,y) are given as follows:

= dzy® + 822%y? + 1223y% + 4aty,
= 4y> 4 28zy° + 1622y + 5222y? + 4023y + 8x4y + 474,

6. JACOBI-STIRLING PERMUTATIONS

6.1. Definitions and notation.
The Jacobi-Stirling numbers JS (n, k; z) were discovered as a result of a problem involving the
spectral theory of powers of the classical second-order Jacobi differential expression (see [3} [17]),

and they can be defined as follows:

n k—1
Z (n,k; 2) H(m—z(z—i—z))
k=0 =0

In particular, JS (n,k;1) = LS (n,k). The reader is referred to Andrews et al. [1] for further
properties of the Jacobi-Stirling numbers. The Jacobi-Stirling polynomial of the second kind is



ON COMBINATORIAL EXPANSIONS OF DESCENT POLYNOMIALS 17

defined by fi(n;2) = JS (n+k,n; z). The coefficient py ;(n) of 2% in fi(n; 2) is called the Jacobi-
Stirling coefficient of the second for 0 < i < k. Gessel, Lin and Zeng [22] found a combinatorial
interpretation of the polynomial Ay ;(x) defined by
A T
> pra(n)a” = k:(2)

(1 — g)3k—i+1"

Define the multiset M), = {1,1,1,2,2,2,...,k,k,k}, in which we have two unbarred copies
and one barred copy of each integer i, where 1 < i < k. In this section, we always assume that

the elements of My are ordered by
T<l1<2<2<---<k<k.

A permutation of My, is a Jacobi-Stirling permutation if for each i, 1 < i < k, all entries between
the two occurrences of the unbarred ¢ are larger than i. Let JSP; denote the set of Jacobi-
Stirling permutations of M. For example, JSP1 = {111,111}. Let m = mymy--- w3, € JSPy.
As usual, we always set mg = w311 = 0. In the same way as in Legendre-Stirling permutation,

we define

) =#{i € Bn] [ mi > mipa},

asc (m) = #{i €{0,1,2,...,3n — 1} | m; < miy1},
y=#{i€Bn—1]|m =mit1}-

It follow from [22, Theorem 2] that

(1 o :L‘)3k+1 Zpk,o(n)fﬂn _ Z xdes (ﬂ')‘

nz() TFEJSPk

des (7

plat (7

6.2. Main results.
Define
Sn(x, n Z) _ Z 235¢ (ﬁ)ydes (ﬂ')zplat (7r)
7eJSP
The first few terms of S, (z,y, z) are given as follows:
Si(z,y,2) = zy(z +y)z,
So(z,y,2) = (zy)2(322 + 10zy + 3y*)z + zy(z® + 1122y + 11ay? + 3) 2%,
Ss(z,y,2) = (xy)3 (1723 + 1192%y 4+ 119zy> + 17y3) 2+

(zy)? (182" + 28423y + 64422y + 284zy® + 18y*) 22+

)
(zy)(2° + 572ty + 30223y? + 3022%y° + 57xy* + y°)2°.
Lemma 13. Let A = {x,y,z} and

G ={z = 2y,y = zy,z = xy}, Ga={x — zyz,y — vyz,z — xyz}. (21)
Then for n > 1, we have (D2D1)™(x) = (D2D1)"(y) = (D2D1)"(2) = Sn(z,y, 2).

Proof. We first introduce a grammatical labeling of 7 € JSP ,, as follows:

Lq) If 7 is an ascent, then put a superscript label z right after m;;
) p

(Lo) If i is a descent, then put a superscript label y right after 7;;
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(L3) If i is a plateau, then put a superscript label z right after ;.
Note that the weight of 7 is given by w(r) = 22 (T)ydes (7) ;plat (1)
We proceed by induction on n. For n = 1, we have JSP | = {*1°171Y, *171¥1"}. Note that
(D2D1)(z) = (D2 D1)(y) = (D2 D1)(2) = xy’z + 2?yz.

Hence the result holds for n = 1. Note that any permutation of JSP, is obtained from a
permutation of JSP,,_1 by first inserting the element 7 and then inserting the pair nn.
We first insert m and the changes of labeling are illustrated as follows:
'.'ﬂ-iyﬂ-i—‘rl.'. — .'.ﬂ-gﬁyﬂ-i-‘rl... ;
In each case, the insertion of  corresponds to the operator Di. We then insert the pair nn and
the changes of labeling are illustrated as follows:
In each case, the insertion of the pair nn corresponds to the operator Ds. It is easy to check that

the action of DsDq on Jacobi-Stirling permutations of JSP,_1 generates all te Jacobi-Stirling
permutations of JSP,,. This completes the proof. O

We can now present the fouth main result of this paper.

Theorem 14. For n > 1, we have
n [(3n+1—i)/2]

Su(@y,2) =) 20 Y salig)(ay) (@ +y) Y, (22)
i=1 j=1

where the numbers sy (i,7) satisfy the recurrence relation
Snt1(t,7) =i+ Dsp(i+ 1,5 —2) +i(2) — V)sp(i,j — 1) +4i(Bn+ 5 — i — 2j)s,(i,5 — 2)+
jQSn(’L' —1L,)+MAl-1DBn+4—i—2j)+6n+6—2i—2j)s,(i — 1,5 — 1)+
ABn+6—i—2))(3n+5—i—2j)sn(i— 1,5 —2),
with the initial conditions so(1,0) =1 and so(i,j) =0 for (i,75) # (1,0).
Proof. Consider the grammars . Setting a = z,b = x +y, c = xy, we get Dy(a) = ¢, D1(b) =
2¢,D1(c) = be and Ds(a) = ac, D2(b) = 2ac, D2(c) = abc. Then the change of grammars are

given as follows: A = {a,b,c} and
Gz ={a—¢,b—2c,c— bc}, Gy = {a — ac,b— 2ac,c — abc}. (23)

Thus, we have (D4D3)"(a) = >_, i 1 Tn(i, J, k)a'hlc¥. This expansion can be written in the form

(DaD3)"(2) = Y Tu(i,j, k)2 (z + y)’ (xy)".
1,7,k
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By Lemma we see that the degree of each term of >, T (i, j, k)2 (x + y) (xy)* is 3n + 1
and 1 < deg(z) <n is from 1 to n. Thus, we can set s,(i,7) = T, (¢, j, k) and write (D4D3)"(a)

as follows:
n [(3n+1—i)/2]

(D4D3)"(a) Z Z Sn(i,§)aldp3nT1=i=2, (24)

Then upon taking a = z,b = x4y and c = xy, we get . It follows from that s, (i,7) > 0.
In particular, since DyD3(a) = D4(c) = abc and (D4D3)?(a) = a(3b*c® + 4¢3) + a?(b3c + 8bc?),
we have s1(1,1) = 1,s2(1,2) = 3,52(1,3) =4, s2(2,1) = 1, 52(2,2) = 8. For convenience, set k =
3n+1—1i—2j. Note that D3(D4D3)"(a) = >_, ; sn(i,j)(ia LItk 4 jal T pR L 4 2kal I TIDR L),
It follows that

Dy (D3(D4D3)"(a))
an Z ] a1tk +]azcjbk+1+2kazcj+lbk 1)
_ an i,9) (i = Da' 2 4 i(j + Dale TP 4 2ikale 2R T)

3 sali, ) (z‘jalcﬂ“b’““ + 20 I 9k + 1)ai+1c7'+1bk) n

1,3

3 salis ) (Zikaicj”bk_l 2(j + ka1 I + 4k(k — 1)a i+1c7‘+2bk—2).

i,J
On the other hand, (D4sD3)"*!(a) = Do $n11(4,7)a’cb*3.  Comparing the coefficient of
a’c?bF3 in both sides of (DyD3)"T'(a) = D4 (D3(D4D3)"(a)), we get the desired recurrence

relation. 0

Define JSP,,;, = {m € JSP,, : plat (7) = k}. Let 9J(m) be the permutation obtained from
m € JSP,, by deleting all of the first unbarred 7 from left to right, where i € [n]. For example,
9(1331T 224424 3) = 31T 2424 3. Let JSP,,,, = {¥(n) : 7 € JSP,,,,}. Note that #JSP,,,, =
(2n)!. Then ¥ is a bijection from JSP,, ,, to Sa,. Therefore,

[(2n+1)/2] ‘ ‘
Z Sn(n,])(xy)j(x + y)2n+1—2] _ Z xdes (7r)+1yasc(7r)+1_
j=1 TE€EG2an

Let JSPD ,, denote the set of Jacobi-Stirling permutations of the multiset M D,, = M, \{n,n}.
In particular, JSPD; = {1} and JSPD, = {2 111,1 211,1121,1112,2111, 1211, 112 1,111 2}.
We define

T, ((E, n Z) _ Z 7S¢ (7r)ydes (W)zplat (m) )
r€JSPD ,
Along the same lines of the proof of Theorem one can derive that for n > 1,

D1 (DaDy)" H(x) = Dy(D2D1)" (y) = D1(D2D1)" ' (2) = Tn(x,y, 2),

where
n-1  |(Bn-1-i)/2] o
Tu@,g,2) = 2 3 tali ) (ay) (@ +y)* 7,
=0 j=1
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In particular,

12n—1]/2
Z tn(n — 1,j)(ZL‘y)j($ + y)Qn—Qj _ Z pdes (7r)+1yasc (m)+1
Jj=1 TES2,—1
Define
n [(3n+1—i)/2] .
Sn(xy Z/) = Z Sn(iaj)l‘zyja
i=1 =0

It follows from that
D3(DyD3)" (a) = tn(i,§)a I P12 (25)

Combining and (25)), we get the following result.

Proposition 15. Forn > 1, the numbers sy,(i,7) and t,(i,j) satisfy the recurrence relation

sn(i,J) = itn(i,J — 1) + jtn(i = 1,5) +2@n + 2 —i = 2j)tn (1 — 1,7 — 1),
tna1(6,4) = (i 4+ Dsn(i + 1,5 — 1) 4+ jsn(i, §) + 2Bn+ 3 — i — 2j)sn(i,j — 1),

with the initial conditions t1(0,1) = 1 and t1(i,j) = 0 for (i,j) # (0,1). FEquivalently, the

polynomials sy (x,y) and t,(x,y) satisfy the recurrence relatoion

su(@>y) = 230 — Dayt (@, y) + 2y(1 — 22) -t

0

0

0
axsn(:x’ y) + y(l - 49)873/511(%9),

with the initial condition ti(x,y) = y.

The first few terms of the polynomials s, (z,y) and t,(z,y) are given as follows:

= w2y +2zy° + 7,
= 2%y + 8x%y* + 3xy® + 4ay®,

(z,y)
(z,y)
52 (.Z', y)
(z,y) = 2%y + 22229 + 1622y + 8zy® + 3y° + 40y + 4y
6.3. Partial v-coefficients and a modified Foata-Strehl’s group action.
For the grammars , notice that the insertion of @ corresponds to the operator Ds, and
the insertion of the pair nn corresponds to the operator D4. Figure 1 provides a diagram of the
grammars . Using this diagram, we discover some statistics on Jacobi-Stirling permutations,

and then we can present combinatorial interpretations of the numbers s, (4, j) and ,(1, 7).
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Figure 1.

Let m = mymg - - - w3, € JSP,,. As usual, set mp = w301 = 0. An unbarred descent of 7 is an
index i € [3n] such that m; > m;4; and m; is unbarred. A double ascent (resp. peak, left ascent-
plateau) of 7 is an index i such that m;_1 < m; < 71 (resp. mi—1 < w5 > W1, i1 < T = Tit1),
where i € [3n — 1]. It is clear that if ¢ is a peak, then m; is barred. A barred double descent of
7 is an index ¢ € [3n] such that ;1 > m; > m;41 and 7; is barred. A descent plateau of 7 is an

index ¢ such that m;_1 > m; = m; 1. In the same way, we define the same statistics on JSPD .

Let
=#{i | mi1 <m <},

(m)
(7)
expk (m) = #{i | mi—1 < m > mipq or mi_y < W = Wiq1},
(m) = #{i | mi_1 > m > i1, ™ is barred},
(7)

We can now state the following result.

Theorem 16. Forn > 1, we have
sn(i,7) = #{m € JSP,, : ubdes (7) = i, expk (7) = j,bddes (1) = 0,desp (7) = 0},
tn(i,7) = #{m € JSPD,, : ubdes (1) = i, expk (1) = j,bddes (7) = 0,desp (7) = 0}.

Given a permutation 7 € JSPD ,. Forany k € {0,1,...,3n—2}, let 0, () be the permutation
in JSP,, obtained from 7 by inserting the pair nn between 7 and 71, and let z(7) denote
the permutation in JSP ,,_; obtained from 7 by deleting the entry 7.

Given a permutation m € JSP,,. For any k € {0,1,...,3n}, let 9m7k(w) be the permutation
in JSPD ,, 11 obtained from 7 by inserting n + 1 between 73 and 71, and let 1, (7) denote the
permutation in JSPD ,, obtained from 7 by deleting the pair nn.

We define

JSP ;i ; = {m € JSP,, : ubdes () = i, expk (m) = j, bddes (7) = desp (7) = 0},
JSPD .. ; = {m € JSPD,, : ubdes () = i, expk () = j, bddes () = desp (7) = 0}.

In order to prove Theorem [16] we need two lemmas.
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Lemma 17. For n > 1, we have

|JSPD n+15,5

= (i + ISP wiiy1j-1] + ISP il +203n + 3 — i = 25)[JSP i j 1 |-
Proof. We define

Ubdes (7) = {k | m > m41, Tk is unbarred},
Expk (m) = {k | mp—1 < T > Tpy1 OF M1 < T = Tht1}s
Dasc (7) = {k | mg—1 < Tk < Tg4+1}-
For m € JSPD ;; ;, we have |Ubdes (7)| + 2|Expk ()| 4+ |Dasc (7)| = 3n — 1, since bddes (1) =
desp (w) = 0.
For any m € JSPD y,41.,j, let r = r(m) be the index such that m. = n+ 1. We now partition
the set JSPD ,,41; j into the following six subsets:

JSPD }LHM = {n € JSPD y41.i,j | 7r—1 > Tp41, mp—1 is unbarred},
JSPD ELH;M = {m € JSPD p41.ij | Tr—2 < Tp—1 > Wpy1, W1 is barred},
JSPD ?L—H;i,j ={m € JSPD y41.i; | mp—2 < Tp_1 = Ty },

JSPD frlz+1;i,j = {1 € JSPD n41.j | mr—1 < Trp1 < Tpy2},

JSPD 2+1;z’,j ={m € JSPD p41ij | Tr—2 > Tp—1 = Try1},

JSPD §L+1;i,j = {7'[' € JSPD n+1,j ’ Mp_g > Mp_1 > Tpyl, Tp—1 1S barred}.
Claim 1. There is a bijection
¢1:JSPD 1+ {(m, k) | m € JSP 41,51 and k € Ubdes (o)}

For any m € JSPD 71L+1;i,jv notice that ¢ —(m) € JSP ;11,51 and r(7) —1 € Ubdes (¢;,57(7)).
Thus, we define the map ¢1 by letting ¢1(7) = (¢5,75(m),r(7) — 1). Then the inverse of ¢ is
given by ¢! (m, k) = 01 1 (T0).

Claim 2. There is a bijection

¢ : JSPDZ 1, ; UJSPD, .+ {(0,k) | o € JSP ;i ; and k € Expk ()}

For any m € JSPD 31+1;i,j U JSPD i—l—l;i,j? notice that v —(m) € JSP,;; and r(0) — 1 €
Expk (¢5,75(0)). Thus, we define the map ¢o by letting ¢o(7) = (¢;75(7),r(m) — 1). Then the
inverse of ¢ is given by ¢51(w, k) = 577 k(7).

Claim 3. There is a bijection ¢3 : JSPD i+1;i,j — {(m,k) | m € JSP . ;-1 and k € Dasc (m)}.

For any = € JSPD ?L—&-l;i,jv notice that ¢, (m) € JSP ;; j—1 and r(7) € Dasc (¢ 5(m)). Thus,
we define the map ¢3 by letting ¢3(m) = (Y3g(7),7(7)). Then the inverse of ¢3 is given by
3" (m, k) = Oy gy ().

Claim 4. There is a bijection

¢4:JSPD} 1, UJSPDD 15— {(m,k) | 7 € JSP p;ij—1 and k € Dasc ()}

Let £ € {0,1,...,3n + 1} and let 7 = mm2...w3p4+1 € JSPD, 1. We define a modified
Foata-Strehl’s group action ¢y, as follows:
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e If k is a double ascent, then ¢y () is obtained from 7 by deleting 73, and then inserting 7y
immediately before the integer 7;, where j = min{s € {k+1,k+2,...,3n+2} | 7y < 11 };

e If k satisfies either (i) it is a descent-plateau or (ii) it is a double descent and y is
barred, then ¢ (7) is obtained from 7 by deleting 7 and then inserting 7 right after
the integer 7j, where j = max{s € {0,1,2,...,k — 1} : 7y < 71 }.

For any = € JSPD? +1:,;» notice that the index r(m) — 1 is the unique descent-plateau of

Yrgr(m) and ()1 © Yyg(m) € ISPy j—1. Read @y (ry—1 © Ypg(m) from left to right and let
p be the index of the first occurrence of the integer 7, (ry_1. Then p € Dasc (¢(r)—1 © ¥577(7))-
For any m € JSPD ?lJrl;i,j’ notice that m,(r)_; has a bar and the index r(7) — 1 is a double-

descent in ¢—(7), and @,(x)_1 © Yyg(m) € JSPpyij—1. Read @1 o ¢Yy7g(m) from left to
right and let p be the index of the occurrence of the integer m,(;)_1. Then
p € Dasc (¢p(z)-1 © Yg7(7)).

Therefore, we define the map ¢4 by letting ¢p4(0) = (#5(r)—1 © ¥577(7), ), and the inverse of
@4 is given by d)f(w, k) = 6;71,_1 © ¢k(m), where r — 1 is the unique descent-plateau or barred
double descent of @y (7).

In conclusion, we get that
|[JSPD 41;4,5| = [JSPD 711+1;¢,j| + [JSPD 31+1;z‘,j| + [JSPD i+1;z‘,j\+
|JSPD iﬂ;i,j‘ + [JSPD ?L+1;i,j‘ + [JSPD 2+1;i,j‘
= (i + DISP psig1,-1] + JIISP pi 5] + 2(3n + 3 — 0 — 2) [JSP g 1 |-
This completes the proof. ]

Lemma 18. For n > 1, we have
|JSP n;i,j| = ’i|JSPD n;i,j71| —|—j|JSPD n;ifl,j| + 2(3’[7, +2—1— Zj)‘JSPD n;ifl,j71|-

Proof. For any m € JSP . ;, we have |Ubdes (7)| + 2|Expk (7)| + |Dasc (7)| = 3n + 1, since
bddes () = desp (w) = 0. Let » = r(7) be the index of the first occurrence of the entry n, i.e.,

T = Tp41 = n. We partition the set JSP ,.; ; into the following six subsets:

JSP ,ll;m- ={n € JSP s | mp—1 > mpq2, mp—1 is unbarred}

JSP2. ;= {m €JSP ;| mr_o < mp_1 > Tp42, mp_1 is barred}

JSP fmﬁj ={m € JSP ;i j | mp—2 < Mp_1 = Wr42}

JSP i ={m € ISP pyij | mro1 < Mg < Trps}

JSP 2;2‘73' ={n € JSP | mp—2 > Mp_1 = Tr42}

JSP ?w ={n € JSP ;i j | mp—2 > mp_1 > mp42, my—1 is barred}.
Claim 1. There is a bijection ®; : JSP }L;i,j — {(m,k) | 7 € JSPD ,,;;j—1 and k € Ubdes (o)}.
For any = € JSP 711;1',]# notice that v, (7) € JSPD ,;; ;1 and (r(7) —1) € Ubdes (¢n(7)). Thus,

we define the map ®; by letting ®1(7) = (¢, (7),r(7w) — 1). Then the inverse of ®; is given by
(I)l_l(ﬂ—a k) - en,k(ﬂ)'
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Claim 2. There is a bijection

By : JSP2,  UJSP3, .+ {(m,k) | m € JSPD,;;_1; and k € Expk (7)}.

n3i,j 13,

For any 7 € JSP gt;i,j UJSP i;i,j’ notice that 1, (m) € JSPD ,,;;—1; and r(7) —1 € Expk (¢, (7)).
Thus, we define the map Uy by letting Wao(m) = (¢ (m),7(m) — 1). Then the inverse of ®; is
given by @5 (7, k) = 0, 1 (7).

Claim 3. There is a bijection ®3 : JSP ;‘;;i,j — {(m,k) | m € JSPD p;;_1,j—1 and k € Dasc (m)}.

For any m € JSP ém%j’ notice that vy, (m) € JSPD ,.;—1 ;-1 and 7(m) € Dasc (¢ (7)). Thus, we

define the map ®3 by letting ®3(mw) = (¢, (7), r(7)). Then the inverse of ®3 is given by
O3 (7, k) = Op 1 (7).
Claim 4. There is a bijection

®,:JSPS, UJSPS. . {(m,k) | m € JSPD,,;;—1 ;-1 and k € Dasc (7)}.

n3i,J n;i,J
Let k € {0,1,...,3n} and let m = myma... 73, € JSP,,. We define a modified Foata-Strehl’s

group action ¢y as follows:

e If k is a double ascent then ¢y (7) is obtained from 7 by deleting 73 and then inserting 7y
immediately before the integer 7;, where j = min{s € {k+1,k+2,...,3n+1} : 7y < m };
o If k satisfies either (i) it is a descent-plateau or (i7) it is a double descent and my is
barred, then ¢y (m) is obtained from 7 by deleting 7 and then inserting mj right after

the integer 7, where j = max{s € {0,1,2,...,k — 1} : 1y < mp}.
For any 7 € JSP 2, ., note that the index r(7) — 1 is the unique descent-plateau in 1, () and

n;%,7
Pr(n)—1° ¢n(77) € JSPD nyi—1,j—1-

Read the permutation ¢, (r)—1 © 1n(m) from left to right and let p be the index of the first
occurrence of the integer m,r)_1. Then p € Dasc (¢, (r)—1 © ¥n(T)).

For any w € JSP ?uw-, notice that m,(;)_; is barred and the index r(7) — 1 is a double-descent
of (), and @p(z)—1 © Yu(m) € JSPD -1 1. Read @p(x)—1 0 ¥n(m) from left to right and let
p be the index of the first occurrence of the integer m,.ry_1. Then p € Dasc (¢p(z)—1 © Pn(T)).

Therefore, we define the map ®4 by letting ®4(7) = (,(r)—1 © ¥n(7), p). Then the inverse of
®,4 is given by ‘I)Zl(ﬂ', k) = 0nr—1 0 pr(m), where r — 1 is the unique descent-plateau or barred
double descent of g ().

In conclusion, we get that

|JSP ;.5 = [JSP 7111j| + [JSP %”‘ + [JSP i”’ + [JSP i;i,j| + [JSP izﬂ + [JSP g;i,j‘

= ’L|JSPD n+1;i,j71| + ]|JSPD n;ifl,j| + 2(31’L +2—4— 2])‘JSPD n;ifl,jfl"
This complete the proof. (]
A proof Theorem

Proof. Notice that JSPD 1,01 = {1} and JSP 1,11 = {111}. Moreover, JSPD 1, ; = 0 for any
(,4) # (0,1) and JSP 1 ; = 0 for any (7,7) # (1,1). So,

t1<o, 1) =1= ‘JSPD 1;071‘ and 81(1, 1) =1= ’JSP 1;1’1|.
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Combining Proposition [I5] Lemma [17] and Lemma [18] we obtain
|JSP n;i,j| = i|JSPD n;i,jfll + j|JSPD n;ifl,j| + 2(3n +2—1— 2j)|JSPD n;ifl,j71|
=ity(i,7 — 1)+ jtn(i —1,5) +2Bn+2—i—2j)t,(i — 1,5 — 1)

= Sn(ivj)a

|[JSPD p41.4,5] = (4 4+ 1)|ISP i1 j—1] + F]ISP nsij| +2(3n + 3 — i — 25)|JSP 1 j—1]
=G+ Dsp(i+1,5—1)+7sp(i,7) +2(83n+3 — i — 2j)sn(i,5 — 1)
= tn41(, 7).
This complete the proof. O

Let [k] = {1,2,...,k}. For any subset S C [k], let My g = M \ S. Denote by JSP s the set
of Jacobi-Stirling permutations of My g. Let
ISPy = | JSPys.

SC[K]
|S|=i

We define
JSP (2, y,2) = Z 25 () des (m) plat ()
T€JSP g ;
It is clear that
JSP hk(w, Y, z) = Z 35C (Tr)ydes () ,plat (ﬂ),
TEQL
JSP o(z,y,2) = Z 2S¢ (w)ydes () plat ()
TeJSP
Based on empirical evidence, we propose the following conjecture.

Conjecture 19. For any k > 1 and 1 < i < k — 1, the polynomial JSP j ;(x,y, 2) is a partial

~y-positive polynomial.
7. CONCLUDING REMARKS

In this paper, we introduce the change of grammars method and we show that it is an
effective method for studying v-positivity and partial v-positivity. Along the same lines, one
may study multivariate extensions of asymmetric polynomials, such as multivariate orthogonal
polynomials. Since there is a bijection between Stirling permutations and perfect matchings
(see [29] for instance), it would be interesting to study the partial y-positivity of multivariate
polynomials of perfect matchings. Recall that a perfect matching of [2n] can be seen as a fixed-
point free involution in &a,,. Let I,, be the set of all involutions in &, and I,,(z) = > ¢, pdes ()
It is now well known that I,,(z) is symmetric and unimodal (see [6l, 24] for instance). Let

[(n—1)/2]

I,(z) = Z a(n, k)z®(1 4 )" 172k,
k=0

Guo and Zeng [24] conjectured that a(n,k) > 0. This conjecture still open. We end our paper
by proposing the following.
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Problem 20. Is there a statistic st on 1,, that makes the polynomial 3 oy gdes (m)qjasc () st ()

a partial y-positive polynomial?

1]

(25]
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