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Abstract

We define a transformation that associates certain exponential moment sequences
with ordinary moment sequences in a natural way. The ingredients of this transforma-
tion are series reversion, the Sumudu transform (a variant of the Laplace transform),
and the inverting of generating functions. This transformation also has a simple in-
terpretation in terms of continued fractions. It associates lattice path objects with
permutation objects, and in particular it associates the Narayana triangle with the
Eulerian triangle.

1 Introduction

In this note we study relationships between moment sequences that are defined by ordinary
Riordan arrays [3, 18, 22] and by certain exponential Riordan arrays [3, 19], which may
be described as Eulerian. The theory of orthogonal polynomials [10, 13, 16, 24] defined
by Riordan arrays has been much studied [1, 2, 3, 5, 6]. For ordinary Riordan arrays, the
associated orthogonal polynomials are generalized Chebyshev polynomials. In this note, we
shall define a mapping T , whose inverse T −1 maps a subset of the set of moments defined
by ordinary Riordan arrays to a set of moments whose exponential generating function is
“Eulerian”. A central role in this mapping is played by the Sumudu transform [8, 9, 27].

Many sequences and triangles in this note are referenced by their Annnnnn number in
the On-Line Encyclopedia of Integer Sequences [20, 21], an invaluable tool for notes such as
this one.

All matrices in this note are of infinite extent; we show in each case a relevant trunca-
tion. The operator [xn] is the operator that extracts the coefficient of xn in a power series
[17]. Ordinary Riordan arrays are designated by (g, f) while exponential Riordan arrays are
designated by [g, f ].

2 Motivation

We begin with the Eulerian generating function

E(x, y; a, b) =
(1− y)eax(1−y)

1− yebx(1−y)
.
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When a = 0 and b = 1, we get

E(x, y; 0, 1) =
1− y

1− yex(1−y)
,

which is the generating function of the Eulerian polynomials

1, y, y(y + 1), y(y2 + 4y + 1), y(y3 + 11y2 + 11y + 1), y(y4 + 26y3 + 66y2 + 26y + 1), . . . ,

with coefficient array the Eulerian triangle A123125 that begins

















1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 1 4 1 0 0
0 1 11 11 1 0
0 1 26 66 26 1

















.

When a = 1 and b = 1, we get

E(x, y; 1, 1) =
(1− y)ex(1−y)

1− yex(1−y)
,

which is the generating function of the variant Eulerian polynomials Sn(y) that begin

1, 1, y, y(y+ 1), y(y2 + 4y + 1), y(y3 + 11y2 + 11y + 1), y(y4 + 26y3 + 66y2 + 26y + 1), . . . .

Recall that we have [14]

Sn(t) =
∑

w∈Sn

tdes(w).

These polynomials have a coefficient array A173018 that begins

















1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 4 1 0 0 0
1 11 11 1 0 0
1 26 66 26 1 0

















.

When a = 1 and b = 2 we get

E(x, y; 1, 2) =
(1− y)ex(1−y)

1− ye2x(1−y)
,

which is the generating function of the type B Eulerian polynomials

1, y + 1, y2 + 6y + 1, y3 + 23y2 + 23y + 1, y4 + 76y3 + 230y2 + 76y + 1, . . . ,
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with coefficient array A060187 that begins
















1 0 0 0 0 0
1 1 0 0 0 0
1 6 1 0 0 0
1 23 23 1 0 0
1 76 230 76 1 0
1 237 1682 1682 237 1

















.

We wish now to associate with this exponential generating function (in x) an ordinary
generating function. To this end we shall

• Invert the generating function E(x, y; a, b) to get 1/E(x, y; a, b)

• Take the Sumudu transform of 1/E(x, y; a, b) to get an ordinary generating function
g(x, y; a, b)

• Use series reversion to form the generating function G(x, y; a, b) = 1
x
Rev(xg(x, y, a, b)).

We shall designate this transformation pipeline by the symbol T . Thus we have

T (E(x, y; a, b)) = G(x, y; a, b).

We now work out the form of G(x, y; a, b). We have

1

E(x, y; a, b)
=

1− yebx(1−y)

(1− y)eax(1−y)
.

Now the Sumudu transform is given by the variant of the Laplace transform

S(E)(x) =
1

x

∫ ∞

0

E(t, y; a, b)e−t/x dt.

We find that

S
(

1

E(t, y; a, b)

)

(x) =
1− x(a(y − 1) + b)

1 + (1− y)(2a− b)x+ a(a− b)(y − 1)2x2
.

To finish, we multiply this generating function by x, we revert the result, and then we divide
this reversion by x. We obtain that

G(x, y; a, b) =
1 + x(y − 1)(2a− b)−

√

1− 2bx(y + 1) + b2x2(y − 1)2

2(ax(a− b)(y − 1)2 + a(y − 1) + b)
.

Writing c(x) = 1−
√
1−4x
2x

for the generating function of the Catalan numbers [23] Cn =
1

n+1

(

2n
n

)

, we can write this as

G(x, y; a, b) =
1

1− x(b− 2a)(y − 1)
c

(

x(ax(a− b)(y − 1)2 + ay − a + b)

(1− x(b− 2a)(y − 1))2

)

.

Thus

T
(

(1− y)eat(1−y)

1− yebt(1−y)

)

(x) =
1

1− x(b− 2a)(y − 1)
c

(

x(ax(a− b)(y − 1)2 + a(y − 1) + b)

(1− x(b− 2a)(y − 1))2

)

.
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Example 1. We take the case a = 0, b = 1. We find that

T (E(t, y; 0, 1)) (x) =
1

1 + x(1− y)
c

(

x

1 + x(1 − y)

)

.

This is the generating function for the Narayana polynomials that begin

1, y, y2 + y, y3 + 3y2 + y, y4 + 6y3 + 6y2 + y, . . .

with coefficient array the Narayana triangle A090181 that begins

















1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 1 3 1 0 0
0 1 6 6 1 0
0 1 10 20 10 1

















.

Thus the Eulerian triangle is transformed to the Narayana triangle by T .

Example 2. We consider the case a = 1 and b = 1. We find that

T (E(x, y; 1, 1)) (x) =
1

1 + x(y − 1)
c

(

xy

(1 + x(y − 1))2

)

.

This is the generating function for the Narayana polynomials Nn(y) that begin

1, 1, y + 1, y2 + 3y + 1, y3 + 6y2 + 6y + 1, . . . ,

with coefficient array the Narayana triangle A131198 that begins

















1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 6 6 1 0 0
1 10 20 10 1 0

















.

We have [14]

Nn(t) =
∑

w∈Sn(231)

tdes(w).

Example 3. We consider the B type case a = 1 and b = 2. We find that

T (E(t, y; 1, 2)) (x) = c
(

x(1 + y − x(y − 1)2)
)

.

This is the generating function of the polynomials that begin

1, y + 1, y2 + 6y + 1, y3 + 19y2 + 19y + 1, y4 + 48y3 + 126y2 + 48y + 1, . . . ,
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with coefficient array that begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 6 1 0 0 0 0
1 19 19 1 0 0 0
1 48 126 48 1 0 0
1 109 562 562 109 1 0
1 234 2031 3916 2031 234 1





















.

This is thus the T transform of the type B Eulerian triangle. Note that setting y = 1 gives
us the row sums, which are 2nCn = [xn]c(2x).

Example 4. If an = n![xn]f(x) and bn = [xn]T (f(s))(x), then we shall write

bn = T an.

Thus we have, for instance,
T n! = Cn.

This follows because

• We start with f(x) = 1
1−x

, which we invert to get 1− x

• The Sumudu transform of 1− t is 1− x

• We have c(x) = 1
x
Rev(x(1− x)).

What follows is a short table of transform pairs.

OEIS an bn = T an OEIS
A000142 n! Cn A000108
A049774 Permutations without double falls Motzkin numbers A001006
A097899 Permutations with no runs of length 1 Motzkin sums A005043
A000670 Fubini numbers Little Schroeder numbers A001003
A001586 Springer numbers - A052709
A000629 Cyclically ordered partitions Large Schroeder numbers A006318

We close this section by noting that for sequences with ordinary generating functions
that can be put in the form

G(x, y; a, b) =
1

1 + x(b− 2a)(1− y)
c

(

x(ax(a − b)(y − 1)2 − a(1 − y) + b)

(1 + x(b− 2a)(1− y))2

)

,

for appropriate choices of the parameters a, b and y, we can define the inverse transform
T −1. This is formed by reversing the above steps.

• Calculate g(x) = 1
x
Rev(xG)

• Calculate the inverse Sumudu transform of g(s) to get e(t)

• Form E(t) = 1
e(t)

.

5

http://oeis.org/A000142
http://oeis.org/A000108
http://oeis.org/A049774
http://oeis.org/A001006
http://oeis.org/A097899
http://oeis.org/A005043
http://oeis.org/A000670
http://oeis.org/A001003
http://oeis.org/A001586
http://oeis.org/A052709
http://oeis.org/A000629
http://oeis.org/A006318


3 Riordan arrays and Riordan moment sequences

All the sequences encountered thus far are examples of Riordan moment sequences. By this
we mean that they are moment sequences associated with families of orthogonal polynomials
that are defined either by ordinary or by exponential Riordan arrays. We recall that an
ordinary Riordan array is an invertible lower-triangular matrix R defined by two power
series

g(x) = 1 + g1x+ g2x
2 + · · · ,

and
f(x) = f1x+ f2x

2 + · · · ,
whose (n, k) element Rn,k is given by

Rn,k = [xn]g(x)f(x)k.

We write R = (g, f) to signify this. An ordinary Riordan array R defines a family of
orthogonal polynomials if we have

R =

(

1 + λx+ µx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)

.

The inverse of the Riordan array R = (g, f) is given by

R−1 =

(

1

g(f̄)
, f̄

)

,

where f̄(x) = Rev(f)(x) is the reversion of the power series f(x), defined as the power series

that satisfies f(f̄(x)) = x and f̄(f(x)) = x. For R =
(

1+λx+µx2

1+αx+βx2 ,
x

1+αx+βx2

)

we have

R−1 =

(

µ(x),
1− αx−

√

1− 2αx+ x2(α2 − 4β)

2βx

)

,

where

µ(x) =
2β

(β − µ)
√

x2(α2 − 4β)− 2αx+ 1 + x(2βλ− α(β + µ)) + β + µ
.

The sequence with generating function µ(x) then appears as the first column of the inverse
matrix R−1. This is the (ordinary) Riordan moment sequence associated with the family of
orthogonal polynomials defined by R. We have that

µ(x) =
1

1− (α− λ)x−
(β − µ)x2

1− αx−
βx2

1− αx−
βx2

1− · · ·

.
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In an obvious notation, we write this as

µ(x) = J (α− λ, α, α, . . . ; β − µ, β, β, . . .),

where J stands for “Jacobi”. This thus is the form of the generating function of an ordi-
nary Riordan moment sequence. The corresponding family of orthogonal polynomials Pn(x)
satisfies the associated three-term recurrence

Pn(x) = (x− α)Pn−1(x)− βPn−2(x),

with P0(x) = 1, P1(x) = x− α + λ, and P2(x) = x2 + x(λ− 2α) + α2 − αλ− β + µ. In the
case that µ = 0, we obtain

µ(x) =
1

1− x(α− 2λ)
c

(

x(λ− x(αλ− β − λ2))

(1− x(α− 2λ))2

)

.

By the fundamental theorem of Riordan arrays, this can be written

µ(x) =

(

1

1− x(α− 2λ)
,
x(λ− x(αλ− β − λ2))

(1− x(α− 2λ))2

)

· c(x).

Proposition 5. We have

G(x, y; a, b) = J (y(b− a) + a, b(y + 1), b(y + 1), . . . ; b2y, b2y, . . .).

We now turn our attention to exponential Riordan arrays. An exponential Riordan array
R is an invertible lower-triangular matrix defined by two power series

g(x) = 1 + g1
x

1!
+ g2

x2

2!
+ g3

x3

3!
+ · · · ,

and

f(x) = f1
x

1!
+ f2

x2

2!
+ f3

x3

3!
+ · · · .

The general (n, k)-th element of R is then defined to be

Rn,k =
n!

k!
[xn]g(x)f(x)k.

We write [g, f ] to denote this matrix. With every exponential Riordan array R we can
associate its production matrix PR which is defined to be the matrix PR = R−1R, where R is
the matrix R with its first row removed [11, 12]. The matrix R−1 will then be the coefficient
array of a family of orthogonal polynomials if PR has a bivariate generating function of the
form

exy(α + βx+ y(1 + γx+ δx2)) = exy(Z(x) + yA(x)),

where

A(x) = f ′(f̄(x)), Z(x) =
g′(f̄(x))

g(f̄(x))
.
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The matrix PR then begins




















α 1 0 0 0 0 0
β α + γ 1 0 0 0 0
0 2β + 2δ α + 2γ 1 0 0 0
0 0 3(β + 2δ) α + 3γ 1 0 0
0 0 0 4(β + 3δ) α + 4γ 1 0
0 0 0 0 5(β + 4δ) α + 5γ 1
0 0 0 0 0 6(β + 5δ) α+ 6γ





















.

Note that the diagonal terms form an arithmetic sequence, while the sub-diagonal terms,
when divided successively by 1, 2, 3, . . ., also form an arithmetic sequence.

The corresponding exponential Riordan moment sequence (given by the first column
elements of R) will then have a generating function given by the continued fraction [7, 25, 26]

µe(x) =
1

1− αx−
βx2

1− (α + γ)x−
(2β + 2δ)x2

1− (α + 2γ)x−
(3β + 6δ)x2

1− · · ·

,

with coefficients drawn from the production matrix. Thus exponential Riordan moment
sequences have ordinary generating functions given by

J (α, α+ γ, α + 2γ, . . . ; β, 2(β + δ), 3(β + 2δ), . . .).

Example 6. The exponential Riordan array A021009

L =

[

1

1 + x
,

x

1 + x

]

with general term

Ln,k =
n!

k!
(−1)n−k

(

n

k

)

is the coefficient matrix of the scaled Laguerre polynomials. The corresponding moments
are n!, given by the initial column of the inverse array

[

1

1− x
,

x

1− x

]

.

The production matrix of this array begins
















1 1 0 0 0 0
1 3 1 0 0 0
0 4 5 1 0 0
0 0 9 7 1 0
0 0 0 16 9 1
0 0 0 0 25 11

















.
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Thus n!, which has exponential generating function 1
1−x

, has an ordinary generating function
given by

1

1− x−
x2

1− 3x−
4x2

1− 5x−
9x2

1− 7x− · · ·

.

With regard to the exponential generating function E(x, y; a, b) (in x), we have the fol-
lowing result.

Theorem 7. The exponential Riordan array

[

1 + bxy

(1 + bx)a/b
,

1

b(1− y)
ln

(

1 + bx

1 + bxy

)]

is the coefficient array of the family of orthogonal polynomials whose moment sequence has

exponential generating function E(x, y; a, b).

Proof. The inverse of the above Riordan array is given by

[

(1− y)eax(1−y)

1− yebx(1−y)
,

ebx − ebxy

b(ebxy − yebx)

]

.

We find that

A(x) = (1 + bx)(1 + bxy) and Z(x) = a(1− y) + by + b2yx.

This allows us to calculate the production matrix of the inverse Riordan array, which begins













y(b− a) + a 1 0 0 0
b2y y(2b− a) + a+ b 1 0 0
0 4b2y y(3b− a) + a+ 2b 1 0
0 0 9b2y y(4b− a) + a + 3b 1
0 0 0 16b2y y(5b− a) + a + 4b













.

This indicates that E(x, y; a, b) is the exponential generating function of an exponential
Riordan moment sequence which has an ordinary generating function given by

1

1− (y(b− a) + a)x−
b2yx2

1− (y(2b− a) + a+ b)x−
4b2yx2

1− (y(3b− a) + a+ 2b)x−
9b2yx2

1− · · ·

.
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Corollary 8. The ordinary generating function of the exponential Riordan moment sequence

with e.g.f. E(x, y; a, b) is given by

J (y(b− a) + a, y(b− a) + a+ b(1 + y), y(b− a) + a+ 2b(1 + y), . . . ; b2y, 4b2y, 9b2y, . . .).

This is the Eulerian case, where β = δ = b2y. We are now in a position to interpret the
transformation T in terms of ordinary generating functions expressed as continued fractions.
The description is easiest in the direction of T −1.

We have that T −1 maps the ordinary Riordan moments defined by the Riordan array
(

1 + (a(y − 1) + b)x

1 + b(y + 1)x+ b2yx2
,

x

1 + b(y + 1)x+ b2yx2

)

to the exponential Riordan moments defined by the exponential Riordan array
[

1 + bxy

(1 + bx)a/b
,

1

b(1− y)
ln

(

1 + bx

1 + bxy

)]

.

In both cases, the moment sequences are described by the first column elements of the
respective inverse arrays. In terms of continued fractions, we have that T −1 maps

J (y(b− a) + a, b(y + 1), b(y + 1), . . . ; b2y, b2y, . . .)

to

J (y(b− a) + a, y(b− a) + a+ b(1 + y), y(b− a) + a+ 2b(1 + y), . . . ; b2y, 4b2y, 9b2y, . . .).

Thus the first elements are mapped to their partial sums, while the second terms are
scaled by (1, 4, 9, . . .). Reversing this process (taking first differences; dividing by (1, 4, 9, . . .))
now gives us the effect of T .

4 Further results

Proposition 9. The moment sequence µn defined by the ordinary Riordan array

(

1− αx

1 + βx+ γx2
,

x

1 + βx+ γx2

)

satisfies

µn = [xn]
1

x
Rev

(

x(1 + αx)

1 + (β + 2α)x+ (α2 + αβ + γ)x2

)

.

Proof. The moment sequence is the first column of the inverse array. This has generating
function

2

1− (2α+ β)x+
√

1− 2βx+ (β2 − 4γ)x2
,

which is given by the reversion in the statement of the proposition.
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Corollary 10. The generating function G(x, y; a, b) = T (E(t, y; a, b))(x) is the generating

function of the moment sequence of the family of orthogonal polynomials defined by the

ordinary Riordan array
(

1− (a(y − 1) + b)x

1 + b(1 + y)x+ b2yx2
,

x

1 + b(1 + y)x+ b2yx2

)

Proof. We compare the coefficients α, β, γ in the proposition with the coefficients in S
(

1
E(t,y;a,b)

)

(x).

Thus

α = −a(y − 1) + b, beta + 2α = (1− y)(2a− b), α2 + αβ + γ = a(a− b)(y − 1)2.

We solve these equations for α, β, γ.

Proposition 11. Let µo(x) be the generating function of the moment sequence of the ordi-

nary Riordan array
(

1− αx

1 + βx+ γx2
,

x

1 + βx+ γx2

)

.

Then

• µ0(x) = J (β + α, β, β, . . . ; γ, γ, γ, . . .).

• The T −1 transform of µ0(x) is

µe(x) =

√

β2 − 4γe
1

2
(2α+β)t

√

β2 − 4γ cosh
(

1
2

√

β2 − 4γt
)

− β sinh
(

1
2

√

β2 − 4γt
)

• The ordinary generating function of the transformed moment sequence is given by

J (α + β, α+ 2β, α+ 3β, . . . ; γ, 4γ, 9γ, . . .).

5 Further examples

Example 12. The Motzkin numbers Mn =
∑⌊n

2
⌋

k=0

(

n
2k

)

Ck are the moments of the Riordan
array

(

1

1 + x+ x2
,

x

1 + x+ x2

)

,

where a = 0, b = 1, c = 1. In this case we find that

Mn = [xn]
1

x
Rev

(

x

1 + x+ x2

)

.

The generating function ofMn is thus
1−x−

√
1−2x−3x2

2x2 , which can be expressed as the continued
fraction

1

1− x−
x2

1− x−
x2

1− x− · · ·

,

11



or
J (1, 1, 1, . . . ; 1, 1, 1, . . .).

Thus the T −1 transform of the Motzkin sequence has an ordinary generating function given
by

J (1, 2, 3, . . . ; 1, 4, 9, . . .).

This is A049774, the number of permutations of n elements not containing the consecutive
pattern 123.

Example 13. The so-called “Motzkin sums” MSn =
∑n

k=0

(

n
k

)

(
(

k
n−k

)

−
(

k
n−k−1

)

) A005043
are the moments of the Riordan array

(

1 + x

1 + x+ x2
,

x

1 + x+ x2

)

,

where a = 1, b = 1, c = 1. In this case we find that

SMn = [xn]
1

x
Rev

(

x(1 − x)

1− x+ x2

)

.

In this case the generating function 1+x−
√
1−2x−3x2

2x(1+x)
is given by

J (0, 1, 1, . . . ; 1, 1, 1, . . .).

Thus its T −1 transform is given by

J (0, 1, 2, 3, . . . ; 1, 4, 9, . . .).

This is A097899, the number of permutations of [n] with no runs of length 1.

Example 14. We consider the sequence an A052186 which begins

1, 0, 1, 3, 14, 77, 497, 3676, . . . .

The ordinary generating function of this sequence is

J (0, 3, 5, 7, 9, . . . ; 1, 4, 9, 16, 25, . . .).

The T transform of this sequence will therefore have generating function

J (0, 3, 2, 2, 2, . . . ; 1, 1, 1, 1, 1, . . .).

Now the sequence with generating function

J (1, 3, 2, 2, 2, . . . ; 1, 1, 1, 1, 1, . . .)

which begins
1, 1, 2, 6, 21, 78, 298, 1157, 4539, 17936, . . .

is A129775, the number of maximally clustered permutations in Sn (those that avoid the
patterns 3421, 4312 and 43214). Thus the image of A052186 by T is the INVERT(−1)
transform of A129775. Note that an has the integral representation [15]

an =

∫ ∞

0

xnex

(Ei(x) + ex)2 + π2
dx+

−p

p− 1
,

where p ≈ 0.434818 is a simple pole of φ(z) = z
1−ezE1(z)

− z.
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Example 15. We consider the T −1 transform of the sequence A064641, which has a gener-
ating function

1− x−
√
1− 6x− 3x2

2x(1 + x)
=

1

x
Rev

(

x(1− x)

1 + x+ x2

)

.

The general term of this sequence bn has the integral representation

bn =
1

2π

∫ 3+2
√
3

3−2
√
3

xn

√

3(1 + 2x)− x2

1 + x
dx.

This sequence counts the number of paths from (0, 0) to (n, n) not rising above y = x, using
steps (1, 0), (0, 1), (1, 1) and (2, 1).

Letting g(x) = 1−x
1+x+x2 , we calculate the inverse Laplace transform of 1

s
f
(

1
s

)

. We obtain

e−t/2

(

cos

(√
3t

2

)

−
√
3 sin

(√
3t

2

))

.

Thus the desired transform is the exponential generating function

et/2

cos
(√

3t
2

)

−
√
3 sin

(√
3t
2

) .

This expands to the sequence that begins

1, 2, 7, 35, 232, 1919, 19045, 220502, 2917663, 43431983, . . . .

In this case we have

J (2, 3, 3, 3, . . . ; 3, 3, 3, 3) → J (2, 5, 8, 11, . . . ; 3, 12, 27, 48, . . .).

Example 16. We have seen that the T −1 transform operates on moment sequences defined
by Riordan arrays of the form

(

1− ax

1 + bx+ cx2
,

x

1 + bx+ cx2

)

.

However, ordinary Riordan arrays of the form
(

1− ax− bx2

1 + cx+ dx2
,

x

1 + cx+ dx2

)

also define moment sequences. To see the nature of the obstruction, we take the example of
the matrix

(

1− x− x2

1 + x+ x2
,

x

1 + x+ x2

)

.

Then the relevant moment sequence has generating function

G(x) =
1√

1− 2x− 3x2 − x
=

√
1− 2x− 3x2 − x

1− 2x− 4x2
.
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This expands to give the sequence A111961, which begins

1, 2, 6, 18, 56, 176, 558, 1778, 5686, 18230, . . . .

Its generating function is equal to

J (2, 1, 1, 1, . . . ; 2, 1, 1, 1, . . .).

We now attempt to apply the T −1 transform in its “reversion-Sumudu−1-inverting” form.
We find that

1

x
Rev(xG(x)) =

√
1 + 2x+ 5x2 − x

1 + 2x+ 4x2
.

Given its non-rational form, it is problematic to apply S−1 to this generating function. We
can of course proceed as before with the continued fraction mapping, to get

J (2, 1, 1, 1, . . . ; 2, 1, 1, 1, . . .) → J (2, 3, 4, 5, . . . ; 2, 4, 9, 16, . . .).

The image sequence then begins

1, 2, 6, 22, 94, 454, 2454, 14766, 98678, 730422, . . . .

6 A note on the symmetric Eulerian triangle

We have seen two variants of the Eulerian triangle that are associated with the sequence
1, 4, 9, . . .. The Pascal-like (or centrally symmetric) variant A008292 that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 11 11 1 0 0 0
1 26 66 26 1 0 0
1 57 302 302 57 1 0
1 120 1191 2416 1191 120 1





















differs from the other two forms. To see this, we consider the bivariate generating function

ex(1+y)(1− y)2

(yex − eyx)2
.

Again, we can show that this is the generating function of an exponential Riordan moment
sequence. In this case, we find that the ordinary generating function is

J (y + 1, 2(y + 1), 3(y + 1), . . . ; 2y, 6y, 12y, 20y, . . .)

thus associating it with the sequence 1, 3, 6, . . . rather than 1, 4, 9, . . ..
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If we now use an analogue of the T transform to associate with this an ordinary Riordan
moment sequence, we get

J (y + 1, 2(y + 1), . . . ; 2y, 6y, 12y, . . .) → J (y + 1, y + 1, y + 1, . . . ; 2y, 2y, 2y, . . .).

This last term gives us the triangle with bivariate generating function

1

1− x(1 + y)
c

(

2x2y

(1− x(1 + y))2

)

.

This triangle begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 9 9 1 0 0 0
1 16 38 16 1 0 0
1 25 110 110 25 1 0
1 36 255 480 255 36 1





















.

7 Conclusion

In this note we have shown that ordinary Riordan moment sequences, defined by Riordan

arrays of the form
(

1−αx
1+βx+γx2 ,

x
1+βx+γx2

)

, can be mapped to exponential Riordan moments

of Eulerian type. Some interesting sequence pairings have been exhibited between lattice
path theoretic sequences and permutation-based sequences. There remains the challenge of
putting this algebraic-analytic mapping into a full combinatorial context. As an example,
we have seen that

T :
∑

w∈Sn

tdes(w) →
∑

w∈Sn(231)

tdes(w).
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