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Abstract

In this paper, we study the additive complexity ρ+
t
(n) of a Thue-Morse like sequence t = σ∞(0)

with the morphism σ : 0 → 01, 1 → 12, 2 → 20. We show that ρ+
t
(n) = 2⌊log2(n)⌋ + 3 for all

integers n ≥ 1. Consequently, (ρt(n))n≥1 is a 2-regular sequence.
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1. Introduction

Recently the study of the abelian complexity of infinite words was initiated by G. Richomme,
K. Saari, and L. Q. Zamboni [14]. For example, the abelian complexity functions of some notable
sequences, such as the Thue-Morse sequence and all Sturmian sequences, were studied in [14] and
[5] respectively. There are also many other works including the unbounded abelian complexity,
see [3, 7, 8, 10, 13] and references therein. At the mean time, many authors had devoted to the
generalizations of the abelian complexity. For instance, l-abelian complexity, cyclic complexity
and binomial complexity are first presented in [9], [4] and [12] respectively. In 1994, G. Pirillo and
S. Varricchio [11] raised the following question: do there exist infinite words avoiding additive
squares or additive cubes? Based on this infamous problem, H. Ardal, T. Brown, V. Jungić and
J. Sahasrabudhe proposed the additive complexity for infinite word on a finite subset of Z in [1].
It follows from the definition of additive equivalence in Section 2 that the additive complexity
{ρ+(n)} coincides with the abelian complexity {ρab(n)} for every infinite word on the alphabet
composed of two integers. For every infinite word on the alphabet composed of integers whose
cardinality is not less than three, it is easy to know that ρ+(n) ≤ ρab(n) for every n.

Let σ be the morphism 0 7→ 01, 1 7→ 12, 2 7→ 20 on {0, 1, 2} and t := σ∞(0). The infinite
sequence t is a Thue-Morse like sequence (see [2, 15]). Further, t is 2-automatic and uni-
formly recurrent (see [6]). A sequence w = w0w1w2 · · · is a k-automatic sequence if its k-kernel
{(wken+c)n≥0 | e ≥ 0, 0 ≤ c < ke} finite. If the Z-module generated by its k-kernel is finitely
generated, then w is a k-regular sequence.

In this paper, we investigate the additive complexity function ρ+
t
(n) of t, where ρ+

t
(n) is the

number of different digit sums of all words (of length n) that occur in t. We give the explicit
value of (ρ+

t
(n))n≥1.
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Theorem 1. For all integer n ≥ 1,

ρ+
t
(n) = 2⌊log2 n⌋+ 3.

Consequently, we know that the additive complexity function (ρt(n))n≥1 satisfying the re-
currence relations: ρ+

t
(1) = 3 and for all n ≥ 1,

ρ+
t
(2n) = ρ+

t
(2n+ 1) = ρ+

t
(n) + 2.

The above recurrence relations imply the regularity of (ρt(n))n≥1.

Corollary 1. The additive complexity (ρt(n))n≥1 of t is a 2-regular sequence.

It is natural to ask that whether the additive complexity of every k-automatic sequence be
always a k-regular sequence.

This paper is organized as follows. In Section 2, we give some notations. In Section 3, we
prove Theorem 1. The proof is separated into 3 steps. Each step gives a more specific result.

2. Preliminaries

An alphabet A is a finite and non-empty set (of symbols) whose elements are called letters.
A (finite) word over the alphabet A is a concatenation of letters in A. The concatenation of two
words u = u0u1 · · ·u(m) and v = v0v1 · · · vn is the word uv = u0u1 · · ·umv0v1 · · · vn. The set of
all finite words over A including the empty word ε is denoted by A∗. An infinite word w is an
infinite sequence of letters in A. The set of all infinite words over A is denoted by AN.

The length of a finite word w ∈ A∗, denoted by |w|, is the number of letters contained in
w. We set |ε| = 0. For any word u ∈ A∗ and any letter a ∈ A, let |u|a denote the number of
occurrences of a in u.

A word w is a factor of a finite (or an infinite) word v, written by w ≺ v if there exist a finite
word x and a finite (or an infinite) word y such that v = xwy. When x = ε, w is called a prefix
of v, denoted by w ⊳ v; when y = ε, w is called a suffix of v, denoted by w ⊲ v.

For a real number x, let ⌊x⌋ (resp. ⌈x⌉) be the integer that is less (resp. larger) than or equal
to x. For every natural number n and some positive integer b ≥ 2, set (n)b be the regular b-ary
expansion of n.

2.1. Additive complexity

Now we assume that A ⊂ Z. Let

w = w0w1w2 · · · ∈ A
N

be an infinite word. Denote by Fw(n) the set of all factors of w of length n, i.e.,

Fw(n) := {wiwi+1 · · ·wi+n−1 : i ≥ 0}.

Write Fw = ∪n≥1Fw(n). The subword complexity function ρw : N→ N of w is defined by

ρw(n) := #Fw(n).

Denote the digit sum of u = u0 · · ·u|u|−1 ∈ A
∗ by

DS(u) :=

|u|−1
∑

j=0

uj.

Two finite words u, v ∈ A∗ is additive equivalent if DS(u) = DS(v). The additive equivalent
induces an equivalent relation, denoted by ∼+.
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Definition 1. The additive subword complexity function ρw
+ : N→ N of w is defined by

ρ+
w
(n) := #{Fw(n)/ ∼+}.

In fact,
ρ+
w
(n) = #{DS(u) : u ∈ Fw(n)}. (2.1)

3. Additive complexity of t

In this section, we prove Theorem 1. According to (2.1), the study of the additive complexity
function turns out to be the study of digit sums of all factors. Our strategy in the proof of
Theorem 1 is the following:

• (Proposition 1) give the upper and lower bounds of ρ+
t
(n) for all n ≥ 1;

• (Proposition 2) show that the upper and lower bounds can be attained;

• (Proposition 3) study the all the accessible values of digit sums.

Then, Theorem 1 follows from Proposition 1, 2 and 3.

3.1. Upper and lower bounds of digit sums of factors

Proposition 1. For every integer n ≥ 1,

n− ⌊log2 n⌋ − 1 ≤ DS(u) ≤ n+ ⌊log2 n⌋+ 1

for all u ∈ Ft(n).

Note that for every u = u0u1 · · ·un−1 ∈ Ft(n),

DS(u) =
n−1
∑

i=0

ui = 0 · |u|0 + 1 · |u|1 + 2 · |u|2 = |u|0 + |u|1 + 2|u|2 − |u|0

= n+ |u|2 − |u|0. (3.1)

To prove Proposition 1, we only need to show that for all u ∈ Ft(n),

− ⌊log2 n⌋ − 1 ≤ |u|2 − |u|0 ≤ ⌊log2 n⌋+ 1. (3.2)

The following lemmas are aimed to analysis the quantity |u|2 − |u|0.

Lemma 1. For every u ∈ {0, 1, 2}∗,

|σ(u)|2 − |σ(u)|0 = |u|1 − |u|0,

|σ(u)|1 − |σ(u)|0 = |u|1 − |u|2.

Proof. It follows from the definition of σ that

|σ(u)|0 = |u|0 + |u|2, |σ(u)|1 = |u|0 + |u|1, |σ(u)|2 = |u|1 + |u|2.

The above equations give the required results.
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Let a, b, c be any arrangement of 0, 1, 2. Define τc : a 7→ b, b 7→ a, c 7→ c. For every finite word
w = w0w1 · · ·wn−1wn ∈ {0, 1, 2}

∗, let wR = wnwn−1 · · ·w1w0 be the mirror of w. For every
x ∈ {0, 1, 2}, write x := x− 1 (mod 3) and x := x+1 (mod 3). The morphisms σ and τ have the
following commutative property.

Lemma 2. For every u ∈ Ft and every c = 0, 1, 2,

σ(τc(u)
R
) = τc(σ(u))

R
. (3.3)

Proof. It is easy to check (3.3) for all u ∈ Ft(1) = {0, 1, 2}. Assume that (3.3) holds for all
u ∈ ∪n−1

i=1 Ft(i). For any u ∈ Ft(n), we have u = va where v ∈ Ft(n− 1) and a ∈ {0, 1, 2}. Then

σ(τc(u)
R
) = σ(τc(va)

R
) = σ(τc(a)

Rτc(v)
R)

= σ(τc(a)
R)σ(τc(v)

R) = τc̄(σ(a))
Rτc̄(σ(v))

R (by the assumption)

= τc̄(σ(va))
R
= τc̄(σ(u))

R
,

which implies that (3.3) holds for all u ∈ Ft(n) and c = 0, 1, 2.

While σ maps every factor of t to a factor of t, the morphism τc maps every factor of t to
the mirror of some factor of t.

Lemma 3. If u ∈ Ft, then τc(u)
R ∈ Ft for c = 0, 1, 2.

Proof. When u ∈ Ft(1) ∪ Ft(2), the result can be checked directly. Now, suppose the result
holds for all u ∈ ∪n−1

i=1 Ft(i) (where n ≥ 3). Let u ∈ Ft(n). If n is odd, then u = aσ(v) or σ(v)b
where v ∈ Ft(⌊n/2⌋) and a, b ∈ {0, 1, 2}, which also imply that au = σ(av) or ub = σ(vb) with
av, vb ∈ Ft(

n+1
2 ). By Lemma 2, for c = 0, 1, 2,

τc(au)
R = τc(σ(av))

R = σ(τc(av)
R).

Since av ∈ Ft(
n+1
2 ), by the inductive hypothesis, τc(av)

R ∈ Ft(
n+1
2 ). So τc(au)

R ∈ Ft(n + 1)
and τc(u)

R ∈ Ft(n). The same is true for the case u = σ(v)b.
If n is even, then u = σ(w) or aσ(v)b where w ∈ Ft(n/2), v ∈ Ft(

n
2 − 1) and a, b ∈ {0, 1, 2}.

When u = aσ(v)b, we have aub = σ(avb) with avb ∈ Ft(
n
2 + 1). By Lemma 2, for c = 0, 1, 2,

τc(aub)
R = τc(σ(avb))

R = σ(τc(avb)
R).

By the inductive hypothesis, τc(avb)
R ∈ Ft. So τc(aub)

R ∈ Ft which implies τc(u) ∈ Ft. When
u = σ(w), the result follows from Lemma 2 and the inductive hypothesis in the same way.

Lemma 4. Let n ≥ 1 be an integer and u ∈ Ft(n).

1. There exists x ∈ Ft(⌊n/2⌋) such that

|x|1 − |x|0 − 1 ≤ |u|2 − |u|0 ≤ |x|1 − |x|0 + 1. (3.4)

2. There exists y ∈ Ft(⌊n/2⌋) such that

|y|1 − |y|2 − 1 ≤ |u|1 − |u|0 ≤ |y|1 − |y|2 + 1. (3.5)

3. There exists z ∈ Ft(⌊n/2⌋) such that

|z|0 − |z|2 − 1 ≤ |u|1 − |u|2 ≤ |z|0 − |z|2 + 1.
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Proof. (1) If n is odd, then u = aσ(v) or σ(v)b where v ∈ Ft(⌊n/2⌋) and a, b ∈ {0, 1, 2}. In
either case,

|u|2 − |u|0 =











|σ(v)|2 − |σ(v)|0 − 1, if a, b = 0,

|σ(v)|2 − |σ(v)|0, if a, b = 1,

|σ(v)|2 − |σ(v)|0 + 1, if a, b = 2.

=











|v|1 − |v|0 − 1, if a, b = 0,

|v|1 − |v|0, if a, b = 1,

|v|1 − |v|0 + 1, if a, b = 2.

(by Lemma 1)

Letting x = v, the result follows.
If n is even, then u = σ(w) or aσ(v)b where w ∈ Ft(n/2), v ∈ Ft(

n
2 − 1) and a, b ∈ {0, 1, 2}.

When u = σ(w), by Lemma 1, |u|2 − |u|0 = |w|1 − |w|0. Choosing x = w, we have the desired
result. When u = aσ(v)b, let a = a− 1 (mod 3) and b = b + 1 (mod 3). Then aub = σ(avb). By
Lemma 1,

|aub|2 − |aub|0 = |σ(avb)|2 − |σ(avb)|0 = |avb|1 − |avb|0,

which implies
|u|2 − |u|0 = |avb|1 − |avb|0 + |ab|0 − |ab|2.

When ab 6= 00 and 12,

|u|2 − |u|0 = |av|1 − |av|0 +











−1, if ab = 01, 20,

0, if ab = 02, 10, 21,

1, if ab = 11, 22.

The result holds by choosing x = av. When ab = 00 or 12,

|u|2 − |u|0 = |vb|1 − |vb|0 +

{

−1, if ab = 00,

1, if ab = 12.

Setting x = vb, we are done.
(2) Let u ∈ Ft. By Lemma 3, τ0(u)

R ∈ Ft and

|u|1 − |u|0 = |τ0(u)
R|2 − |τ0(u)

R|0.

Applying (3.4) to τ0(u)
R, we have x ∈ Ft such that

|x|1 − |x|0 − 1 ≤ |τ0(u)
R|2 − |τ0(u)

R|0 ≤ |x|1 − |x|0 + 1.

Let y = τ1(x)
R. Then, y ∈ Ft and |y|1 − |y|2 = |x|1 − |x|0. We have the desired result.

(3) Applying (3.5) to τ1(u)
R and letting z = τ2(y)

R, the result follows.

Now we are ready to prove Proposition 1.

Proof of Proposition 1. For every n ≥ 1, there exists k ≥ 1 such that 2k ≤ n < 2k + 1. Suppose
u ∈ Ft(n). Let n1 = n. By Lemma 4, we have x(1) ∈ Ft(⌊n1/2⌋) such that

|x(1)|1 − |x
(1)|0 − 1 ≤ |u|2 − |u|0 ≤ |x

(1)|1 − |x
(1)|0 + 1.

Let n2 = ⌊n1/2⌋. Apply Lemma 4 to x(1), we have x(2) ∈ Ft(⌊n2/2⌋) such that

|x(2)|1 − |x
(2)|2 − 1 ≤ |x(1)|1 − |x

(1)|0 ≤ |x
(2)|1 − |x

(2)|2 + 1.
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Therefore,
|x(2)|1 − |x

(2)|2 − 2 ≤ |u|2 − |u|0 ≤ |x
(2)|1 − |x

(2)|2 + 2.

Let n3 = ⌊n2/2⌋ and apply Lemma 4 to x(2). Then we have x(3) ∈ Ft(⌊n3/2⌋) satisfying

|x(3)|0 − |x
(3)|2 − 3 ≤ |u|2 − |u|0 ≤ |x

(3)|0 − |x
(3)|2 + 3.

After applying Lemma 4 k times as above, we obtain that

−1− ⌊log2 n⌋ = −1− k ≤ |u|2 − |u|0 ≤ 1 + k = 1 + ⌊log2 n⌋.

Hence (3.2) holds.

3.2. Maximal and minimal digit sums

Let (dk)k≥−1 ∈ {0, 1, 2}∞ where

dk =











0 if k ≡ 3, 4 mod 6,

1 if k ≡ 1, 2 mod 6,

2 if k ≡ 0, 5 mod 6.

Let (cℓ)ℓ≥1 ∈ {0, 1, 2}∞ given by cℓ = ℓ+1 (mod 3). Applying Lemma 1 several times, it follows
that for k = 0, 1, 2, 3, 4, 5,

|σk(dk)|2 − |σ
k(dk)|0 = 1 and |σk(ck)|2 − |σ

k(ck)|0 = 0. (3.6)

In fact, these equalities hold for all k ≥ 1.

Lemma 5. For all ℓ ≥ 1,

|σℓ(dℓ)|2 − |σ
ℓ(dℓ)|0 = 1 and |σℓ(cℓ)|2 − |σ

ℓ(cℓ)|0 = 0.

Proof. Applying Lemma 1 six times, one obtain that for every u ∈ {0, 1, 2}∗,

|σ6(u)|2 − |σ
6(u)|0 = |u|2 − |u|0. (3.7)

For all ℓ ≥ 1, we have ℓ = 6j + k where j ≥ 1 and k = 0, 1, 2, 3, 4, 5. Then dℓ = dk and cℓ = ck.
By (3.6) and (3.7),

|σℓ(dℓ)|2 − |σ
ℓ(dℓ)|0 = |σ6j+k(dk)|2 − |σ

6j+k(dk)|0 = |σk(dk)|2 − |σ
k(dk)|0 = 1

and

|σℓ(cℓ)|2 − |σ
ℓ(cℓ)|0 = |σ6j+k(ck)|2 − |σ

6j+k(ck)|0 = |σk(ck)|2 − |σ
k(ck)|0 = 0.

We have the desired.

Now we define a sequence of words {W (n)}n≥1 whose digit sums will attain the upper bound
in Proposition 1.

Let W1 := 2. For n ≥ 2, Wn is defined as follows: suppose 2k ≤ n < 2k+1 for some k and the
2-adic expansion of n− 2k is written as

(n− 2k)2 = mk−1 · · ·m2m1m0

6



where mj ∈ {0, 1} for j = 0, 1, · · ·k − 1. Define

WL(n) := δm0
2
(

⌊
k−1
2 ⌋
∏

i=1

σ2i+m2i (d2i+m2i
)
)

and

WR(n) :=
(

1
∏

i=⌈
k−1
2 ⌉

σ2i−1+m2i−1 (d2i−1+m2i−1
)
)

2

where δm0
= ε if m0 = 0 and 1 if m0 = 1. Let W (n) := WL(n)WR(n).

Lemma 6. For every integer n satisfying 2k ≤ n < 2k+1 for some k ≥ 0, we have

1. if k is even, then WL(n) ⊲ σ
k(dk+1) and WR(n) ⊳ σ

k+1(dk),

2. if k is odd, then WL(n) ⊲ σ
k+1(dk+2) and WR(n) ⊳ σ

k(dk−1).

Proof. For k = 0, 1, 2, the result can be verified directly from the definition of WL and WR.
Suppose the result hold for all m ≤ k. Now we prove it for m = k + 1. Let 2k+1 ≤ n < 2k+2

with (n− 2k+1)2 = mkmk−1 · · ·m1m0. Set n
′ = 2k +

∑k−1
i=0 mi2

i.
When k + 1 is odd, write k = 2ℓ. Then WR(n) = WR(n

′) ⊳ σk+1(dk) and

WL(n) = δm0
2
(

ℓ
∏

i=1

σ2i+m2i (d2i+m2i
)
)

= δm0
2
(

ℓ−1
∏

i=1

σ2i+m2i(d2i+m2i
)
)

σ2ℓ+m2ℓ(d2ℓ+m2ℓ
)

= WL(n
′)σk+mk (dk+mk

).

When mk = 0, by the induction hypothesis,

WL(n
′)σk+mk(dk+mk

) ⊲ σk(dk+1)σ
k(dk) = σk(dk+2)σ

k(dk)

= σk+1(dk+2) ⊲ σ(k+1)+1(d(k+2)+1).

When mk = 1, by the induction hypothesis,

WL(n
′)σk+mk(dk+mk

) ⊲ σk(dk+1)σ
k+1(dk+1) ⊲ σk+1(dk+3)σ

k+1(dk+1)

= σ(k+1)+1(d(k+1)+2).

So, WL(n) ⊲ σ
(k+1)+1(d(k+1)+2).

When k + 1 is even, write k = 2ℓ+ 1. Then WL(n) = WL(n
′) ⊲ σk+1(dk+2) and

WR(n) = σk+mk(dk+mk
)WR(n

′)

⊳

{

σk(dk)σ
k(dk−1) = σk+1(dk+1), if mk = 0,

σk+1(dk+1)σ
k(dk−1), if mk = 1,

⊳ σk+2(dk+1).

This completes the induction.
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Proposition 2. For all n ≥ 1, W (n) ∈ Ft and τ1(W (n))R ∈ Ft. Moreover,

DS(W (n)) = n+ ⌊log2 n⌋+ 1 and DS(τ1(W (n))R) = n− ⌊log2 n⌋ − 1.

Proof. For all n with 2k ≤ n < 2k+1, by Lemma 6,

W (n) = WL(n)WR(n) ≺ σk(dk+2dkdk−2) ≺ σk+1(dk+2dk−2).

Since (dℓ)ℓ≥1 is periodic, dk+2dk−2 ∈ {21, 10, 02} ⊂ Ft(2). Hence W (n) ∈ Ft. By Lemma 3, we
know τ1(W (n))R ∈ Ft.

According to the definition of WL and WR,

|W (n)|2 − |W (n)|0 = 2 +

k−1
∑

i=1

(|σi+mi (di+mi
)|2 − |σ

i+mi(di+mi
)|0)

= 2 + k − 1 (by Lemma 5)

= ⌊log2(n)⌋+ 1.

Then the results follow from (3.1) and the definition of τ1.

3.3. Accessible values of digit sums

We shall prove the following intermediate value property of digit sums of all the factors of
length n.

Proposition 3. For all n ≥ 1 and all integer k satisfying n−⌊log2 n⌋−1 < k < n+⌊log2 n⌋+1,
there exists u ∈ Ft(n) such that DS(u) = k.

Before proving Proposition 3, we first study the behavior of digit sums during the shift (to
the right). Denote by I(u) the set of all the indexes (or positions) of occurrences of u, i.e., for
every i ∈ I(u), titi+1 · · · ti+n−1 = u. Since t is uniformly recurrent, I(u) is an infinite set for all
u ∈ Ft. For every i ∈ I(u), set

ri(u) = min{j > i : gn(j) > DS(u)},

where gn(j) := DS(tjtj+1 · · · tj+n−1). Set min ∅ = −∞.

Lemma 7. Let u ∈ Ft(n). If DS(u) 6= DS(W (n)), then ri(u) is finite and

gn(ri(u))−DS(u) = 1 or 2.

Moreover, if gn(ri(u))−DS(u) = 2, then gn(ri(u)− 1) = DS(u).

Proof. By Proposition 1 and 2, if DS(u) 6= DS(W (n)), then DS(u) < DS(W (n)). For any
occurrence of u, say titi+1 · · · ti+n−1 = u, since t is uniformly recurrent, there exists j > i such
that tjtj+1 · · · tj+n−1 = W (n). Thus, ri(u) < j.

Now suppose ri(u) is finite. Write k := ri(u). Then, gn(k − 1) ≤ DS(u). Since

gn(k)− gn(k − 1) = tk+n−1 − tk−1 ∈ {0,±1,±2}

and gn(k) > DS(u) ≥ gn(k− 1), we know that gn(k)−DS(u) = 1 or 2. Moreover, if gn(k− 1) <
DS(u), then 0 < gn(k)−DS(u) < gn(k)− gn(k − 1) ≤ 2 which implies gn(k)−DS(u) = 1.
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The key to prove Proposition 3 is to figure out how many times we need to do the shift in
order to increase the digit sum of a given factor by 1. The following two lemmas deal with the
problem. The first one is a technical lemma. Let u, v ∈ Ft(3). Write σ6(u) = u0u1 · · ·u191 and
σ6(v) = v0v1 · · · v191. For 64 ≤ i, j < 128 satisfying ui = 0 and vj = 2, 0 < m < 192−max{i, j}
and 0 < p ≤ min{i, j}, set

R(u, v, i, j,m) =

m
∑

ℓ=0

(vj+ℓ − ui+ℓ),

L(u, v, i, j,−p) =

p
∑

ℓ=1

(ui−ℓ − vj−ℓ).

Lemma 8. For all u, v ∈ Ft(3) and 64 ≤ i, j < 128 satisfying ui = 0 and vj = 2, R(u, v, i, j,m) =
1 for some 0 < m < 192−max{i, j} or L(u, v, i, j,−p) = 1 for some 0 < p ≤ min{i, j}.

Proof. Since the choices of variables of both L and R are finite, the result can be verified exhaus-
tively. (This can be easily checked by a computer. We give the pseudocode for the corresponding
procedures in Appendix A.)

Lemma 9. Let n > 128. For every u ∈ Ft(n) with DS(u) 6= DS(W (n)), there exists z ∈ Ft(n)
satisfying DS(z)−DS(u) = 1.

Proof. Let i ∈ I(u) with i ≥ 28. Set j = ri(u) − 1. By Lemma 7, if gn(ri(u)) − DS(u) = 1,
then we are done. If gn(ri(u)) − DS(u) = 2, then gn(j) = DS(u) which also implies tj = 0 and
tj+n = 2. Write w = tjtj · · · tj+n−1.

The word w has the following decomposition:

w = (tjtj+1 · · · tj+ℓ−1)σ
6(v)(tj+n−r · · · tj+n−1) ≺ σ6(xvy)

where v ∈ Ft, tjtj+1 · · · tj+ℓ−1 ⊲σ
6(x) and tj+n−r · · · tj+n−1 ⊳σ

6(y) for some x, y ∈ {0, 1, 2}. Note
that ℓ, r ≤ 64. Further, we have

w ≺ σ6(bxvyd)

where v ∈ Ft, bx, yd ∈ Ft(2) and bxvyd ∈ Ft. Let j̃ = j (mod 64) and j′ = j + n− 1 (mod 64).
Let a, c ∈ {0, 1, 2} with a ⊳ v and c ⊲ v. Then,

gn(j +m)−DS(w) = R(bxa, cyd, j̃ + 64, j′ + 64,m),

gn(j − p)−DS(w) = L(bxa, cyd, j̃ + 64, j′ + 64, p).

By Lemma 8, one of the following is true:

1. gn(j +m)−DS(w) = 1 for some 0 < m < 192−max{i, j};

2. gn(j − p)−DS(w) = 1 for some 0 < p ≤ min{i, j}.

Setting z = tj+mtj+m+1 · · · tj+m+n−1 or z = tj−ptj−p+1 · · · tj−p+n−1, we have the desired.

Now we prove the intermediate value property of digit sums.

Proof of Proposition 3. For every n > 128, starting from τ1(W (n))R and applying Lemma 9
2⌊log2 n⌋+ 1 times, the result follows. For 1 ≤ n ≤ 128, the result can be verified exhaustively.
(This has been done by a computer. We provide the pseudocode for the corresponding procedure
in Appendix B.)
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Appendix A: Pseudocode for Lemma 8.

Algorithm 1 For every input u, v, i, j which is present in Lemma 8, the outputs of two following
procedures can not be both false.

1: procedure RightShiftTimes

2: Input: u, v, i, j with 64 ≤ i, j < 128 satisfying ui = 0 and vj = 2
3: Output: m or false
4: lword← σ6(u)
5: rword← σ6(v)
6: m← 0
7: s← 0
8: while m ≤ 192−max(i, j) do
9: s← s+ rword(j +m)− lword(i +m)

10: if s = 1 then

11: return m
12: m← m+ 1

13: return false
14: procedure LeftShiftTimes

15: Input: u, v, i, j with 64 ≤ i, j < 128 satisfying ui = 0 and vj = 2
16: Output: −p or false
17: lword← σ6(u)
18: rword← σ6(v)
19: p← 1
20: s← 0
21: while p ≤ min(i, j) do
22: s← s+ lword(i − p)− rword(j − p)
23: if s = 1 then

24: return −p

25: p← p+ 1

26: return false

Appendix B: Pseudocode for Proposition 3 for 1 ≤ n ≤ 128.

Since t is uniformly recurrent, for every positive integer n, there exits an integer R(n) > n
such that for every u ∈ Ft(n), we have u ≺ t0 · · · tR(n). At the mean time, using the analogue of
the proof of [6, Proposition 5.1.9], we can show the subword complexity function ρt(n): ρt(1) =
3, ρt(2) = 9, and for n ≥ 3,

{

ρt(2n) = ρt(n) + ρt(n+ 1),

ρt(2n+ 1) = 2ρt(n+ 1).

Hence it is possible to find the index R(n) for every 1 ≤ n ≤ 128 with the help of a computer.
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Algorithm 2 For every input n, k, the output of the following procedure always be true.

1: procedure HaveDesiredDigitSum

2: Input: n, k with 1 ≤ n ≤ 128 and n− ⌊log2 n⌋ − 1 < k < n+ ⌊log2 n⌋+ 1
3: Output: true or false
4: i← 0
5: while i ≤ R(n)− n+ 1 do

6: ds← 0
7: j ← i
8: while j ≤ i+ n− 1 do

9: ds← ds+ tj
10: j ← j + 1

11: if ds = k then

12: return true
13: i← i+ 1

14: return false
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[3] L. Balková, K. Břinda and O. Turek. Abelian complexity of infinite words associated with
quadratic Parry numbers, Theoret. Comput. Sci. 412 (45) (2011) 6252-6260.

[4] J. Cassaigne, G. Fici, M. Sciortino and L. Q. Zamboni, Cyclic complexity of words, in
International Symposium on Mathematical Foundations of Computer Science (pp. 159-170).
Springer Berlin Heidelberg (2014, August).

[5] E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems
Theory 7 (1973) 138-153.

[6] N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in
Mathematics, 1794) . Eds. Berth V., Ferenczi S., Mauduit C. and Siegel A.. Springer, Berlin,
2002
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