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Abstract

The Kazhdan-Lusztig polynomial of a matroid was introduced by Elias, Proud-
foot and Wakefield, whose properties need to be further explored. In this paper we
prove that the Kazhdan-Lusztig polynomials of fan matroids coincide with Motzkin
polynomials, which was recently conjectured by Gedeon. As a byproduct, we de-
termine the Kazhdan-Lusztig polynomials of graphic matroids of squares of paths.
We further obtain explicit formulas of the Kazhdan-Lusztig polynomials of wheel
matroids and whirl matroids. We prove the real-rootedness of the Kazhdan-Lusztig
polynomials of these matroids, which provides positive evidence for a conjecture due
to Gedeon, Proudfoot and Young. Based on the results on the Kazhdan-Lusztig
polynomials, we also determine the Z-polynomials of fan matroids, wheel matroids
and whirl matroids, and prove their real-rootedness, which provides further evidence
in support of a conjecture of Proudfoot, Xu, and Young.
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1 Introduction

In the study of the Hecke algebra of Coxeter groups, Kazhdan and Lusztig [17] associ-
ated to each pair of group elements an integral polynomial, now known as the Kazhdan-
Lusztig polynomial. In analogy with the classic Kazhdan-Lusztig polynomials, Elias,
Proudfoot and Wakefield [9] associated to every matroid an integral polynomial, which
can also be defined for each pair of comparable elements in the lattice of flats. As noted
by Gedeon, Proudfoot and Young [12], both the Kazhdan-Lusztig polynomials of ma-
troids and the classic Kazhdan-Lusztig polynomials can be considered as special cases
of the Kazhdan-Lusztig-Stanley functions, first introduced by Stanley [26] and further
studied by Brenti [2, 3]. Computer experiments suggest that the Kazhdan-Lusztig poly-
nomials of matroids has many special properties such as real-rootedness, as conjectured
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by Gedeon, Proudfoot and Young [12]. However, there still remains challenge for sim-
ple matroids such as braid matroids, even to determine the leading coefficients of their
Kazhdan-Lusztig polynomials. The main objective of this paper is to determine the
Kazhdan-Lusztig polynomials of fan matroids, wheel matroids and whirl matroids, and
to prove their real-rootedness in support of Gedeon, Proudfoot and Young’s conjecture.

Let us give an overview of some background. We begin with the definition of the
Kazhdan-Lusztig polynomial of a matroid, as introduced by Elias, Proudfoot and Wake-
field [9]. We follow their notation and terminology to a large extent. Given a matroid
M , let L(M) denote the lattice of flats of M and let χM(t) denote its characteristic poly-
nomial. For instance, the lattice of flats of the graphic matroid of a fan graph with four
vertices is given in Figure 1. For any flat F ∈ L(M), let MF be the contraction of M at
F and let MF be the localization of M at F . Figure 2 gives an illustration of MF and
MF . Let rkM denote the rank of M . Elias, Proudfoot and Wakefield [9] proved that
there is a unique way to associate to each loopless matroid M a polynomial PM(t) ∈ Z[t]
satisfying the following properties:

• If rkM = 0, then PM(t) = 1.

• If rkM > 0, then degPM(t) < 1
2
rkM .

• For every M , trkMPM(t−1) =
∑

F∈L(M)

χMF
(t)PMF (t).

F

Figure 1: L(M)

F F

Figure 2: L(MF ) and L(MF )

The polynomial PM(t) is called the Kazhdan-Lusztig polynomial of M . Note that if
M and M ′ are two matriods satisfying L(M) ∼= L(M ′), then PM(t) = PM ′(t). Thus, we
may always assume that all matroids appeared in the definition have no parallel elements.

Elias, Proudfoot and Wakefield [9] pointed out that the Kazhdan-Lusztig polynomials
for matroids behave very differently from the ordinary Kazhdan-Lusztig polynomials for
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Coxeter groups. However, they do possess some similar properties. For example, the
coefficients of the classic Kazhdan-Lusztig polynomials are non-negative, as proved by
Elias and Williamson [10]. Elias, Proudfoot and Wakefield [9] showed that the coefficients
of the Kazhdan-Lusztig polynomials of representable matroids are also non-negative, and
they further conjectured that this is true for any matroids. They also used the defining
recursion of PM(t) to interpret the coefficients of some lower degree terms in terms of the
doubly indexed Whitney numbers of the first and second kinds, introduced by Green and
Zaslavsky[15]. While, except for the constant term (always equal to 1) and the linear
term, neither the quadratic term nor the cubic term can be proven to be positive by using
such explicit formulas. As noted by Elias, Proudfoot and Wakefield, it is difficult to find a
closed formulas for every coefficient by the same method. Later Wakefield [29] expressed
every coefficient as an alternating sum of r-Whitney numbers, and Proudfoot, Xu and
Young [24] gave another combinatorial formula for every coefficient. But neither of these
formulas is manifestly positive.

Though the positivity conjecture on the Kazhdan-Lusztig polynomials for matroids is
still open, much work has been focused on determining the Kazhdan-Lusztig polynomials
for specific families of matroids. Elias, Proudfoot and Wakefield [9] already showed the
Kazhdan-Lusztig polynomial of a finite Boolean matroid is equal to 1. Furthermore, they
proved that the Kazhdan-Lusztig polynomial of a matroid is equal to 1 if and only if its
lattice of flats is modular. For uniform matroids, they also obtained a recursive relation
among the coefficients of the Kazhdan-Lusztig polynomials, which was transformed into an
equivalent functional equation concerning the generating functions of the Kazhdan-Lusztig
polynomials. Since uniform matroids are representable matroids, the coefficients of such
Kazhdan-Lusztig polynomials should be nonnegative. But the recursive formula given by
Elias, Proudfoot and Wakefield seems not helpful to show that the positivity conjecture is
valid for general uniform matroids. Based on the recursive formula, Proudfoot, Wakefield
and Young [23] gave an explicit formula of the Kazhdan-Lusztig polynomial of the uniform
matroid of rank n−1 on n elements. For general uniform matroids, explicit formulas of the
Kazhdan-Lusztig polynomials can be deduced from those of the corresponding equivariant
Kazhdan-Lusztig polynomials due to Gedeon, Proudfoot and Young [13], by which the
nonnegativity of the coefficients becomes evident.

Even for graphic matroids, determining the explicit expressions of the Kazhdan-Lusztig
polynomials remains a challenge except for few families of graphs. It is easy to show that
the Kazhdan-Lusztig polynomial for any forest is always equal to 1 since its graphic ma-
troid is isomorphic to a boolean matroid. The Kazhdan-Lusztig polynomial for a cycle
graph with n vertices was also known since its graphic matroid is just the uniform matroid
of rank n − 1 on n elements, see Gedeon, Proudfoot and Young [12]. Gedeon [14] deter-
mined the Kazhdan-Lusztig polynomials for thagomizer matroids. Gedeon, Proudfoot
and Young [12] further determined the Kazhdan-Lusztig polynomials for complete bipar-
tite graphs with one part having exactly two vertices. The Kazhdan-Lusztig polynomials
for braid matroids, which are graphic matroids associated with complete graphs, were
first studied by Elias, Proudfoot and Wakefield [9]. For these polynomials, they explicitly
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determined the coefficients of some terms of degree less than four in terms of Stirling
numbers. However, there are no conjectured explicit formulas for general coefficients of
the Kazhdan-Lusztig polynomials for braid matroids, and even their leading coefficients
are still mysterious, see [9, 12].

In this paper we obtain explicit expressions of the Kazhdan-Lusztig polynomials for
some matroids associated with square of paths, fan graphs and wheel graphs. Recall that
a square of a path with n (n ≥ 1) vertices, denoted by Sn, is the graph formed by joining
every pair of vertices of distance two in the path. A fan graph Fn (n ≥ 1) is a graph with
n+1 vertices, formed by connecting a single vertex to all vertices of a path of n vertices.
A wheel graph Wn (n ≥ 3) is a graph with n + 1 vertices, formed by connecting a single
vertex to all vertices of an n-edge cycle graph. Let PSn

(t), PFn
(t) and PWn

(t) denote the
Kazhdan-Lusztig polynomials of the associated graphic matroids. Let PWn(t) denote the
Kazhdan-Lusztig polynomial of the whirl matroid W n, which is obtained from the graphic
matroid of Wn by declaring the outer cycle of Wn to be an independent set and leaving the
remaining independent sets the same. Gedeon [11] conjectured that the Kazhdan-Lusztig
polynomials PFn

coincide with Motzkin polynomials. The first main result of this paper
is as follows, which in particular provides an affirmative answer to Gedeon’s conjecture.

Theorem 1.1. The Kazhdan-Lusztig polynomials PFn
(t), PSn

(t), PWn
(t) and PWn(t) are

respectively given by

PFn
(t) =

⌊n−1

2
⌋

∑

k=0

1

k + 1

(

n− 1

k, k, n− 2k − 1

)

tk, for n ≥ 1 (1.1)

PSn
(t) =

⌊n−1

2
⌋

∑

k=0

1

k + 1

(

n− 1

k, k, n− 2k − 1

)

tk, for n ≥ 1 (1.2)

PWn
(t) =

⌊n−1

2 ⌋
∑

k=0

(

k + 1

n− k
+

k

n− k + 1
−

k

n− k − 1

)(

n

k, k + 1, n− 2k − 1

)

tk, for n ≥ 3

(1.3)

PWn(t) =

⌊n−1

2 ⌋
∑

k=0

n

n− k

(

n− 1

k, k, n− 2k − 1

)

tk, for n ≥ 3 (1.4)

where ⌊x⌋ stands for the smallest integer less than or equal to x.

The second part of this paper is devoted to the study of the real-rootedness of the
Kazhdan-Lusztig polynomials PFn

(t), PSn
(t), PWn

(t) and PWn(t). This was motivated by
the following conjecture due to Gedeon, Proudfoot and Young [12].

Conjecture 1.2 ([12, Conjecture 3.2]). The Kazhdan-Lusztig polynomial PM(t) has only
negative zeros for any matroid M .
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A weaker conjecture than Conjecture 1.2 was proposed by Elias, Proudfoot, Wakefield
[9, Conjecture 2.5], which states that for any matroid M the Kazhdan-Lusztig polynomial
PM(t) is a log-concave polynomial with no internal zeros. Recall that a polynomial

f(t) = a0 + a1t+ · · ·+ ant
n

with real coefficients is said to be log-concave if ai2 ≥ ai−1ai+1 for any 0 < i < n, and it
is said to have no internal zeros if there are not three indices 0 ≤ i < j < k ≤ n such that
ai, ak 6= 0 and aj = 0. By the well known Newton inequality, if f(t) has only negative
zeros, then it must be a log-concave polynomial without internal zeros.

Gedeon, Proudfoot and Young [12] also studied the interlacing property concerning
the Kazhdan-Lusztig polynomials for non-degenerate matroids. A matroid M is called
non-degenerate if rkM = 0 or its Kazhdan-Lusztig polynomial PM(t) is of degree ⌊ rkM−1

2
⌋.

Given two real-rooted polynomials f(t) and g(t) with positive leading coefficients, let {ui}
be the set of zeros of f(t) and let {vj} be the set of zeros of g(t). We say that g(t) is
an interleaver of f(t), denoted g(t) � f(t), if either of the following two conditions is
satisfied:

(1) deg f(t) = deg g(t) = n and

vn ≤ un ≤ vn−1 ≤ · · · ≤ v2 ≤ u2 ≤ v1 ≤ u1; (1.5)

(2) deg f(t) = deg g(t) + 1 = n and

un ≤ vn−1 ≤ · · · ≤ v2 ≤ u2 ≤ v1 ≤ u1. (1.6)

For the second case, we usually say that g(t) interlaces f(t), which is different from
the definition given in [12]. Gedeon, Proudfoot and Young [12] proposed the following
conjecture.

Conjecture 1.3 ([12, Conjecture 3.4]). Given a matroid M and an element e of the
ground set of M , let M/e be the contraction of M at e. If both M and M/e are non-
degenerate, then PM/e(t) � PM(t).

Despite strong interest, there were very few results about Conjectures 1.2 and 1.3.
For any n ≥ 1, it was known that Conjectures 1.2 and 1.3 are both valid for the uniform
matroid of rank n − 1 on n elements, see [12, 32]. Based on the theory of multiplier
sequences and n-sequences (see [5, 6]), we prove that Conjecture 1.2 holds for fan matroids,
wheel matroids and whirl matroids, and Conjecture 1.3 holds for fan matroids.

Theorem 1.4. For n ≥ 3, each of the Kazhdan-Lusztig polynomials PFn
(t), PSn

(t), PWn
(t)

and PWn(t) has only negative zeros. In particular, we have PFn
(t) � PFn+1

(t).
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The third part of this paper is concerned with the Z-polynomials for fan matroids,
wheel matroids and whirl matroids. The notion of the Z-polynomial of a matroid was
introduced by Proudfoot, Xu and Young [24]. Given a matroid M , its Z-polynomial is
defined by

ZM(t) :=
∑

F∈L(M)

trkMFPMF (t),

Analogous to the real-rootedness conjecture for the Kazhdan-Lusztig polynomials of ma-
troids, Proudfoot, Xu and Young [24] posed he following conjecture.

Conjecture 1.5 ([24, Conjecture 5.1]). The Z-polynomial ZM(t) has only negative zeros
for any matroid M .

Proudfoot, Xu and Young obtained explicit formulas of the Z-polynomials for the
uniform matroid of rank n − 1 on n elements and the matroid represented by all vec-
tors of the vector space Fn

q , as well as the real-rootedness of these Z-polynomials. Let
ZFn

(t), ZWn
(t), ZWn(t) denote the Z-polynomials corresponding to the fan graph Fn, the

wheel graph Wn and the whirl matroid W n respectively. In this paper we obtain explicit
formulas of ZFn

(t), ZWn
(t) and ZWn(t) as given below.

Theorem 1.6. We have

ZFn
(t) =

n
∑

k=0

1

n+ 1

(

n + 1

k + 1

)(

n + 1

k

)

tk, for n ≥ 1 (1.7)

ZWn
(t) =

n
∑

k=0

(

(

n

k

)2

−
2

n

(

n

k + 1

)(

n

k − 1

)

)

tk, for n ≥ 3 (1.8)

ZWn(t) =

n
∑

k=0

(

n

k

)2

tk, for n ≥ 3. (1.9)

Based on the above formulas, we further show that Conjecture 1.5 holds for fan ma-
troids, wheel matroids and whirl matroids. Precisely, we have the following result.

Theorem 1.7. The Z-polynomials ZFn
(t), ZWn

(t) and ZWn(t) are all real-rooted.

This paper is organized as follows. In Section 2 we will give an alternative description
of the Kazhdan-Lusztig polynomial of a graphic matroid directly in the language of graph
theory. In Section 3, we will recall some known results on the ordinary generating func-
tions. We also give a variation of the composition formula with respect to cycles, which
turns out to be new but very useful. In Section 4, we first determine the Kazhdan-Lusztig
polynomials for fan matroids by using the generating function technique. Based on this
result, we further obtain explicit formulas of the Kazhdan-Lusztig polynomials for wheel
matroids and whirl matroids. By Whitney’s 2-isomorphism theorem, we also determine
the Kazhdan-Lusztig polynomials for squares of paths. In Section 5 we will prove the
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real-rootedness of the Kazhdan-Lusztig polynomials obtained in Section 3 by using the
theory of multiplier sequences and the theory of n-sequences. In Section 6 we get closed
formulas for the Z-polynomials of fan matroids, wheel matroids and whirl matroids, based
on which we verified the validity of Conjecture 1.5 for these matroids.

2 Graphic matroids

In this section we aim to give an alternative description of the Kazhdan-Lusztig poly-
nomial, as well as that of the Z-polynomial, for a graphic matroid by directly using the
language of graph theory. As will be shown later, such a formulation is convenient for
computing the Kazhdan-Lusztig polynomials and Z-polynomials for fan matroids, wheel
matriods and whirl matroids.

Given a loopless graph G with edge set E(G) and vertex set V (G), let M(G) denote the
corresponding graphic matroid. It is known that the ground set of M(G) is E(G) and its
independent sets are the forests in G. To reformulate the definition of the Kazhdan-Lusztig
polynomial of M(G), we first recall how to describe its rank, flats and characteristic
polynomial in graph theory terminology. Recall that the rank of M(G) is equal to the
rank of G, denoted by rkG, which is defined as the cardinality of V (G) minus the number
of connected components of G. A flat of M(G) can be identified with a partition of
V (G) into vertex sets of connected induced subgraphs of G. Such a partition was called
a composition of G in [18], and we use C(G) to denote the set of all compositions of G.
Given a flat F of M(G), the localization M(G)F and the contraction M(G)F are naturally
identified with graphic matroids as follows:

M(G)F = M(G[F ]), M(G)F = M(G/F ), (2.1)

where G[F ] is the subgraph of G induced by F and G/F is the graph obtained from G
by contracting all edges of F (in any order), see [30, p. 61 and p. 63]. If G is a graph with
k connected components, then we have

χM(G)(t) = t−kχG(t), (2.2)

where χG(t) is the chromatic polynomial of G, see [30, p. 262]. If a given composition
C ∈ C(G) corresponds to a flat F of M(G), then we also use G[C] to denote the graph
G[F ] and use G/C to denote the graph G/F . Further, suppose that C = {V1, V2, . . . , V|C|},

and then it is readily to see that G[C] is just the graph union ∪
|C|
i=1G[Vi], where each G[Vi]

is the subgraph of G induced by Vi. For example, given a graph G as shown in Figure 3,
let C = {{1, 3, 4}, {2, 5}, {6, 7, 10}, {8}, {9, 11, 12}}. Then E(G[C]) is highlighted by bold
lines in Figure 3 and G/C is isomorphic to the graph in Figure 4.
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6 7

8
9

10 11 12

Figure 3: G and G[C]

{1,3,4} {2,5}

{6,7,10} {8}

{9,11,12}

Figure 4: G/C

Now we can give an alternative description of the Kazhdan-Lusztig polynomial of
M(G). For notational convenience, we denote the Kazhdan-Lusztig polynomial of M(G)
by PG(t) instead of PM(G)(t). We also say that PG(t) is the Kazhdan-Lusztig polynomial
of G. By the preceding arguments, the polynomial PG(t) can be defined in the following
way:

• If rkG = 0, that is E(G) = ∅ , then PG(t) = 1.

• If rkG > 0, then degPG(t) <
1
2
rkG, and moreover

trkGPG(t
−1) =

∑

C∈C(G)

t−|C|χG[C](t)PG/C(t). (2.3)

Note that an edge contraction operation may result in a graph with multiple edges even
if the original graph was a simple graph. Since for any graph G and its associated simple
graph G′ we have PG(t) = PG′(t), we always assume that all graphs appeared in the above
definition are simple. In this sense we can consider G/C as a quotient graph by identifying
vertices in each block of C.

We proceed to show the multiplicativity of the Kazhdan-Lusztig polynomial PG(t),
which will be frequently used in Section 4. Recall that a connected graph is called bi-
connected if the resulting graph remains connected whenever any vertex is removed. A
biconnected component of a graph is a maximal biconnected subgraph. We have the
following result.

Lemma 2.1. Suppose that G is a graph with k connected components and m biconnected
components, say {G1, . . . , Gm}. Then we have

PG(t) =
m
∏

i=1

PGi
(t), (2.4)

χG(t) = t−(m−k)

m
∏

i=1

χGi
(t). (2.5)

Proof. By definition we know that M(G) = ⊕m
i=1M(Gi). It is known that for any matroids

M1 and M2 there holds PM1⊕M2
(t) = PM1

(t)PM2
(t), see [9, Proposition 2.7]. Iteration of
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this property leads to (2.4). It is also known that the characteristic polynomial χM(G)(t)
is also multiplicative on direct sums, see [30, p. 265]. Thus, we have

χM(G)(t) =
m
∏

i=1

χM(Gi)(t).

Combining the above identity and (2.2), we immediately obtain (2.5).

Next we give an alternative description of the the Z-polynomial of M(G). For nota-
tional convenience, we denote the Z-polynomial of M(G) by ZG(t) instead of ZM(G)(t).
As before, we also say that ZG(t) is the Z-polynomial of G. Using the language of graph
theory, the Z-polynomial of G can be defined by

ZG(t) :=
∑

C∈C(G)

trkG[C]PG/C(t). (2.6)

From the multiplicativity of PG(t) it follows that the Z-polynomial ZG(t) also admits
the same property.

Lemma 2.2. Suppose that G is a graph with k connected components and m biconnected
components, say {G1, . . . , Gm}. Then we have

ZG(t) =

m
∏

i=1

ZGi
(t). (2.7)

3 Ordinary generating functions

In this section we aim to give a variation of the usual composition formula of ordinary
generating functions, which will be used to determine the ordinary generating functions
of the Kazhdan-Lusztig polynomials of wheel graphs.

Let us first give an overview of the combinatorial significance of the derivative formula,
the product formula and the composition formula of ordinary generating functions.

Suppose that we are interested in enumerating a family A of combinatorial structures.
For each a ∈ A, let |a| denote its size. If |a| = n, we also say that a is a combinatorial
structure of type A which is built on an interval I of size n. Let An denote the set of
combinatorial structures of type A which can be built on an interval I of size n. We
always assumed that the allowed structures depend only on the size of the interval I. If
each element a of A is weighted by wA(a), then define the ordinary generating function
of A with respect to the weight function wA as the formal power series

A(u) =
∑

a∈A

wA(a)u
|a|,
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or equivalently,

A(u) =
∑

n∈A

(

∑

a∈An

wA(a)

)

un,

where A = {n ∈ N | An 6= ∅}.

The derivative of the ordinary generating function A(u) admits a very natural com-
binatorial interpretation, as illustrated below. For n ∈ A\{0} let Ȧn denote the set of
pointed type A structures built on an interval I of size n by a special “pointer” of size 0
attached to an element of I. Let Ȧ = ∪∞

n=1Ȧn. Each pointed structure ȧ will have the
same weight as the underlying structure a. For this reason, we still denote the weight
function of Ȧ by wA. Note that the coefficient of un in A(u), denoted by [un]A(u), is the
weighted sum of structures in An. Thus n[un]A(u) can be interpreted as the weighted
sum of structures in Ȧn. Therefore, we have the following result.

Proposition 3.1. The ordinary generating function of Ȧ is given by

Ȧ(u) =
∑

n∈A\{0}





∑

ȧ∈Ȧn

wA(ȧ)



 un = uA′(u).

Given two types of combinatorial structures, say A and B, denote their weight func-
tions respectively by wA and wB, and denote their ordinary generating functions respec-
tively by A(u) and B(u). Suppose that C is another type of combinatorial structures with
the weight function wC, which is built from A and B in the following way: a structure c
of type C built on an interval I is obtained by first splitting I into two intervals I1 and
I2, and then building a structure a of type A on I1 and a structure b of type B on I2; and
moreover wC(c) = wA(a)wB(b). Here I1 and I2 are allowed to be empty. If C is obtained
in such a way, we also write C = A × B. The product formula of ordinary generating
functions is stated as follows.

Proposition 3.2. Suppose that A,B, C are three types of combinatorial structures such
that C = A× B. If we let

A(u) =
∞
∑

n=0

(

∑

a∈An

wA(a)

)

un,

B(u) =

∞
∑

n=0

(

∑

b∈Bn

wB(b)

)

un,

C(u) =
∞
∑

n=0

(

∑

c∈Cn

wC(c)

)

un,

then
C(u) = A(u)B(u).
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Next we consider the composition formula of ordinary generating functions. Let A and
B be two types of combinatorial structures as before. Note that for a type B structure
b of size n we may also say that b is built on an ordered n-element set since the allowed
structures only depend on the size of the interval. Suppose that C is a combinatorial
structure with the weight function wC, which is built from A and B in the following
way: a structure c of type C built on an interval I is obtained by first splitting I into an
unspecified number of nonempty intervals, say I1, I2, . . . , Ik listed from left to right, then
building a structure aj of type A on each interval Ij , and then building a type B structure
b on ordered intervals (I1, I2, . . . , Ik); and moreover wC(c) = wB(b)

∏k
j=1wA(aj). If C is

obtained in such a way, we also write C = B ◦ A. The composition formula of ordinary
generating functions is stated as follows.

Proposition 3.3. Suppose that A,B, C are three types of combinatorial structures such
that C = B ◦ A and 0 6∈ A, where A = {n ∈ N | An 6= ∅} as defined before. If we let

A(u) =
∑

n∈A

(

∑

a∈An

wA(a)

)

un,

B(u) =

∞
∑

n=0

(

∑

b∈Bn

wB(b)

)

un,

C(u) =

∞
∑

n=0

(

∑

c∈Cn

wC(c)

)

un,

then
C(u) = B(A(u)).

We proceed to consider a variation of the above composition formula, which is very
useful for determining the ordinary generating functions of certain combinatorial struc-
tures related to cycles. From two types of combinatorial structures A and B we construct
the third family of combinatorial structures C, which will build a structure c on an in-
terval I of size n in the following way: first decompose a cycle of length n into at least
two nonempty segments, say {I1, I2, . . . , Ik}, then build a structure aj of type A for each
Ij (considered as an interval), and then build a type B structure b on ordered segments
(I1, I2, . . . , Ik); and moreover wC(c) = wB(b)

∏k
j=1wA(aj). If C is obtained in such a way,

we also write C = B • A. We have the following result.

Proposition 3.4. Suppose that A,B, C are three types of combinatorial structures such
that C = B•A, 0 6∈ A and 0, 1 6∈ B, where A = {n ∈ N | An 6= ∅} and B = {n ∈ N | Bn 6= ∅}.
If we let

A(u) =
∑

n∈A

(

∑

a∈An

wA(a)

)

un,
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B(u) =
∑

n∈B

(

∑

b∈Bn

wB(b)

)

un,

C(u) =

∞
∑

n=2

(

∑

c∈Cn

wC(c)

)

un,

then

C(u) = uA′(u)
B(A(u))

A(u)
.

Proof. First we give an alternative description of cycle decompositions involved in type
C structures. Let C〈1〉

n denote the set of cycle decompositions of an n-cycle (with vertices
labelled 1, 2, . . . , n) into at least two segments. Let C〈2〉

n denote the set of weak integer
compositions of n, say (α0, α1, . . . , αk−1, αk), satisfying k ∈ B, a1 ≥ 1, a0 + a1 ∈ A and
αi ∈ A for 2 ≤ i ≤ k. We proceed to show that there is a one to one correspondence
between C

〈1〉
n and C

〈2〉
n for each n ≥ 2. The case of n = 2 or C

〈1〉
n = C

〈2〉
n = ∅ is obvious.

For n ≥ 3 and C
〈1〉
n 6= ∅, we construct a bijective map φ from C

〈1〉
n to C

〈2〉
n . For a given

element C in C
〈1〉
n containing k ≥ 2 segments, say {I1, I2, . . . , Ik} arranged clockwise in the

cycle with 1 ∈ I1, we can define φ(C) as follows. Then let φ(C) = (α0, α1, . . . , αk−1, αk),
where α0 is the integer such that n − α0 is the maximal number in Ik, α1 = |I1| − α0

and αi = |Ii| for 2 ≤ i ≤ k. It is clear that φ(C) ∈ C
〈2〉
n and the map φ is injective.

Conversely, given a weak composition (α0, α1, . . . , αk−1, αk) ∈ C
〈2〉
n , we can define a cycle

decomposition C ′ with k segments I1, . . . , Ik such that I1 = [n − α0 + 1, n] ∪ [1, α1] and
Ii = [α1 + · · ·+αi−1 +1, α1+ · · ·+αi] for 2 ≤ i ≤ k. It is not difficult to show that φ(C ′)
is just (α0, α1, . . . , αk−1, αk). Thus φ is also surjective.

To prove the desired result, we shall introduce three more families of combinatorial
structures. Let Ȧ be the set of pointed type A structures defined as before. From B we
may define another family of combinatorial structures, denoted by B̄, simply by requiring
that B̄n = Bn+1 for n ≥ 0. (The equality B̄n = Bn+1 means that all possible type B̄
structures built on an interval of size n are exactly those possible type B structures built
on an interval of size n+ 1.) A type B̄ structure b̄ will be weighted as a type B structure
b. Therefore, the ordinary generating function of B̄ is given by

B̄(u) =
∞
∑

n=1





∑

b̄∈B̄n

wB(b̄)



 un =
∞
∑

n=1





∑

b∈Bn+1

wB(b)



 un =
B(u)

u
.

Now we define another family of combinatorial structures, denoted by C̃, in the fol-
lowing way: a structure c̃ built built on an interval Ĩ is obtained by first splitting I into
k ∈ B intervals (Ĩ1, Ĩ2, . . . , Ĩk), build a type Ȧ structure ȧ on Ĩ1, for each 2 ≤ j ≤ k build
a type A structure aj on Ĩj, and then build a type B̄ structure b̄ on ordered intervals
(Ĩ2, . . . , Ĩk). We define the weight function wC̃ of C̃ by

wC̃(c̃) = wA(ȧ)wA(a2) · · ·wA(ak)wB(b̄).

12



It is readily to see that
C̃ = Ȧ × (B̄ ◦ A).

By Propositions 3.2 and 3.3, the generating function of C̃ is given by

C̃(u) = Ȧ(u)× B̄(A(u)) = uA′(u)
B(A(u))

A(u)
.

With the above bijection φ between C
〈1〉
n and C

〈2〉
n , we are able to establish a weight

preserving bijection (also denoted by φ) between Cn and C̃n. Given a structure c ∈ Cn,
we define a structure c̃ ∈ C̃n in the following way. Suppose that c corresponds to a cycle
decomposition C ∈ C〈1〉

n containing k ≥ 2 segments, say {I1, I2, . . . , Ik} arranged clockwise
in the cycle with 1 ∈ I1. If φ(C) = (α0, α1, . . . , αk−1, αk) ∈ C

〈2〉
n , then |I1| = α0 + α1

and |Ij| = αj for each 2 ≤ j ≤ k. Recall that c is obtained by first taking the cycle
decomposition C = {I1, I2, . . . , Ik}, then building a type A structure aj for each Ij , and
then building a type B structure b for the ordered blocks (I1, I2, . . . , Ik). To define c̃, we
first decompose an interval Ĩ of length n into k intervals Ĩ1, Ĩ2, . . . , Ĩk with |Ĩ1| = α0 + α1

and |Ĩj| = αj for each 2 ≤ j ≤ k; assign the pointed type A structure ȧ1 to Ĩ1 with
its (α0 + 1)-th element attached to the pointer of size 0; for 2 ≤ j ≤ k assign the type
A structure aj to each Ij; and finally assign the type B̄ structure b to the ordered set
(I2, . . . , Ik). Let φ(c) = c̃. It is clear that wC̃(c̃) = wC(c), and hence φ is a weight
preserving bijection between Cn and C̃n. Thus, we have

C(u) = C̃(u).

This completes the proof.

4 Kazhdan-Lusztig polynomials

The aim of this section is to prove Theorem 1.1, namely, to determine the Kazhdan-
Lusztig polynomials of fan graphs, squares of paths, wheel graphs and whirl matroids.
We will first determine the Kazhdan-Lusztig polynomials of fan graphs, which form the
basis for computing the other three families of Kazhdan-Lusztig polynomials. It should
be mentioned that generating function methodology is crucial for our computations.

4.1 Fan graphs

Let

ΦF (t, u) :=
∞
∑

n=0

PFn
(t)un, (4.1)

where F0 is the single-vertex graph. The main result of this subsection is as follows.
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Theorem 4.1. We have

ΦF (t, u) = 1 +
2u

1− u+
√

(u− 1)2 − 4tu2
. (4.2)

Our proof of Theorem 4.1 is based on the recursive definition of the Kazhdan-Lusztig
polynomials. In fact, we could derive a functional equation satisfied by ΦF (t, u) from
(2.3). Due to the unique existence of the Kazhdan-Lusztig polynomials, we will complete
the proof by verifying that the right hand side of (4.2) satisfies this functional equation.
We now proceed to get such a equation. By (2.3) we obtain

trkFnPFn
(t−1) =

∑

C∈C(Fn)

t−|C|χFn[C](t)PFn/C(t).

Now multiply both sides by un and then sum over all n ≥ 0. For the left hand side, we
have

∞
∑

n=0

(

trkFnPFn
(t−1)

)

un =
∞
∑

n=0

(

tnPFn
(t−1)

)

un =
∞
∑

n=0

PFn
(t−1)(tu)n = ΦF (t

−1, tu)

by the fact rkFn = n and the equation (4.1). Thus, we have

ΦF (t
−1, tu) =

∞
∑

n=0





∑

C∈C(Fn)

t−|C|χFn[C](t)PFn/C(t)



un. (4.3)

If the right hand side of (4.3) can be expressed in terms of ΦF (t, u), then we will obtain
a functional equation satisfied by ΦF (t, u).

For this purpose, we first give a characterization of those compositions appeared in
(4.3). Suppose that the fan graph Fn has vertex set V (Fn) = [0, n], where we use the
convention that [a, b] = {a, a+1, . . . , b} for a ≤ b. The size of the interval [a, b] is defined to
be b−a+1. If vertex 0 is adjacent to each vertex in [1, n], then C(Fn) can be characterized
by using certain set of weak integer compositions of n. Recall that a weak composition of n
is a sequence (a1, a2, . . . , ak) of nonnegative integers such that a1+a2+· · ·+ak = n, denoted
by (a1, a2, . . . , ak) |= n. Let Sn denote the set of compositions with each part strictly
greater than zero. Let En denote the set of weak integer compositions of n with even
number of parts, say (a1, a2, . . . , a2k−1, a2k), satisfying ai ≥ 1 for 1 < i < 2k. Note that
E0 = {(0, 0)}. For convenience we set S0 = {( )}. For each σ = (a1, a2, . . . , a2k−1, a2k) ∈
En, let

θ(σ) = {(A1, A2, . . . , A2k−1, A2k) |A2i−1 = (a2i−1) and A2i ∈ Sa2i for 1 ≤ i ≤ k.}

Let

C′
n = ∪σ∈Enθ(σ). (4.4)

Then we have the following result.
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Lemma 4.2. For any n ≥ 1, there exists a bijective map φ from C(Fn) to C′
n.

Proof. To construct a map φ from C(Fn) and C′
n, one may draw Fn in the plane such

that 0 is connected to the n-vertex path with vertices labeled 1, 2, . . . , n from left to
right. For each composition C ∈ C(Fn), consider the unique component containing 0 of
its induced subgraph. Removing 0 from this component leads to a sequence of subpaths,
which lie on the n-vertex path from left to right, say T1, T2, . . . , Tk. It is clear that these
subpaths naturally divide the other components into k + 1 segments from left to right,
say S1, S2, . . . , Sk+1. Each Si can be considered as a forest (actually a sequence of paths),
which naturally contribute a composition Ai of |V (Si)| with parts being the cardinalities
of its ordered connected components. Note that S1 and Sk+1 might be the null graph,
but each Si for 2 ≤ i ≤ k is not the null graph since C is a graph composition. For
example, for the composition C = {{0, 1, 2, 7, 9, 10}, {3, 4}, {5}, {6}, {8}, {11}, {12}} of
F12, the corresponding Si’s and Ti’s are illustrated in Figure 5.

0

1 2 3 4 5 6 7 8 9 10 11 12

S1 T1 S2 T2 S3 T3 S4

Figure 5: Construction of Si’s and Ti’s

If S1 is the null graph, let

φ(C) = ((|V (T1)|), A2, (|V (T2)|), A3, · · · , Ak, (|V (Tk)|), Ak+1).

If S1 is not empty, we add the null graph on the left of S1 and then let

φ(C) = (( ), A1, (|V (T1)|), A2, · · · , Ak, (|V (Tk)|), Ak+1).

In both cases, we have φ(C) ∈ C′
n.

The injectivity of φ is obvious by its construction. It remains to show that φ is surjec-
tive. Note that removing all parentheses from a given element (A1, A2, . . . , A2k−1, A2k) ∈
C′
n will lead to a composition σ of n. If A1 = () or (resp. and) A2k = () then we add

a component 0 at the beginning of σ or (resp. and) add a component 0 at the end of
σ. Suppose that the resulting weak composition is (c1, c2, . . . , cm). Then decompose the
n-vertex path into a series of subpaths T1, T2, . . . , Tm from left to right with |V (Ti)| = ci.
Suppose that for 1 ≤ j ≤ k the part cij originally comes from A2j−1. Then we can get
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a set partition C of [0, n] with one block being {{0} ∪ V (Ti1) ∪ · · · ∪ V (Tik)} and other
blocks being V (Ti)’s where i 6= ij for 1 ≤ j ≤ k. Clearly, this set partition is a graph
composition of Fn, and φ(C) = (A1, A2, . . . , A2k−1, A2k). This completes the proof.

With the above lemma, we proceed to show that for any C ∈ C(Fn) the summand
t−|C|χFn[C](t)PFn/C(t)u

n can be evaluated by weighting the corresponding element φ(C)
of C′

n. Given A = (A1, A2, . . . , A2k−1, A2k) ∈ C′
n, suppose that A2i−1 = (a2i−1) and A2i =

(bi1, bi2, . . . , biℓi) ∈ Sa2i for 1 ≤ i ≤ k. Then define the weight of A to be

w(A) =
k
∏

i=1

χFa2i−1
(t)

t
· PFℓi

(t) ·
ℓi
∏

j=1

χHbij
(t)

t
, (4.5)

where we use Hb to denote a path with b vertices. We have the following result.

Lemma 4.3. For any C ∈ C(Fn), we have

t−|C|χFn[C](t)PFn/C(t) = w(φ(C)), (4.6)

where φ(C) is defined as in Lemma 4.2 and the weight function w is given by (4.5).

Proof. Suppose that
φ(C) = (A1, A2, . . . , A2k−1, A2k),

where A2i−1 = (a2i−1) and A2i = (bi1, bi2, . . . , biℓi) ∈ Sa2i for 1 ≤ i ≤ k. By the construc-
tion of φ(C) in Lemma 4.2, it is clear that

|C| = 1 + ℓ1 + · · ·+ ℓk.

As illustrated in Figure 6, the induced subgraph Fn[C] is composed of subpaths Hbij

(where i varies from 1 to k and j varies from 1 to ℓi) and the unique connected component
containing 0. The latter is obtained from fan graphs Fa1 , Fa3 , . . . , Fa2k−1

by identifying
their unique 0 vertices.

0

1 2 3 4 5 6 7 8 9 10 11 12

Hb21 Hb22 Hb23 Hb41 Hb61 Hb62

Figure 6: F12[{{0, 1, 2, 7, 9, 10}, {3, 4}, {5}, {6}, {8}, {11}, {12}}]
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By Lemma 2.1, we have

χFn[C](t) = t−k+1
k
∏

i=1

χFa2i−1
(t) ·

ℓi
∏

j=1

χHbij
(t).

We proceed to compute PFn/C(t). Recall that Fn/C can be considered as the quotient
graph of Fn by identifying each block of C as a single vertex, see Figure 7. Thus Fn/C
is isomorphic to the graph obtained from fan graphs Fℓ1 , Fℓ2, . . . , Fℓk by identifying their
unique 0 vertices.

{0,1,2,7,9,10}

{3,4} {5} {6} {8} {11} {12}

Figure 7: F12/{{0, 1, 2, 7, 9, 10}, {3, 4}, {5}, {6}, {8}, {11}, {12}}

Again by Lemma 2.1, we have

PFn/C(t) =
k
∏

i=1

PFℓi
(t).

Combining the above identities, we obtained the desired result.

In view of Lemma 4.2 and Lemma 4.3, it immediately follows from (4.3) that

ΦF (t
−1, tu) =

∞
∑

n=0





∑

A∈C′
n

w(A)



un,

where w(A) is given by (4.5).

Let

Ψ(u) =

∞
∑

n=0





∑

A∈C′
n

w(A)



un.
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Then

Ψ(u) = ΦF (t
−1, tu). (4.7)

In order to obtain a functional equation satisfied by ΦF (t, u), we shall give another ex-
pression of Ψ(u) in terms of ΦF (t, u) by using the method of generating functions.

Note that each A = (A1, A2, . . . , A2k−1, A2k) ∈ C′
n may be considered as a combinatorial

structure, say type A structure, on an interval of size n. In order to use the generating
function methodology, let Ao and Ae denote the two types of structures respectively
corresponding to the components of A. Precisely, type Ao structure will assign to an
interval of size n the weak composition (n) with the weight function wo defined by

wo((n)) =
χFn

(t)

t
,

and type Ae structure will assign to an interval of size n a composition (b1, . . . , bk) ∈ Sn

with the weight function we defined by

we((b1, . . . , bk)) = PFk
(t) ·

k
∏

j=1

χHbj
(t)

t
.

Note that the unique Ao structure of size 0 is (0), weighted by 1, and the unique Ae

structure of size 0 is ( ), also weighted by 1. Let Ao
n (resp. Ae

n) denote the set of type Ao

(resp. Ae) structures which can be built on an interval of size n. Let

Ψo(u) =

∞
∑

n=1





∑

Ao∈Ao
n

wo(Ao)



 un, (4.8)

Ψe(u) =

∞
∑

n=1





∑

Ae∈Ae
n

we(Ae)



un, (4.9)

where the index n in each summation starts with 1 other than 0.

We claim that the following results hold.

Lemma 4.4. We have

Ψo(u) =
(t− 1)u

1− (t− 2)u
, (4.10)

Ψe(u) = ΦF

(

t,
u

1− (t− 1)u

)

− 1. (4.11)

Proof. Let us first prove (4.10). By the definition of the chromatic polynomial of a graph,
it is clear that

χFn
(t) = t(t− 1)(t− 2)n−1.
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Thus, by (4.8), we get that

Ψo(u) =

∞
∑

n=1

χFn
(t)

t
un =

∞
∑

n=1

(t− 1)(t− 2)n−1un =
(t− 1)u

1− (t− 2)u

by a straightforward computation.

We proceed to prove (4.11). Note that a weighted composition (b1, . . . , bk) ∈ Sn can
be considered as a composition of two weighted structures. Precisely, we first split the
interval [1, n] into a sequence of k nonempty intervals, weight the interval of size bj by
χHbj

(t)

t
, and then weight the sequence by PFk

(t). Recall that

χHbj
(t) = t(t− 1)bj−1 (4.12)

∞
∑

bj=1

χHbj
(t)

t
ubj =

u

1− (t− 1)u
(4.13)

∞
∑

k=1

PFk
(t)uk = ΦF (t, u)− 1. (4.14)

By the composition formula of generating functions, we obtain

Ψe(u) = ΦF

(

t,
u

1− (t− 1)u

)

− 1, (4.15)

as desired.

Let Aeo be the set of pairs (Ae, Ao), where Ae is a structure of type Ae, and Ao is of
type Ao, and moreover neither Ae nor Ao is empty. The weight function weo of Aeo is
defined by

weo((Ae, Ao)) = we(Ae)wo(Ao). (4.16)

Let Aeo
n denote the set of type Aeo structures which can be build on an interval of size n.

Consider the following generating function

Ψeo(u) =
∞
∑

n=0





∑

Aeo∈Aeo
n

weo(Aeo)



 un. (4.17)

By the product formula of generating functions, we get that

Ψeo(u) = Ψe(u)Ψo(u). (4.18)

Furthermore, let Am be the set of combinatorial structures each of which is a sequence
(Aeo

1 , . . . , Aeo
k ) of Aeo structures. Define the weight function wm of Am as

wm((Aeo
1 , . . . , Aeo

k )) =
k
∏

i=1

weo(Aeo
i ).
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Let Am
n denote the set of type Am structures which can be build on an interval of size n.

Consider the following generating function

Ψm(u) =

∞
∑

n=0





∑

Am∈Am
n

wm(Am)



 un. (4.19)

Applying the composition formula of generating functions once again, we get the following
result, whose proof is omitted here.

Lemma 4.5. We have

Ψm(u) =
1

1−Ψe(u)Ψo(u)
. (4.20)

Now we are in the position to give another expression of Ψ(u) in terms of ΦF (t, u),
which is stated as below.

Lemma 4.6. Let Ψo(u) and Ψe(u) be as in Lemma 4.4. Then

Ψ(u) =
(1 + Ψo(u))(1 + Ψe(u))

1−Ψe(u)Ψo(u)
. (4.21)

Proof. Giving a structure A = (A1, A2, . . . , A2k−1, A2k) of A, the component A1 is a struc-
ture Ao of type Ao, the component A2k is a structure Ae of type Ae, and the subsequence
(A2, A3, . . . , A2k−1) could be considered as a structure Am of type Am. Note that A0 is
allowed to be (0) and A2k is allowed to be ( ). Moreover, it is straightforward to verify
that

w(A) = wo(Ao)wm(Am)we(Ae).

Therefore, the structure A can be considered as the product Ao×Am×Ae of three types
of structures. By the product formula of generating functions, we have

Ψ(u) =
∞
∑

n=0





∑

Ao∈Ao
n

wo(Ao)



un ×
∞
∑

n=0





∑

Am∈Am
n

wm(Am)



 un ×
∞
∑

n=0





∑

Ae∈Ae
n

we(Ae)



 un

= (1 + Ψo(u))×
1

1−Ψe(u)Ψo(u)
× (1 + Ψe(u)),

as desired. This completes the proof.

Finally, we come to the proof of Theorem 4.1.

Proof of Theorem 4.1. We proceed to prove (4.2). Combining (4.7) and (4.21), we see
that ΦF (t, u) satisfies the functional equation

ΦF (t
−1, tu) =

(1 + Ψo(u))(1 + Ψe(u))

1−Ψe(u)Ψo(u)
. (4.22)
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To complete the proof, we need to verify that the above equation still holds if we
substitute ΦF (t, u) by using the right hand side of (4.2). Though this could be verified
by a tedious computation, we prefer to give a computer aided proof as follows.

In[1]:= ΦF [u_] :=
2u

1− u +
√

(u − 1)2 − 4tu2
+ 1;

In[2]:= Ψo[u_] :=
(t − 1)u

1 − (t − 2)u
;

In[3]:= ΨF [u_] :=
(1 + Ψo[u])(1 + Ψe[u])

1− Ψe[u]Ψo[u]
;

In[4]:= Ψe[u_] := ΦF

[

u

1 − (t − 1)u

]

− 1;

In[5]:= Simplify[(ΦF [u] /. {t → t−1, u → tu}) == ΨF [u],Assumptions → 1−(t−1)u >
0]

Out[5]= True

The assumption 1− (t− 1)u > 0 in the last step is reasonable since |u| is sufficiently
small. This completes the proof.

Now we can prove (1.1) of Theorem 1.1.

Proof of (1.1). It is sufficient to show the equivalence between (1.1) and (4.2). This
equivalence might be known, see A055151 in [25]. To be self-contained, we shall give a
proof by utilizing two Mathematica packages, one of which is fastZeil due to Paule and
Schorn [21] and the other is GeneratingFunctions due to Mallinger [20]. To this end, let

a(n, k) =
1

k + 1

(

n− 1

k, k, n− 2k − 1

)

and

an(t) =

n
∑

k=0

a(n, k)tk.

Note that PFn
(t) = an(t), but here, to be compatible with fastZeil, the upper bound of

summation is set to be n other than
⌊

n−1
2

⌋

. To prove

∞
∑

n=0

an(t)u
n = 1 +

2u

1− u+
√

(u− 1)2 − 4tu2
, (4.23)

we first import the packages and define one variable.
In[6]:= << RISC f̀astZeil ;̀
In[7]:= << RISC G̀eneratingFunctions ;̀
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In[8]:= a[n_, k_] := FunctionExpand

[

1

k + 1
Multinomial[k, k, n − 2k − 1]

]

;

Then we use the command Zb to obtain a recursive relation of an(t).
In[9]:= ReleaseHold[First[Zb[a[n, k]tk, k, 0, n, n] /. SUM → a]];

In[10]:= rec = Simplify[FunctionExpand[%],Assumptions → n ∈ Z]

Out[10]= n(−1 + 4t)a[n] + (3 + 2n)a[1 + n] == (3 + n)a[2 + n]

Together with the initial values a0(t) = a1(t) = 1, the above recurrence can be trans-
formed into an equivalent differential equation satisfied by

f(u) =
∞
∑

n=0

an(t)u
n.

This could be done by using the command RE2DE automatically.
In[11]:= de = RE2DE[rec, a[0] == 1, a[1] == 1, a[n], f [u]]

Out[11]= {1 + u+ (−1 + u)f [u] + (−u+ 2u2 − u3 + 4tu3)f ′[u] == 0, f [0] == 1}

It remains to show that the right hand side of (4.23) satisfies the differential equation
de.
In[12]:= Simplify[de /. f → φF ]

Out[12]= {True,True}

Thus we complete the proof of the equivalence between (1.1) and (4.2).

4.2 Wheel graphs

Based on the preceding results on fan graphs, we are able to determine the Kazhdan-
Lusztig polynomials of wheel graphs. As before, we consider the following generating
function of PWn

(t) given by

ΦW (t, u) :=
∞
∑

n=2

PWn
(t)un, (4.24)

where W2 is a simple circle with three vertices. Although the graph W2 is not a wheel
graph, we can consider it as a wheel graph in some sense. Let W

′

2 be a multigraph with
V (W

′

2) = {0, 1, 2} and E(W
′

2) = {(0, 1), (0, 2), (1, 2), (1, 2)}. Then the graph W
′

2 can be
considered as a wheel graph and W2 can be obtained by deleting an edge (1, 2) from
W

′

2. Note that PW2
(t) and PW

′
2

(t) are equal to each other. As will be shown later, it is

convenient to include PW2
(t)u2 in the above summation.

The main result of this subsection is as follows.
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Theorem 4.7. We have

ΦW (t, u) =
2(u− 1)

√

(u− 1)2 − 4tu2 − u+ 1
−

2 (u2 + u− 1)

(u+ 1)
(

√

(u− 1)2 − 4tu2 + u+ 1
)

+
2u

(u+ 1)
√

(u− 1)2 − 4tu2
. (4.25)

We first give an outline of the proof of Theorem 4.7. By using the same arguments as
for fan graphs, it is not difficult to show that

ΦW (t−1, tu) =

∞
∑

n=2





∑

C∈C(Wn)

t−|C|χWn[C](t)PWn/C(t)



 un (4.26)

in view of (2.3) and the fact that rkWn = n for any n ≥ 2. Denote the right hand
side of (4.26) as ΨW (u). As in the case of fan graphs, we shall further give an alternative
expression of ΨW (u) in terms of ΦW (t, u), which will lead to a functional equation satisfied
by ΦW (t, u). Then Theorem 4.7 could be proved with the help of computer packages.

To determine ΨW (u), we need to analyze what a composition of Wn could be. Suppose
that the wheel graph Wn has vertex set V (Wn) = [0, n], where the induced subgraph
Wn[[1, n]] is its outer cycle. Graphically, one may draw Wn in the plane such that 0 is
connected to the n-vertex cycle with vertices labeled 1, 2, . . . , n in clockwise when n ≥ 3.
It is not easy to show that C(Wn) is the disjoint union of the following three families:

C〈1〉(Wn) = {{[0, n]}, {{0}, [1, n]}}, (4.27)

C〈2〉(Wn) = {C ∈ C(Wn)|[0] ∈ C and |C| ≥ 3}, (4.28)

C〈3〉(Wn) = {C ∈ C(Wn)|[0] 6∈ C and |C| ≥ 2}. (4.29)

Correspondingly, for i = 1, 2, 3 let

Ψi(u) =

∞
∑

n=2





∑

C∈C〈i〉(Wn)

t−|C|χWn[C](t)PWn/C(t)



 un. (4.30)

Then
ΨW (u) = Ψ1(u) + Ψ2(u) + Ψ3(u).

In the following we shall determine Ψ1(u),Ψ2(u) and Ψ3(u) successively.

Firstly, the series Ψ1(u) is given by the following result.

Lemma 4.8. We have

Ψ1(u) =
(t− 2)(t− 1)u2

(u+ 1)(1− (t− 2)u)
+

(t− 1)u2

(u+ 1)(1− (t− 1)u)
. (4.31)
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Proof. Note that if C = {[0, n]} then Wn[C] is just the graph Wn and Wn/C is just
the single-vertex graph. Recall that the Kazhdan-Lusztig polynomial of the single-vertex
graph is equal to 1 and

χWn
(t) = t((t− 2)n − (−1)n−1(t− 2)),

see [1, p. 68]. Next we consider the composition C = {{0}, [1, n]}, in which case Wn/C ∼=
K2 and hence PWn/C(t) = 1. Moreover, W2[C] is the union of the single-edge graph and
the single-vertex graph, and for n ≥ 3 the subgraph Wn[C] is the union of a cycle of
length n and the single-vertex graph. In any case we have

χWn[C](t) = t((t− 1)n + (−1)n(t− 1)),

for the chromatic polynomial of a circle see [1, p. 65]. Therefore, we have

Ψ1(u) =
∑

n=2

un

(

χWn
(t)

t
+

χQn
(t)

t

)

=
∑

n=2

un

(

(t− 2)n − (−1)n−1(t− 2) +
(t− 1)n + (−1)n(t− 1)

t

)

=
(t− 2)(t− 1)u2

(u+ 1)(1− (t− 2)u)
+

(t− 1)u2

(u+ 1)(1− (t− 1)u)
,

as desired.

We proceed to compute the series Ψ2(u) by using the method of generating functions.

Lemma 4.9. We have

Ψ2(u) =
1

1− u(t− 1)
× ΦW

(

t,
u

1− u(t− 1)

)

.

Proof. Note that a composition C ∈ C〈2〉(Wn) naturally decomposes the outer cycle of
Wn into |C| − 1 paths. Together with the single vertex 0, these paths form the induced
subgraph Wn[C]. Suppose that these paths have i1, i2, . . . , i|C|−1 vertices respectively. For
example, for C = {{0}, {12, 1, 2, 3}, {4}, {5, 6, 7}, {8, 9}, {10}, {11}} ∈ C(W12), the outer
cycle of W12 is decomposed into 6 paths, as depicted in Figure 8.
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Figure 8: W12[{{0}, {12, 1, 2, 3}, {4}, {5, 6, 7}, {8, 9}, {10}, {11}}]

It is clear that Wn/C is isomorphic to W|C|−1. Thus, by Lemma 2.1 we have

t−|C|χWn[C](t)PWn/C(t) = PW|C|−1
(t)×

|C|−1
∏

j=1

χHij
(t)

t
(4.32)

in view of the obvious fact that the chromatic polynomial of the single-vertex graph is
equal to t. Therefore, the generating function Ψ2(u) could be considered as the ordinary
generating function of type B • A structures, as defined immediately before Proposition
3.4, with An = {(n)} for n ≥ 1 weighted by wA((n)) =

χHn(t)

t
and Bn = {(n)} for n ≥ 2

weighted by wB((n)) = PWn
(t). (Here we assume that A0,B0 and B1 are empty.)

By (4.13) we know that the generating function of A is given by

A(u) =
u

1− (t− 1)u
.

While, by (4.24), the generating function of B is given by B(u) = ΦW (t, u). Now by
Proposition 3.4 we obtain that

Ψ2(u) = uA′(u)
B(A(u))

A(u)
=

1

1− u(t− 1)
× ΦW

(

t,
u

1− u(t− 1)

)

.

This completes the proof.

Analogously, we could determine the series Ψ3(u).

Lemma 4.10. We have

Ψ3(u) = u
∂Ψeo(u)

∂u

(

1

1−Ψeo(u)

)

.
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Proof. Given C ∈ C〈3〉(Wn), there exists a unique and positive integer k, denoted by κC ,
satisfying the following condition:

(⋄)Removing all edges incident to 0 from the induced subgraph Wn[C] will result in a
cyclically ordered sequence of non-empty forests S1, T1, S2, T2, . . . , Sk, Tk on the outer cycle
where each Si is a sequence of paths with any of its vertices not adjacent to 0, while each
Ti is a path with each of its vertices adjacent to 0.

Taking C = {{0, 4, 9, 10, 11}, {12, 1, 2}, {3}, {5}, {6, 7}, {8}} ∈ C(W12), we see that
κC = 2 as shown in Figure 9.
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S1 =
12 1 2 3

T1 =
4

S2 =
5 6 7 8

T2 =
9 10 11

Figure 9: Construction of Si’s and Ti’s

This is very similar to the case of fan graphs as discussed in Lemma 4.2. According
to the value of κC , the set C〈3〉(Wn) is divided into the following two subsets:

C〈3,1〉(Wn) = {C ∈ C〈3〉(Wn) | κC = 1},

C〈3,2〉(Wn) = {C ∈ C〈3〉(Wn) | κC > 1}.

For i = 1, 2, let

Ψ3,i(u) =

∞
∑

n=2





∑

C∈C〈3,i〉(Wn)

t−|C|χWn[C](t)PWn/C(t)



 un.

Thus, we have Ψ3(u) = Ψ3,1(u) + Ψ3,2(u).

Next we shall first compute Ψ3,1(u). For each C ∈ C〈3,1〉(Wn), let S1, T1 be those two
forests appeared in condition (⋄). Clearly, the induced subgraph of Wn[C] is composed
of S1 and the fan graph, denoted FT1

, by connecting the vertex 0 to each vertex of T1. If
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the ordered paths in S1 are Hb11 , . . . , Hb1,|C|−1
, then Wn/C is isomorphic to F|C|−1, a fan

graph with |C| vertices. Again by Lemma 2.1, we get that

t−|C|χWn[C](t)PWn/C(t) =



PF|C|−1
(t) ·

|C|−1
∏

j=1

χHb1j
(t)

t



×
χFT1

(t)

t
.

If we weight S1 by PF|C|−1
(t) ·

∏|C|−1
j=1 (χHb1j

(t)/(t)) and T1 by χFT1
(t)/(t), then the ordered

pair (S1, T1) is essentially a weighted structure of type Aeo in view of (4.16) as defined
in Subsection 4.1. Note that when we consider (S1, T1) as a type Aeo structure, the first
vertex of S1 is always assumed to be 1. But for each C ∈ C〈3,1〉(Wn), the first vertex of the
corresponding S1 is fixed, which could be any value in the interval [1, n]. For this reason,
each C could be considered as a pointed type Aeo structure, where the first vertex of S1

is attached to the pointer of size 0. Therefore, by Proposition 3.1 we have

Ψ3,1(u) = u
∂Ψeo(u)

∂u
(4.33)

since both Aeo
0 and Aeo

1 are empty, where Ψeo(u) is defined by (4.17).

We proceed to determine Ψ3,2(u). Given C ∈ C〈3,2〉(Wn), let S1, T1, S2, T2, . . . , SκC
, TκC

be those forests appeared in condition (⋄). By the same argument as above, each ordered
pair (Si, Ti) could be considered as a structure Aeo

i of type Aeo weighted by

weo(Aeo
i ) =

(

PFℓi
(t) ·

ℓi
∏

j=1

χHbij
(t)

t

)

×
χFTi

(t)

t
,

where Hbi1 , . . . , Hbiℓi
are the ordered paths in Si. Moreover, it is routine to verify that

t−|C|χWn[C](t)PWn/C(t) =

κC
∏

i=1

weo(Aeo
i ),

since Wn/C, as shown in Figure 10, is just the graph obtained from some fan graphs by
identifying their 0 vertices.
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{0, 4, 9, 10, 11}

{5}
{6}

{7}

{3}
{12, 1, 2}

Figure 10: W12/{{0, 4, 9, 10, 11}, {12, 1, 2}, {3}, {5}, {6, 7}, {8}}

Thus Ψ3,2(u) could be considered as the ordinary generating function of type B • Aeo

structures, with Bn = {(n)} for n ≥ 2 weighted by wB((n)) = 1. The generating function
of B is given by

B(u) =

∞
∑

n=2

wB((n))u
n =

u2

1− u
.

Recall that the generating function of Aeo is Ψeo(u). Therefore, by Proposition 3.4, we
have

Ψ3,2(u) = u
∂Ψeo(u)

∂u
×

B(Ψeo(u))

Ψeo(u)

= u
∂Ψeo(u)

∂u
×

1

Ψeo(u)
×

(

(Ψeo(u))2

1−Ψeo(u)

)

= u
∂Ψeo(u)

∂u

(

Ψeo(u)

1−Ψeo(u)

)

. (4.34)

Combining (4.33) and (4.34), we obtain

Ψ3(u) = Ψ3,1(u) + Ψ3,2(u)

= u
∂Ψeo(u)

∂u
+ u

∂Ψeo(u)

∂u

(

Ψeo(u)

1−Ψeo(u)

)

= u
∂Ψeo(u)

∂u

(

1

1−Ψeo(u)

)

.

This completes the proof.
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Combining Lemma 4.8, Lemma 4.9 and Lemma 4.10, we obtain an explicit formula of
ΨW (u). Recall that ΨW (u) denotes the right hand side of (4.26).

Lemma 4.11. We have

ΨW (u) =
(t− 2)(t− 1)u2

(u+ 1)(1− (t− 2)u)
+

(t− 1)u2

(u+ 1)(1− (t− 1)u)

+
1

1− u(t− 1)
× ΦW

(

t,
u

1− u(t− 1)

)

+ u
∂Ψeo(u)

∂u

(

1

1−Ψeo(u)

)

.

Now we come to the proof of the main result of this subsection.

Proof of Theorem 4.7. By (4.26) and Lemma 4.11, we obtain that ΦW (t, u) satisfies the
functional equation

ΦW (t−1, tu) =
(t− 2)(t− 1)u2

(u+ 1)(1− (t− 2)u)
+

(t− 1)u2

(u+ 1)(1− (t− 1)u)

+
1

1− u(t− 1)
× ΦW

(

t,
u

1− u(t− 1)

)

+ u
∂Ψeo(u)

∂u

(

1

1−Ψeo(u)

)

.

To complete the proof of the theorem, we further verify that the above equation still
holds if we substitute ΦW (t, u) by using the right hand side of (4.25). As in the case of
fan graphs, we prefer to give a computer aided proof as follows.

In[13]:= Ψeo[u_] := Ψe[u]Ψo[u];

In[14]:= ΨW [u_] :=
(t − 2)(t − 1)u2

(u+ 1)(1 − (t− 2)u)
+

(t− 1)u2

(u + 1)(1 − (t − 1)u)

+
1

1− (t− 1)u
ΦW

[

u

1− (t − 1)u

]

+ u
∂Ψeo(u)

∂u

1

1− Ψeo(u)
;

In[15]:= ΦW [u_] :=
2(u − 1)

√

(u− 1)2 − 4tu2 − u + 1
−

2
(

u2 + u − 1
)

(u + 1)
(

√

(u− 1)2 − 4tu2 + u + 1
)

+
2u

(u+ 1)
√

(u − 1)2 − 4tu2
;

In[16]:= Simplify[(ΦW [u] /. {t → t−1, u → tu}) == ΨW [u],Assumptions → 1 − (t −
1)u > 0]

Out[16]= True

Note that here we assume that 1 − (t − 1)u > 0 because u is sufficiently small. This
completes the proof.

Based on (4.25) we are able to prove (1.3) of Theorem 1.1.
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Proof of (1.3). It is sufficient to show that (1.3) and (4.25) are equivalent to each other.
From (1.3) it follows that PWn+2

(t) = an(t), where

an(t) =
n
∑

k=0

a(n, k)tk

and

a(n, k) =

(

k + 1

n− k + 2
+

k

n− k + 3
−

k

n− k + 1

)(

n+ 2

k, k + 1, n− 2k + 1

)

.

Note that for n ≥ k >
⌊

n+1
2

⌋

we have a(n, k) = 0. Since (4.24) could be restated as

ΦW (t, u)

u2
=

∞
∑

n=0

PWn+2
(t)un,

to prove the equivalence between (1.3) and (4.25) it suffices to show that

∞
∑

n=0

an(t)u
n =

2(u− 1)

u2
(

√

(u− 1)2 − 4tu2 − u+ 1
) −

2 (u2 + u− 1)

u2(u+ 1)
(

√

(u− 1)2 − 4tu2 + u+ 1
)

+
2u

u2(u+ 1)
√

(u− 1)2 − 4tu2
. (4.35)

To this end, we use the same method as in the proof of Theorem 4.1, but omit some
details here. The following lines enable us to obtain a recurrence relation of an(t).

In[17]:= a[n_, k_] :=

(

k + 1

n − k + 2
+

k

n − k + 3
−

k

n − k + 1

)

Multinomial[k, k + 1, n −

2k + 1];

In[18]:= ReleaseHold[First[Zb[FunctionExpand[a[n, k]]tk, k, 0, n, n] /. SUM → a]];

In[19]:= Simplify[FunctionExpand[%],Assumptions → n ∈ Z];

In[20]:= rec = Collect[%, a[_],Factor]

Out[20]= (−60−12n+1758t+1372nt+446n2t+68n3t+4n4t−738t2−881nt2−426n2t2−85n3t2−
6n4t2+84t3+166nt3+106n2t3+26n3t3+2n4t3)a[2+n]+(7+n)(6−150t−85nt−21n2t−2n3t+
12t2+22nt2+12n2t2+2n3t2)a[3+n] == (3+n)t(−1+4t)(6−258t−133nt−27n2t−2n3t+
48t2+52nt2+18n2t2+2n3t2)a[n]+(−18−6n+906t+693nt+214n2t+33n3t+2n4t−4956t2−
4198nt2−1408n2t2−224n3t2−14n4t2+264t3+952nt3+618n2t3+146n3t3+12n4t3)a[1+n]

To obtain an equivalent differential equation satisfied by
∑∞

n=0 an(t)u
n, we also need

some initial terms, which could be easily implemented by using the following command.
In[21]:= Table[a[n] == Sum[a[n, k]tk, k, 0, n], n, 0, 2]

Out[21]= {a[0] == 1, a[1] == 1 + t, a[2] == 1 + 5t};
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Now we can obtain a differential equation satisfied by
∑∞

n=0 an(t)u
n by using the

function RE2DE.
In[22]:= de = RE2DE[{rec, a[0] == 1, a[1] == 1 + t, a[2] == 1 + 5t}, a[n], f [u]]

Out[22]= {−24+120t+6u−108tu+336t2u−6(−4+20t+6u−53tu+16t2u−2u2+66tu2−326t2u2−
34t3u2−3tu3+141t2u3−540t3u3+96t4u3)f [u]−6(−u+20tu+2u2−75tu2+18t2u2−u3+
85tu3−500t2u3+78t3u3−tu4+155t2u4−660t3u4+224t4u4)f

′
[u]−3(24tu2−90tu3+71t2u3−

14t3u3+72tu4−474t2u4+210t3u4+109t2u5−500t3u5+256t4u5)f
′′
[u]− (23tu3−14t2u3−

60tu4+73t2u4− 22t3u4+37tu5− 252t2u5+170t3u5+45t2u6− 216t3u6+144t4u6)f (3)[u]−
2(tu4 − t2u4 − 2tu5 + 3t2u5 − t3u5 + tu6 − 7t2u6 + 6t3u6 + t2u7 − 5t3u7 +4t4u7)f (4)[u] ==
0, f [0] == 1, f

′
[0] == 1 + t, f

′′
[0] == 2(1 + 5t), f (3)[0] == 6(1 + 11t+ 5t2)}

Next, we have to show that the right hand side of (4.35) is indeed the solution of the
above differential equation de. To this end, we also need to verify its value at u = 0. Since
each of three terms on the right hand side of (4.35) is not defined for u = 0, we should
simplify the summation of these terms. We denote the resulting function by φ1(u).

In[23]:= Φ1[u_] =
ΦW [u]

u2
;

In[24]:=

2u
(

√

(u − 1)2 − 4tu2 − 4tu + 2t + u − 3
)

+ 4
√

(u − 1)2 − 4tu2
(

√

(u − 1)2 − 4tu2 + u + 1
) (

√

(u − 1)2 − 4tu2 − u(2tu + 1) + 1
) ;

In[25]:= φ1[u_] := %;

In[26]:= Simplify[φ1[u] == Φ1[u]]

Out[26]= True

Finally, we verify that φ1(u) satisfies the differential equation de with the correct
initial values.
In[27]:= Simplify [de/. f → φ1]

Out[27]= {True,True,True,True,True}

Thus we establish the equivalence between (1.3) and (4.25).

4.3 Whirl matroids

The aim of this subsection is to prove (1.4). As in the case of wheel graphs, the
computation of Kazhdan-Lusztig polynomials for whirl matroids is also based on that for
fan graphs. We consider the following generating function of PWn(t) given by

ΦW (t, u) :=

∞
∑

n=1

PWn(t)un, (4.36)

where W 1 is the graphic matroid of a path with two vertices and W 2 is a simple matroid
obtained from the graphic matroid of W

′

2 (defined at the beginning of Subsection 4.2) by
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declaring {(1, 2), (1, 2)} is also an independent set.

The main result of this subsection is as follows.

Theorem 4.12. We have

ΦW (t, u) =
u+ 1

2(tu+ 1)
√

(u− 1)2 − 4tu2
−

1

2(tu+ 1)
. (4.37)

We first give an outline of the proof of Theorem 4.12. By using the same arguments
as for fan graphs and wheel graphs, it is not difficult to show that

ΦW (t−1, tu) =
∞
∑

n=1





∑

F∈L(Wn)

χWn
F
(t)PWn/F (t)



 un (4.38)

by the definition of the Kazhdan-Lusztig polynomial and the fact that rkW n = n for
any n ≥ 1. Denote the right hand side of (4.38) as ΨW (u). As in the case of fan graphs
and wheel graphs, we shall further give an alternative expression of ΨW (u) in terms of
ΦW (t, u), which will lead to a functional equation satisfied by ΦW (t, u). Then Theorem
4.12 could be proved with the help of a computer algebra system.

To determine ΨW (u), we need to analyze what a flat of W n could be. Note that for
n ≥ 2 the matroid W n is not a graphic matroid any more. Due to the close relationship
between whirl matroids and wheel matroids, it is possible to describe the flats of W n in
terms of the edges of the wheel graph Wn. For n ≥ 3, let On be the edge set of the outer
cycle of Wn, and let

L1(W
n) = ∪e∈On

{On \ {e}},

L2(W
n) = {E(Wn)} ∪ {F ∈ L(M(Wn)) |On 6⊂ F}.

For n = 1 we may assume that W 1 = M(G) with V (G) = {0, 1} and E(G) = {(0, 1)}
and further let L1(W

1) = {∅} and L2(W
1) = {E(G)}. For n = 2 we may assume that

the unique pair of multiple edges of W
′

2 is {e1, e2} and further let L1(W
2) = {{e1}, {e2}}

and L2(W
2) = {∅, {(0, 1)}, {(0, 2)}, E(W

′

2)}. We have the following result.

Lemma 4.13. For any n ≥ 1, the set L(W n) of flats is the disjoint union of L1(W
n) and

L2(W
n).

Proof. We only need to prove the lemma for n ≥ 3. Let rkW (resp. rkW ) be the rank
function of M(Wn) (resp. W n). Note that rkW X = rkW X for any X 6= On, which will
be frequently used in our proof.

We first show that each element of L1(W
n) or L2(W

n) is a flat of W n. It is clear that
each element of L1(W

n) is a flat of W n since the outer cycle is an independent set. It is
also clear that E(Wn) is a flat of W n, which is actually the maximal flat in L(W n). It
remains to show that each F ∈ L(M(Wn)) satisfying On 6⊂ F is also a flat of W n. In
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this case we must have |On ∩ F | ≤ n − 2, which means that L1(W
n) and L2(W

n) are
disjoint. Otherwise, |On ∩ F | = n − 1. Since F is a flat of Wn, we must have On ⊂ F , a
contradiction. Hence, neither F nor F ∪ e is {On} for any e ∈ E(Wn) \ F . Recall that
the ground set of W n is E(Wn). Thus rkWF ∪ {e} = rkW F ∪ {e} > rkW F = rkWF for
any e ∈ W n \ F . That is to say F is a flat of W n.

It remains to show that each flat F ∈ L(W n) belongs to either L1(W
n) or L2(W

n).
From the previous characterization of compositions of Wn it follows that L(M(Wn)) =
L2(W

n) ∪ {On}. Suppose that F 6∈ L2(W
n). We proceed to show that F ∈ L1(W

n).
Since On is not a flat of W n, we have F 6= On. Thus we must have F 6∈ L(M(Wn)), which
implies the existence of some edge e 6∈ F satisfying rkW F 6= rkW F ∪ {e}. On the other
hand, we have rkW F = rkW F∪{e} since F is a flat of W n. Recalling that rkW F = rkW F
for F 6= On, we get that rkW F ∪ {e} 6= rkW F ∪ {e}, and hence F ∪ {e} = On. Therefore
F ∈ L1(W

n), as desired. This completes the proof.

By the above lemma ΨW (u) admits the following decomposition

ΨW (u) = ΨW
1 (u) + ΨW

2 (u), (4.39)

where

ΨW
1 (u) =

∞
∑

n=1





∑

F∈L1(Wn)

χWn
F
(t)P(Wn)F (t)



un, (4.40)

ΨW
2 (u) =

∞
∑

n=1





∑

F∈L2(Wn)

χWn
F
(t)P(Wn)F (t)



un. (4.41)

We first determine ΨW
1 (u).

Lemma 4.14. We have

ΨW
1 (u) =

1

1− (t− 1)u
×

u

1− (t− 1)u
.

Proof. Given a flat F ∈ L1(W
n), we need to analyze what kinds of matroids W n

F and
(W n)F are. For n = 1 we see that L1(W

1) = {∅}, the matroid W n
∅ is the empty matroid

and (W 1)∅ is W 1. Thus, we have

χW 1
∅
(t) = 1, P(W 1)∅(t) = PW 1(t) = 1.

Now suppose that F ∈ L1(W
n) for n ≥ 2. By the definition of L1(W

n), the matroid W n
F

is isomorphic to the graphic matroid of a path with n vertices, and (W n)F is a matroid
with its simplification isomorphic to W 1. Thus, for n ≥ 2, we have

χWn
F
(t) = (t− 1)n−1, P(Wn)F (t) = PW 1(t) = 1.
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In view of the fact that L1(W
n) has exactly n distinct flats, we get that

ΨW
1 (u) =

∞
∑

n=1

n(t− 1)n−1un =
1

1− (t− 1)u
×

u

1− (t− 1)u
.

This completes the proof.

We proceed to determine ΨW
2 (u). By (4.28), (4.29) and the definition of L2(W

n), we
get the following decomposition:

L2(W
n) = L

〈1〉
2 (W n) ⊎ L

〈2〉
2 (W n) ⊎ L

〈3〉
2 (W n),

where L
〈1〉
2 (W n) contains the ground set of W n as its unique flat, both L

〈2〉
2 (W 1) and

L
〈3〉
2 (W 1) are empty, and

L
〈2〉
2 (W n) = {E(Wn[C]) |C ∈ C〈2〉(Wn)}

L
〈3〉
2 (W n) = {E(Wn[C]) |C ∈ C〈3〉(Wn)}

for any n ≥ 2. Accordingly, for i = 1, 2, 3 let

ΨW
2,i(u) =

∞
∑

n=1







∑

F∈L
〈i〉
2

(Wn)

χ(Wn)F (t)P(Wn)F (t)






un. (4.42)

Then we have
ΨW

2 (u) = ΨW
2,1(u) + ΨW

2,2(u) + ΨW
2,3(u).

Next we shall compute ΨW
2,1(u),Ψ

W
2,2(u) and ΨW

2,3(u) successively.

Lemma 4.15. Let ΨW
2,1(u) be defined as in (4.42). Then

ΨW
2,1(u) =

1

1− (t− 2)u
−

1

u+ 1
.

Proof. Suppose that F is the unique flat in L
〈1〉
2 (W n). As F is the ground set of W n,

the matroid (W n)F is indeed W n and the matroid (W n)F is the empty matroid. It is
known that χWn(t) = (t− 2)n − (−1)n, which can be easily proved by using the deletion-
contraction rule. Note that the Kazhdan-Lusztig polynomial of the empty matroid is
equal to 1. Thus we have

ΨW
2,1(u) =

∞
∑

n=1

χWn(t)P(Wn)F (t)u
n =

∞
∑

n=1

((t− 2)n − (−1)n)un =
1

1− (t− 2)u
−

1

1 + u
.
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Lemma 4.16. Let ΦW (t, u) be defined as in (4.36). Then we have

ΨW
2,2(u) =

1

1− (t− 1)u

(

ΦW

(

t,
u

1− (t− 1)u

)

−
u

1− (t− 1)u

)

.

Proof. First we notice that

ΨW
2,2(u) =

∞
∑

n=2







∑

F∈L
〈2〉
2

(Wn)

χ(Wn)F (t)P(Wn)F (t)






un (4.43)

since L
〈2〉
2 (W 1) = ∅. Note that for n ≥ 2 the set L

〈2〉
2 (W n) is exactly composed of those

flats of M(Wn) corresponding to the compositions of C〈2〉(Wn). Given C ∈ C〈2〉(Wn), let
F = E(Wn[C]). On one hand, considering F as a flat of M(Wn), we have

t−|C|χWn[C](t) = χ(M(Wn))F (t),

which can be obtained by the previous discussion in Section 2. On the other hand,
considering F as a flat of W n, we have On 6⊂ F since F ∈ L

〈2〉
2 (W n), which implies that

M(Wn)F and (W n)F have the same independent sets. Therefore,

M(Wn)F ≃ (W n)F , ∀F ∈ L
〈2〉
2 (W n). (4.44)

Thus

t−|C|χWn[C](t) = χ(Wn)F (t).

Due to the bijection between between L
〈2〉
2 (W n) and C〈2〉(Wn), we also use (W n)C to

represent the simplification of (W n)F if F = E(Wn[C]). With this notation (4.43) could
be rewritten as

ΨW
2,2(u) =

∞
∑

n=2





∑

C∈C〈2〉(Wn)

t−|C|χWn[C](t)P(Wn)C (t)



un. (4.45)

To prove this lemma, we will use the same arguments of Lemma 4.9, which gives an
expression of

Ψ2(u) =
∞
∑

n=2





∑

C∈C〈2〉(Wn)

t−|C|χWn[C](t)PWn/C(t)



 un. (4.46)

Recall that for each C ∈ C〈2〉(Wn) the graph Wn/C is isomorphic to W|C|−1. By the defini-
tion of contraction, it is also clear that (W n)C is isomorphic to W |C|−1 since E(Wn[C]) (
On. By comparing (4.45) and (4.46) and using the same reasoning as in Lemma 4.9, the
generating function ΨW

2,2(u) could be considered as the ordinary generating function of type
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B•A structures, where A,B are the same as before except that we take wB((n)) = PWn(t).
Thus we get that

ΨW
2,2(u) =

1

1− u(t− 1)
×

∞
∑

n=2

PWn

(

u

1− u(t− 1)

)n

=
1

1− (t− 1)u

(

ΦW

(

t,
u

1− (t− 1)u

)

−
u

1− (t− 1)u

)

.

This completes the proof.

Lemma 4.17. We have

ΨW
2,3(u) = u

∂Ψeo(u)

∂u

(

1

1−Ψeo(u)

)

.

Proof. Since L
〈3〉
2 (W 1) = ∅, we have

ΨW
2,3(u) =

∞
∑

n=2







∑

F∈L
〈3〉
2

(Wn)

χ(Wn)F (t)P(Wn)F (t)






un. (4.47)

In the following we always assume that n ≥ 2. Note that each F ∈ L
〈3〉
2 (W n) is also a flat

of M(Wn). We proceed to show that M(Wn)F ≃ (W n)F and (M(Wn))
F ≃ (W n)F . The

former can be proved along the same lines as in the proof of (4.44). It remains to prove the
latter. Recalling the definition of L〈3〉

2 (W n), there must exist a positive integer i such that
(0, i) ∈ F . It is clear that M(Wn)/(0, i) ≃ M(Fn−1). In fact, by definition of contraction
we also have W n/(0, i) ≃ M(Fn−1) since (0, i) 6∈ On. Thus (M(Wn))

F ≃ (W n)F turns out
to be valid since

(M(Wn))
F ≃ (M(Wn)

(0,i))F\{(0,i)} ≃ (M(Fn−1))
F\{(0,i)}

and
(W n)F ≃ ((W n)(0,i))F\{(0,i)} ≃ (M(Fn−1))

F\{(0,i)}.

Therefore (4.47) could be rewritten as

ΨW
2,3(u) =

∞
∑

n=2







∑

F∈L
〈3〉
2

(Wn)

χ(M(Wn))F (t)P(M(Wn))F (t)






un. (4.48)

Note that for each F ∈ L
〈3〉
2 (W n) there exists a unique graph composition C ∈ C〈3〉(Wn)

such that F = E(Wn[C]). By the previous discussion in Section 2, from (4.30) it follows
that ΨW

2,3(u) = Ψ3(u). By Lemma 4.10 we obtain the desired result.

Combining Lemmas 4.14, 4.15, 4.16 and 4.17, we get the following result.
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Lemma 4.18. We have

ΨW (u) =
1

1− (t− 2)u
−

1

u+ 1
+

1

1− (t− 1)u
ΦW

(

t,
u

1− (t− 1)u

)

+u
∂Ψeo(u)

∂u

1

1−Ψeo(u)
.

Now we come to the proof of the main result of this subsection.

Proof of Theorem 4.12. The proof is similar to that of Theorem 4.7. By Lemma 4.18, we
obtain that ΦW (t, u) satisfies the functional equation

ΦW (t−1, tu) =
1

1− (t− 2)u
−

1

u+ 1
+

1

1− (t− 1)u
ΦW

(

t,
u

1− (t− 1)u

)

+ u
∂Ψeo(u)

∂u

1

1−Ψeo(u)
.

To complete the proof of the theorem, we further verify that the above equation still
holds if we substitute ΦW (t, u) by using the right hand side of (4.37). As in the case of
fan graphs and wheel graphs, we prefer to give a computer aided proof as follows.

In[28]:= ΦW [u_] :=
u + 1

2(tu + 1)
√

(u − 1)2 − 4tu2
−

1

2(tu + 1)
;

In[29]:= ΨW [u_] := 1
1−(t−2)u

− 1
u+1

+ 1
1−(t−1)u

ΦW

[

u

1−(t−1)u

]

+ u∂Ψeo[u]
∂u

1
1−Ψeo[u]

;

In[30]:= Simplify[(ΦW [u] /. {t → t−1, u → tu}) == ΨW [u],Assumptions → 1 − (t −
1)u > 0]

Out[30]= True

Note that here we assume that 1 − (t − 1)u > 0 because u is sufficiently small. This
completes the proof.

Now (1.4) of Theorem 1.1 can be proved based on (4.37).

Proof. As before, it is sufficient to show that (1.4) and (4.37) are equivalent to each other.
From (1.4) it follows that PWn+1(t) = an(t), where

an(t) =

n
∑

k=0

a(n, k)tk

and

a(n, k) =
n + 1

n + 1− k

(

n

k, k, n− 2k

)

.

Note that for n ≥ k >
⌊

n
2

⌋

we have a(n, k) = 0. Since (4.24) could be restated as

ΦW (t, u)

u
=

∞
∑

n=0

PWn+1(t)un,
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to prove the equivalence between (1.4) and (4.37) it suffices to show that

∞
∑

n=0

an(t)u
n =

u+ 1

2u(tu+ 1)
√

(u− 1)2 − 4tu2
−

1

2u(tu+ 1)
. (4.49)

To this end, we use the same method as in the proofs of Theorems 4.1 and 4.7. The
following lines enable us to obtain a recurrence relation of an(t).

In[31]:= a[n_, k_] :=
n + 1

n + 1 − k
Multinomial[k, k, n − 2k];

In[32]:= ReleaseHold[First[Zb[FunctionExpand[a[n, k]]tk, k, 0, n, n] /. SUM → a]];

In[33]:= Simplify[FunctionExpand[%],Assumptions → n ∈ Z];

In[34]:= rec = Collect[%, a[_],Factor]

Out[34]= (34 + 24n+ 4n2 − 46t− 35nt− 6n2t+ 16t2 + 12nt2 + 2n2t2)a[2 + n] + (4 + n)(−5− 2n+
4t+2nt)a[3 +n] == (2+ n)t(−1+ 4t)(−7− 2n+6t+2nt)a[n] + (14 +11n+2n2 − 102t−
78nt− 14n2t+ 74t2 + 62nt2 + 12n2t2)a[1 + n]

To obtain an equivalent differential equation satisfied by
∑∞

n=0 an(t)u
n, we also need

some initial terms, which could be easily implemented by using the following command.
In[35]:= Table[a[n] == Sum[a[n, k]tk, k, 0, n], n, 0, 2]

Out[35]= {a[0] == 1, a[1] == 1, a[2] == 1 + 3t};

Now we can obtain a differential equation satisfied by
∑∞

n=0 an(t)u
n by using the

function RE2DE.
In[36]:= de = RE2DE[{rec, a[0] == 1, a[1] == 1 + t, a[2] == 1 + 3t}, a[n], f [u]]

Out[36]= {−1+2t− (−1+2t−2u+5u2−38tu2+24t2u2+14tu3−68t2u3+48t3u3)f [u]− (3u−2tu−
12u2 +17tu2 − 6t2u2 +9u3 − 64tu3 +50t2u3 +13tu4 − 64t2u4 +48t3u4)f

′
[u]− 2(u2 − tu2 −

2u3+3tu3−t2u3+u4−7tu4+6t2u4+tu5−5t2u5+4t3u5)f
′′
[u] == 0, f [0] == 1, f

′
[0] == 1}

Next, we have to show that the right hand side of (4.49) is indeed the solution of the
above differential equation de. To this end, we also need to verify its value at u = 0. Since
each of two terms on the right hand side of (4.49) is not defined for u = 0, we should
simplify the summation of these terms. We denote the resulting function by φ2(u).

In[37]:= φ2[u_] :=
2

√

(u− 1)2 − 4tu2
(

√

(u − 1)2 − 4tu2 + u + 1
) ;

In[38]:= Simplify[φ2[u] ==
ΦW [u]

u
]

Out[38]= True

Finally, we verify that φ2(u) satisfies the differential equation de with the correct
initial values.
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In[39]:= Simplify [de/. f → φ2]

Out[39]= {True,True,True}

Thus we establish the equivalence between (1.4) and (4.37).

4.4 Squares of paths

The main objective of this subsection is prove (1.2) of Theorem 1.1. Our proof of
(1.2) is based on the isomorphism between the graphic matroid M(Sn) and the graphic
matroid M(Fn), which is implied by Whitney’s 2-isomorphism theorem.

Now let us recall some related concepts. Throughout this subsection all graphs are
assumed to be free of isolated vertices. Given two graphs G and G′, we say that G is 2-
isomorphic to G′ if G′ can be obtained from G by a sequence of operations of the following
three types:

(a) Vertex identification. This operation acts on a graph G by identifying v1 and v2 as a
new vertex v, where v1 and v2 are two vertices lying in distinct components of G.

(b) Vertex splitting. This operation is inverse to vertex identification. However, a graph
can be split only at a cut-vertex.

(c) Twisting. This operation acts on a graph G in the following way. Suppose that there
are two vertices u and v in G such that G can be obtained from two disjoint graphs G1

and G2 by identifying u1 ∈ V (G1) and u2 ∈ V (G2) as u, and identifying v1 ∈ V (G1)
and v2 ∈ V (G2) as v. Then we identify u1 with v2 and identify v1 with u2 to obtain
a twisting G̃ of G about {u, v}.

The celebrated Whitney’s 2-isomorphism theorem is stated as follows.

Theorem 4.19. [31] Let G and G′ be graphs having no isolated vertices. Then M(G)
and M(G′) are isomorphic if and only if G and G′ are 2-isomorphic.

We would like to point out that it is easy to prove one direction of the above theorem,
namely, if two graphs G and G′ are 2-isomorphic then M(G) and M(G′) are isomorphic.
While it is difficult to prove the other direction. Note that only the easy part of Whitney’s
2-isomorphism theorem will be used for our purpose here. With this theorem, we are able
to prove the following result.

Theorem 4.20. For any n ≥ 1 the graphic matroid M(Sn) and the graphic matroid
M(Fn) are isomorphic.

Proof. For 1 ≤ n ≤ 4, it is routine to verify that Sn and Fn are isomorphic graphs, and
hence their graphic matroids are isomorphic. For n ≥ 5, it suffices to prove that the graph
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Sn and the graph Fn are 2-isomorphic by Theorem 4.19. We shall show that Sn can be
obtained from Fn by a sequence of twisting operations. To illustrate this process, we first
label the vertices of Fn as in Figure 11.

0n

n− 1 n− 2 n− 3 n− 4 1· · · · · ·

Figure 11: Fn

Then we construct a sequence of graphs F
〈0〉
n , F

〈1〉
n , F

〈2〉
n , . . . , F

〈n−3〉
n such that F

〈
n0〉 is

the original fan graph Fn, and for each 1 ≤ i ≤ n − 3 the graph F
〈i〉
n is the twisting of

F
〈i−1〉
n about {0, n− 1 − i}. The first two operations are illustrated as in Figure 12 and

Figure 13.

0

n

n− 1

n− 2 n− 3 n− 4

1

· · · · · ·

Figure 12: F 〈1〉
n : twisting of F 〈0〉

n about {0, n− 2}

0n

n− 1 n− 3

n− 2

n− 4 n− 5 1· · · · · ·

Figure 13: F 〈2〉
n : twisting of F 〈1〉

n about {0, n− 3}

It is straightforward to show that F 〈n−3〉
n is isomorphic to Sn. Figure 14 and Figure 15

give the resulting labeled graphs according to the parity of n.
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n n− 2 n− 4 n− 6 0

n− 1 n− 3 n− 5 1· · ·

· · ·

Figure 14: F 〈n−3〉
n for odd n: twisting of F 〈n−4〉

n about {0, 2}

n n− 2 n− 4 n− 6 2 1

n− 1 n− 3 n− 5 0· · ·

· · ·

Figure 15: F 〈n−3〉
n for even n: twisting of F 〈n−4〉

n about {0, 2}

This completes the proof.

Now we come to the proof of (1.2) of Theorem 1.1.

Proof of (1.2). Combining Theorem 4.20 and Theorem 4.1, we immediately obtain the
desired result.

5 Real zeros of Kazhdan-Lusztig polynomials

In Section 4 we obtained explicit expressions of the Kazhdan-Lusztig polynomials of
square of paths, fan graphs, wheel graphs and whirl matroids. The main objective of this
section is to prove that these polynomials are real-rooted.

Let us first consider the Kazhdan-Lusztig polynomials of square of paths and fan
graphs. We have the following result.

Theorem 5.1. For any n ≥ 3 the polynomial PFn
(t) has only negative zeros, so does

PSn
(t). Moreover, we have PFn

(t) � PFn+1
(t).

Proof. By Theorem 1.1, we know that

PFn
(t) = PSn

(t) =

⌊n−1

2
⌋

∑

k=0

1

k + 1

(

n− 1

k, k, n− 2k − 1

)

tk.
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There is a close relationship between PFn
(t) and the classical Narayana polynomial

Nn(t) =
n−1
∑

k=0

1

n

(

n

k

)(

n

k + 1

)

tk.

Precisely, we have

Nn(t) = (1 + t)n−1PFn

(

t

(1 + t)2

)

(5.1)

see [4]. It is well known that Nn(t) has only simple negative zeros and moreover Nn(t) �
Nn+1(t). Suppose that t1, . . . , t⌊n−1

2
⌋ are those distinct zeros of Nn(t) in the interval (−1, 0).

From the symmetry of Nn(t) it follows that t−1
1 , . . . , t−1

⌊n−1

2
⌋

are those distinct zeros in the

interval (−∞,−1). In addition, for even n we have Nn(−1) = 0, while for odd n we have
Nn(−1) 6= 0. Note that deg(PFn

(t)) = ⌊n−1
2
⌋ and for t 6= −1 there holds

t−1

(1 + t−1)2
=

t

(1 + t)2
.

Thus, by (5.1), we see that

t1
(1 + t1)2

, . . . ,
t⌊n−1

2
⌋

(

1 + t⌊n−1

2
⌋

)2

are exactly all zeros of PFn
(t). It is easy to see that t

(1+t)2
is a strictly increasing function

on the interval (−1, 0). Thus we have the desired result.

Next we consider the Kazhdan-Lusztig polynomials of wheel graphs. We have the
following result.

Theorem 5.2. For any n ≥ 3 the polynomial PWn
(t) has only negative zeros.

Our proof of Theorem 5.2 is based on the theory of multiplier sequences and the theory
of n-sequences, for which we refer the reader to [6, 8, 7]. Let us recall some related concepts
and results. A sequence Γ = {γk}

∞
k=0 of real numbers is called a multiplier sequence if,

whenever any real polynomial

f(t) =
n
∑

k=0

akt
k

has only real zeros, so does the polynomial

Γ[f(t)] =
n
∑

k=0

γkakt
k.

A sequence Γ = {γi}
n
k=0 is called an n-sequence if for every polynomial f(t) of degree

less than or equal to n and with only real zeros, the polynomial Γ[f(t)] also has only real
zeros.

We will need the following two lemmas about multiplier sequences.
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Lemma 5.3. For any non-negative integer c, the sequence { 1
(k+c)!

}∞k=0 is a multiplier
sequence.

This lemma can be obtained by applying a classical theorem due to Laguerre to the
gamma function Γ(x), see [28, p .270] or a more recent literature [7, Theorem 4.1].

Lemma 5.4. For any positive integer n, the sequence { 1
(n−k)!

}∞k=0 is a multiplier sequence.

This lemma can be obtained by applying the characterization theorem of multiplier
sequences due to Pólya and Schur, see [22] or [7, Theorem 3.3].

We also need the following algebraic characterization of n-sequences.

Theorem 5.5. [6] Let Γ = {γk}
n
k=0 be a sequence of real numbers. Then Γ is an n-

sequence if and only if the zeros of the polynomial Γ[(1 + t)n] are all real and of the same
sign.

To use the theory of multiplier sequences and the theory of n-sequences to prove the

real-rootedness of PWn
(t), we shall rewrite its coefficient sequence {[tk]PWn

(t)}
⌊n−1

2
⌋

k=0 as the

Hadmard product of three sequences {ak}
⌊n−1

2
⌋

k=0 , {bk}
⌊n−1

2
⌋

k=0 and {ck}
⌊n−1

2
⌋

k=0 , namely

[tk]PWn
(t) = akbkck, (5.2)

where

ak = (k + 1)n2 − (2k2 + 4k)n + k3 + 3k2 − k − 1, (5.3)

bk =
n!

(n− 1)(k + 1)!(n + 1− k)!
, (5.4)

ck =
(n− 1)(n− 2− k)!

k!(n− 1− 2k)!
. (5.5)

It is straightforward to verify (5.2). We shall subsequently prove that the sequence

{ak}
⌊n−1

2
⌋

k=0 is a ⌊n−1
2
⌋-sequence, the sequence {bk}

∞
k=0 is a multiplier sequence and the

polynomial
∑⌊n−1

2
⌋

k=0 ckt
k has only real zeros. Firstly, we prove the following result.

Lemma 5.6. For any n ≥ 3 the sequence {ak}
⌊n−1

2
⌋

k=0 given by (5.3) is a ⌊n−1
2
⌋-sequence.

Proof. To simplify notation, let m = ⌊n−1
2
⌋. Note that for any 0 ≤ k ≤ m there exists

x ≥ 0 such that n = 2k + 1 + x since k ≤ n−1
2

. Moreover, x and k can not be 0
simultaneously since n ≥ 3. Now it is routine to verify that

ak = k2 + k3 + 2x+ 2kx+ 2k2x+ x2 + kx2 > 0

for any 0 ≤ k ≤ m.
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By Theorem 5.5, it suffices to show that the polynomial

fn(t) =
m
∑

k=0

ak

(

m

k

)

tk

has only negative zeros. By straightforward computations, we get that

f3(t) = 2(t+ 4), f4(t) = 5(2t+ 3), f5(t) = 4(t+ 3)(3t+ 2), f6(t) = 29t2 + 76t+ 35.

It is easy to see that each of f3(t), f4(t), f5(t) and f6(t) has only real zeros.

It remains to show that fn(t) has only negative zeros for any n ≥ 7. Note that ak,
considered as a polynomial of k, can be expanded in the falling factorials basis as given
below:

ak = (k)3 − (2n− 6) · (k)2 + (n2 − 6n+ 3) · (k)1 + (n2 − 1),

where (k)i = k(k − 1) · · · (k − i+ 1). Thus, letting g(t) = (1 + t)m, we get

fn(t) = t3g′′′(t)− (2n− 6)t2g′′(t) + (n2 − 6n+ 3)tg′(t) + (n2 − 1)g(t),

where g′(t) (resp. g′′(t) or g′′′(t)) are the first order (resp. the second order, or the third
order) derivative of g(t). Therefore, for n ≥ 7 and hence m ≥ 3, we have

fn(t) = (1 + t)m−3h(t),

where

h(t) =m(m− 1)(m− 2)t3 −m(m− 1)(2n− 6)t2(1 + t)

+m(n2 − 6n+ 3)t(1 + t)2 + (n2 − 1)(1 + t)3.

It suffices to show that h(t) has only negative zeros. By the definition of h(t), we know
that h(t) is a cubic polynomial with the leading coefficient equal to am > 0. Therefore,
we have h(−∞) = −∞. By straightforward computations, we get that

h(−2) = −8m3 + 8m2n− 2mn2 + 4mn+ 2m− n2 + 1,

h(−1) = −(m− 2)(m− 1)m,

h(0) = (n− 1)(n+ 1).

When n is odd, we have m = n−1
2

and h(−2) = (n − 1)2. When n is even, we have
m = n−2

2
and h(−2) = (n − 6)(n − 1) + 1. Since h(−∞) = −∞, h(−2) > 0, h(−1) < 0

and h(0) > 0 by n ≥ 7 and m ≥ 3, from the intermediate value theorem it follows that
h(t) has three distinct negative zeros. Thus, all zeros of fn(t) are real and have the same
sign for any n ≥ 7. This completes the proof.

Secondly, we have the following result.
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Lemma 5.7. For any n ≥ 3 the sequence {bk}
∞
k=0 given by (5.4) is a multiplier sequence.

Proof. This immediately follows from Lemma 5.3 and Lemma 5.4.

Thirdly, to prove the real-rootedness of PWn
(t), we also need the following result.

Lemma 5.8. For any n ≥ 3 the polynomial

fn(t) =

m
∑

k=0

ckt
k (5.6)

has only real zeros, where m = ⌊n−1
2
⌋ and ck is given by (5.5).

Proof. Let Ln(t) be the n-th Lucas polynomial. It is well know that

Ln(t) =

⌊n
2
⌋

∑

k=0

n(n− k − 1)!

k!(n− 2k)!
tn−2k

and Ln(t) has only pure imaginary zeros for n ≥ 2 see [16, 19]. Moreover, it is straight-
forward to verify that

t(n−1)/2Ln−1

(

t−1/2
)

= fn(t).

Thus fn(t) has only real zeros. The proof is complete.

Now we are in the position to prove Theorem 5.2.

Proof of Theorem 5.2 . By (5.2), we have

PWn
(t) =

⌊n−1

2
⌋

∑

k=0

akbkckt
k.

By Lemma 5.7 and Lemma 5.8, we obtain that the polynomial

⌊n−1

2
⌋

∑

k=0

bkckt
k

has only real zeros. Then by Lemma 5.6 we get that PWn
(t) has only real zeros. This

completes the proof.

The third main result of this section is as follows, which states the real-rootedness of
the Kazhdan-Lusztig polynomials of whirl matroids.

Theorem 5.9. For any n ≥ 3 the polynomial PWn(t) has only negative zeros.
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In order to use the theory of multiplier sequences to prove the real-rootedness of
PWn(t), we shall rewrite (1.4) as

PWn(t) =

⌊n−1

2 ⌋
∑

k=0

n!

k!(n− k)!

(

n− k − 1

k

)

tk. (5.7)

By a similar proof to that of Lemma 5.7, we obtain the following result.

Lemma 5.10. For any n ≥ 3 the sequence { n!
k!(n−k)!

}∞k=0 is a multiplier sequence.

To prove Theorem 5.9, we also need the following lemma, which is similar to Lemma
5.8.

Lemma 5.11. For n ≥ 3, the polynomial

gn(t) =

⌊n−1

2 ⌋
∑

k=0

(

n− k − 1

k

)

tk (5.8)

has only real zeros.

Proof. Let Fn(t) be the n-th Fibonacci polynomial. It is well know that

Fn(t) =

⌊n−1

2
⌋

∑

k=0

(

n− k − 1

k

)

tn−2k−1

and Fn(t) has only pure imaginary zeros for n ≥ 3, see [16, 19]. Moreover, it is straight-
forward to verify that

t(n−1)/2Fn

(

t−1/2
)

= gn(t).

Thus gn(t) has only real zeros. The proof is complete.

We proceed to prove Theorem 5.9.

Proof of Theorem 5.9 . This is an immediate corollary of Lemma 5.10 and Lemma 5.11
in view of (5.7).

6 Z-polynomials

The aim of this section is to prove Theorems 1.6 and 1.7. We shall first determine
the Z-polynomials of fan graphs, wheel graphs and whirl matroids and then prove their
real-rootedness.
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To determine the Z-polynomials, we will also use the method of generating functions
as in Section 4, though it will be slightly different from the previous arguments. To make
this point clear, let us compare the defining relation of Kazhdan-Lusztig polynomials with
that of Z-polynomials.

Recall that the Kazhdan-Lusztig polynomials of a matroid M satisfy the following
relation:

trkMPM(t−1) =
∑

F∈L(M)

χMF
(t)PMF (t),

while the Z-polynomials of M is defined by

ZM(t) :=
∑

F∈L(M)

trkMFPMF (t).

Suppose that {Md,Md+1,Md+2, . . .} is a sequence of matriods with rkMn = n for n ≥ d.
The key idea to determine the generating function

Φ(t, u) =

∞
∑

n=d

PMn
(t)un,

is to interpret

Φ(t−1, tu) =
∞
∑

n=d

(

trkMnPMn
(t−1)

)

un,

namely, the summation

∞
∑

n=d





∑

F∈L(Mn)

χ(Mn)F (t)P(Mn)F (t)



 un (6.1)

by the defining relation of PMn
(t), as certain generating function of weighted combina-

torial structures. By the previous arguments in Section 4, we know that the method of
generating functions is applicable because both χM(t) and PM(t) are multiplicative on
direct sums of matroids.

In order to use the method of generating functions to determine

Z(t, u) =

∞
∑

n=d

ZMn
(t)un,

by the defining relation, it is desirable to interpret

∞
∑

n=d





∑

F∈L(Mn)

trk(Mn)FP(Mn)F (t)



 un (6.2)
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as certain generating function of weighted combinatorial structures, which might be appli-
cable since trkM is obviously multiplicative on direct sums of matriods. As shown below,
this is indeed doable for fan graphs, wheel graphs and whirl matroids. Since the index
set of (6.1) is the same as that of (6.2), we can use the same combinatorial structures for
Kazhdan-Lusztig polynomials to interpret the latter summation, while trkM will take the
role of χM(t) in the corresponding weight functions.

6.1 Fan graphs

The main objective of this subsection is to determine the Z-polynomials of fan graphs.
Let

ZF (t, u) :=

∞
∑

n=0

ZFn
(t)un, (6.3)

where F0 is the single-vertex graph. We have the following result.

Theorem 6.1. We have

ZF (t, u) =
2

√

(1− (t+ 1)u)2 − 4tu2 − (t + 1)u+ 1
. (6.4)

The proof of (6.4) is very similar to that of (4.2). By the proceeding arguments, it
suffices to establish a parallel result to Lemma 4.6. Recall that, to prove Lemma 4.6,
we introduce a sequence of combinatorial structures in Subsection 4.1, and obtain many
intermediate results. Here we will introduce some parallel objects and state some parallel
results without proofs.

Let C
′

n be defined as in (4.4). Parallel to (4.5), we define another weight function on
C

′

n by

w̃(A) =

k
∏

i=1

trkFa2i−1 · PFℓi
(t) ·

ℓi
∏

j=1

trkHbij , (6.5)

for A = (A1, A2, . . . , A2k−1, A2k) ∈ C′
n, where A2i−1 = (a2i−1), A2i = (bi1, bi2, . . . , biℓi) ∈

Sa2i for 1 ≤ i ≤ k.

Parallel to Lemma 4.3, we have the following result.

Lemma 6.2. For any C ∈ C(Fn), we have

trkFn[C]PFn/C(t) = w̃(φ(C)), (6.6)

where φ(C) is defined as in the Lemma 4.2.
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Recall that A is the disjoint union of C
′

n structures weighted by w(A). Parallel to that,
we let Ã be the disjoint union of C

′

n structures weighted by w̃(A). By 2.6 we have

ZF (t, u) =
∞
∑

n=0





∑

C∈C(Fn)

trkFn[C](t)PFn/C(t)



 un.

The above lemma implies that ZF (t, u) can be considered as the generating function of
type Ã structures. Precisely, we have

ZF (t, u) =
∞
∑

n=0





∑

A∈C′
n

w̃(A)



 un.

To compute the right hand side of the above equation, we now define combinatorial
structures of type Ão, Ãe, Ãeo and Ãm, which are respectively parallel to those combina-
torial structures of type Ao,Ae,Aeo and Am. Precisely, type Ão structure will assign to
an interval of size n the weak composition (n) with the weight function w̃o defined by

w̃o((n)) = trkFn ,

and type Ãe structure will assign to an interval of size n a composition (b1, . . . , bk) ∈ Sn

with the weight function w̃e defined by

w̃e((b1, . . . , bk)) = PFk
(t) ·

k
∏

j=1

trkHbj .

Note that the unique Ão structure of size 0 is (0), weighted by 1, and the unique Ãe

structure of size 0 is ( ), also weighted by 1. Let Ãeo be the set of pairs (Ãe, Ão), where Ãe

is a structure of type Ãe, and Ao is of type Ão, and moreover neither Ãe nor Ão is empty.
The weight function w̃eo of Ãeo is defined by

w̃eo((Ãe, Ão)) = w̃e(Ae)w̃o(Ao).

Let Ãm be the set of combinatorial structures each of which is a sequence (Ãeo
1 , . . . , Ãeo

k )
of Ãeo structures. Define the weight function w̃m of Ãm as

w̃m((Ãeo
1 , . . . , Ã

eo
k )) =

k
∏

i=1

w̃eo(Ãeo
i ).

Correspondingly, let Ão
n (resp. Ãe

n or Ãeo
n or Ãm

n ) denote the set of type Ão (resp. Ãe)
or Ãeo or Ãm) structures which can be built on an interval of size n.

Let

Ψ̃o(u) =
∞
∑

n=1





∑

Ão∈Ão
n

w̃o(Ao)



 un,
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Ψ̃e(u) =
∞
∑

n=1





∑

Ãe∈Ãe
n

w̃e(Ae)



un,

Ψ̃eo(u) =
∞
∑

n=0





∑

Ãeo∈Ãeo
n

w̃eo(Ãeo)



 un,

Ψ̃m(u) =

∞
∑

n=0





∑

Ãm∈Ãm
n

w̃m(Ãm)



 un.

Parallel to Lemma 4.4, we have the following result.

Lemma 6.3. We have

Ψ̃o(u) =
tu

1− tu
,

Ψ̃e(u) = ΦF

(

t,
u

1− tu

)

− 1,

where ΦF (t, u) is the generating function of Kazhdan-Lusztig polynomials for fan graphs.

Parallel to Lemma 4.5, we have the following result.

Lemma 6.4. We have

Ψ̃eo(u) = Ψ̃e(u)Ψ̃o(u),

Ψ̃m(u) =
1

1− Ψ̃eo(u)
.

Finally, parallel to Lemma 4.6, we obtain the following result.

Lemma 6.5. We have

ZF (t, u) =
(1 + Ψ̃o(u))(1 + Ψ̃e(u))

1− Ψ̃e(u)Ψ̃o(u)
.

We proceed to prove Theorem 6.1.

Proof of Theorem 6.1. In Subsection 4.1 we already determined the value of ΦF (t, u).
Combining Lemmas 6.3, 6.4 and 6.5, it remains to verify the equality based on (4.2),
which can be completed with the aid of Mathematica.

In[40]:= Ψ̃o[u_]:=
tu

1 − tu
;
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In[41]:= Ψ̃e[u_]:=φF

[

u

1− tu

]

− 1;

In[42]:= Ψ̃eo[u_]:=Ψ̃e[u]Ψ̃o[u];

In[43]:= ZF [t_, u_]:=
(1 + Ψ̃e[u])(Ψ̃o[u] + 1)

1− Ψ̃eo[u]
;

In[44]:= FullSimplify[ZF (t, u) ==
2

√

(1− (t+ 1)u)2 − 4tu2 − (t + 1)u + 1
,

Assumptions → 1− tu > 0]

Out[44]= True;

This completes the proof.

Now we are able to prove (1.7) of Theorem 1.6.

Proof of (1.7). The equivalence between (1.7) and (6.4) is well known, see [4, Section 4].
The proof is complete.

6.2 Wheel graphs

The main objective of this subsection is to determine the Z-polynomials of wheel
graphs. Let

ZW (t, u) :=
∞
∑

n=2

ZWn
(t)un, (6.7)

where W2 is a simple circle with three vertices.

We have the following result.

Theorem 6.6. We have

ZW (t, u) =−
2u(1− (t+ 1)u)(t(u+ 1) + 1)

1− (t + 1)u− 2tu2 +
√

(1− (t+ 1)u)2 − 4tu2

+
1

√

(1− (t + 1)u)2 − 4tu2
− 1. (6.8)

The proof of (6.8) is very similar to that of (4.25). By 2.6 we have

ZW (t, u) =
∞
∑

n=2





∑

C∈C(Wn)

trkWn[C]PWn/C(t)



 un.
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Recall that the proof of (4.25) is based on the computation of the following summation

∞
∑

n=2





∑

C∈C(Wn)

t−|C|χWn[C](t)PWn/C(t)



 un.

For that purpose we divide C(Wn) into three disjoint parts C〈1〉(Wn), C
〈2〉(Wn) and

C〈3〉(Wn), and introduce Ψ1(u), Ψ2(u), Ψ3(u) as defined in (4.30). Again by the argu-
ments immediately before Subsection 6.1, we may introduce parallel functions to compute
ZW (t, u). Correspondingly, for i = 1, 2, 3 let

Z
〈i〉
W (u) =

∞
∑

n=2





∑

C∈C〈i〉(Wn)

trkWn[C]PWn/C(t)



 un. (6.9)

Then
ZW (t, u) = Z

〈1〉
W (u) + Z

〈2〉
W (u) + Z

〈3〉
W (u).

In the following we shall determine Z
〈1〉
W (u), Z

〈2〉
W (u) and Z

〈3〉
W (u) successively.

Parallel to Lemma 4.8, we have the following result.

Lemma 6.7. We have

Z
〈1〉
W (u) =

t2u2

1− tu
+

tu2

1− tu
.

Proof. Recall that C〈1〉(Wn) = {{[0, n]}, {{0}, [1, n]}}. Since rkWn[{[0, n]}] = n and
rkWn[{{0}, [1, n]}] = n− 1, we get the desired result.

Recall that a composition C ∈ C〈2〉(Wn) naturally decomposes the outer cycle of Wn

into |C| − 1 paths. Suppose that these paths have lengths i1, i2, . . . , i|C|−1 respectively.
Parallel to (4.32), we can prove that

trkWn[C]PWn/C(t) = PW|C|−1
(t)×

|C|−1
∏

j=1

trkHij .

Based on this fact, Z
〈2〉
W (u) could be considered as the ordinary generating function of

type B • A structures, with An = {(n)} for n ≥ 1 weighted by wA((n)) = trkHn and
Bn = {(n)} for n ≥ 2 weighted by wB((n)) = PWn

(t). (Here we assume that A0,B0 and
B1 are empty.) Parallel to Lemma 4.9, we have the following result.

Lemma 6.8. We have

Z
〈2〉
W (u) =

1

1− tu
× ΦW

(

t,
u

1− tu

)

,

where ΦW (t, u) is the generating function of the Kazhdan-Lusztig polynomials for wheel
graphs.
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We proceed to determine Z
〈3〉
W (u). Parallel to Lemma 4.10, we obtain the following

result by replacing type Aeo structures by type Ãeo structures.

Lemma 6.9. We have

Z
〈3〉
W (u) = u

∂Ψ̃eo(u)

∂u

1

1− Ψ̃eo(u)
,

where Ψ̃eo(u) is defined as in Lemma 6.4.

Combining Lemmas 6.7,6.8 and 6.9, we get the following result.

Lemma 6.10. Let ΦW (t, u) be given by (4.25). Then

ZW (t, u) =
t2u2

1− tu
+

tu2

1− tu
+

ΦW

(

t, u
1−tu

)

1− tu
+ u

∂Ψ̃eo(u)

∂u

1

1− Ψ̃eo(u)
.

Our proof of Theorem 6.6 is as follows.

Proof of Theorem 6.6. In Subsection 4.2 we already determined the value of ΦW (t, u).
Combining Lemmas 6.4 and 6.10, it remains to verify the equality based on (4.25), which
can be completed with the aid of Mathematica.

In[45]:= ZW [t_, u_] :=
t2u2

1− tu
+

tu2

1 − tu
+

1

1− tu
ΦW

[

u

1− tu

]

+ u
∂Ψ̃eo(u)

∂u

1

1− Ψ̃eo(u)
;

In[46]:= T1[u_] :=
1

√

(1− (t + 1)u)2 − 4tu2
;

In[47]:= T2[u_] :=
2u(1 − (t + 1)u)(t(u+ 1) + 1)

1− (t+ 1)u − 2tu2 +
√

(1− (t+ 1)u)2 − 4tu2
;

In[48]:= Simplify[ZW (t, u) = T1[u] − T2[u] − 1,Assumptions → 1− tu > 0];

Out[48]= True

This completes the proof.

Now we are able to prove (1.8) of Theorem 1.6.

Proof of (1.8). It suffices to show that

∞
∑

n=2

(

n
∑

k=0

(

n

k

)2

tk

)

un =
1

√

(1− (t+ 1)u)2 − 4tu2
− 1− (1 + t)u, (6.10)

∞
∑

n=2

(

n
∑

k=0

2

n

(

n

k + 1

)(

n

k − 1

)

)

un =
2u(1− (t+ 1)u)(t(u+ 1) + 1)

1− (t + 1)u− 2tu2 +
√

(1− (t+ 1)u)2 − 4tu2

53



− (1 + t)u. (6.11)

Note that (6.10) is equivalent to

∞
∑

n=0

(

n
∑

k=0

(

n

k

)2

tk

)

un =
1

√

(1− (t+ 1)u)2 − 4tu2
, (6.12)

which can be proved by using the generating function of Legendre polynomials. But here
we give a proof with the aid of Mathematica.
In[49]:= a[n_, k_] := Binomial[n, k]2;

In[50]:= ReleaseHold[First[Zb[FunctionExpand[a[n, k]]tk, k, 0, n, n] /. SUM → a]];

In[51]:= Simplify[FunctionExpand[%],Assumptions → n ∈ Z];

In[52]:= rec = Collect[%, a[_],Factor]

Out[52]= (1 + n)(−1 + t)2a[n] + (2 + n)a[2 + n] == (3 + 2n)(1 + t)a[1 + n]

In[53]:= Table[a[n] == Sum[a[n, k]tk, k, 0, n], n, 0, 1]

Out[53]= {a[0] == 1, a[1] == 1 + t};

In[54]:= de = RE2DE[{rec, a[0] == 1, a[1] == 1 + t}, a[n], f [u]]

Out[54]= {((t− 1)2u2 − 2(t+ 1)u+ 1)f ′[u] + f [u]((t− 1)2u− t− 1) == 0, f [0] == 1}

In[55]:= Simplify[de/. f → T1]

Out[55]= {True,True}

It is easy to see that (6.11) is equivalent to the following equation:

∞
∑

n=0

(

n
∑

k=0

2

n + 2

(

n + 2

k + 2

)(

n + 2

k

)

tk
)

un

=
2(1− (t + 1)u)(t(u+ 1) + 1)

u(1− (t+ 1)u− 2tu2 +
√

(1− (t + 1)u)2 − 4tu2)
−

(1 + t)u

u2
.

Then it can be proved by the following Mathematica codes.

In[56]:= T3[u_] :=
2t

1− 2(t + 1)u + (t2 + 1)u2 + (1− (t + 1)u)
√

1− (t+ 1)u)2 − 4tu2
;

In[57]:= Simplify[T3[u] ==
T2[u]

u2
−

(1 + t)u

u2
];

Out[57]= True

In[58]:= a[n_, k_] :=
2

n + 2
Binomial[n + 2, k + 2]Binomial[n + 2, k];

In[59]:= ReleaseHold[First[Zb[FunctionExpand[a[n, k]]tk, k, 0, n, n] /. SUM → a]];
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In[60]:= Simplify[FunctionExpand[%],Assumptions → n ∈ Z];

In[61]:= rec = Collect[%, a[_],Factor]

Out[61]= (2 + n)(3 + n)(−1 + t)2a[n] + (2 + n)(6 + n)a[2 + n] == (3 + n)(7 + 2n)(1 + t)a[1 + n]

In[62]:= Table[a[n] == Sum[a[n, k]tk, k, 0, n], n, 0, 1]

Out[62]= {a[0] == 1, a[1] == 2 + 2t};

In[63]:= de = RE2DE[{rec, a[0] == 1, a[1] == 2 + 2t}, a[n], f [u]]

Out[63]= {2(−5 + 3u + 3t2u − t(5 + 6u))f [u] + (5 − 11u − 11tu + 6u2 − 12tu2 + 6t2u2)f
′
[u] + (u −

2u2 − 2tu2 + u3 − 2tu3 + t2u3)f
′′
[u] == 0, f [0] == 1, f ′[0] == 2(1 + t)}

In[64]:= Simplify[de /. f → T3]

Out[64]= {True,True,True}

This completes the proof.

6.3 Whirl matroids

The main objective of this subsection is to determine the Z-polynomials of whirl
matriods. Let

ZW (t, u) :=

∞
∑

n=1

ZWn(t)un, (6.13)

where matroid W 1 and matroid W 2 are defined as in the subsection 4.3.

We have the following result.

Theorem 6.11. We have

ZW (t, u) =
1

√

(1− (t + 1)u)2 − 4tu2
− 1. (6.14)

The proof of (6.14) is very similar to that of (6.8). We will prove (6.14) along the
lines of proving (4.37), just as we prove (6.8) along the lines of proving (4.25). By (2.6),
we have

ZW (t, u) =
∞
∑

n=1





∑

F∈L(Wn)

rk(W n)F (t)P(Wn)F (t)



 un.

Recall that the proof of (4.37) is based on the computation of the following summation

∞
∑

n=1





∑

F∈L(Wn)

χ(Wn)F (t)P(Wn)F (t)



 un. (6.15)
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For that purpose we divide L(W n) into two disjoint parts L1(W
n) and L2(W

n), and
introduce ΨW

1 (u) and ΨW
2 (u) as defined in (4.40) and (4.41). To determine ΨW

2 (u), we also
divide L2(W

n) into three disjoint parts L〈1〉
2 (W n), L

〈2〉
2 (W n) and L

〈3〉
2 (W n), and introduce

ΨW
2,1(u),Ψ

W
2,2(u) and ΨW

2,3(u) as defined in (4.42).

Again by the arguments immediately before Subsection 6.1, we may introduce parallel
functions to compute ZW (t, u). Let

ZW
1 (u) =

∞
∑

n=1





∑

F∈L1(Wn)

trk (W
n)FP(Wn)F (t)



 un,

ZW
2 (u) =

∞
∑

n=1





∑

F∈L2(Wn)

trk (W
n)FP(Wn)F (t)



 un.

Then
ZW (t, u) = ZW

1 (u) + ZW
2 (u).

Accordingly, for i = 1, 2, 3 let

ZW
2,i(u) =

∞
∑

n=1







∑

F∈L
〈i〉
2

(Wn)

trk (W
n)FP(Wn)F (t)






un. (6.16)

Then we have
ZW

2 (u) = ZW
2,1(u) + ZW

2,2(u) + ZW
2,3(u).

Firstly, parallel to Lemma 4.14, we obtain the following result.

Lemma 6.12. We have

ZW
1 (u) =

1

1− tu
×

u

1− tu
.

Proof. Recall that there are n flats of rank n− 1 in L1(W
n). Therefore, we have

ZW
1 (u) =

∞
∑

n=1

ntn−1un =
1

1− tu
×

u

1− tu
.

This completes the proof.

Secondly, parallel to Lemmas 4.15, 4.16 and 4.17, we obtain the following results. The
proofs are very similar to Lemmas 6.7,6.8 and 6.9, which will be omitted here.

Lemma 6.13. We have

ZW
2,1(u) =

tu

1− tu
.
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Lemma 6.14. We have

ZW
2,2(u) =

1

1− tu

(

ΦW

(

t,
u

1− tu

)

−
u

1− tu

)

,

where ΦW (t, u) is the generating function of the Kazhdan-Lusztig polynomials for whirl
matroids.

Lemma 6.15. We have

ZW
2,3(u) = u

∂Ψ̃eo(u)

∂u

1

1− Ψ̃eo(u)
,

where Ψ̃eo(u) is defined as in Lemma 6.4.

Combining Lemmas 6.12,6.15,6.14 and 6.15, we get the following result.

Lemma 6.16. We have

ZW (t, u) =
tu

1− tu
+

ΦW
(

t, u
1−tu

)

1− tu
+ u

∂Ψ̃eo(u)

∂u

1

1− Ψ̃eo(u)
.

Now we are able to prove Theorem 6.11.

Proof of Theorem 6.11. In Subsection 4.3 we already determined the value of ΦW (t, u).
Combining Lemmas 6.4 and 6.16, it remains to verify the equality based on (4.37), which
can be completed with the aid of Mathematica.

In[65]:= ZW [t_, u_] :=
tu

1 − tu
+

1

1− tu
ΦW

[

u

1− tu

]

+ u
∂Ψ̃eo(u)

∂u

1

1− Ψ̃eo(u)
;

In[66]:= Simplify[ZW (t, u) ==
1

√

(1− (t+ 1)u)2 − 4tu2
−1,Assumptions → 1−tu > 0];

Out[66]= True;

This completes the proof.

Finally, we are in the position to prove (1.9) of Theorem 1.6.

Proof of (1.9). The equivalence between (1.9) and (6.14) is clear in view of (6.12).

6.4 Real zeros of Z-polynomials

The main objective of this subsection is to prove Theorem 1.7, which states that the
Z-polynomials of fan graphs, wheel graphs and whirl matroids are all real-rooted.
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Proof of Theorem 1.7. By Theorem 1.6 we see that the Z-polynomials of fan graphs are
just the classical Narayana polynomials, and the polynomials of whirl matroids are just
the Narayana polynomials of type B. It is well known that the Narayana polynomials are
real-rooted.

It remains to prove the real-rootedness of the Z-polynomials of wheel graphs. For any
n ≥ 3, we may rewrite (1.8) as

ZWn
(t) =

n
∑

k=0

((1 + k)n2 + (1− 2k − k2)n + 2k2))
(n− 1)!

(k + 1)!(n+ 1− k)!

(

n

k

)

tk.

It is easy to see that
n
∑

k=0

(n− 1)!

(k + 1)!(n+ 1− k)!

(

n

k

)

tk

has only real roots for n ≥ 3 since { (n−1)!
(k+1)!(n+1−k)!

}∞k=0 is a multiple sequence by a slight
modification of Lemma 5.7. To prove the real-rootedness of ZWn

(t), it suffices to show
that

{(1 + k)n2 − (k2 − 2k + 1)n+ 2k2)}nk=0

is an n-sequence, which is clearly a positive sequence for ≥ 3. By Theorem 5.5, it suffices
to show that the polynomial

hn(t) =
n
∑

k=0

(

(1 + k)n2 − (k2 − 2k + 1)n+ 2k2)
)

(

n

k

)

tk

has only negative zeros.

Along the lines of the proof of Lemma 5.6, we obtain that

hn(t) =

n
∑

k=0

((2− n) · k(k − 1) + (n− 1)(n− 2) · k + n(n + 1))

(

n

k

)

tk

= −n(n− 1)(n− 2)t2(1 + t)n−2 + n(n− 1)(n− 2)t(1 + t)n−1 + n(n+ 1)(1 + t)n

=
(

−n(n− 1)(n− 2)t2 + n(n− 1)(n− 2)t(1 + t) + n(n + 1)(1 + t)2
)

(1 + t)n

= n
(

(n + 1)t2 + (n2 − n+ 4)t+ n+ 1
)

(1 + t)n.

It is obvious that the quadratic polynomial

(n + 1)t2 + (n2 − n+ 4)t+ n+ 1

has only positive coefficients and its discriminant

(n2 − n+ 4)2 − 4(n+ 1)2 = (n− 1)(n− 2)(n2 + n + 6) > 0.

Thus (n+1)t2+(n2−n+4)t+n+1 has two negative roots and moreover hn(t) has only
negative zeros, as desired. This completes the proof.
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