
ar
X

iv
:1

80
2.

03
94

6v
1 

 [
m

at
h.

N
T

] 
 1

2 
Fe

b 
20

18

Metrical irrationality results related to values

of the Riemann ζ-function
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Abstract

We introduce a one-parameter family of series associated to the Riemann

ζ-function and prove that the values of the elements of this family at inte-

gers are linearly independent over the rationals for almost all values of the

parameter, where almost all is with respect to any sufficiently nice measure.

We also give similar results for the Euler–Mascheroni constant, for
∑∞

n=1
1
nn

and for
∑∞

n=1
1

n!+1
. Finally, specialising the criteria used, we give some new

criteria for the irrationality of ζ(k), the Euler–Mascheroni constant and the

latter two series.



1 Introduction

The irrationality of the value of the Riemann ζ-function at odd integers is

a long standing open problem. For even integer arguments, it was famously

shown by Euler [4] that

ζ(2n) = (−1)n−12
2n−1π2nB2n

(2n)!
,

where B2n is the 2n’th Bernoulli number, which is rational. Lindemann [15]

proved in 1882 that π is transcendental, so it immediately follows that ζ(2n)

is irrational for each n ∈ N. By contrast, the value of ζ at odd integers largely

remains a mystery, and not many results were known until 1979 when Apéry

[1] published a proof that ζ(3) is irrational. Rivoal [16] subsequently proved

that infinitely many odd ζ-values are irrational; and Zudilin [21] proved that

at least one of ζ(5), ζ(7), ζ(9) and ζ(11) is irrational.

We are not able to resolve the question of the irrationality of odd ζ-values

but we will present a related result. To motivate our results, let k ≥ 2 be an

integer. We first observe that

ζ(k) =

∞
∑

n=1

1

nk
=

∞
∑

n=1

((n− 1)!)k

(n!)k
=

∞
∑

n=1

[((n− 1)!)k]

(n!)k
,

where [x] denotes the integer part of x, so that the last equality is trivial.

We will modify this last expression by putting a real parameter inside the

square brackets in the numerator, that is, we consider the series

∞
∑

n=1

[((n− 1)!)kx]

(n!)k
. (1)

Below, we will prove that for any integer k ≥ 2, this series is irrational

for µ-almost all x, whenever µ is a Radon measure with positive Fourier

dimension (see the definition below). In particular, this holds for almost

all x with respect to Lebesgue measure. Appealing to results of Kauffman
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[13] and [14], we immediately see that the result also holds for almost all

badly approximable numbers in an appropriate sense, as well as for almost

all numbers with irrationality measure greater than some prescribed v > 2.

More details will follow below.

In addition to the perturbed ζ-values of (1), we are able to modify

other famous series in a corresponding way. Vacca’s formula for the Euler–

Mascheroni constant γ in [19] states that

γ =
∞
∑

n=1

(−1)n
[log2 n]

n
.

We turn this into a factorial series as before to obtain a family of series

depending on a real parameter x,

∞
∑

n=1

(−1)n
[(n− 1)![log2 n]x]

n!
. (2)

Again, these series are irrational almost surely with respect to any measure

satisfying the above properties.

It would be natural to suspect that the full set of perturbed ζ-values

at integers together with the perturbed Euler–Mascheroni constant will be

linearly independent over Q almost surely with respect to any such measure.

We are not able to prove this for the particular perturbation of the series

given above, although we are able to establish linear independence for the

set of series

{
∞
∑

n=1

[((n− 1)!)KnK−jx]

(n!)K
; j ∈ {2, . . . , K}}

∪ {
∞
∑

n=1

(−1)n
[((n− 1)!)KnK−1x[log2 n]]

(n!)K
, 1}, (3)

whereK ∈ N. These series specialise to the ζ-values and the Euler–Maschero-

ni constant respectively, if we let x = 1. Note however, that in this case the

particular form of the series considered depend on their quantity.
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Finally, to illustrate the versatility of the method, we make similar modifi-

cations to two other famous series, whose irrationality is at present unknown,

namely the series
∞
∑

n=1

1

nn
and

∞
∑

n=1

1

n! + 1
.

The first series is sometimes known as Sophmore’s Dream, due to the seem-

ingly ‘too-good-to-be-true’ identity

∞
∑

n=1

1

nn
=

∫ 1

0

x−xdx,

discovered by J. Bernoulli in 1697. The first terms can be found in [18]. The

second one is due to Erdős [3]. In fact, he asked if for any integer t the sum of

the series
∑∞

n=1,n! 6=−t
1

n!+t
is irrational. With these two series, the perturbed

variants become

∞
∑

n=1

[

∏n−1
j=1 j

jx
]

∏n
j=1 j

j
and

∞
∑

n=1

[

∏n−1
j=1 (j! + 1)x

]

∏n
j=1(j! + 1)

. (4)

It is worth noting that our results are in a first instance metrical; the irra-

tionality or linear independence is established for almost all real parameters

in a set. However, our method also gives rise to an approach to proving the

irrationality of the series in question for a particular, prescribed value of the

parameter. Indeed, as the main idea of the proof is to establish the uniform

distribution modulo 1 of a certain sequence, we need only establish this in

the particular case, as opposed to the ‘almost all’ case, and in fact we can

prove irrationality with a significantly weaker property than uniform distri-

bution modulo 1. In the final section of the paper, we give some seemingly

new irrationality criteria for the original sequences.

Our method is in the spirit of Schlage-Puchta [17] when he proved the

irrationality of
∑∞

n=1
[nα]+1

n!
for all reals α. This result was also proved by
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Hančl and Tijdeman [6] by a different method. For more related results, see

Hančl and Tijdeman [5] and [7]-[9].

Throughout the paper, we let N, Q and R denote the sets of all positive

integers, rational numbers and real numbers, respectively. For a real number

x, we denote by [x], {x} and ‖x‖ the integer part of x, the fractional part of

x and the distance from x to the nearest integer, respectively.

2 A result on uniform distribution modulo 1

In this section, we provide the first ingredient to our irrationality results. The

ideas of the proof are found in Haynes, Jensen and Kristensen [10], where

the method is applied to a different problem and stated in a different form.

We state the result in the form needed here.

We first need some notation. Let µ be a Radon measure on R. The

Fourier transform of µ is defined as

µ̂(t) =

∫ ∞

−∞

e−2πixtdµ(x).

The behaviour of the Fourier transform of a measure at infinity is strongly

related to the geometry of its support. Indeed, if we define the Fourier

dimension of a measure µ to be

dimF (µ) = sup{ν ≥ 0 : |µ̂(t)| ≪ (1 + |t|)−η/2},

the Fourier dimension of µ always gives a lower bound on the Hausdorff

dimension of the support of µ.

For our purposes, it is only relevant that the Fourier dimension of the mea-

sures considered is positive. Examples of this of course include the Lebesgue

measure on an interval, but other arithmetically interesting examples exist.
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Kaufman [13] proved that the set

FM = {x ∈ [0, 1) \Q : an(x) ≤ M for all n ∈ N},

supports such a measure whenever M ≥ 3. Here, an(x) is the n’th partial

quotient in the simple continued fraction expansion of x. The result was

extended to M ≥ 2 by Queffélec and Ramaré [20].

A further example, also due to Kaufman, is the set of numbers with a

lower bound on their irrationality measure. For a real number x, let

w(x) = sup{w > 0 : |x− p/q| < q−w for infinitely many p/q ∈ Q}.

From Dirichlet’s theorem in Diophantine approximation, w(x) ≥ 2 for all

irrational numbers x. Let v ≥ 2. Kaufmann [14] constructed a measure µv

on the set

W (v) = {x ∈ R : w(x) ≥ v},

such that dimF µv = 2
v
. This coincides with the Hausdorff dimension of the

set found by Jarńık [11] and Besicovitch [2], and so is best possible.

The following result of Haynes, Jensen and Kristensen [10] is stated in

terms of the Kaufmann measure on FM , but the proof only requires the

Fourier dimension of the measure to be positive. We state Corollary 7 of

that paper for general measures.

Theorem 2.1. Let µ be a Radon measure on R with dimF µ > 0 and let

(an) be a sequence of real numbers such that for some c > 0, |ak − aj | ≥ c

for all k, j ∈ N with k 6= j. Then, (anx) is uniformly distributed modulo 1

for µ-almost all x ∈ R.

We give a few words on the relation between the above statement and

that of [10]. In [10], the sequence (an) is assumed to be composed of integers.

5



This will not be the case for our sequences below, but in order for the proof

of [10] to work, we only need for the sequence to take its values in a discrete

subset of the real numbers, i.e. a set with only isolated points. This is

guaranteed by the assumption on universally lower bounded gaps.

Also, in [10], a bound on the discrepancy of the sequence (anx) is obtained.

This gives a quantitative variant of uniform distribution modulo 1, which we

will not be needing here. Note however that the faster the sequence (an)

increases, the better the discrepancy bound.

It is curious to remark how Theorem 2.1 yields a short proof of a result

usually attributed to Kahane and Salem [12], stating that the ternary Can-

tor set does not support a Radon measure with positive Fourier dimension.

Indeed, suppose such a measure µ existed. By Theorem 2.1 applied with

an = 3n would imply that for almost all numbers x in the ternary Cantor

set, (3nx) would be uniformly distributed modulo 1, which is the same as

saying that almost all numbers in the ternary Cantor set are normal to base

3. Clearly this is not the case, which completes the proof of the result of

Kahane and Salem.

3 Metrical Results

We proceed with the announced application of uniform distribution to irra-

tionality. The idea of using uniform distribution in proofs of irrationality

appears in [17]. Our approach is inspired by this paper. We begin with the

announced result on linear independence of the set given in (3).

Theorem 3.1. Let K be a positive integer and let µ be a Radon measure

on R with positive Fourier dimension. For µ-almost all numbers x the set

{
∑∞

n=1
[((n−1)!)KnK−jx]

(n!)K
; j ∈ {2, . . . , K}} ∪ {

∑∞

n=1(−1)n [((n−1)!)KnK−1x[log2 n]]
(n!)K

, 1}
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consists of linearly independent numbers over rational numbers.

Proof. Let x be a real number. Then, there are A0, . . . AK ∈ Z not all equal

to 0 and such that

K
∑

j=2

Aj

∞
∑

n=1

[((n− 1)!)KnK−jx]

(n!)K

+ A1

∞
∑

n=1

(−1)n
[((n− 1)!)KnK−1x[log2 n]]

(n!)K
+ A0 = 0. (5)

Let N ∈ Z+. Multiplying (5) by (N !)K , we obtain that

K
∑

j=2

Aj

∞
∑

n=N+1

[((n− 1)!)KnK−jx]

((N + 1) . . . n)K

+ A1

∞
∑

n=N+1

(−1)n
[((n− 1)!)KnK−1x[log2 n]]

((N + 1) . . . n)K
+B = 0,

where B is a suitable integer constant which depends on N .

The sequences in this expression converge, and both

K
∑

j=2

Aj

∞
∑

n=NN(K+1)+1

[((n− 1)!)KnK−jx]

((N + 1) . . . n)K
= O

(

1

N

)

and

A1

∞
∑

n=NN(K+1)+1

(−1)n
[((n− 1)!)KnK−1x[log2 n]]

((N + 1) . . . n)K
= O

(

1

N

)

We remove these tails at the cost of introducing an error term of order O( 1
N
).

Now, note that [x] = x − {x} = x + O(1) and apply this to remove the

integer part of the sequence of numerators at the cost of a very small error,

which is absorbed in the O( 1
N
). The upshot is that

K
∑

j=2

Aj

NN(K+1)
∑

n=N+1

((n− 1)!)KnK−jx

((N + 1) . . . n)K
+ A1

NN(K+1)
∑

n=N+1

(−1)n
((n− 1)!)KnK−1x[log2 n]

((N + 1) . . . n)K

+B + O

(

1

N

)

= 0.

(6)
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As N tends to infinity, the error term vanishes, and as B is an integer, the

fractional part of the first expression must converge to 0.

However, we will see that by Theorem 2.1, the sequence

(fx(N)) =

(

K
∑

j=2

Aj

NN(K+1)
∑

n=N+1

((n− 1)!)KnK−jx

((N + 1) . . . n)K

+ A1

NN(K+1)
∑

n=N+1

(−1)n
((n− 1)!)KnK−1x[log2 n]

((N + 1) . . . n)K

)

is uniformly distributed modulo 1 for µ-almost all x. This will complete the

proof, as it immediately implies that the expression in (6) cannot tend to an

integer.

To apply Theorem 2.1, we need to check that the sequence of integers

considered satisfies the appropriate conditions. Namely, we need to check

that the sequence (aN) given by

aN =

K
∑

j=2

Aj

NN(K+1)
∑

n=N+1

((n− 1)!)KnK−j

((N + 1) . . . n)K

+ A1

NN(K+1)
∑

n=N+1

(−1)n
((n− 1)!)KnK−1[log2 n]

((N + 1) . . . n)K

is a discrete subset of the reals. This is however simple. Each of the interior

sums in the first term is equal to

(N !)K
NN(K+1)
∑

n=N+1

1

nj
, (7)

which grows at least as fast as N ! to any power slightly smaller than kj, and

so the asymptotic growth of the sequence aN is governed by the largest value

of kj, for which it grows in absolute value like a power of N !. Clearly, this

sequence has the desired property.

If K = 1, and only the perturbed Euler–Mascheroni constant is consid-

ered, we obtain similarly a very rapid growth in the aN .
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For the first perturbations of the series expansion of ζ , we have the fol-

lowing almost sure irrationality statement.

Theorem 3.2. Let µ be a Radon measure on R with positive Fourier ex-

ponent and let α ≥ 2 be an integer. For µ-almost all numbers x the sum
∑∞

n=1
[((n−1)!)αx]

(n!)α
as well as the sum

∑∞

n=1(−1)n [(n−1)!x[log2 n]]
n!

are irrational

numbers.

Proof. Fix one of the series,
∑∞

n=1
[((n−1)!)αx]

(n!)α
say. Suppose to the contrary

that the series is rational and pick p, q ∈ N such that

q

∞
∑

n=1

[((n− 1)!)αx]

(n!)α
= p. (8)

Let N ∈ N and multiply (8) by (N !)α. We then find that

q

∞
∑

n=N !+1

[((n− 1)!)αx]

(n!)α
= B

for some B ∈ Z.

We truncate the series at (N !)3. Estimating the remainder by an integral,

we easily find that

q

∞
∑

n=(N !)3+1

[((n− 1)!)αx]

(n!)α
≤ qx(N !)α

∞
∑

n=(N !)3+1

1

Nα

≪ qx(N !)α−3α+3 = O

(

1

N

)

.

We now apply the property that [x] = x−{x} = x+O(1) to remove the

integer part in what remains, noting that

(N !)3
∑

n=N !+1

1

(n!)α
= O

(

1

N

)

.

The upshot is that
∥

∥

∥

∥

∥

∥

xq

(N !)3
∑

n=N !+1

((n− 1)!)α

(n!)α

∥

∥

∥

∥

∥

∥

= O

(

1

N

)

. (9)
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But clearly the sequence



q

(N !)3
∑

n=N !+1

((n− 1)!)α

(n!)α





satisfies the assumptions of Theorem 2.1, so that the interior of (9) is uni-

formly distributed modulo 1 for µ-almost all x. In particular, it is close to 1
2

infinitely often, which is a contradiction.

For the perturbed Euler–Mascheroni constant, the same method and trun-

cation applies.

Note that we cannot prove the almost sure linear independence of these

series by the present method. The reason is simple: As we remove the square

brackets to pass from integer part in the numerator to the different series to

which Theorem 2.1 is applicable, since the exponents in the denominators in

the last result are all different, we would get an error which is too large to

be useful at all.

We now prove almost sure irrationality of the last two perturbed series.

Theorem 3.3. Let µ be a Radon measure on R with positive Fourier dimen-

sion. For µ-almost all numbers x the number
∑∞

n=1

[
∏n−1

j=1 jjx]
∏n

j=1 j
j is irrational.

Proof. Suppose the contrary that the series is rational. Let x be a real

number. Let p, q ∈ Z+ such that

q

∞
∑

n=1

[
∏n−1

j=1 j
jx]

∏n
j=1 j

j
= p. (10)

Let N ∈ Z+ and multiply (10) by
∏N

j=1 j
j to obtain

q

∞
∑

n=N+1

[
∏n−1

j=1 j
jx]

∏n
j=N+1 j

j
= B.

10



where B is a suitable integer constant which depends on N . We now truncate

at N2 + 1 and observe that

q

∞
∑

n=N+1

{
∏n−1

j=1 j
jx}

∏n
j=N+1 j

j
= O

(

1

N

)

, q

∞
∑

n=N2+1

[
∏n−1

j=1 j
jx]

∏n
j=N+1 j

j
= O

(

1

N

)

.

As in the preceding proof, we remove the integer part from the remaining

term and find that,

{

q

n=N2
∑

n=N+1

∏n−1
j=1 j

jx
∏n

j=N+1 j
j

}

= O(
1

N
). (11)

Now, the sequence

(aN ) =

(

q
n=N2
∑

n=N+1

∏n−1
j=1 j

j

∏n
j=N+1 j

j

)

is an increasing sequence of rationals taking values in a discrete set, so by

Theorem 2.1, the sequence {aNx} is uniformly distributed modulo 1. This is

in contradiction with (11).

We finish this section with the perturbed sum for
∑

1
n!+1

.

Theorem 3.4. Let µ be a Radon measure on R with positive Fourier di-

mension. Then for almost all numbers x the number
∑∞

n=1

[
∏n−1

j=1 (j!+1)x]
∏n

j=1(j!+1)
is

irrational.

Proof. Suppose the contrary. Let x be a real number. Let p, q ∈ Z+ such

that

q

∞
∑

n=1

[
∏n−1

j=1 (j! + 1)x]
∏n

j=1(j! + 1)
= p. (12)

Let N ∈ Z+ and multilpy (12) by
∏N

j=1(j! + 1) to obtain

q
∞
∑

n=N+1

[
∏n−1

j=1 (j! + 1)x]
∏n

j=N+1(j! + 1)
= B.

11



where B is a suitable integer constant which depends on N . We truncate

again at n = N2 + 1 and note that

q

∞
∑

n=N+1

{
∏n−1

j=1 (j! + 1)x}
∏n

j=N+1(j! + 1)
= O

(

1

N

)

and

q
∞
∑

n=N2+1

[
∏n−1

j=1 (j! + 1)x]
∏n

j=N+1(j! + 1)
= O

(

1

N

)

.

As before, this implies that

{

q

∞
∑

n=N+1

{
∏n−1

j=1 (j! + 1)x}
∏n

j=N+1(j! + 1)

}

= O(
1

N
). (13)

To obtain a contradiction, we need only note that

(aN) =

(

q

n=N2+1
∑

n=N+1

∏n−1
j=1 (j! + 1)

∏n
j=N+1(j! + 1)

)

is an increasing sequence of rationals taking values in a discrete set and apply

Theorem 2.1.

4 Criteria for irrationality

In the above proofs, we have used much stronger results than actually needed.

In fact, the uniform distribution of the sequences in question is unnecessarily

strong, and we only need for the sequences of fractional parts in the proofs

to have an accumulation point which is not an integer.

Inserting x = 1 in the various proofs recovers the original series, and in

this way, we obtain some seemingly new criteria for the irrationality of the

various series. This is where the explicit value of the truncation point is

needed. We state these as corollaries.
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Corollary 4.1. Let k ≥ 2 be an integer. If the sequence










(N !)(2k−1)/(k−1)
∑

n=N+1

((n− 1)!)k

((N + 1) . . . n)k











has an irrational accumulation point or infinitely many accumulation points

then ζ(k) is irrational.

It is tempting to conduct numerical experiments on the distribution of

this sequence for some value of k. With the help of Alex Ghitza, we have

run some numerical experiments on ζ(5) using Sage. It does not appear that

the sequence arising from k = 5 accumulates at the endpoints of the unit

interval. This is however not surprising, as is seen from (7). Indeed, from

a numerical point of view, the sum
∑(N !)9/4

n=N+1
1
n5 is virtually indistinguishable

from the sum
∑∞

n=N+1
1
n5 . On multiplying by (N !)5 and adding the integer

(N !)5
∑(N)!

n=1
1
n5 , which makes no difference as we are considering the sequence

modulo 1, numerically we are in fact just seeing the fractional parts of the

sequence (N !)5ζ(5), for which the criterion is clear: if ζ(5) is rational, this

sequence would be an integer for N larger than the denominator of ζ(5).

We state the corresponding results for the Euler–Mascheroni constant and

the remaining two series.

Corollary 4.2. If the sequence










(N !)3
∑

n=N+1

(−1)n
(n− 1)![log2 n]

(N + 1) . . . n











has an irrational accumulation point of infinitely many accumulation points

then the Euler–Mascheroni constant γ is irrational.

From the numerical point of view, this sequence has the same defect as

the preceding ones, and one would just end up with an experiment on the

original Euler–Mascheroni constant.
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The irrationality criteria for the Sophmore’s Dream problem and the

Erdős problem are given in the following two corollaries.

Corollary 4.3. If the sequence
({

N2
∑

n=N+1

∏n−1
j=1 j

j

∏n
j=N+1 j

j

})

=

({

N2
∑

n=N+1

∏N
j=1 j

j

nn

})

has an irrational accumulation point or infinitely many accumulation points,

then the series
∑∞

N=1
1
nn is irrational.

Corollary 4.4. If the sequence
({

n=N !+1
∑

n=N+1

∏n−1
j=1 (j! + 1)

∏n
j=N+1(j! + 1)

})

=

({

n=N !+1
∑

n=N+1

∏N
j=1(j! + 1)

n! + 1

})

has infinitely many accumulation points or an irrational accumulation point,

then the series
∑∞

N=1
1

n!+1
is irrational.

Numerically these are less unweildy than the series related to the ζ-

function. Nonetheless, the numbers involved grow extremely rapidly, and

we have not been able to get any useful information from numerical experi-

mentation.

As a final remark, one can also obtain a criterion for the linear indepen-

dence of ζ-values from the above, although this is slightly more convoluted.

Concretely, we get the following.

Corollary 4.5. Let K be a positive integer. Suppose that for any choice of

A1, . . . , AK ∈ Z not all equal to 0, the sequence of fractional parts of

K
∑

j=2

Aj

NN(K+1)
∑

n=N+1

((n− 1)!)KnK−j

((N + 1) . . . n)K
+ A1

NN(K+1)
∑

n=N+1

(−1)n
((n− 1)!)KnK−1[log2 n]

((N + 1) . . . n)K

has an accumulation point different from 0 and 1. Then, the set

{γ, ζ(2), ζ(3), . . . , ζ(K)}

consists of linearly independent numbers over rational numbers.
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