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CHOW RINGS OF VECTOR SPACE MATROIDS

THOMAS HAMEISTER, SUJIT RAO, AND CONNOR SIMPSON

Abstract. The Chow ring of a matroid (or more generally, atomic latice) is an invariant
whose importance was demonstrated by Adiprasito, Huh and Katz, who used it to resolve
the long-standing Heron-Rota-Welsh conjecture. Here, we make a detailed study of the
Chow rings of uniform matroids and of matroids of finite vector spaces. In particular, we
express the Hilbert series of such matroids in terms of permutation statistics; in the full
rank case, our formula yields the maj-exc q-Eulerian polynomials of Shareshian and Wachs.
We also provide a formula for the Charney-Davis quantities of such matroids, which can be
expressed in terms of either determinants or q-secant numbers.

1. Introduction

Since Stanley’s 1975 proof of the upper bound conjecture for simplicial spheres via the
Stanley-Reisner ring, the study of graded rings associated to combinatorial objects has
yielded many deep insights into combinatorics (and vice versa). The Chow ring of an atomic
lattice, defined by Feichtner and Yuzvinsky in [FY04] is the latest instance of the pattern.

The power of Feichtner and Yuzvinsky’s construction was demonstrated by Adiprasito,
Huh, and Katz, who applied a slight variation of it to the lattice of flats of a matroid in
order to resolve the long-standing Heron-Rota-Welsh conjecture. Along the way, they also
show that Chow rings arising from geometric lattices satisfy Poincaré duality and versions
of the hard Lefschetz theorem and the Hodge-Riemann relations. Here, we explore some of
Chow rings’ combinatorial structure.

Organization. In the remainder of this section, we summarize some of our main results;
Section 2 contains the definitions of matroids and Chow rings. In Section 3, we derive an
explicit form (in terms of permutation statistics) for the Hilbert series of the Chow ring
of the matroid associated to a finite vector space. The Charney-Davis quantities of such
matroids are computed in Section 4. In Section 5 we state the specializations of our results
to the case of uniform matroids. Finally, in Section 6 we present conjectures and ideas for
further work.

1.1. Summary of main results. Let Fq be the finite field of order q. Associated to the
finite vector space Fn

q is the matroid Mr(F
n
q ) whose independent sets are linearly independent

subsets of Fn
q of size at most r. The lattice of flats of Mr(F

n
q ) is given by the collection of

subspaces of Fn
q of dimension at most r ordered by inclusion together with the maximal

subspace Fn
q .

In addition, let Un,r denote the uniform matroid of rank r on ground set [n] := {1, 2, . . . , n}.
The lattice of flats of Un,r consists of all subsets of [n] of size at most r, together with [n],
all ordered by inclusion. Finally, for any matroid M , let A(M) be the Chow ring of M , and
let H(A(Mr(F

n
q )), t) be the Hilbert series of A(Mr(F

n
q )) (defined in Section 2.1).
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Theorem 1.1. For r = 1, . . . , n the Hilbert series of A
(

Mr(F
n
q )
)

is given by

(1) H
(

A(Mr(F
n
q )), t

)

=
∑

σ∈Sn

qmaj(σ)−exc(σ)texc(σ) −
n−1
∑

j=r

∑

σ∈Fn,n−j

qmaj(σ)−exc(σ)tr−exc(σ)

where Fn,n−j is the set of permutations in Sn with at least n− j fixed points.

In particular, when r = n, the Hilbert series of A
(

Mn(F
n
q )
)

is

H
(

A
(

Mn(F
n
q )
)

, t
)

=
∑

σ∈Sn

qmaj(σ)−exc(σ)texc(σ) = An(q, t),

the nth maj-exc q-Eulerian polynomial considered by Shareshian and Wachs in [SW07].

We also study the Charney-Davis quantity of A(Mr(F
n
q )), defined as (−1)

r−1

2 H(A(Mr(F
n
q )),−1)

for odd r (see Section 2.1). When r is even, the Charney-Davis quantity vanishes (see Re-
mark 4.2). When r is odd, the Charney-Davis quantity has an interpretation in terms of the
signature of a quadratic form on the Chow ring (see Remark 2.5), and in this case, we derive
two formulas for the for the Charney-Davis quantity, one in terms of determinants and one
in terms of the q-secant numbers.

Theorem 1.2. (a) For odd r, the Charney-Davis quantity of A
(

Mr(F
n
q )
)

is

(−1)
r−1

2

r−1

2
∑

k=0

[

n

2k

]

q

E2k,q

where E2k,q is the q-analogue of the k-th secant number (see Definition 2.16).
(b) More explicitly, for odd r the Charney Davis quantity in part (a) is equal to

(−1)
r−1

2



1 + [n]q!

r−1

2
∑

a=1

(−1)a

[n− 2a]q!
∆a,q





for ∆a,q the determinant

∆a,q = det















1
[2]q!

1 0 · · · 0
1

[4]q!
1

[2]q!
1 · · · 0

...
...

...
. . .

...
1

[2a−2]q !
1

[2a−4]q !
1

[2a−6]q !
· · · 1

1
[2a]q !

1
[2a−2]q !

1
[2a−4]q !

· · · 1
[2]q!















.

All of these invariants are q-analogs of the corresponding invariants of the Chow ring of
the uniform matroid.

2. Definitions and Background

In this section, we first define the Charney-Davis quantity. We then define Chow rings
and state some salient results on them. Finally, we give a brief review of some permutation
statistics, which we use to establish notation and introduce some of the q-analogs that will
later appear. For an introduction and reference about matroid theory, we refer the reader
to [Oxl11].
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2.1. Hilbert Series and the Charney-Davis Quantity. Let R be an N-graded Z-algebra
with the property that for all d ∈ N, the degree-d homogeneous component Rd of R is a
torsion-free Z-module. We can then define the Hilbert function of R by h(R, d) := dimZ Rd

and the Hilbert series of R by H(R, t) :=
∑

d∈N h(R, d)td.
The Hilbert series of some rings, including those that we will study, are symmetrical,

meaning that there exists an r ≥ 0 such that h(R, d) = 0 for d > r, h(R, r) 6= 0, and
h(R, d) = h(R, r − d) for all 0 ≤ d ≤ r.

When the Hilbert series of R is a polynomial of degree r, we call the number

CD(R) :=

{

(−1)r/2H(R,−1), r even

H(R,−1), r odd

the Charney-Davis quantity of R. In particular, if R has symmetric Hilbert series of odd de-
gree, then CD(R) = 0. The Charney-Davis quantity was introduced in [CD95] and is related
to a conjecture of Charney and Davis for posets associated to flag simplicial complexes. See
[Ath17] for a more recent framework towards approaching questions stemming from Char-
ney and Davis’ original conjecture. For an alternative interpretation of the Charney-Davis
quantity in the context of the Chow ring of a matroid, see Remark 2.5.

2.2. Chow Rings of Matroids. Let M be a finite matroid on ground set E; that is, a pair
(E, I) where ∅ ( I ⊆ 2E is the collection of independent sets of M and satisfies

(1) A ∈ I =⇒ 2A ⊆ I, and
(2) if A,B ∈ I with #A > #B then there exists x ∈ A \B such that B ∪ {x} ∈ I.

The rank of S ⊆ E is the size of any maximal independent subset of S, and the closure of S
is cl(S) := {x ∈ E : rank(S ∪ {x}) = rank(S)}. We will call S a flat if cl(S) = S. The flats
of M , ordered by inclusion, form a geometric lattice L = L(M) called the lattice of flats of
M . We will write ⊥ for the minimal flat of M , and ⊤ for the maximal flat of M .

Definition 2.1. The Chow ring of M on ground set E with lattice of flats L is

A(L) := A(M) := Z[xF : F ∈ L(M) \ {⊥}]/(I1 + I2)

where I1 and I2 are the ideals with generators

I1 = (xFxG : F and G are incomparable)

I2 =





∑

i∈F∈L(M)

xF : i ∈ E





Each homogeneous component of a Chow ring is a torsion-free Z-module (see Cor. 1 in
[FY04]), so we may speak of its Hilbert function and Hilbert series as a Z-algebra, as defined
in Section 2.1. We now state some results on Chow rings of matroids that we will make use
of later in the paper.

2.2.1. Gröbner Basis and Hilbert Series. Feichtner and Yuzvinsky found a Gröbner basis for
this ring and proved the following theorem about its Hilbert series in [FY04].

Theorem 2.2 ([FY04] Corollary 2). The Hilbert series of A(L) is

H(A(L), t) = 1 +
∑

⊥=F0<F1<···<Fm

m
∏

i=1

t(1− trankFi−rankFi−1−1)

1− t
.
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where the sum is taken over all chains of flats ⊥ = F0 < F1 < · · · < Fm in L. In particular,
the Hilbert function is given combinatorially as follows.

dimA(L)k = #
{

xα1

F1
· · ·xαℓ

Fℓ
: 1 ≤ αi ≤ rk(Fi)− rk(Fi+1)− 1,

∑

αi = k
}

where the set on the right ranges over all flats F1 > · · · > Fℓ in L(M).

2.2.2. Poincaré duality. Adiprasito, Huh, and Katz show Chow rings of matroids satisfy a
form of Poincaré duality.

Theorem 2.3 (Poincaré duality; c.f. [AHK15] Theorem 6.19). Let M be a matroid of rank
r. For q ≤ r − 1, the multiplication map

Aq(M)× Ar−1−q(M) → Ar−1(M)

defines an isomorphism

Ar−1−q(M) ∼= HomZ(A
q(M), Ar−1(M))

Remark 2.4. It is an immediate consequence of Corollary 6.11 of [AHK15] that Ar−1(M) ∼= Z.
Hence, Theorem 2.3 implies that dimZ A

r−1−q(M) = dimZ A
q(M). This shows that A(M)

has a symmetrical Hilbert series. If we speak of the Hilbert series or Charney-Davis quantity
of a matroid M , then we are referring to that of its Chow ring A(M).

Remark 2.5. Since Ar−1(M) ∼= Z, when r is odd, the squaring map Q : A(r−1)/2(M) ×
A(r−1)/2(M) → Ar−1(M) with Q(x) = x2 defines a quadratic form on A(r−1)/2(M). By
Theorem 1.1 of [LR02], the fact that the Hodge-Riemann relations hold for A(M) implies
that the signature of this quadratic form is equal to the Charney-Davis quantity of A(M).

2.3. Permutation Statistics and Polynomials. In this section, we will establish notation
for permutation statistics. We will also discuss Eulerian polynomials, which will appear when
we examine the Hilbert series of Chow rings, and the tangent-secant numbers, which will
appear when we examine the Charney-Davis quantities.

Let Sn denote the symmetric group on n letters.

Definition 2.6. Let σ ∈ Sn be a permutation. Then, define the statistics

inv(σ) = # {(i, j) : σ(i) > σ(j)}

des(σ) = # {i ∈ [n− 1] : σ(i+ 1) < σ(i)}

exc(σ) = # {i ∈ [n] : σ(i) > i}

maj(σ) =
∑

i, σ(i)<σ(i+1)

i

2.3.1. Eulerian polynomials. The Eulerian polynomials and their q-analogs appear in the
Hilbert series of the matroids that we study. To motivate the q-analogs, we first review the
classical Eulerian polynomials.

Definition 2.7. The Eulerian polynomial An(t) is the polynomial

An(t) =
∑

ω∈Sn

texc(ω)
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These polynomials have many interesting applications; see [Pet15] for further exposition.
The polynomials An(t) satisfy the following identities

Proposition 2.8 ([Pet15] Theorem 1.4).

An(t) =

n−1
∑

k=0

(

n

k

)

Ak(t)(t+ 1)k

Proposition 2.9 ([Pet15] Theorem 1.6). The exponential generating function of the poly-
nomials An(t) is

∑

n≥0

An(t)
xn

n!
=

t− 1

t− ez(t−1)
.

The coefficient of tk in An(t) is the n-th Eulerian number and is written

A(n, k) :=

〈

n

k

〉

:= # {σ ∈ Sn : exc(σ) = k} .

Now, we discuss the maj-exc q-Eulerian polynomials of Shareshian and Wachs.

Definition 2.10. The nth maj-exc q-Eulerian polynomial (or merely q-Eulerian polynomial)
An(q, t) is the polynomial

An(q, t) := Amaj,exc
n (q, tq−1) =

∑

σ∈Sn

qmaj(σ)−exc(σ)texc(σ)

As above, define the q-Eulerian number
〈

n
j

〉

q
to be the coefficient of tj

〈

n

j

〉

q

:=
∑

σ∈Sn

exc(σ)=j

qmaj(σ)−exc(σ) =
∑

σ∈Sn

exc(σ)=j

qmaj(σ)−j

The following theorem gives a q-analog of Proposition 2.9.

Theorem 2.11 ([SW07], Thm 1.1). The q-Eulerian polynomials An(q, t) are the unique
polynomials with q-exponential generating function

∑

n≥0

An(q, t)
xn

[n]q!
=

(t− 1)eq(x)

teq(x)− eq(tx)

where eq(x) :=
∑

n≥0
xn

[n]q!
is the q-exponential function.

2.3.2. Tangent-Secant numbers. The tangent-secant numbers and a q-analog of them will
appear in our investigation of Charney-Davis quantities.

Definition 2.12. The n-th tangent-secant number En is the coefficient of xn

n!
in the expo-

nential generating function

tanh(x) + sech(x) =
∑

n≥0

En
xn

n!

Remark 2.13. In the literature, the numbers E2n are often referred to as the Euler numbers.
To avoid confusion with the Eulerian numbers, we will refrain from using this language.
Instead, we call the numbers E2n the secant numbers and the numbers E2n+1 the tangent
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numbers. The nomenclature that we use is justified by the observation that, since tanh(x)
is odd and sech(x) even,

tanh(x) =
∑

n≥0

E2n+1
x2n+1

(2n+ 1)!
and sech(x) =

∑

n≥0

E2n
x2n

(2n)!
.

Hence,

tan(x) =
∑

n≥0

(−1)nE2n+1
x2n+1

(2n+ 1)!
and sec(x) =

∑

n≥0

(−1)nE2n
x2n

(2n)!
.

In Section 4, we will also prove q-analogues of the following.

Proposition 2.14 ([Sta09], equation 1.8). For all n, we have E2n = (−1)n(2n)!∆n for the
following determinant

∆n = det















1
2!

1 0 · · · 0
1
4!

1
2!

1 · · · 0
...

...
...

. . .
...

1
(2n−2)!

1
(2n−4)!

1
(2n−6)!

· · · 1
1

(2n)!
1

(2n−2)!
1

(2n−4)!
· · · 1

2!















Proposition 2.15 (cf. [Sun05]). For all n, E2n = −
n−1
∑

k=0

(

2n

2k

)

E2k.

To define the q-tangent-secant numbers, let

sinhq(t) :=
∑

n≥0

t2n+1

(q; q)2n+1
coshq(t) :=

∑

n≥0

t2n

(q; q)2n

sechq(t) :=
1

coshq(t)
tanhq(t) :=

sinhq(t)

coshq(t)

where (t; q)n = (1− t)(1− tq) · · · (1− tqn−1) is the Pochhamer symbol.

Definition 2.16. The n-th q-tangent-secant number, En,q, is the coefficient of tn in the
generating function

sechq(t) + tanhq(t) =
∑

n≥0

En,q
tn

(q; q)n
.

Up to signs, the tangent-secant numbers in Definition 2.16 agree with those studied in the
work of Foata and Han and of Josuat-Vergès in [FH10] and [Jos10], respectively.

Remark 2.17. In the case q = 1, En,q = En is the classical nth tangent/secant number.

3. Hilbert series of vector space matroids

The main results of this section will be Theorem 1.1, the expression of the Hilbert series
in terms of q-Eulerian polynomials, and the resulting specialization to the uniform matroid.
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3.1. Method for calculating Hilbert series of Chow rings. We begin by deriving a
useful recurrence for the Hilbert series of the Chow ring of a matroid. The technique we
present below makes use of Theorem 2.2 covered above to give a formula for the Hilbert
series of any geometric lattice L of rank r + 1 with the property

(∗) [Z,⊤] ∼= [Z ′,⊤] for all Z,Z ′ ∈ L with rank(Z) = rank(Z ′).

In the following, we assume that L is such a lattice.

Proposition 3.1. If L is a geometric lattice such that property (∗) holds and (Z1, . . . , Zr)
is a sequence of elements of L with rank(Zi) = i for all i, then

H(A(L), t) = [r + 1]t + t
r
∑

i=2

|Li| [i− 1]tH(A([Zi,⊤]), t).

Proof. From Theorem 2.2, we have

dimZ A
q(L) = #

{

xα1

F1
· · ·xαℓ

Fℓ
: 1 ≤ αi ≤ rk(Fi)− rk(Fi+1)− 1,

∑

αi = q
}

where F1 > F2 > · · · > Fℓ ranges over all chains of elements of L. For each 2 ≤ j ≤ r, define

Nq,j := #
{

xα1

F1
· · ·xαℓ

Fℓ
: 1 ≤ αi ≤ rank(Fi)− rank(Fi+1)− 1,

∑

αi = q, rank(F1) = j
}

Then dimZ A
q(L) =

∑r+1
j=2 Nq,j. Now for each 2 ≤ j ≤ r, property (∗) implies

Nq,j = #Lj ·#
{

xα1

Zj
xα2

F2
· · ·xαℓ

Fℓ
:

Zj=F1>F2>···>Fℓ,
1≤αi≤rk(Fi)−rk(Fi+1)−1,

∑
αi=q

}

= #Lj ·

j−1
∑

p=1

#
{

xp
Zj
xα2

F2
· · ·xαℓ

Fℓ
:

Zj=F1>F2>···>Fℓ

1≤αi≤rk(Fi)−rk(Fi+1)−1,
∑ℓ

i=2
αi=q−p

}

= #Lj ·

j−1
∑

p=1

dimZ A
q−p([Zj ,⊤])

While Nq,r+1 = #{xq
⊤} = 1. Hence, we have

dimZ A
q(L) = 1 +

r
∑

i=2

|Li|
i−1
∑

p=1

dimZ A
q−p([Zi,⊤]).

This recurrence for the dimension of a homogeneous component can be lifted to a recurrence
for the Hilbert series of A(L) in the following manner. For a fixed 0 ≤ k ≤ r − 1, let
(Z1, . . . , Zr) be a sequence of elements of L with rank(Zi) = i for all i. Then

H(L, t) =
r
∑

q=0

dimZ A
q(L) tq

=
r
∑

q=0

(

1 +
r
∑

i=2

#Li ·
i−1
∑

p=1

dimZ A
q−p([Zi,⊤])

)

tq

= [r + 1]t +

r
∑

i=2

#Li ·

i−1
∑

p=1

r
∑

q=0

dimZ A
q−p([Zi,⊤]) tq
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Since dimZ A
q−p([Zi,⊤]) = 0 when q− p < 0 by convention, the innermost sum above really

only runs from q = p to q = r. Making this change and setting k = q − p, we can rewrite
the above as

[r + 1]t +

r
∑

i=2

#Li ·

i−1
∑

p=1

tp
r−p
∑

k=0

dimZ A
k([Zi,⊤]) tk.

Now, observe that rank([Zi,⊤]) = r + 1− i and that p ≤ i− 1, so r− p ≥ r − i+ 1. Hence,
∑r−p

k=0 dimZ A
k([Zi,⊤])tk = H([Zi,⊤], t) for every p and i, so we obtain the proposition. �

We will now state the recurrence for the Hilbert series that one gets by applying Propo-
sition (3.1) to matroids of special interest.

Uniform matroids. Each upper interval of L(Un,r+1) is the lattice of flats of a uniform matroid
on a smaller ground set and of lower rank. Hence

H(A(Un,r+1), t) = [r + 1]t + t
r
∑

i=2

(

n

i

)

[i− 1]tH(A(Un−i,r+1−i), t).

In particular, if we define A(U0,0) = Z, then for the case r = n− 1 we have

H(A(Un,n), t) = [n]t + t

n−1
∑

i=2

(

n

i

)

[i− 1]t H(A(Un−i,n−i), t)

= 1 + t
n
∑

i=1

(

n

i

)

[i− 1]tH(A(Un−i,n−i), t).

Subspaces of vector spaces over finite fields. The formula for vector spaces over finite fields
is a q-analog of the one for the uniform matroid.

H
(

A
(

Mr+1(F
n
q )
)

, t
)

= [r + 1]t + t

r
∑

i=2

[i− 1]t

[

n

i

]

q

H
(

A
(

Mr+1−i(F
n−i
q )

)

, t
)

In particular, if we write M(Fn
q ) = Mn(F

n
q ) and set A(M(F0

q)) = Z, then similar to the
uniform case, for r = n− 1,

(2) H
(

A
(

M(Fn
q )
)

, t
)

= 1 + t

n
∑

i=1

[i− 1]t

[

n

i

]

q

H
(

A
(

M(Fn−i
q )

)

, t
)

3.2. Full-rank vector space matroid. Write M(Fn
q ) = Mn(F

n
q ). The main result of this

section is a proof that the Hilbert series of A
(

M(Fn
q )
)

is the maj-exc q-Eulerian polynomial
of [SW07]. We also find a new recurrence for the q-Eulerian polynomials.

To characterize the Hilbert series of A
(

M(Fn
q )
)

, we compute its q-exponential generating
function.

Lemma 3.2. Define h0 := 1. The q-exponential generating function of hn(t) := H
(

A
(

M(Fn
q )
)

, t
)

is given by

F (t, x) :=
∑

n≥0

hn(t)
xn

[n]q!
=

(t− 1)eq(t)

teq(t)− eq(tx)

where eq denotes the q-exponential function eq(x) :=
∑

n≥0
xn

[n]q!
.
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Proof. By equation (2), we have the relation

hn = 1 + t

n
∑

i=1

[i− 1]t

[

n

i

]

q

hn−i

Then, the generating function F (t, x) satisfies

F (t, x) = 1 +
∑

n≥1

xn

[n]q!
+ t
∑

n≥1

n
∑

i=1

(

[i− 1]t

[

n

i

]

q

hn−i

)

xn

[n]q!

= eq(x) + t
∑

n≥1

n
∑

i=1

(

[i− 1]t
xi

[i]q!

)(

hn−i
xn−i

[n− i]q!

)

= eq(x) + tF (t, x)G(t, x)

for G(t, x) =
∑

i≥1[i− 1]t
xi

[i]q!
. We can rewrite G(t, x) as

G(t, x) =
1

t− 1

∑

i≥1

(ti−1 − 1)
xi

[i]q!
=

1

t− 1

(

eq(tx)− 1

t
− eq(x) + 1

)

=
1

t2 − t

(

eq(tx)− teq(x) + t− 1
)

Substituting into the equation above and solving for F , we get

F (t, x) =
eq(x)

1− 1
t−1

(

eq(tx)− teq(x)
) =

(t− 1)eq(x)

teq(x)− eq(tx)
�

Corollary 3.3. The Hilbert series of A(M(Fn
q )) is equal to An(q, t).

Proof. The q-exponential generating function of the Hilbert series hn(t) = H(A(M(Fn
q )), t)

is the same as the one for the q-Eulerian polynomials given in Theorem 2.11. �

As a corollary, we find a interpretation of the q-Eulerian numbers.

Corollary 3.4.

〈

n

k

〉

q

= #
{

xα1

V1
. . . xαℓ

Vℓ
:

V1(···(Vℓ are subspaces of Fn
q

1≤αi≤dimZ Vi−dimZ Vi−1−1,
∑

i αi=k

}

Proof. By Theorem 2.2 and Corollary 3.4, both quantities count dimZ A(M(Fn
q ))k �

Remark 3.5. In the notation of Subsection 3.3, Corollary 3.4 states that
〈

n

k

〉

q

= #Mn,n,k

Remark 3.6. In the course of proving the results above, we discovered the following recurrence
for the q-Eulerian polynomials.
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Proposition 3.7. Let Hn(t) = H(A(M(Fn
q )), t) denote the Hilbert series of A(M(Fn

q )), and

let (a; q)n := (1−a)(1−aq) · · · (1−aqn−1) be the Pochhammer symbol. Then hn satisfies the
recurrence

hn(t) =

n−1
∑

k=0

[

n

k

]

q

hk(t)

n−1−k
∏

i=1

(t− qi)(3)

=

n−1
∑

k=0

[

n

k

]

q

tn−1−k · hk(t) · (q/t; q)n−1−k.

To the authors’ knowledge, the recurrence in proposition 3.7 does not yet appear in the lit-
erature, and it provides a q-analogue for the following well-known recurrence for the Eulerian
polynomials

An(t) =
n−1
∑

k=0

(

n

k

)

Ak(t)(t− 1)n−1−k.

For a proof of Proposition 3.7, see our REU report [HRS17].

3.3. Lower rank vector space matroids. Next, we find an explicit form for the Hilbert
series of lower rank vector space matroids Mr(F

n
q ) with r < n. The main result of this section

is Theorem 1.1.
We will first give a brief overview of our methodology and set up some notation. We study

the Hilbert series of A
(

Mr(F
n
q )
)

by descending induction on the rank r; in particular, we

consider the differences ∆n,r,q(t) := H
(

A
(

Mr+1(F
n
q ), t

)

)

−H
(

A
(

Mr(F
n
q ), t

)

)

for 1 ≤ r ≤ n.

Write

∆n,r,q(t) = a(r)n,r,qt
r + a(r−1)

n,r,q tr−1 + · · ·+ a(0)n,r,q

for a
(k)
n,r,q ∈ Z. We will show that a

(k)
n,r,q is a q-analogue of the number

# {σ ∈ Fn,n−r : exc(σ) = r − k} .

where Fn,n−r := {σ ∈ Sn : # fix(σ) ≥ n− r}. In particular, we will express

a(k)n,r,q =
r
∑

i=0

[

n

i

]

q

Di,r−k,q =
r
∑

i=0

[

n

r − i

]

q

Dr−i,k−i,q

where Dn ⊆ Sn is the set of derangements, and Dn,k,q is a q-analogue of the number

# {σ ∈ Dn : exc(σ) = r − k} .

Define

Nn,r := Nn,r(q) :=
{

xα0

⊤ xα1

V1
· · ·xαℓ

Vℓ
:

Fn
q)V1)···)Vℓ are subspaces of Fn

q of rank ≤r,

α0≤r−dim(V1) and 1≤αi≤dim(Vi)−dim(Vi+1)−1

}

Mn,r,k := Mn,k,r(q) :=
{

xα0

⊤ xα1

V1
· · ·xαℓ

Vℓ
∈ Nn,r : deg xα0

⊤ xα1

V1
· · ·xαℓ

Vℓ
= k

}

Tn,k,q :=
{

xα0

⊤ xα1

V1
· · ·xαℓ

Vℓ
∈ Mn,n,k : α0 ≥ 1

}

Dn,k,q := #Tn,k,q.
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For notational convenience, we suppress the dependence on q in Nn,r(q) and Mn,r,k(q). By
Theorem 2.2, dimZ

(

A(Mr(Fq))
)

k
= #Mn,r,k. Note that we have inclusions Mn,r,k ⊆ Mn,r+1,k

and the complement of Mn,r,k in Mn,r+1,k is the set

Mn,r+1,k \Mn,r,k =
{

xi
⊤x

α1

V1
· · ·xαℓ

Vℓ
∈ Mn,r+1,k : 0 ≤ i ≤ r, dim(V1) = r − i

}

Identifying V1 = Fr−i
q we obtain, for each fixed 0 ≤ i ≤ r, a bijection

{

xi
⊤x

α1

V1
· · ·xαℓ

Vℓ
∈ Nn,r,k : dim(V1) = r − i

}

→
{

V1 ( Fn
q : dim(V1) = r − i

}

× Tr−i,k−i,q

xi
⊤x

α1

V1
· · ·xαℓ

Vℓ
7→ (V1, x

α1

V1
· · ·xαℓ

Vℓ
)

Hence, summing over possible values of the exponent i of x⊤ gives

(4) #(Mn,k,r+1 \Mn,k,r) =
r
∑

i=0

[

n

r − i

]

q

Dr−i,k−i,q.

We will now give a combinatorial description of Dn,k,q in terms of elementary statistics on
Sn. To do so, we establish some notation. For σ ∈ SA for A = {a1 < · · · < ak} an ordered
set, let the reduction of σ be the permutation σ in Sk such that σ(ai) = aσ(i). For σ ∈ Sn,
its derangement part dp(σ) is the reduction of σ along its nonfixed points. The following
lemma of Wachs will be essential.

Lemma 3.8 ([Wac89] Corollary 3). For all γ ∈ Dk and n ≥ k,

∑

dp(σ)=γ
σ∈Sn

qmaj(σ) = qmaj(γ)

[

n

k

]

q

From this lemma, another useful identity follows.

Corollary 3.9. For any integers n, q, k ≥ 0,

∑

σ∈Dn−i

exc(σ)=k

qmaj(σ)−exc(σ)

[

n

n− i

]

q

=
∑

σ∈Sn

exc(σ)=k
#fix(σ)=i

qmaj(σ)−exc(σ)

Proof. From Lemma 3.8, we have the identity

∑

γ∈Dn−i

exc(γ)=k

qmaj(γ)−exc(γ)

[

n

n− i

]

q

=
∑

γ∈Dn−i

exc(γ)=k

q− exc(γ)
∑

σ∈Sn

dp(σ)=γ

qmaj(σ) =
∑

σ∈Sn

exc(σ)=k
#fix(σ)=i

qmaj(σ)−exc(σ). �

We now make use of this identity to give a combinatorial interpretation to both Dn,k,q and

a
(k)
n,r,q.

Lemma 3.10. For Dn,k,q as above,

Dn,k,q =
∑

σ∈Dn

exc(σ)=n−k

qmaj(σ)−exc(σ)
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Proof. We proceed by induction on k. For k = 0, the result is vacuous. For k > 0, set

Sα0
:=
{

xα0

⊤ xα1

V1
· · ·xαℓ

Vℓ
∈ Mn,n,k−1 : dim(V1) = n− α0 − 1

}

S := Mn,n,k−1.

Then, the map on monomials taking xα0

⊤ xα1

1 · · ·xαℓ

ℓ 7→ xα0−1
⊤ xα1

1 · · ·xαℓ

ℓ gives an injective map

ϕ : Tn,k,q → S.

Moreover, S is the disjoint union S = Im(ϕ)⊔
∐

a≥0 Sa. Considering the choice of the second
largest subspace,

#Sa =

[

n

n− a− 1

]

q

Dn−a−1,k−a−1,q

While from Remark 3.5,

#S =

〈

n

k − 1

〉

q

=

〈

n

n− k

〉

q

where the latter equality follows from Poincaré duality for A
(

M(Fn
q )
)

. Therefore, by induc-
tion,

Dn,k,q = #Tn,k,q = #S −
∑

a≥0

#Sa =

〈

n

n− k

〉

q

−
∑

b≥1

[

n

n− b

]

q

Dn−b,k−b,q

=
∑

σ∈Sn

exc(σ)=n−k

qmaj(σ)−exc(σ) −
∑

b≥1

∑

γ∈Dn−b

exc(γ)=n−k

qmaj(γ)−exc(γ)

[

n

n− b

]

q

(5)

Then applying Corollary 3.9, the right-hand side of equation 5 can be expanded as

∑

σ∈Sn

exc(σ)=n−k

qmaj(σ)−exc(σ) −
∑

b≥1

∑

σ∈Sn

exc(σ)=n−k
#fix(σ)=b

qmaj(σ)−exc(σ) =
∑

σ∈Dn

exc(σ)=n−k

qmaj(σ)−exc(σ)

completing the induction and proof of the theorem. �

Lemma 3.11. Let Fn,k denote the set Fn,k = {σ ∈ Sn : # fix(σ) ≥ k}. The difference of
Hilbert series ∆n,r,q(t) is given by

∆n,r,q(t) = H
(

A
(

Mr+1(F
n
q ), t

)

)

−H
(

A
(

Mr(F
n
q ), t

)

)

=
∑

σ∈Fn,n−r

tr−exc(σ)qmaj(σ)−exc(σ)

In particular, the coefficients a
(k)
n,r,q satisfy

(6) a(k)n,r,q =
∑

σ∈Fn,n−r

exc(σ)=r−k

qmaj(σ)−exc(σ)



CHOW RINGS OF VECTOR SPACE MATROIDS 13

Proof. Applying Theorem 3.10 and Corollary 3.9 to equation (4) gives

a(k)n,r,q =
r
∑

i=0

[

n

r − i

]

q

Dr−i,k−i,q =
r
∑

i=0

[

n

r − i

]

q

∑

σ∈Dr−i

exc(σ)=r−k

qmaj(σ)−exc(σ)

=

r
∑

i=0

∑

σ∈Sn

#fix(σ)=n−r+i
exc(σ)=r−k

qmaj(σ)−exc(σ)

=
∑

σ∈Fn,n−r

exc(σ)=r−k

qmaj(σ)−exc(σ). �

These two lemmas yield the main result.

Proof of Theorem 1.1. Equation (1) follows from a direct substitution of (6) into the formula

H
(

A(Mr(F
n
q ), t

)

= H
(

A(Mr+1(F
n
q )), t

)

−∆n,r,q(t)

= · · · = H
(

A(M(Fn
q )), t

)

−

n−1
∑

j=r

∆n,j,q(t) �

When r = n− 1, the Hilbert series assumes a more pleasing form.

Corollary 3.12. If r = n− 1, the Hilbert series of A
(

Mn−1(F
n
q )
)

is

H
(

A
(

Mn−1(F
n
q )
)

, t
)

=
∑

σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1

Proof. For the case r = n− 1, the coefficient of tk in (1) can be simplified as follows.
∑

σ∈Sn

exc(σ)=k

qmaj(σ)−exc(σ) −
∑

σ∈Fn,1

exc(σ)=n−k−1

qmaj(σ)−exc(σ)

=
∑

σ∈Sn

exc(σ)=n−k−1

qmaj(σ)−exc(σ) −
∑

σ∈Fn,1

exc(σ)=n−k−1

qmaj(σ)−exc(σ)

=
∑

σ∈Dn

exc(σ)=n−k−1

qmaj(σ)−exc(σ)

Then,

H
(

A
(

Mr(F
n
q )
)

, t
)

=
∑

σ∈Dn

qmaj(σ)−exc(σ)tn−1−exc(σ) =
∑

σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1

where the last equality follows from Poincaré duality of A(Mn−1(F
n
q )). �

Remark 3.13. The proof presented in the previous section can be reformulated in terms of
strong maps of Chow rings. Namely, consider the graded, surjective ring homomorphisms

πn,r,q : A(Mr+1

(

Fn
q )
)

→ A
(

Mr(F
n
q )
)
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defined by taking variables xV ∈ A(Mr+1

(

Fn
q )
)

to zero if dimZ(V ) = r + 1 and to the

corresponding variable xV ∈ A
(

Mr(F
n
q )
)

otherwise. Then, if Kn,r,q = ker(πn,r,q), additivity
of Hilbert series gives

H(Kn,r,q, t) = H
(

A
(

Mr+1(F
n
q ), t

)

)

−H
(

A
(

Mr(F
n
q ), t

)

)

= ∆n,r,q(t)

Therefore, Lemma 3.11 gives a formula for the Hilbert series of the kernel of the above
so-called “strong maps” of Chow rings.

Remark 3.14. Note that the characterization of the Hilbert series of A(Mr(F
n
q )) for r =

n− 1, n together with the results of [AHK15] give an alternate proof of the unimodality and
symmetry of the polynomials

∑

σ∈Sn

qmaj(σ)−exc(σ)texc(σ) and
∑

σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1.

However, it should be noted that in [SW17], Shareshian and Wachs prove more general
statements. Namely, they prove that the coefficients of the above polynomials are q-unimodal
and, in fact, q-γ-nonnegative. That is, a difference of consecutive coefficients lies in N[q] as
a polynomial in q, and moreover, its γ-vector has coordinates in N[q]. See Theorems 4.4 and
6.1 of [SW17] for more explicit formulae and a proof.

4. Charney-Davis quantities of vector space matroids

The main result of this section is a proof of Theorem 1.2, which gives two formulas for the
Charney-Davis quantity of A

(

Mr(F
n
q )
)

, one in terms of determinants and one in terms of q-
tangent-secant numbers. We prove the formula that is in terms of determinants immediately;
we will prove the formula in terms of q-tangent-secant numbers later.

Proof of Theorem 1.2 (b). If r = 1, then H
(

A
(

Mr(F
n
q )
)

, t
)

= 1, and the theorem follows

trivially. Now suppose that r > 1 is odd, and let CD(n, r) = H
(

A
(

Mr(F
n
q )
)

,−1
)

be the

unsigned Charney-Davis quantity of A
(

Mr(F
n
q )
)

. Substituting t = −1 into Theorem 2.2, the
formula for the Hilbert series from [FY04] is

CD(n, r) = 1 +
∑

r, rk<r
∀i,ri−ri−1 is even

(−1)|r|
|r|
∏

i=1

[

n− ri−1

ri − ri−1

]

q

.

where |r| is the number of entries in the tuple r. Breaking into cases based on whether
r = (r1 < · · · < rk) has rk = r − 1, we get a decomposition of the above as














1 +
∑

r, rk<r−2
∀i,ri−ri−1 is even

(−1)|r|
|r|
∏

i=1

[

n− ri−1

ri − ri−1

]

q















+















∑

r, rk=r−1
∀i,ri−ri−1 is even

(−1)|r|
|r|
∏

i=1

[

n− ri−1

ri − ri−1

]

q















where the former term is CD(n, r − 2) and the latter we denote by Tn,q(r − 1). Then,
considering terms in the sum with rk−1 = b, one obtains the recurrence

Tn,q(2a) = −

a−1
∑

b=0

[

n− 2b

2a− 2b

]

q

Tn,q(2b) with initial condition Tn,q(0) = 1
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Solving this linear recurrence with Cramer’s rule gives

(7) Tn,q(2a) = (−1)a det

















[

n
2

]

q
1 0 · · · 0

[

n
4

]

q

[

n−2
2

]

q
1 · · · 0

...
...

...
. . .

...
[

n
2a−2

]

q

[

n−2
2a−4

]

q

[

n−4
2a−6

]

q
· · · 1

[

n
2a

]

q

[

n−2
2a−2

]

q

[

n−4
2a−4

]

q
· · ·

[

n−2a+2
2

]

q

















Rewriting the determinant in (7) by pulling out common factors in the numerator, resp.
denominators, of each column, resp. row, gives

Tn,q(2a) = (−1)a
[n]q!

[n− 2a]q!
det















1
[2]q!

1 0 · · · 0
1

[4]q!
1

[2]q!
1 · · · 0

...
...

...
. . .

...
1

[2a−2]q!
1

[2a−4]q!
1

[2a−6]q!
· · · 1

1
[2a]q!

1
[2a−2]q!

1
[2a−4]q!

· · · 1
[2]q!















= (−1)a
[n]q!

[n− 2a]q!
∆a,q

Then, the unsigned Charney-Davis quantity for odd r is

CD(n, r) = CD(n, r − 2) + Tn,q(2k) = · · · = CD(n, 1) +

r−1

2
∑

a=1

Tn,q(2a)

= 1 + [n]q!

r−1

2
∑

a=1

(−1)a

[n− 2a]q!
∆a,q.

Then, the result follows by multiplication by the appropriate sign. �

Example 4.1. For the case n = r = 5, Theorem 1.2 becomes the following identity

q8 + 2q7 + 3q6 + 4q5 + 3q4 + 2q3 + q2 = 1 + [5]q!

[

−
1

[3]q!
det

(

1

[2]q!

)

+ det

(

1
[2]q!

1
1

[4]q!
1

[2]q!

)]

which one can directly verify.

Remark 4.2. For even r, Theorem 6.19 of [AHK15] implies the Hilbert series of A(Mr(F
n
q ))

is symmetric of even degree. Consequently, H
(

A(Mr(F
n
q )),−1

)

= 0 and the Charney-Davis
quantity vanishes.

Having the determinantal formula above, we now work towards a more compact formula
using the q-tangent/secant numbers.

Proposition 4.3. Let En,q denote the n-th q-tangent/secant number. The following identi-
ties hold:

E2n,q = (−1)n[2n]q!∆n,q

E2n+1,q = CD(2n + 1, 2n+ 1) = 1 + [2n+ 1]q!

n
∑

a=1

(−1)a

[2n− 2a+ 1]q!
∆a,q
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Proof. Let

E2n,q := (−1)n[2n]q!∆n,q

E2n+1,q := CD(2n+ 1, 2n+ 1) = 1 + [2n+ 1]q!

n
∑

a=1

(−1)a

[2n− 2a+ 1]q!
∆a,q.

Consider the generating functions

F (t) =
∑

n≥0

E2n,q
t2n

(q; q)2n
and G(t) =

∑

n≥0

E2n+1,q
t2n+1

(q; q)2n+1

It suffices to show F (t) = sechq(t) and G(t) = tanhq(t). Observe that by expanding by
minors in the first column, ∆n,q satisfies the recurrence

∆n,q =
n
∑

k=1

(−1)k+1

[2k]q!
∆n−k,q

Then since (q; q)2n = [n]q!
(1−q)n

,

F (t) =
∑

n≥0

(−1)n
(

t(1− q)
)2n

∆n,q = 1 +
∑

n≥1

(−1)n
(

t(1− q)
)2n

n
∑

k=1

(−1)k+1

[2k]q!
∆n−k,q

= 1 +
∑

r≥0

∑

k≥1

(−1)r+1∆r,q

(

t(1− q)
)2(r+k)

[2k]q!

= 1 +

(

∑

k≥1

(

t(1− q)
)2k

[2k]q!

)(

∑

r≥0

(−1)r+1∆r,q

(

t(1− q)
)2r

)

= 1−

(

∑

k≥1

t2k

(q; q)2k

)

F (t) = 1− (coshq(t)− 1)F (t)

Therefore, solving for F (t) gives

F (t) = 1/ coshq(t) = sechq(t)

Since F (t) = sechq(t) as power series in Q(q)[[t]], it follows that E2n,q = E2n,q. Now consider
G(t). Set ∆0,q = 1. We have

G(t) =
∑

n≥0

(

[2n+ 1]q!
n
∑

a=0

(−1)a

[2n− 2a+ 1]q!
∆a,q

)

t2n+1

(q; q)2n+1

=
∑

n≥0

n
∑

a=0

(−1)a∆a,q

[2n− 2a + 1]q!

(

t(1− q)
)2n+1

=
∑

k≥0

∑

a≥0

(−1)a∆a,q

[2k + 1]q!

(

t(1− q)
)2(a+k)+1

=

(

∑

k≥0

t2k+1

(q; q)2k+1

)(

∑

a≥0

(−1)a∆a,qt
2a

)

= sinhq(t) sechq(t) = tanhq(t) �
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Remark 4.4. With notation as in the proof above, equation (2.6) of [Sta09] immediately
implies that E2n,q = E2n,q. See equation (2.7) of the same article for a determinantal formula
for E2n+1,q and other formulae.

Remark 4.5. Proposition 4.3 implies that the numbers En,q are the q-secant and q-tangent
numbers studied in [FH10] and [Jos10]. In particular, we have

En,q =
∑

σ∈In

qexc(σ)

where In denotes the number of alternating permutations of size n.

Theorem 1.2(a) now follows from Thm 1.2(b) and Prop 4.3.

5. Invariants of uniform matroids

Recall that the uniform matroid Un,r is the matroid whose independent sets consist of all
subsets of [n] of cardinality at most r. Theorem 2.2 gives a formula for the Hilbert series of
A
(

M(Fn
q )
)

,

H
(

A
(

Mr(F
n
q )
)

, t
)

= 1 +
∑

r

|r|
∏

i=1

t(1− tri−ri−1−1)

1− t

[

n− ri−1

ri − ri−1

]

q

where the sum is over all tuples of dimensions r = (0 = r0 < r1 < · · · < r|r| ≤ r). In par-

ticular, when q = 1, formula above specializes to what Theorem 2.2 gives for H
(

A(Un,r), t
)

.

From this it follows that any invariant of A(Un,r) that can be computed in terms of its Hilbert
series can be computed by instead considering the corresponding invariant of A(Mr(F

n
q )) and

setting q = 1. We record a number of results obtained this way below.

Theorem 5.1 (see Theorem 1.1). For r = 0, 1, . . . , n and Fn,k := {σ ∈ Sn : # fix(σ) ≥ k},
the Hilbert series of A

(

Un,r

)

is given by

H
(

Un,r, t
)

=
∑

σ∈Sn

texc(σ) −
n−1
∑

j=r

∑

σ∈Fn,n−j

tr−exc(σ)

In particular, if r = n, the Hilbert series of A(Un,n) is the n-th Eulerian Polynomial and if
r = n− 1, the Hilbert series of A

(

Un,n−1

)

is

H
(

A
(

Un,n−1

)

, t
)

=
∑

σ∈Dn

texc(σ)−1

Theorem 5.2 (see Theorem 1.2). For odd r, the Charney-Davis quantity for the uniform
matroid, Un,r, of rank r and dimension n is

r−1

2
∑

k=0

(

n

2k

)

E2k

where E2ℓ is the ℓ-th secant number, i.e.

sech(t) =
∑

ℓ≥0

E2ℓ
t2ℓ

(2ℓ)!
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Remark 5.3. For r = n odd, a standard recurrence shows

n−1

2
∑

k=0

(

n

2k

)

E2k = En

In particular, Theorem 5.2 specializes to those in page 275 of [RW05] and page 52 of [ER94].

Remark 5.4. Those interested in the γ-polynomial of A(Un,r) for r = n, n − 1 should see
Theorem 11.1 of [PRW06] and Theorem 4.1 of [Ath16]. The former gives the γ-vector of
A(Un,n) in the context of the γ-vector of the permutohedron. Since H

(

A(Un,n−1), t
)

is the
local h-vector of the barycentric subdivision of the permutohedron, Athanasiadis’ survey
[Ath16] gives the analogous interpretation of the γ-vector of H

(

A(Un,n−1), t
)

.

6. Conjectures and future work

Our data points to a possible relationship between order complexes and Chow rings. Let
∆(P ) be the order complex of a poset P , and for any simplicial complex S, denote the
h-polynomial of S by

h(S, t) :=

dim(S)
∑

i=0

fi−1(x− 1)dim(S)−i

where fj is the number of j-dimensional faces of S and f−1 = 1 by convention.

Proposition 6.1 ([Pet15] Theorem 9.1, https://oeis.org/A008292). For all n ≥ 1,

h
(

∆(L(Un,n)), t
)

= H
(

A(Un,n), t
)

The corresponding statement for the uniform matroids Un,r with r < n has small coun-
terexamples, but can be modified as follows.

Conjecture 6.2. For r < n, we have

h
(

∆(L(Un,r)), t
)

= t2
r
∑

i=1

(

n− i− 1

r − i

)

H(A(Un,i), t).

Since it is relatively simple to compute the f -vector of ∆(L(Un,r)), this would also give a
formula for H(A(Un,i+1), t).

Remark 6.3. Conjecture 6.2 is equivalent to the equality Fn(t, u) = Hn(t, u + 1) for the
polynomials

Fn(t, u) =
n−2
∑

r=0

h(∆(L(Un,r+1 \ {⊤,⊥})), t)un−2−r

Hn(t, u) =

n−2
∑

r=0

H(A(Un,r+1), t)u
n−2−r

For more conjectures and some other results pertaining to Chow rings of general atomic
lattices, see [HRS17].

https://oeis.org/A008292
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