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Some determinants of path generating functions, II
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Abstract. We evaluate Hankel determinants of matrices in which the entries are generating
functions for paths consisting of up-steps, down-steps and level steps with a fixed starting

point but variable end point. By specialisation, these determinant evaluations have numerous

corollaries. In particular, one consequence is that the Hankel determinant of Motzkin prefix
numbers equals 1, regardless of the size of the Hankel matrix.

1. Introduction. Determinants (and Hankel determinants in particular) of path
counting numbers (respectively, more generally, of path generating functions) are ubiq-
uitous in the literature. Their “popularity” stems in part from the fact that, frequently,
such determinants can be evaluated into attractive, compact closed formulae. This article
contributes further to this body of results.

The determinants that we consider here involve matrices formed from numbers and
generating functions of three-step paths. More precisely, our paths consist of up-steps
(1, 1), level steps (1, 0), and down-steps (1,−1). The number of such paths from (0, 0)
to (n, 0) that never run below the x-axis is known as the Motzkin number Mn (cf. [13,
Exercise 6.38]; Figure 1.a shows an example of a path contributing to M11). On the
other hand, the number of paths from (0, 0) to (2n, 0) that consist only of up-steps (1, 1)
and down-steps (1,−1) and do not run below the x-axis is known as the Catalan number
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a. A Motzkin path b. A Catalan path

Figure 1

Cn = 1
n+1

(
2n
n

)
(cf. [13, Exercise 6.19]; Figure 1.b shows an example of a path contributing

to C8). It is well-known that

det
0≤i,j≤n−1

(Ci+j) = 1, (1.1)

det
0≤i,j≤n−1

(Ci+j+1) = 1, (1.2)

det
0≤i,j≤n−1

(Mi+j) = 1, (1.3)

det
0≤i,j≤n−1

(Mi+j+1) =





(−1)n/3 if n ≡ 0 (mod 3),

(−1)(n−1)/3 if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3),

(1.4)

see e.g. [14, 1]).
In [2], these Hankel determinant evaluations were generalised to Hankel determinant

evaluations of path generating functions as follows (among others). We define Pn(k, l) as
the generating function

∑
P w(P ), where P runs over all three-step paths from (0, k) to

(n, l), and where w(P ) is the product of all weights of the steps of P , where the weights of
the steps are defined by w((1, 0)) = x+y, w((1, 1)) = 1, and w((1,−1)) = xy. Furthermore,
let P+

n (k, l) be the analogous generating function
∑

P w(P ), where P runs over the subset
of the set of the above three-step paths which never run below the x-axis. Clearly, if we
specialise x = −y =

√
−1, then P+

2n(0, 0) reduces to Cn (and P+
2n+1(0, 0) = 0 for all n),

while, if we specialise x = 1
2
(1+

√
−3), y = 1

2
(1−

√
−3), then P+

n (0, 0) reduces to Mn. The
somewhat unusual parametrisation that we have chosen here turns out to be useful in the
context of the Hankel determinant evaluations of [2] and of the present article, in that the
evaluations can be much more elegantly presented than it would be possible under more
straightforward parametrisations.

The theorems from [2] that generalise (1.1)–(1.4) to the weighted setting are the follow-
ing two.

Theorem 1 ([2, Theorem 1]). For all positive integers n and non-negative integers k,
we have

det
0≤i,j≤n−1

(
P+
i+j(0, k)

)
=

{
(−1)n1(k+1

2 )(xy)(k+1)2(n1
2 ) n = n1(k + 1),

0 n 6≡ 0 (mod k + 1).
(1.5)
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Theorem 2 ([2, Theorem 2]). For all positive integers n and non-negative integers k,
we have

det
0≤i,j≤n−1

(
P+
i+j+1(0, k)

)

=





(−1)n1(k+1
2 )(xy)(k+1)2(n1

2 ) y
(k+1)(n1+1)−x(k+1)(n1+1)

yk+1−xk+1 n = n1(k + 1),

(−1)n1(k+1
2 )+(k2)(xy)(k+1)2(n1

2 )+n1k(k+1)

×y(k+1)(n1+1)−x(k+1)(n1+1)

yk+1−xk+1 n = n1(k + 1) + k,

0 n 6≡ 0, k (mod k + 1).

(1.6)

Remark. If k = 0, the formulae in Theorems 1 and 2 have to be read according to the
convention that only the first line on the right-hand sides of (1.5) and (1.6) applies; that
is,

det
0≤i,j≤n−1

(
P+
i+j(0, 0)

)
= (xy)(

n

2)

and

det
0≤i,j≤n−1

(
P+
i+j+1(0, 0)

)
= (xy)(

n

2) y
n+1 − xn+1

y − x
.

The work on the present article began with computer experiments of the second author
on Hankel determinants of Motzkin prefix numbers. By definition, the n-th Motzkin prefix
number is the number of three-step paths consisting of n steps, starting at the origin, and
not running below the x-axis (with any end point). We denote this number by MPn. The
aforementioned computer experiments seemed to indicate that

det
0≤i,j≤n−1

(MP i+j) = 1 (1.7)

for all n. Subsequent consultation of the On-Line Encyclopedia of Integer Sequences [11,
sequence A005773] revealed that this same observation had already been made earlier by
Philippe Deléham in 2007. On the other hand, in view of the earlier work [2], the first
author was obviously led to look at the weighted generalisation of the Hankel determinant
in (1.7), namely

det
0≤i,j≤n−1


∑

l≥0

P+
i+j(0, l)


 ,

or even more generally at

det
0≤i,j≤n−1


∑

l≥0

P+
i+j(k, l)


 .

The entries here are generating functions for three-step paths of a given length that start
at height k and never run below the x-axis.

From here, it did not take very long to discover the closed form evaluations of the Hankel
determinants of path generating functions in (1.8) and (1.9) below, Of course, these were
at this point only conjectures.
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Theorem 3. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1


∑

l≥0

P+
i+j(k, l)


 =





(−1)n1(k+1
2 )(xy)(k+1)2(n1+1

2 )−n, if n = (k + 1)n1,

(−1)n1(k+1
2 )(xy)(k+1)2(n1+1

2 ), if n = (k + 1)n1 + 1,

0, if n 6≡ 0, 1 (mod k + 1).
(1.8)

Theorem 4. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1


∑

l≥0

P+
i+j+1(k, l)




=





(−1)n1(k+1
2 )(xy)(k+1)2(n1+1

2 )−n

×
(

y(k+1)(n1+1)−x(k+1)(n1+1)

yk+1−xk+1 + (−1)k y(k+1)n1−x(k+1)n1

yk+1−xk+1

)
, if n = (k + 1)n1,

(−1)n1(k+1
2 )(xy)(k+1)2(n1+1

2 )

× (1+x)(1+y)(y(k+1)(n1+1)−x(k+1)(n1+1))
yk+1−xk+1 if n = (k + 1)n1 + 1,

(−1)(n1+1)(k+1
2 )+k(xy)(k+1)2(n1+1

2 )+(k2−1)(n1+1)

× (1+x)(1+y)(y(k+1)(n1+1)−x(k+1)(n1+1))
yk+1−xk+1 if n = (k + 1)n1 + k,

0, if n 6≡ 0, 1, k (mod k + 1).

(1.9)

Remarks. (1) Also here, if k = 0, the formulae in Theorems 3 and 4 have to be read
according to the convention that only the first line on the right-hand sides of (1.8) and
(1.9) applies; that is,

det
0≤i,j≤n−1


∑

l≥0

P+
i+j(0, l)


 = (xy)(

n

2)

and

det
0≤i,j≤n−1


∑

l≥0

P+
i+j+1(0, l)


 = (xy)(

n

2)
(
yn+1 − xn+1

y − x
+

yn − xn

y − x

)
.

Similarly, if k = 1 only the first two lines in Theorem 4 apply; that is,

det
0≤i,j≤n−1


∑

l≥0

P+
i+j+1(1, l)




=





(−1)n1(xy)4(
n1+1

2 )−n
(

y2(n1+1)−x2(n1+1)

y2−x2 − y2n1−x2n1

y2−x2

)
, if n = 2n1,

(−1)n1(xy)4(
n1+1

2 ) (1+x)(1+y)(y2(n1+1)−x2(n1+1))
y2−x2 if n = 2n1 + 1.
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(2) Clearly, the specialisation x = 1
2 (1+

√
−3), y = 1

2(1−
√
−3), and k = 0 of Theorem 3

establishes (1.7). Many more interesting specialisations are possible, see Section 6.

In the present article, we provide proofs for these determinant evaluations. As it turns
out, there is a “connection matrix” (see Section 3) which, upon multiplication on the left,
transforms the Hankel matrices on the left-hand sides of (1.8) and (1.9) into the matrices
on the left-hand sides of (1.5) and (1.6), respectively, up to some “correction” in the last
row, see Lemmas 11 and 12 in Sections 4 and 5. This fact then allows us to complete
the evaluation of the determinants in Theorems 3 and 4 by adapting arguments from the
proofs of Theorems 1 and 2 in [2] to the new situation here, see the proofs of Theorems 3
and 4 in Sections 4 and 5. Auxiliary results for these proofs are collected in Section 3,
which themselves depend on elementary properties of our path generating functions that
are recalled in Section 2. We conclude our article with a list of interesting specialisations
of our two main theorems in Section 6.

2. Elementary facts about three-step paths. In the proofs of our theorems, we
need three elementary properties that our path generating functions satisfy. We list them
here as (2.1)–(2.3). In the remainder of this section, we discuss four types of specialisations
of the path generating functions, which will then be considered in Section 6 in the context
of Theorems 3 and 4.

By retracing paths from the back to the beginning, one sees that

P+
n (k, l) = (xy)k−lP+

n (l, k), (2.1)

and the same symmetry relation holds for Pn(k, l), but we shall not have any need for the
latter.

The reflection principle (see e.g. [3, p. 22]) allows us to express the generating functions
P+
n (k, l) for restricted paths in terms of the generating functions Pn(k, l) for unrestricted

paths, in terms of the relation

P+
n (k, l) = Pn(k, l)− (xy)k+1Pn(−k − 2, l). (2.2)

In fact, elementary combinatorial reasoning shows that there is an explicit formula for
the path generating function Pn(k, l), namely

Pn(k, l) =
∑

s≥0

n!

s! (s+ l − k)! (n− l + k − 2s)!
(x+ y)n−l+k−2s(xy)s. (2.3)

In combination with (2.2), this also yields an explicit formula for P+
n (k, l). To be precise,

we have

P+
n (k, l) =

∑

s≥0

(
n

l − k + 2s

)((
l − k + 2s

s

)
−
(
l − k + 2s

s− k − 1

))
(x+y)n−l+k−2s(xy)s. (2.4)

In Section 6, we shall discuss specialisations of Theorems 3 and 4. The relevant spe-
cialisations of our path generating functions from [2, Eqs. (2.5)–(2.10)] are the following:
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with ω denoting a primitive sixth root of unity, we have

Pn(k, l)
∣∣∣
x=−y=

√
−1

= χ(n+ k + l even)

(
n

1
2 (n+ l − k)

)
, (2.5)

P+
n (k, l)

∣∣∣
x=−y=

√
−1

= χ(n+ k + l even)

((
n

1
2
(n+ l − k)

)
−
(

n
1
2
(n+ l + k + 2)

))
,
(2.6)

Pn(k, l)
∣∣∣
x=y−1=ω

=
∑

ℓ≥0

(
n

ℓ, ℓ+ l − k

)
, (2.7)

P+
n (k, l)

∣∣∣
x=y−1=ω

=
∑

ℓ≥0

((
n

ℓ, ℓ+ l − k

)
−
(

n

ℓ, ℓ+ l + k + 2

))
, (2.8)

Pn(k, l)
∣∣∣
x=y=1

=

(
2n

n+ l − k

)
, (2.9)

P+
n (k, l)

∣∣∣
x=y=1

=

(
2n

n+ l − k

)
−
(

2n

n+ l + k + 2

)
, (2.10)

where χ(A) = 1 if A is true and χ(A)=0 otherwise, and

(
n

k1, k2

)
=

n!

k1! k2! (n− k1 − k2)!

is a trinomial coefficient. We add one more such specialisation,

Pn(k, l)
∣∣∣
x=y=−1

= (−1)n+k+l

(
2n

n+ l − k

)
, (2.11)

P+
n (k, l)

∣∣∣
x=y=−1

= (−1)n+k+l

((
2n

n+ l − k

)
−
(

2n

n+ l + k + 2

))
. (2.12)

This is easy to derive from [2, Eq. (2.4)]. (The specialisations (2.11) and (2.12) were not
given in [2] since they do not lead to anything new in the context of [2]. In our context
they do.) By summation over l on both sides of (2.6), (2.8), (2.10), and (2.12), we obtain

∑

l≥0

P+
n (k, l)

∣∣∣
x=−y=

√
−1

=
k∑

l=0

(
n

⌊12 (n+ 1− k)⌋+ l

)
, (2.13)

∑

l≥0

P+
n (k, l)

∣∣∣
x=y−1=ω

=
∑

ℓ≥0

k+1∑

l=−k

(
n

ℓ, ℓ+ l

)
, (2.14)

∑

l≥0

P+
n (k, l)

∣∣∣
x=y=1

=

k+1∑

l=−k

(
2n

n+ l

)
, (2.15)

∑

l≥0

P+
n (k, l)

∣∣∣
x=y=−1

=
k+1∑

l=−k

(−1)n+l

(
2n

n+ l

)
.

6



The last identity can in fact be simplified, in view of the elementary summation formula

M∑

s=0

(−1)s
(
N

s

)
= (−1)M

(
N − 1

M

)
.

Namely, we have

∑

l≥0

P+
n (k, l)

∣∣∣
x=y=−1

= (−1)n+k k + 1

n

(
2n

n+ k + 1

)
. (2.16)

Care must be applied of how to interpret the expression on the right-hand side for n = 0:
in (2.16), the value for n = 0 must be taken as 1, regardless of the choice of k.

3. The connection matrix A(n). In this section, we define the connection matrix

A(n) announced in the introduction, see (3.1). Multiplication of our matrices of Motzkin
prefix generating functions on the left by A(n) allows us to connect them — via Lemmas 11
and 12 — to the matrices of Motzkin generating functions in [2], presented here in Theo-
rems 1 and 2 in the previous section. The connection is not completely direct, it is only up
to correction matrices (the matrices C0(n, k) and C1(n, k) in the lemmas). Nevertheless,
since A(n) has determinant 1 (see Lemma 6), multiplication on the left by A(n) does not
change the determinant, and some further work makes it possible to deduce Theorems 3
and 4 on the basis of results from Theorems 1 and 2.

We define the matrix A(n) := (An,i,j)0≤i,j≤n−1 by

An,i,j =





(1+x)(1+y)
xy , if i = j < n− 1,

− 1
xy , if i = j − 1 < n− 1,

(−1)n+j

xy

∑n
l=j

((
l
j

)(
n+j−1−l

j

)
xl−jyn−1−l

+
(
l
j

)(
n+j−l

j

)
xl−jyn−l

)
, if i = n− 1 and j < n− 1,

xy−(n−1)(x+y)
xy

, if i = j = n− 1.
(3.1)

Here, binomial coefficients have to be interpreted as 0 as soon as a lower parameter becomes
negative or an upper parameter is less than the lower parameter. For example, the matrix
A(4) has the form




(1+x)(1+y)
xy

− 1
xy

0 0

0 (1+x)(1+y)
xy − 1

xy 0

0 0 (1+x)(1+y)
xy

− 1
xy

A4,3,0 A4,3,1 A4,3,2
xy−3(x+y)

xy




,

where the entries A4,3,0, A4,3,1, A4,3,2 are the polynomials in x and y divided by xy given
by the next-to-last line in (3.1).

In the proof of Lemma 9, we shall need alternative formulae for the matrix entries in
the last row of A(n), which are presented in the lemma below.
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Lemma 5. For all non-negative integers n and j with 0 ≤ j ≤ n− 2, we have

An,n−1,j =
(−1)n+j

xy

∑

r≥0

(−1)r
((

n− r − 1

r

)(
n− 2r − 1

j

)
(xy)r(x+ y)n−1−j−2r

+

(
n− r

r

)(
n− 2r

j

)
(xy)r(x+ y)n−j−2r

)
. (3.2)

Proof. Since the two terms in the summand on the right-hand side of (3.2) arise from
each other by a shift of n by 1, it suffices to concentrate on one of them:

∑

r≥0

(−1)r
(
n− r

r

)(
n− 2r

j

)
(xy)r(x+ y)n−j−2r

=
∑

r≥0

(−1)r
(
n− r

r

)(
n− 2r

j

)
(xy)r

∑

ℓ≥0

(
n− j − 2r

ℓ

)
xℓyn−j−2r−ℓ

=
∑

l≥0

xlyn−j−l
∑

r≥0

(−1)r
(
n− r

r

)(
n− 2r

j

)(
n− j − 2r

l − r

)

=
∑

l≥0

xlyn−j−l

(
n

j

)(
n− j

l

)
2F1

[
j + l − n,−l

−n
; 1

]
.

Here, we used the standard hypergeometric notation

rFs

[
a1, . . . , ar
b1, . . . , bs

; z

]
=

∞∑

l=0

(a1)l · · · (ar)l
l! (b1)l · · · (bs)l

zl ,

where the Pochhammer symbol (α)m is defined by (α)m = α(α+ 1)(α+2) · · · (α+m− 1)
for m > 0, and (α)0 = 1. The above 2F1-series can be evaluated by means of the Chu–
Vandermonde summation formula (see [12, (1.7.7); Appendix (III.4)]),

2F1

[
a,−N

c
; 1

]
=

(c− a)N
(c)N

, (3.3)

where N is a nonnegative integer. Thus, we obtain

∑

l≥0

xlyn−j−l

(
n

j

)(
n− j

l

)
(−j − l)l
(−n)l

=
∑

l≥0

xlyn−j−l

(
n− l

j

)(
l + j

j

)

=

n∑

l=j

xl−jyn−l

(
n− l + j

j

)(
l

j

)
.

This matches exactly with the original definition of An,n−1,j. �

Next we show that the determinant of the connection matrix A(n) is equal to 1. The
proof requires an identity that is established separately in Lemma 7.
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Lemma 6. For all positive integers n, we have detA(n) = 1.

Proof. We replace the last column of A(n) by

n−1∑

j=0

1

(1 + x)n−1−j(1 + y)n−1−j
· (column j).

Clearly, this does not change the value of the determinant of A(n). Moreover, in the
resulting matrix, all entries in the last column will become 0, except for the entry in the
last row, which equals

n−2∑

j=0

1

(1 + x)n−1−j(1 + y)n−1−j
An,n−1,j +

xy − (n− 1)(x+ y)

xy
.

By Lemma 7, this expression equals

(
xy

(1 + x)(1 + y)

)n−1

.

Thus, our matrix has become a lower triangular matrix. Obviously, its determinant is the
product of the diagonal entries, which equals 1 as is straightforward to see. This establishes
the lemma. �

Lemma 7. For all non-negative integers m, we have

n−2∑

j=0

1

(1 + x)n−1−j(1 + y)n−1−j
An,n−1,j +

xy − (n− 1)(x+ y)

xy
=

(
xy

(1 + x)(1 + y)

)n−1

.

(3.4)

Proof. We start with the precise form of the left-hand side of (3.4),

1

xy

n−2∑

j=0

(−1)n+j

(1 + x)n−1−j(1 + y)n−1−j

n∑

l=j

((
l

j

)(
n+ j − 1− l

j

)
xl−jyn−1−l

+

(
l

j

)(
n+ j − l

j

)
xl−jyn−l

)
+

xy − (n− 1)(x+ y)

xy
.

It is straightforward to see that, by extending the sum over j to the range 0 ≤ j ≤ n, the
last term in the above expression gets “swallowed”. In other terms, the expression can be

9



rewritten as

1

xy

n∑

j=0

(−1)n+j

(1 + x)n−1−j(1 + y)n−1−j

n∑

l=j

((
l

j

)(
n+ j − 1− l

j

)
xl−jyn−1−l

+

(
l

j

)(
n+ j − l

j

)
xl−jyn−l

)

=
(−1)n

xy(1 + x)n−1(1 + y)n−1

×




n−1∑

j=0

(−1)j
n−1∑

l=j

(
l

j

)(
n+ j − 1− l

j

)
xl−jyn−1−l(1 + x)j(1 + y)j

+
n∑

j=0

(−1)j
n∑

l=j

(
l

j

)(
n+ j − l

j

)
xl−jyn−l(1 + x)j(1 + y)j


 .

(3.5)

Here, to lower the upper bounds on the summation indices of the sums over j and l in the
first double sum is allowed due to the vanishing properties of the binomial coefficients

(
l
j

)

and
(
n+j−1−l

j

)
. The purpose of this “exercise” is to make it visible that the first double

sum arises from the second by replacing n by n− 1.
Hence it suffices to concentrate on the second double sum. The coefficient of xAyB,

0 ≤ A,B ≤ n, in this sum is given by

n∑

j=0

(−1)j
n∑

l=j

(
l

j

)(
n+ j − l

j

)(
j

A− l + j

)(
j

B − n+ l

)

=

n∑

j=0

(−1)j
n−j∑

l=0

(
l + j

j

)(
n− l

j

)(
j

A− l

)(
j

B − n+ l + j

)

=

n∑

l=0

n∑

j=A−l

(−1)j
(
l + j

j

)(
n− l

j

)(
j

A− l

)(
j

B − n+ l + j

)
.

We write the inner sum over j in hypergeometric notation. Thereby we obtain

n∑

l=0

(−1)A−l

(
A

l

)(
n− l

A− l

)(
j

A− l

)(
j

A+B − n

)
2F1

[
A+ 1, A− n
A+B − n+ 1

; 1

]
.

The 2F1-series can again be evaluated by means of the Chu–Vandermonde summation
formula (3.3). We substitute the result and now write the remaining sum over l in hyper-
geometric notation. Thus, we arrive at

(−1)n
(
n−B

n− A

)(
n

B

)
2F1

[
B − n,−A

−n
; 1

]
.
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By applying (3.3) once again and some simplification, we finally get

(−1)A+B+n (−B)A (−A)B
A!B!

=

{
(−1)n, if A = B,

0, otherwise,
(3.6)

for the second double sum in (3.5). As we discussed earlier, the first double arises from the
second by replacing n by n− 1. Thus, these two double sums either both vanish or cancel
each other, except for A = B = n; in that latter case we are asking for the coefficient of
xAyB = xnyn, which is necessarily zero in the first double sum (because only monomials
of lower degree can appear) while it is the (−1)n from (3.6) for the second double sum
that survives. If this is substituted in (3.5), the assertion (3.4) follows immediately, which
completes the proof of the lemma. �

The next two lemmas provide the identities that are crucial for establishing the link
between the matrices in Theorems 3 and 4 and the matrices in [2], made explicit in Lem-
mas 11 and 12. The first is a relatively simple combinatorial identity.

Lemma 8. For all non-negative integers m, we have

(1 + x)(1 + y)
m∑

l=0

P+
m(k, l)−

m+1∑

l=0

P+
m+1(k, l) = xyP+

m(k, 0). (3.7)

Proof. We have

(1 + x)(1 + y) = 1 + (x+ y) + xy.

This is exactly the sum of the weights of an up-step, of a horizontal step, and of a down-
step. Thus, the first term in (3.7) is the generating function for paths consisting of m+ 1
(horizontal, up- and down-)steps that start at (0, k) and do not run below the x-axis for

the first m steps. On the other hand, the second term is the negative of the generating
function for the same paths, except that one requires the stronger condition that they do
not run below the x-axis for all of their m+1 steps. Hence, the difference on the left-hand
side of (3.7) equals the generating function for all those paths which reach (m, 0) without
having passed below the x-axis, but then continue with a down-step. Since a down-step
has weight xy, this is exactly the expression on the right-hand side of (3.7). �

The second identity is not combinatorial (at least, the authors do not have a combina-
torial interpretation for it). Instead, its proof requires a certain summation formula for
hypergeometric series which is stated separately in Lemma 10.

Lemma 9. For non-negative integers m and positive integers n with 0 ≤ m ≤ n, we
have

n−1∑

j=0

An,n−1,j

m+j∑

l=0

P+
m+j(k, l) = P+

m+n−1(k, 0) + (xy)n−1
∑

l≥0

Pm(0, n− k + l). (3.8)

11



where the coefficients An,n−1,j are given in (3.6).

Proof. Using the expression for An,n−1,j for 0 ≤ j ≤ n − 2 from Lemma 5 and the
expression for P+

m+j(k, l) in (2.4), we have

n−1∑

j=0

An,n−1,j

m+j+k∑

l=0

P+
m+j(k, l)

=
n−2∑

j=0

∑

r,s≥0

m+j+k∑

l=0

(−1)n+j+r

xy

(
m+ j

l − k + 2s

)((
l − k + 2s

s

)
−
(
l − k + 2s

s− k − 1

))

·
((

n− r − 1

r

)(
n− 2r − 1

j

)
(xy)r+s(x+ y)n−1+m−l+k−2r−2s

+

(
n− r

r

)(
n− 2r

j

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

)

+
xy − (n− 1)(x+ y)

xy

m+n+k−1∑

l=0

P+
m+n−1(k, l).

We would like to extend the sum over j to range over 0 ≤ j ≤ n. Because of the binomial
coefficients

(
n−2r−1

j

)
and

(
n−2r

j

)
, this extension is indeed without any harm except if r = 0.

Taking the corresponding corrections into account, we see that the above expression is equal
to

n∑

j=0

∑

r,s≥0

m+j+k∑

l=0

(−1)n+j+r

xy

(
m+ j

l − k + 2s

)((
l − k + 2s

s

)
−
(
l − k + 2s

s− k − 1

))

·
((

n− r − 1

r

)(
n− 2r − 1

j

)
(xy)r+s(x+ y)n−1+m−l+k−2r−2s

+

(
n− r

r

)(
n− 2r

j

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

)

+
∑

s≥0

m+n+k−1∑

l=0

1

xy

(
m+ n− 1

l − k + 2s

)((
l − k + 2s

s

)
−
(
l − k + 2s

s− k − 1

))

·
(
(xy)s(x+ y)n−1+m−l+k−2s + n(xy)s(x+ y)n+m−l+k−2s

)

−
∑

s≥0

m+n+k∑

l=0

1

xy

(
m+ n

l − k + 2s

)((
l − k + 2s

s

)
−
(
l − k + 2s

s− k − 1

))

· (xy)s(x+ y)n+m−l+k−2s

+
xy − (n− 1)(x+ y)

xy

m+n+k−1∑

l=0

P+
m+n−1(k, l).

12



We have
n∑

j=0

(−1)j
(

m+ j

l − k + 2s

)(
n− 2r

j

)
=

(
m

l − k + 2s

)
2F1

[
m+ 1, 2r − n

m− l + k − 2s+ 1
; 1

]

=

(
m

l − k + 2s

)
(−l + k − 2s)n−2r

(m− l + k − 2s+ 1)n−2r

= (−1)n
(

m

l − n− k + 2s+ 2r

)
.

again by the Chu–Vandermonde summation formula (3.3). If this is substituted (twice —
once with n replaced by n − 1) in the quadruple sum of our earlier obtained expression,
then we get

∑

r,s≥0

m+k∑

l=0

(−1)r

xy

((
l − k + 2s

s

)
−
(
l − k + 2s

s− k − 1

))

·
(
−
(
n− r − 1

r

)(
m

l − n− k + 2s+ 2r + 1

)
(xy)r+s(x+ y)n−1+m−l+k−2r−2s

+

(
n− r

r

)(
m

l − n− k + 2s+ 2r

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

)

+
(1 + n(x+ y))

xy

m+n+k−1∑

l=0

P+
m+n−1(k, l)−

1

xy

m+n+k∑

l=0

P+
m+n(k, l)

+
xy − (n− 1)(x+ y)

xy

m+n+k−1∑

l=0

P+
m+n−1(k, l). (3.9)

We observe that(
1 + n(x+ y)

)
+
(
xy − (n− 1)(x+ y)

)
= (1 + x)(1 + y).

Hence, by Lemma 8, the last two lines of (3.9) simplify to P+
m+n−1(k, 0), which is the first

term on the right-hand side of (3.8).
The remaining task is therefore to simplify the triple sum in (3.9). In order to do so,

we split it into two parts,

S1 =
∑

r,s≥0

m+k∑

l=0

(−1)r

xy

(
l − k + 2s

s

)

·
(
−
(
n− r − 1

r

)(
m

l − n− k + 2s+ 2r + 1

)
(xy)r+s(x+ y)n−1+m−l+k−2r−2s

+

(
n− r

r

)(
m

l − n− k + 2s+ 2r

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

)

=
∑

r,s≥0

m+k∑

l=0

(−1)r

xy

(
m

l − n− k + 2s+ 2r

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

·
((

l − k + 2s

s

)(
n− r

r

)
−
(
l − k + 2s− 1

s

)(
n− r − 1

r

))
,
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and

S2 = −
∑

r,s≥0

m+k∑

l=0

(−1)r

xy

(
l − k + 2s

s− k − 1

)

·
(
−
(
n− r − 1

r

)(
m

l − n− k + 2s+ 2r + 1

)
(xy)r+s(x+ y)n−1+m−l+k−2r−2s

+

(
n− r

r

)(
m

l − n− k + 2s+ 2r

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

)

= −
∑

r,s≥0

m+k∑

l=0

(−1)r

xy

(
m

l − n− k + 2s+ 2r

)
(xy)r+s(x+ y)n+m−l+k−2r−2s

·
((

l − k + 2s

s− k − 1

)(
n− r

r

)
−
(
l − k + 2s− 1

s− k − 1

)(
n− r − 1

r

))
.

We start with the computation of S1. We let t = r + s and write the sum over r in
hypergeometric notation. This leads to

S1 =
∑

t≥0

m+k∑

l=0

1

xy

(
m

l − n− k + 2t

)
(xy)t(x+ y)n+m−l+k−2t

·
(
l − k + 2t− 1

t− 1

)
5F4

[
1 + nt

l−k−n ,−n
2 ,

1
2 − n

2 ,−t,−l + k − t
nt

l−k−n
, 1− n, 1

2
− l

2
+ k

2
− t, 1− l

2
+ k

2
− t

; 1

]
.

Next, we apply the contiguous relation

5F4

[
a, b, c, A1, A2

B1, B2, B3, B4
; z

]
=

b (c− a− 1)

(b− a) (c− 1)
5F4

[
a, b+ 1, c− 1, A1, A2

B1, B2, B3, B4
; z

]

+
a (c− b− 1)

(a− b) (c− 1)
5F4

[
a+ 1, b, c− 1, A1, A2

B1, B2, B3, B4
; z

]

with a = −t, b = −l+k−t, c = 1+ nt
l−k−n , A1 = −n

2 , A2 = 1
2− n

2 , B1 = nt
l−k−n , B2 = 1−n,

B3 = 1
2 − l

2 +
k
2 − t, and B4 = 1− l

2 +
k
2 − t. Since, with our choice, we have c−1 = B1, the

effect is that, on the right-hand side, the 5F4-series reduce to 4F3-series. Thus, we obtain

S1 =
∑

t≥0

m+k∑

l=0

1

xy

(
m

l − n− k + 2t

)(
l − k + 2t− 1

t− 1

)
(xy)t(x+ y)n+m−l+k−2t

·
(
l − k + t

n
4F3

[ −n
2
, 1
2
− n

2
,−t, 1− l + k − t

1− n, 1
2
− l

2
+ k

2
− t, 1− l

2
+ k

2
− t

; 1

]

− l − k + t− n

n
4F3

[ −n
2
, 1
2
− n

2
, 1− t,−l + k − t

1− n, 1
2
− l

2
+ k

2
− t, 1− l

2
+ k

2
− t

; 1

])
.
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Both 4F3-series can be evaluated by means of Lemma 10. After some simplification, the
result is

S1 =
1

xy

∑

t≥0

m+k∑

l=0

(
m

l − n− k + 2t

)(
l − k + 2t− n

t− n

)
(xy)t(x+ y)n+m−l+k−2t

=
∑

t≥0

m+k∑

l=0

m!

t! (l − k + t+ n)! (m− n− l + k − 2t)!
(xy)t+n−1(x+ y)m−n−l+k−2t

= (xy)n−1
∑

l≥0

Pm(0, n− k + l).

Here, we replaced t by t+ n to go from the first to the second line, and subsequently we
used (2.3) to arrive at the last line. Clearly, this is the second term on the right-hand side
of (3.8).

A similar computation yields

S2 =
1

xy

∑

t≥0

m+k∑

l=0

(
m

l − n− k + 2t

)(
l − k + 2t− n

t− n− k − 1

)
(xy)t(x+ y)n+m−l+k−2t.

Due to the binomial coefficient
(
l−k+2t−n
t−n−k−1

)
, the summation index t must be at least n+k+1

in order to generate non-vanishing summands. However, in that case we have

l − n− k + 2t ≥ l + n+ k + 2 ≥ l +m+ k + 2 > m,

which makes the binomial coefficient
(

m
l−n−k+2t

)
vanish. In other words, we have S2 = 0.

This completes the proof of the lemma. �

The following is Lemma A3 from [6].

Lemma 10. Let n be a positive integer. Then

4F3

[
−n

2
, 1
2
− n

2
,−A,A+B

1− n, B
2
, 1
2
+ B

2

; 1

]
=

(A+B)n
(B)n

+
(−A)n
(B)n

.

4. Proof of Theorem 3. We first use the results from the previous section to connect
the matrix of Motzkin prefix generating functions on the left-hand side of (1.8) to a matrix
of Motzkin generating functions that appeared in [2].

Lemma 11. Define matrices M0(n, k) and MP0(n, k) by

M0(n, k) :=
(
P+
i+j(k, 0)

)
0≤i,j≤n−1

and

MP0(n, k) :=


∑

l≥0

P+
i+j(k, l)




0≤i,j≤n−1

.

15



Then

A(n) ·MP0(n, k) = M0(n, k) + C0(n, k),

where A(n) is given by (3.1) and the “correction matrix” C0(n, k) := (C
(0)
n,k,i,j)0≤i,j≤n−1 is

defined via

C
(0)
n,k,i,j =

{
0, if i ≤ n− 2,

(xy)n−1
∑

l≥0 Pj(0, n− k + l), if i = n− 1.

Proof. This is a direct consequence of Lemmas 8 and 9. �

We are now in the position to prove Theorem 3.

Proof of Theorem 3. We start with

MP0(n, k) =


∑

l≥0

P+
i+j(k, l)


 .

We multiply on the left by A(n). According to Lemma 11, we get

M0(n, k) + C0(n, k)

=

({
P+
i+j(k, 0), for i ≤ n− 2

P+
n+j−1(k, 0) + (xy)n−1

∑
l≥0 Pj(0, n− k + l), for i = n− 1

)
.

Since detA(n) = 1 by Lemma 6, the determinant of M0(n, k)+C0(n, k) is the same as the
determinant of MP0(n, k). If we apply relation (2.1) with l = 0, then we see that we have
transformed our problem into the problem of evaluation of the determinant of

(xy)kM ′
0(n, k) + C0(n, k),

where
M ′

0(n, k) :=
(
P+
i+j(0, k)

)
0≤i,j≤n−1

.

The determinant of M ′
0(n, k) is evaluated in Theorem 1. As it turns out, for a while we

may now follow the arguments of the proof of this evaluation in [2]. For the convenience
of the reader, we summarise the main steps here.

The first step in [2] makes use of the combinatorics of non-intersecting lattice paths,
see Section 4 there. One may however do equally well without combinatorics, as we now
explain. By cutting paths after i steps, it is easy to see that the equation

P+
i+j(0, k) =

i∑

ℓ=0

P+
i (0, ℓ)P+

j (ℓ, k) (4.1)

holds. Thus, we see that (xy)kM ′
0(n, k) + C0(n, k) is equal to the product of the matrices

(
P+
i (0, ℓ)

)
0≤i,ℓ≤n−1

(4.2)

16



and

(xy)k
(
P+
j (ℓ, k)

)
0≤ℓ,j≤n−1

+ C0(n, k). (4.3)

Indeed, since P+
i (0, ℓ) = 0 for i < ℓ and P+

i (0, i) = 1, the matrix in (4.2) is lower triangular
with 1’s on the main diagonal, and thus we have

(
P+
i (0, ℓ)

)
0≤i,ℓ≤n−1

· C0(n, k) = C0(n, k).

Moreover, for the same reason the determinant of the matrix in (4.2) is 1. Hence, the
determinant of (4.3) still equals detMP0(n, k).

The second step in [2] (see the first paragraph of Section 5 there) consists in the use of
(2.2) in order to rewrite P+

j (ℓ, k). In our case, we are led to the problem of evaluating the
determinant of

(xy)k
(
Pj(i, k)− (xy)ℓ+1Pj(−i− 2, k)

)
0≤i,j≤n−1

+ C0(n, k). (4.4)

In the third step in [2] (see Eqs. (5.6) and (5.7) there with t = 1), certain row operations
are applied. To be precise, row (h(2k+ 2) + b) of the matrix obtained so far gets replaced
by

h∑

ℓ=0

(xy)(h−ℓ)(k+1) ·
(
row (ℓ(2k+ 2) + b)

)

−
h∑

ℓ=1

(xy)(h−ℓ)(k+1)+b+1 ·
(
row (ℓ(2k + 2)− b− 2)

)
(4.5)

if 0 ≤ b ≤ k − 1, and by

h∑

ℓ=0

(xy)(h−ℓ)(k+1) ·
(
row (ℓ(2k+ 2) + b)

)

−
h+1∑

ℓ=1

(xy)(h−ℓ)(k+1)+b+1 ·
(
row (ℓ(2k + 2)− b− 2)

)
(4.6)

if k + 1 ≤ b ≤ 2k. We apply these same operations to the matrix in (4.4). The important
feature of these operations is that, to obtain a row of the new matrix, only this row
and earlier rows are involved. Therefore, by the computations performed in [2, proof of
Theorem 8 with t = 1] that finally lead to (5.8) there and the subsequent two displays,
these operations transform the matrix in (4.4) into the matrix

(xy)kN0(n, k) + C0(n, k), (4.7)
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where N0(n, k) = (N
(0)
n,k,i,j)0≤i,j≤n−1 with

N
(0)
n,k,h(2k+2)+b,j =





−(xy)(2h+1)(k+1)+b−kPj(0, (h+ 1)(2k + 2) + b− k)

+(xy)2h(k+1)Pj(0, h(2k + 2)− b+ k), if 0 ≤ b ≤ k,

−(xy)(2h+1)(k+1)+b−kPj(0, (h+ 1)(2k + 2) + b− k)

+(xy)(2h+1)(k+1)Pj(0, (h+ 1)(2k + 2)− b+ k),

if k + 1 ≤ b ≤ 2k + 1.

Close inspection of the new matrix in (4.7) reveals that its determinant can now rather
straightforwardly be deduced.

Case 1: n 6≡ 0, 1 (mod k + 1). Let

n = H(2k + 2) +B (4.8)

with 0 ≤ B ≤ 2k + 1 but B 6= 0, 1, k + 1, k + 2. Then it is not difficult to see (see the
paragraphs after (5.8) in [2]) that, if 1 ≤ B ≤ k, row H(2k+2) of N0(n, k) consists entirely
of zeroes, while, if k + 2 ≤ B ≤ 2k + 1, row H(2k + 2) + k + 1 consists entirely of zeroes.
In particular, this implies that in our case there is a row of zeroes in the matrix in (4.7),
and hence its determinant vanishes. This establishes the third case on the right-hand side
of (1.8).

Case 2: n ≡ 1 (mod k+1). With the notation of (4.8), we have B = 1 or B = k+2. By
reusing the arguments in Case 1, we see that, here, it is the last row of N0(n, k) (namely
row n−1 = H(2k+2)+B−1) which consists entirely of zeroes. Since, in (4.7), the matrix
C0(n, k) — which is a matrix with potentially non-zero entries in the last row — is added
to (xy)kN0(n, k), we cannot conclude that the determinant of (4.7) vanishes, but rather
further analysis is required.

From now on, let n = (k + 1)n1 + 1. In order to get a clearer picture, it is convenient
to reverse the order of rows s(k+1), s(k+1)+ 1, . . . , s(k+1)+ k, for s = 0, 1, . . . , n1 − 1.
It should be noticed that this leaves the last row, namely row n− 1 = (k + 1)n1, in place.
In this manner, we arrive at the matrix

(xy)kN̄0(n, k) + C0(n, k), (4.9)

where the matrix N̄0(n, k) = (N̄
(0)
n,k,i,j)0≤i,j≤n−1 is given by

N̄
(0)
n,k,h(k+1)+b,j =





−(xy)(h+1)(k+1)−bPj(0, (h+ 2)(k + 1)− b)

+(xy)h(k+1)Pj(0, h(k + 1) + b),

if 0 ≤ b ≤ k and h(k + 1) + b < n− 1,

0, if h(k + 1) = n− 1.

Since Pa(0, b) = 0 for a < b, we see that the new matrix (4.9) is upper triangular except
for the last row.
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The reader should observe that, because of the permutation of the rows, the determinant
of the matrix in (4.9) is not necessarily equal to the determinant of MP0(n, k), but that

they rather differ by a sign of (−1)n1(k+1
2 ).

Let us concentrate on the last k+2 rows. There, all entries in columns 0, 1, . . . , n−k−3
are zero. In other words, the matrix N̄0(n, k) + C0(n, k) has a block form

(
A ∗
0 B

)
, (4.10)

where the (k + 2)× (k + 2) submatrix B looks as follows:

B =

({
(xy)n−2Pj(0, i), for n− k − 2 ≤ i ≤ n− 2

(xy)n−1
∑

l≥0 Pj(0, n− k + l), for i = n− 1

)
.

Here, the index j ranges over j = n− k− 2, n− k− 1, . . . , n− 1. By subtracting xy times
row i for i = n − k, n − k + 1, . . . , n − 2 from the last row, we may transform the matrix
in (4.10) into (

A ∗
0 B′

)
, (4.11)

where B′ is defined by








(xy)n−2Pj(0, i), for n− k − 2 ≤ i ≤ n− 2

0, for i = n− 1 and j ≤ n− 2

(xy)n−1, for i = j = n− 1


 ,

with j again ranging over j = n− k− 2, n− k− 1, . . . , n− 1. These row operations do not
change the value of the determinant, and consequently the determinant of the matrix in
(4.9) equals the one in (4.11).

The determinant of (4.11) is easy to compute since it is in fact an upper triangular
matrix (including the last row!). Reading along the diagonal of this matrix, we find

(xy)k, (xy)k, . . . , (xy)k,

(xy)2k+1, (xy)2k+1 . . . , (xy)2k+1,

(xy)3k+2, (xy)3k+2, . . . , (xy)3k+2,

...................................................

(xy)n−2, (xy)n−2, . . . , (xy)n−2,

(xy)n−1,

where, when arranged as above, there are exactly k+1 entries in each line (except for the
last line, of course). The product of these entries is

(xy)n1k(k+1)+(k+1)2(n1
2 )+n−1 = (xy)(k+1)2(n1+1

2 ),
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which, together with the earlier found sign (−1)n1(k+1
2 ), establishes the second case in (1.8).

Case 3: n ≡ 0 (mod k + 1). Let n = (k + 1)n1. Here, we also depart from (4.7).
Inspection of the definition of the correction matrix C0(n, k) in Lemma 11 shows that the
entries in columns 0, 1, . . . , n− k− 1 in its last row all vanish. Therefore, if we reverse the
order of rows s(k+1), s(k+1)+1, . . . , s(k+1)+k, for s = 0, 1, . . . , n1−1, then we obtain
an upper triangular matrix whose entries along the diagonal are

(xy)k, (xy)k, . . . , (xy)k,

(xy)2k+1, (xy)2k+1 . . . , (xy)2k+1,

(xy)3k+2, (xy)3k+2, . . . , (xy)3k+2,

...................................................

(xy)n−1, (xy)n−1, . . . , (xy)n−1.

The product of these entries is

(xy)n1k(k+1)+(k+1)2(n1
2 ) = (xy)(k+1)2(n1+1

2 )−n,

which, together with the sign (−1)n1(k+1
2 ) that results from the row permutation that we

performed, establishes the first case in (1.8).

This completes the proof of the theorem. �

5. Proof of Theorem 4. We first use the results from Section 3 to connect the matrix
of Motzkin prefix generating functions on the left-hand side of (1.9) to another matrix of
Motzkin generating functions that appeared in [2].

Lemma 12. Define matrices M1(n, k) and MP1(n, k) by

M1(n, k) :=
(
P+
i+j+1(k, 0)

)
0≤i,j≤n−1

and

MP1(n, k) :=


∑

l≥0

P+
i+j+1(k, l)




0≤i,j≤n−1

.

Then

A(n) ·MP1(n, k) = M1(n, k) + C1(n, k),

where A(n) is given by (3.1) and the “correction matrix” C1(n, k) := (C
(1)
n,k,i,j)0≤i,j≤n−1 is

defined via

C
(1)
n,k,i,j =

{
0, if i ≤ n− 2,

(xy)n−1
∑

l≥0 Pj+1(0, n− k + l), if i = n− 1.

Proof. This is a direct consequence of Lemmas 8 and 9. �
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We are now in the position to prove Theorem 4.

Proof of Theorem 4. We start with

MP1(n, k) =


∑

l≥0

P+
i+j+1(k, l)


 .

We multiply on the left by A(n). According to Lemma 12, we get

M1(n, k) + C1(n, k)

=

({
P+
i+j+1(k, 0), for i ≤ n− 2

P+
n+j(k, 0) + (xy)n−1

∑
l≥0 Pj+1(0, n− k + l), for i = n− 1

)
.

Since detA(n) = 1 by Lemma 6, the determinant of M1(n, k)+C1(n, k) is the same as the
determinant of MP1(n, k). If we apply relation (2.1) with l = 0, then we see that we have
transformed our problem into the problem of evaluation of the determinant of

(xy)kM ′
1(n, k) + C1(n, k),

where

M ′
1(n, k) :=

(
P+
i+j+1(0, k)

)
0≤i,j≤n−1

.

The determinant of M ′
1(n, k) is evaluated in Theorem 2. We now follow the arguments

of the proof of this evaluation in [2] for a while.

Similarly to the proof of Theorem 3 in the previous section, the first step consists in
the use of the decomposition (4.1) in order to convert our problem into the problem of the
evaluation of the determinant of the matrix

(xy)k
(
P+
j+1(i, k)

)
0≤i,j≤n−1

+ C1(n, k).

In the second step, we rewrite P+
j+1(i, k) by using (2.2). In this manner, we arrive at

the problem of evaluating the determinant of

(xy)k
(
Pj+1(i, k)− (xy)i+1Pj+1(−i− 2, k)

)
0≤i,j≤n−1

+ C1(n, k). (5.1)

For the third step, we apply again the row operations given by (4.5) and (4.6). By
the computations performed in [2, proof of Theorem 9 with t = 1] that finally lead to
(5.14)–(5.16) there, these operations transform the matrix in (5.1) into the matrix

(xy)kN1(n, k) + C1(n, k), (5.2)
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where N1(n, k) = (N
(1)
n,k,i,j)0≤i,j≤n−1 with

N
(1)
n,k,h(2k+2)+b,j =





−(xy)(2h+1)(k+1)+b−kPj+1(0, (h+ 1)(2k + 2) + b− k)

+(xy)2h(k+1)Pj+1(0, h(2k + 2)− b+ k) if 0 ≤ b ≤ k,

−(xy)(2h+1)(k+1)+b−kPj+1(0, (h+ 1)(2k + 2) + b− k)

+(xy)(2h+1)(k+1)Pj+1(0, (h+ 1)(2k + 2)− b+ k)

if k + 1 ≤ b ≤ 2k + 1.

Closer inspection of the new matrix in (5.2) will lead to the claimed result in (1.9). This
is less straightforward than in the proof of Theorem 3 though.

Case 1: n 6≡ 0, 1, k (mod k + 1). Let

n = H(2k + 2) +B (5.3)

with 0 ≤ B ≤ 2k+1 but B 6= 0, 1, k, k+1, k+2, 2k+1. Then it is not difficult to see (see
the paragraphs after (5.16) in [2]) that, if 1 ≤ B ≤ k−1, row H(2k+2) of N1(n, k) consists
entirely of zeroes, while, if k+2 ≤ B ≤ 2k, row H(2k+2)+k+1 consists entirely of zeroes.
In particular, this implies that in our case there is a row of zeroes in the matrix in (5.2),
and hence its determinant vanishes. This establishes the fourth case on the right-hand side
of (1.9).

Case 2: n ≡ 0 (mod k + 1). With the notation of (5.3), we have B = 0 or B = k + 1.
Similarly to Case 2 in the proof of Theorem 3 in the previous section, we subtract xy times
row i for i = n− k− 1, n− k, . . . , n− 2 from the last row of the matrix in (5.2). Thus, we
obtain the matrix

(xy)kN1(n, k) + C̄1(n, k), (5.4)

where C̄1(n, k) is equal to the zero matrix except for the (n− 1, n− 1)-entry (the bottom-
right entry), which equals (xy)n−1. Obviously, the determinant did not change. By using
linearity in the last column, we may write the determinant of te matrix in (5.4) as

(xy)nk detN1(n, k) + (xy)(n−1)k+n−1 det
(
N1(n, k)

)n−1

n−1
, (5.5)

where
(
N1(n, k)

)n−1

n−1
denotes the matrix arising from N1(n, k) by omitting the last row

and the last column.
Since the matrix N1(n, k) arose from M1(n, k) by row operations that did not change

the determinant, the determinant of N1(n, k) equals the expression for detM1(n, k) given
in Theorem 2, namely

(−1)n1(k+1
2 )(xy)(k+1)2(n1

2 ) y
(k+1)(n1+1) − x(k+1)(n1+1)

yk+1 − xk+1
,

with n = n1(k + 1). Similarly, the determinant of
(
N1(n, k)

)n−1

n−1
equals the expression for

detM1(n− 1, k) given in Theorem 2, namely

(−1)n1(k+1
2 )+k(xy)(k+1)2(n1−1

2 )+(n1−1)k(k+1) y
(k+1)n1 − x(k+1)n1

yk+1 − xk+1
.
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If these two expressions are substituted in (5.5), then the expression given in the first case
on the right-hand side of (1.9) is obtained after minor modification.

Case 3: n ≡ 1 (mod k + 1). With the notation of (5.3), we have B = 1 or B = k + 2.
Without loss of generality, we may assume k ≥ 1 (cf. Remark (1) after Theorem 4).

By reusing the arguments in Case 1, we see that, here, it is the last row of N1(n, k)
(namely row n− 1 = H(2k+ 2) +B − 1) which consists entirely of zeroes. Since, in (5.2),
the matrix C1(n, k) — which is a matrix with potentially non-zero entries in the last row
— is added to (xy)kN1(n, k), we cannot conclude that the determinant of (5.2) vanishes,
but rather further work is required.

From now on, let n = (k + 1)n1 + 1. As in Case 2 of the proof of Theorem 3 in the
previous section, we reverse the order of rows s(k + 1), s(k + 1) + 1, . . . , s(k + 1) + k, for
s = 0, 1, . . . , n1 − 1, leaving the last row, row n − 1 = (k + 1)n1, in place. Furthermore,
we factor (xy)h(k+1) from all the entries in rows h(k + 1), h(k + 1) + 1, . . . , h(k + 1) + k,
h = 0, 1, . . . , n1 − 1. This yields an overall factor of

(xy)(k+1)2(n1
2 ) (5.6)

by which we have to multiply the determinant of the remaining matrix in the end. We
must as well multiply by the sign

(−1)n1(k+1
2 ) (5.7)

in order to take into account the permutation of the rows that we performed.
In this manner, we arrive at the matrix

N̄1(n, k) + C1(n, k), (5.8)

where the matrix N̄1(n, k) = (N̄
(1)
n,k,i,j)0≤i,j≤n−1 is given by

N̄
(1)
n,k,h(k+1)+b,j =





Pj+1(0, h(k + 1) + b)− (xy)k−b+1Pj+1(0, (h+ 2)(k + 1)− b)

if 0 ≤ b ≤ k and h(k + 1) + b < n− 1,

0, if h(k + 1) = n− 1.
(5.9)

We should observe that, for 1 ≤ i ≤ n− 2, the first non-zero entry in row i (which is to be
found in column i− 1) equals 1.

In the matrix in (5.8), we replace the 0-th row by

n1−1∑

h=0

k∑

b=0

(−1)h(k+1)+b
h∑

s=0

c(h, b, s) xs(k+1)y(h−s)(k+1) ·
(
row (h(k + 1) + b)

)
, (5.10)

where the coefficients c(h, b, s) are given by

c(h, b, s) =

{
xb + yb, if b 6= 0,

1, if b = 0.
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Since the coefficient of the 0-th row in the linear combination (5.10) is 1, this does not
change the value of the determinant. It should be noted that the last row, row n − 1 =
n1(k + 1), is not involved in the linear combination (5.10).

Now we have to redo the computation in [2] with t = 1, starting with (5.21) and leading
to the result in the display in the centre of p. 161 there, however with the relaxed condition
that j + 1 ≤ n = n1(k + 1) + 1. (In [2] we have j + 1 ≤ n1(k + 1) at that point.) Taking
also into account our assumption that k ≥ 1, the final result is that the (0, j)-entry in the
new matrix is given by

−(−1)n1(k+1)
n1∑

s=0

xs(k+1)y(n1−s)(k+1)
(
Pj+1(0, n1(k+1))−(x+y)Pj+1(0, n1(k+1)+1)

)
.

It is important to observe that, again because Pa(0, b) = 0 for a < b, this expression
vanishes for j < n1(k + 1) − 1, so that only the right-most two entries in row 0 are
non-zero.

In addition to the above modifications of the 0-th row, in analogy to similar operations
in Case 2 in the proof of Theorem 3 and in Case 2 of the current proof, we also replace
the last row, row n− 1 = n1(k + 1), by

(
row n− 1

)
− (xy)n−1

n−2∑

i=n−k

(
row i

)
. (5.11)

When doing this operation it is important to observe that all entries in column j with

j ≤ n − k − 1 are actually zero, that the entries N̄
(1)
n,k,i,j given by (5.9) for i ≤ n − 2 and

j ≥ n − k are given by Pj+1(0, i), except for the (n − 2, n − 1)-entry, which is equal to
Pn(0, n− 2)− (xy)Pn(0, n). Again, this operation does not change the determinant.

Altogether, the new matrix obtained is M̃1(n, k) = (M̃
(1)
n,k,i,j)0≤i,j≤n−1, where

M̃
(1)
n,k,h(k+1)+b,j =





(−1)n1(k+1)+1
∑n1

s=0 x
s(k+1)y(n1−s)(k+1)

×
(
Pj+1(0, n1(k + 1))− (x+ y)Pj+1(0, n1(k + 1) + 1)

)
,

if h = b = 0,

Pj+1(0, h(k + 1) + b)− (xy)k−b+1Pj+1(0, (h+ 2)(k + 1)− b),

if 0 ≤ b ≤ k and 0 < h(k + 1) + b < n− 1,

(xy)n−1
(
Pj+1(0, n1(k + 1)) + (1 + xy)Pj+1(0, n1(k + 1) + 1)

)
,

if h(k + 1) = n− 1.

The determinant of this matrix is the same as that of the matrix in (5.8).
It is helpful to display the schematic form of this matrix:

M̃1(n, k) =




0 . . . 0 a b

M
...

...
0 . . . 0 c d


 , (5.12)
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where

a = (−1)n1(k+1)+1 x
(k+1)(n1+1) − y(k+1)(n1+1)

xk+1 − yk+1
,

b = (−1)n1(k+1)+1 x
(k+1)(n1+1) − y(k+1)(n1+1)

xk+1 − yk+1

(
(n1(k + 1) + 1)(x+ y)− (x+ y)

)
,

c = (xy)n−1,

d = (xy)n−1(n1(k + 1) + 1)(x+ y) + (1 + xy), (5.13)

and M = (Mi,j)1≤i≤n1(k+1)−1, 0≤j≤n1(k+1)−2 with

Mh(k+1)+b,j = Pj+1(0, h(k + 1) + b)− (xy)k−b+1Pj+1(0, (h+ 2)(k + 1)− b)

for 0 ≤ b ≤ k.
In order to evaluate the determinant of M̃1(n, k), we do a Laplace expansion simulta-

neously with respect to the top and the bottom row. Thereby, we obtain

det M̃1(n, k) = (−1)n det

(
a b
c d

)
· detM. (5.14)

Straightforward calculation shows that

det

(
a b
c d

)
= (−1)n(xy)n−1x

(k+1)(n1+1) − y(k+1)(n1+1)

xk+1 − yk+1
(1 + x)(1 + y),

while M is an upper triangular matrix so that its determinant is equal to the product of its
diagonal entries, all of which are 1. If everything is put together with the earlier obtained
factors (5.6) and (5.7), then we arrive at the expression given in the second case on the
right-hand side of (1.9).

Case 4: n ≡ k (mod k+1). With the notation of (5.3), we have B = k or B = 2k+ 1.
Again, without loss of generality, we may assume k ≥ 1 (cf. Remark (1) after Theorem 4).

Let n = n1(k + 1) + k. We do the same row operations as in Case 3, except the one in
(5.11). This produces a matrix of the form




0 . . . 0 a b . . .

M ∗
0 D

0 . . . 0 c d . . .




, (5.15)

where a, b, c, d,M are as in (5.12) and (5.13) (with the meaning of n in the definitions of
c and d being the current one), and D is a (k − 1) × (k − 1) “reflected upper triangular”
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matrix. (By “reflected upper triangular” we mean a matrix where all entries above the
anti-diagonal of the matrix are equal to 0.) The entries a and c are located in column
n1(k + 1)− 1, so that the submatrix M is located strictly to the left of this column while
the submatrix D is located strictly to the right of column n1(k + 1) (the indexing of rows
and columns starting at 0 as usual). To the left of D — in the rows covered by D — there
are only zeroes.

By performing a Laplace expansion simultaneously with respect to the top and the
bottom row, one sees that the determinant of the above matrix equals

(−1)n det

(
a b
c d

)
· detM · detD. (5.16)

Comparison with (5.14) shows that the determinant of the matrix in (5.15) differs from

det M̃(n, k) (with M̃(n, k) given in (5.12)) by a factor of

(−1)k−1(xy)k−1 detD.

Here, the factor of (−1)k−1 comes from the factor (−1)n in (5.16), taking into account
that our current n is by k − 1 larger than the n in Case 3, and the factor (xy)k−1 comes
from the factor (xy)n−1 in the definitions of c and d, again taking into account that the n
here differs from the one in Case 3.

Since the entries of D were not affected by the row operations from Case 3, they still
equal the corresponding entries in (xy)kN1(n, k) (cf. (5.2)). Consequently — as we already
stated earlier — D is “reflected upper triangular”, with entries (xy)n along the main

antidiagonal. It follows that detD equals (−1)(
k−1
2 )(xy)n(k−1). Hence, the determinant of

the matrix in (5.15) differs from det M̃(n, k) by a factor of

(−1)k−1+(k−1
2 )(xy)(n+1)(k−1) = (−1)(

k

2)(xy)(n1+1)(k2−1).

This is indeed exactly the factor by which the third expression on the right-hand side of
(1.9) differs from the second expression.

This completes the proof of the theorem. �

6. Specialisations. In this section we list specialisations of Theorems 3 and 4. The
special values of x and y that we choose are those that we discussed at the end of Section 2.
In all the results that we list in this section, the convention of Remark (1) after the
statements of Theorems 3 and 4 applies (in a slightly modified form): for k = 0, 1, it is
the first applicable case in the case distinctions on the right-hand sides that produces the
correct result.

We begin by setting x = −y =
√
−1 in Theorem 3. Using (2.13), we obtain the following

result.
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Corollary 13. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
k∑

l=0

(
i+ j

⌊12(i+ j + 1− k)⌋+ l

))
=





(−1)n1(k+1
2 ), if n = (k + 1)n1,

(−1)n1(k+1
2 ), if n = (k + 1)n1 + 1,

0, if n 6≡ 0, 1 (mod k + 1).

(6.1)

A noteworthy special case is the one for k = 0,

det
0≤i,j≤n−1

((
i+ j

⌊12(i+ j + 1)⌋

))
= det

0≤i,j≤n−1

((
i+ j

⌊12 (i+ j)⌋

))
= 1. (6.2)

In other words, this gives the “Hankel transform” of the sequence
((

n
⌊n/2⌋

))
n≥0

of cen-

tral and “almost central” binomial coefficient. According to [11, Sequence A001405], this
Hankel determinant evaluation had been observed by Philippe Deléham in 2007.

On the other hand, for k = 1 we get

det
0≤i,j≤n−1

((
i+ j + 1

⌊12 (i+ j + 2)⌋

))
= det

0≤i,j≤n−1

((
i+ j + 1

⌊12 (i+ j + 1)⌋

))
= (−1)⌊n/2⌋, (6.3)

thus obtaining the “Hankel transform” of the shifted sequence
((

n
⌊n/2⌋

))
n≥1

of central and

“almost central” binomial coefficients. We add that the choices of k = 2 and k = 3 provide
Hankel determinant evaluations for the sequences A026010 and A026023 in [11].

Next we set x = −y =
√
−1 in Theorem 4, upon using (2.13) again. This leads to the

following determinant identity.

Corollary 14. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
k∑

l=0

(
i+ j + 1

⌊12 (i+ j + 2− k)⌋+ l

))

=





2n1 + 1, if n = (k + 1)n1 and k ≡ 1 (mod 4),

1, if n = (k + 1)n1 and k ≡ 3 (mod 4),

(−1)n1/2, if n = (k + 1)n1, and k and n1 are even,

(−1)(k+n1−1)/2, if n = (k + 1)n1, k is even, and n1 is odd,

2n1 + 2, if n = (k + 1)n1 + 1, and k is odd,

2(−1)n1/2, if n = (k + 1)n1 + 1, and k and n1 are even,

(−1)(k−1)/2(2n1 + 2), if n = (k + 1)n1 + k, and k is odd,

2(−1)(k+n1)/2, if n = (k + 1)n1 + k, and k and n1 are even,

0, otherwise.

(6.4)
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For k = 0, we obtain (6.3) again, while for k = 1 we get

det
0≤i,j≤n−1

((
i+ j + 2

⌊1
2
(i+ j + 3)⌋

))
= det

0≤i,j≤n−1

((
i+ j + 2

⌊1
2
(i+ j + 2)⌋

))
= n+ 1, (6.5)

which is the “Hankel transform” of the doubly shifted sequence
((

n
⌊n/2⌋

))
n≥2

of central and

“almost central” binomial coefficients. Clearly, for k = 2 and k = 3, Corollary 14 provides
Hankel determinant evaluations for the sequences A026010 and A026023, respectively, with
the first element of each sequence omitted.

We continue setting x = y−1 = ω in Theorem 3. We recall that this specialisation in
P+
n (k, l) corresponds to weighting each path by 1 — which amounts to ordinary counting

of paths — so that P+
n (k, l)x=y−1=ω is simply equal to the number of all three-step paths

from (0, k) to (n, l) that never run below the x-axis. Consequently,

∑

l≥0

P+
n (k, l)

∣∣∣
x=y−1=ω

(6.6)

equals the number of three-step paths starting at (0, k), proceeding for n steps, and never
running below the x-axis. For k = 0, these are the Motzkin prefix numbers MPn mentioned
in the introduction. For generic k, these numbers can be considered as generalised Motzkin

prefix numbers, for which (2.14) provides an explicit formula. We denote the number in
(6.6) by MPn(k).

Corollary 15. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
MP i+j(k)

)
= det

0≤i,j≤n−1


∑

ℓ≥0

k+1∑

l=−k

(
i+ j

ℓ, ℓ+ l

)


=





(−1)n1(k+1
2 ), if n = (k + 1)n1,

(−1)n1(k+1
2 ), if n = (k + 1)n1 + 1,

0, if n 6≡ 0, 1 (mod k + 1).

(6.7)

Clearly, the case k = 0 provides the proof of (1.7). Further noteworthy special cases are
the one for k = 1,

det
0≤i,j≤n−1

(
MP i+j(1)

)
= (−1)⌊n/2⌋, (6.8)

providing the “Hankel transform” of Sequence A025566 in [11], and the one for k = 2,

det
0≤i,j≤n−1

(
MP i+j(2)

)
=

{
(−1)⌊(⌋n/3), if n ≡ 0, 1 (mod 3),

0, if n ≡ 2 (mod 3),
(6.9)

providing the “Hankel transform” of Sequence A005774 in [11].
Specialisation of x = y−1 = ω in Theorem 4 yields further Hankel determinant evalua-

tions for (generalised) Motzkin prefix numbers.
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Corollary 16. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
MP i+j+1(k)

)
= det

0≤i,j≤n−1


∑

ℓ≥0

k+1∑

l=−k

(
i+ j + 1

ℓ, ℓ+ l

)


=





(−1)n1(k+2
2 ), if n = (k + 1)n1 and k ≡ 2 (mod 3),

(−1)n1(k+2
2 ), if n = (3k + 3)n1 and k 6≡ 2 (mod 3),

2(−1)(n1+1)(k+2
2 )+1, if n = (3k + 3)n1 + k + 1 and k 6≡ 2 (mod 3),

(−1)n1(k+2
2 ), if n = (3k + 3)n1 + 2k + 2 and k 6≡ 2 (mod 3),

3(−1)n1(k+2
2 )(n1 + 1), if n = (k + 1)n1 + 1 and k ≡ 2 (mod 3),

3(−1)n1(k+2
2 ), if n = (3k + 3)n1 + 1 and k 6≡ 2 (mod 3),

3(−1)(n1+1)(k+2
2 )+1, if n = (3k + 3)n1 + k + 2 and k 6≡ 2 (mod 3),

3(−1)(n1+1)(k+2
2 )+1(n1 + 1), if n = (k + 1)n1 + k and k ≡ 2 (mod 3),

3(−1)(n1+1)(k+2
2 )+1, if n = (3k + 3)n1 + k and k 6≡ 2 (mod 3),

3(−1)(n1+1)(k+2
2 ), if n = (3k + 3)n1 + 2k + 1 and k 6≡ 2 (mod 3),

0, otherwise.

(6.10)

The special cases k = 0, 1, 2 are explicitly

det
0≤i,j≤n−1

(
MP i+j+1

)
=

{
(−1)⌊n/3⌋, if n ≡ 0, 2 (mod 3),

2(−1)⌊n/3⌋, if n ≡ 1 (mod 3),
(6.11)

det
0≤i,j≤n−1

(
MP i+j+1(1)

)
=





(−1)⌊n/6⌋, if n ≡ 0, 4 (mod 3),

3(−1)⌊n/6⌋, if n ≡ 1, 3 (mod 3),

2(−1)⌊n/6⌋, if n ≡ 2 (mod 3),

0, if n ≡ 5 (mod 3),

(6.12)

det
0≤i,j≤n−1

(
MP i+j+1(2)

)
=





1, if n ≡ 0 (mod 3),

3⌈n/3⌉, if n ≡ 1 (mod 3),

−3⌈n/3⌉, if n ≡ 2 (mod 3),

(6.13)

providing further Hankel determinant evaluations for the sequences A005773, A025566,
and A005774 in [11].

Next we turn our attention to the specialisation x = y = 1. Use of (2.15) in Theorem 3
yields the following result.

Corollary 17. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
k+1∑

l=−k

(
2i+ 2j

i+ j + l

))
=





(−1)n1(k+1
2 ), if n = (k + 1)n1,

(−1)n1(k+1
2 ), if n = (k + 1)n1 + 1,

0, if n 6≡ 0, 1 (mod k + 1).

(6.14)
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For k = 0, Equation (6.14) says that the “Hankel transform” of the sequence((
2n+1
n+1

))
n≥0

(which is [11, Sequence A001700]) is the all-1 sequence. This is a well-known

result, and it is also covered by [2, Theorem 21].
For k = 1, Equation (6.14) provides the “Hankel transform” of the sequence

((
2n+2

n

))
n≥0

(which is [11, Sequence A001791] up to a shift). Again, this is a known result, see e.g. [2,
Cor. 20 with k = 1].

On the other hand, specialising x = y = 1 in Theorem 4, we arrive at the following
Hankel determinant evaluation.

Corollary 18. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
k+1∑

l=−k

(
2i+ 2j + 2

i+ j + l + 1

))

=





(−1)n1(k+1
2 )(2n1 + 1), if n = (k + 1)n1 and k is even,

(−1)n1(k+1
2 ), if n = (k + 1)n1 and k is odd,

(−1)n1(k+1
2 )(4n1 + 4), if n = (k + 1)n1 + 1,

(−1)(n1+1)(k+1
2 )+k(4n1 + 4) if n = (k + 1)n1 + k,

0, if n 6≡ 0, 1, k (mod k + 1).

(6.15)

Similarly to before, for k = 1 this recovers [2, Cor. 23 with k = 1], while for k = 0 it
proves Conjecture 24 in [2] for k = 0 and k = 1.

Finally, we set x = y = −1 in Theorem 3. Using (2.16), we obtain a determinant
evaluation which can be considered to be in a row with [2, Cors. 12, 15, 13, 18, 16].

Theorem 19. For all positive integers n and non-negative integers k, we have

det
0≤i,j≤n−1

(
2k + 2

i+ j + k + 1

(
2i+ 2j − 1

i+ j + k

))

=





(−1)n1(k+1
2 )+1(n1 − 1), if n = (k + 1)n1

(−1)n1(k+1
2 )+k+1n1, if n = (k + 1)n1 + 1

0, if n 6≡ 0, 1 (mod k + 1).

(6.16)

Here, the (0, 0)-entry of the matrix on the left-hand side is zero by definition.

Proof. Since

2k + 2

i+ j + k + 1

(
2i+ 2j − 1

i+ j + k

)
=

k + 1

i+ j

(
2i+ 2j

i+ j + k + 1

)
,

the matrix on the left-hand side of (6.16), of which the determinant is taken, is the n× n
Hankel matrix corresponding to the sequence in (2.16), up to the sign in (2.16), and up to
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the convention of how to interpret the term for n = 0 in (2.16). Applying the specialisation
x = y = −1 in Theorem 3 and using (2.16), we are led to the determinant evaluation

det
0≤i,j≤n−1

(
(−1)i+j+k k + 1

i+ j

(
2i+ 2j

i+ j + k + 1

))
=





(−1)n1(k+1
2 ), if n = (k + 1)n1,

(−1)n1(k+1
2 ), if n = (k + 1)n1 + 1,

0, if n 6≡ 0, 1 (mod k + 1),

(6.17)
where the (0, 0)-entry in the matrix on the left-hand side has to be taken as 1. Let
M = (Mi,j)0≤i,j≤n−1 be that matrix. We write the 0-th row of the matrix as

(0,M0,1,M0,2, . . . ,M0,n−1) + (1, 0, . . . , 0).

Subsequently, we use the linearity of the determinant in this row to decompose the deter-
minant into the sum

det
0≤i,j≤n−1

(
(−1)i+j+k k + 1

i+ j

(
2i+ 2j

i+ j + k + 1

))

+ det
1≤i,j≤n−1

(
(−1)i+j+k k + 1

i+ j

(
2i+ 2j

i+ j + k + 1

))
, (6.18)

where the (0, 0)-entry in the first matrix is zero by definition. The first determinant in
(6.18) is thus the determinant in (6.16), up to a sign of (−1)nk. Because of (6.17), we
know the total value of (6.18), while the second determinant in (6.18) has been evaluated
in [2, Corollary 18].1 Thus, this sets up an equation for the determinant in (6.16), which
we just have to solve. �

Specialising x = y = 1 in Theorem 4 and using (2.15) again, we recover Corollary 15
in [2].
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