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Abstract

We present random sampling procedures for Motzkin and Schröder
paths, following previous work on Dyck paths. Our algorithms follow the
anticipated rejection method of the Florentine algorithms (Barcucci et al.
1994+), but introduce a recovery idea to greatly reduce the probability
of rejection. They use an optimal amount of randomness and achieve a
better time complexity than the Florentine algorithms.

1 Introduction

This paper discusses random sampling procedures for two classical families of
lattice paths: Motzkin and Schröder paths, shown in Figure 1. We are interested
in positive paths (paths staying above the x-axis) and excursions (positive paths
with final height zero). Together with Dyck paths, Motzkin and Schröder paths
are widely studied in combinatorics. Their counting sequences are the Cata-
lan, Motzkin and Schröder numbers; as can be seen in their OEIS entries [13]
(A001405, A000108, A005773, A001006, A026003, A006318 and related ones),
they are in bijection with hundreds of combinatorial objects—most notably,
binary and unary-binary trees—making interesting and useful the problem of
their efficient random sampling.

Figure 1: Dyck, Motzkin and Schröder positive paths of length 10.

The efficiency of an algorithm is measured, of course, by its time complexity
(since all the algorithms discussed here only need negligible storage in addition
to the output, space is not an issue). Also of interest for randomized algorithms
is entropy complexity, which is a measure of the randomness consumed by the
algorithm. Our model of entropy complexity closely follows that of [8], which

1

http://arxiv.org/abs/1802.06030v1


takes its roots in Shannon’s information theory and where the unit of complex-
ity is the random bit. This framework aims at capturing the cost of random
primitives in a realistic way and avoids unreasonable assumptions, like having
access to random real numbers in constant time.

Many algorithms exist for sampling lattice paths or plane trees: Boltzmann
samplers [7], Devroye’s algorithm based on the cycle lemma [6], Rémy’s algo-
rithm [12], etc. However, none of these algorithms have a linear complexity
for exact-size sampling: Boltzmann samplers provide approximate size, needing
costly rejection to get exact size, while both others use an entropy of n log n.

The Florentine algorithms [4, 5, 11] are, for their part, linear. They use an
extremely simple method called anticipated rejection. To sample a positive path
of length n, the path is drawn step by step at random, until either the length n
is reached—at which point the path is output—or the path goes below the x-
axis—at which point the path is deleted and the procedure started over. This is
surprisingly efficient: sampling a positive path of length n requires, on average,
to draw 2n random steps (n for the successful run, n for all the failed runs).
This is due to the fact that rejection occurs, on average, on comparatively small
paths. A detailed analysis is found in [10, 3]. Anticipated rejection was also used
in random sampling algorithms for classes of trees, with similar complexities [2].

In the case of Dyck paths, an improved algorithm is given in [1] (actually,
it works in the slightly more general case of m-Dyck paths). The idea of this
algorithm, used before for binary trees in [2], is a recovery method: it follows the
Florentine algorithm, but if the path goes below the x-axis, a “recovering” pro-
cedure is used to turn it into a random positive path, from which the algorithm
is resumed. By avoiding rejection altogether, this algorithm only consumes
asymptotically n random bits—which is optimal—and reads and writes 5n/4
steps, better than the Florentine algorithm.

In this paper, we extend this recovery idea to Motzkin and Schröder paths.
We retain a small probability of rejection, but this does not affect the complex-
ity: the algorithms are still optimal in terms of entropy and have better time
complexity than their Florentine counterparts.

The paper is organized as follows: Section 2 states general remarks useful in
all models; in Sections 3 and 4, we give the algorithms for Motzkin and Schröder
paths, respectively; finally, the complexity analysis is done in Section 5.

2 Preliminaries

We start by giving basic definitions and notations. We denote by u, f and d the
up, flat and down steps, with height 1, 0 and −1 respectively. A path is a word
on {u, f, d}; the height of a path ω, denoted by h(ω), is the sum of the heights of
its steps. A path is positive if all its prefixes have height ≥ 0; an excursion is a
positive path with height 0; a path is Łukasiewicz if all its prefixes are positive
except the path itself, which has height < 0. We denote by ε the empty path.
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2.1 Unfolding and folding

In all three models, an essential ingredient of our algorithms is a classical bi-
jection (see, e.g., [9, Chapter 9]), which we call unfolding. This bijection is
illustrated in Figure 2. Consider a Łukasiewicz path factorized as στ , with
τ 6= ε. If h(σ) = k, the path τ is of the form:

τ = τkd · · · τ0d,

where the τi’s are excursions (Figure 2, left). Define:

τ̃ = uτk · · · uτ0. (1)

σ

τk

τ0

σ

τk

τ0

Figure 2: The unfolding operation, turning the Łukasiewicz path στ (left) into
the positive path of odd height στ̃ (right).

Proposition 1. Every positive path of odd height can be written in a unique
way as στ̃ , where στ is a Łukasiewicz path.

Proof. Let ω be a positive path of height 2k + 1. According to the definition
(1), it can be written στ̃ only if τ̃ is the suffix going up to the last visit at
height h(σ). Moreover, the path στ is Łukasiewicz if and only if h(σ) = k. This
shows the proposition.

In the following, we call mid-height factorization of ω the factorization στ̃ .

Remark. For the purpose of this paper, it is also acceptable, and perhaps sim-
pler, to define τ̃ as the mirror of τ (read τ backwards and change every u to
a d and vice versa). We prefer the definition (1) because it seems more robust
theoretically (the mirror does not work in the case of m-Dyck paths discussed in
[1]) and because it only involves reading τ once in the forward direction, which
is better in practice.

2.2 Structure of a recovering algorithm

Like in the Florentine algorithms, recovering algorithms build a path by adding
random steps drawn according to some basic distribution. They also use a
function, which we denote by recover, operating from Łukasiewicz paths to
positive paths. The general structure is as follows.
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Algorithm 1: Recovering algorithm for a random positive path of length n

1 ω ← ε
2 while |ω| < n do

3 add a random step to ω
4 if h(ω) < 0 then ω ← recover(ω)
5 return ω

If n ≥ 0, consider the random path when it reaches a length at least n for
the first time. Let Pn be the distribution of that path conditioned to be positive
and Ln be the distribution of that path conditioned to be Łukasiewicz.

Theorem 2. Assume that the recover function, when its input is distributed
like Ln, outputs a path distributed like Pn. Then Algorithm 1 outputs a path
distributed like Pn.

Proof. By induction, assume that the path ω is distributed like Pn−1 when it
first reaches a length ≥ n − 1. When it first reaches a length ≥ n, it is either
positive, in which case it is distributed like Pn, or Łukasiewicz, in which case it
is distributed like Ln. After recovering, it is therefore distributed like Pn.

In the case of Dyck paths [1], the recover function works by taking a random
factorization ω = στ and unfolding; the result is a uniformly distributed positive
path by Proposition 1.

In the cases of Motzkin and Schröder paths presented in this paper, the
recover function does not work so perfectly: we retain some measure of antic-
ipated rejection. To represent this, we define it as a partial function, meaning
that it may be undefined with some probability. By convention, whenever an
algorithm computes an undefined result, it immediately rejects the sample and
terminates. The algorithm is then restarted until it produces an output. For
the recovering algorithm to work, the output of the recover function only needs
to follow the distribution Pn when it is defined.

If ω is a path, denote by 〈ω〉k the path ω if its height is at least k and
undefined otherwise.

3 Motzkin paths

In the Motzkin case, we build the path ω by adding u, d and f steps with
probability 1/3, 1/3 and 1/3. The distributions Pn and Ln are the uniform
distributions on positive and Łukasiewicz paths of length n, respectively.

3.1 The recover operation

The difficulty in constructing a recovering procedure for Motzkin paths is the
fact that, for any given n, there are Motzkin positive paths of length n of both
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odd and even height. Since unfolding only produces paths of odd height, we
need a way to turn a path of odd height into one of even height. This is the
purpose of the following involution, defined for paths which are not all d steps:

flip : σfd
k ←→ σud

k. (2)

This operation is illustrated in Figure 3.

Figure 3: The flip operation, which changes the parity of the final height.

Let qn = 1/(2n + 1). We define the recover operation, which takes a
Łukasiewicz path of length n and outputs a random positive path as follows:

recover:











στ 7→ στ̃ with proba. qn, (3a)

στ 7→ flip(στ̃ ) with proba. qn, (3b)

ω 7→ 〈flip(ω)〉0 with proba. qn. (3c)

Since there are n possible factorizations ω = στ with τ 6= ε, the cases (3a)
and (3b) are taken with probability n/(2n + 1) each for any given ω. Thus,
if 〈flip(ω)〉0 is undefined (either ω = d or ω ends with ud

k), then rejection
occurs with probability qn.

Lemma 3. Assume that ω is equal to every Łukasiewicz path of length n with
probability p. Then, for every positive path ω′ of length n, we have:

P
[

recover(ω) = ω′] = pqn.

Proof. We distinguish three cases: if ω′ has odd height, it can only be built with
(3a); if ω′ has even height and flip(ω′) is positive, it can only be built by (3b);
if ω′ has height zero and flip(ω) is Łukasiewicz, it can only be built by (3c). In
all three cases, by Proposition 1, there is only one way to build ω′; thus, it is
output with probability pqn.

3.2 Main algorithms

We are now ready to write the algorithms sampling random Motzkin positive
paths and excursions. We only give here the proofs of their correction; com-
plexity is discussed in Section 5.

The uniformity of the output of Algorithm 2 is an immediate consequence
of Theorem 2 and Lemma 3. To show that the excursion output by Algorithm 3
is uniform, let p be the probability of any positive path of length n + 1 to be
drawn at line 1. After line 2, the path ω is equal to every positive path of odd
height with probability 2p and, after line 3, to every Łukasiewicz path with
probability 2(n + 1)p.
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Algorithm 2: Random Motzkin positive path of length n

1 ω ← ε
2 for i = 1, . . . , n do

3 ω ← ωu, ωf or ωd with probabilities 1/3, 1/3 and 1/3
4 if h(ω) = −1 then ω ← recover(ω)
5 return ω

Algorithm 3: Random Motzkin excursion of length n

1 ω ← random Motzkin positive path of length n + 1
2 if h(ω) is even then ω ← 〈flip(ω)〉1
3 στ̃ ← mid-height factorization of ω
4 return στ minus the last d step

3.3 Colored Motzkin paths

In this section, we consider Motzkin paths where the flat step carries a given
positive real weight (this may be the case if there are several kinds of flat steps,
hence the name colored Motzkin paths). We call weight of a path ω and denote
by wt(ω) the product of the weights of its steps. Florentine algorithms for these
paths are discussed in [5].

It is also possible to define colored Motzkin paths with a weight for the
up step, but this is not as interesting: if that weight is > 1 (positive drift),
paths naturally go away from the x-axis and the Florentine algorithm is already
asymptotically optimal; if it is < 1 (negative drift), paths naturally go below
the x-axis and the Florentine algorithm is exponential. If we are interested in
excursions, we do not lose any generality by assuming that the weight of u is 1.
In any case, we need this condition so that the unfold function does not change
the weight of the path.

We further impose that the weight of the f step is greater than 1. In this
case, we may assume that there are four kinds of steps: u, f and d, with weight 1
each, and a fourth kind, fc, with a weight c > 0. If ω is a colored Motzkin path,
define the flippable step (FS) of ω to be the last u or f step, if it exists. Let
flip(ω) be the path obtained by changing the FS from u to f or vice versa.

Let qn = 1/[2n + max(1, c)]. Define the new recover function as follows:

recover:



















στ 7→ στ̃ with proba. qn, (4a)

στ 7→ flip(στ̃ ) with proba. qn, (4b)

ω 7→ flip(ω) with proba. qn if FS = f, (4c)

ωd 7→ ωfc with proba. qnc otherwise. (4d)

By construction, the probabilities sum to at most 1. Rejection occurs for some
paths when c 6= 1. When c = 1, there is no rejection; this is the case of bicolored
Motzkin paths, which are famously counted by the Catalan numbers. The last
two cases are illustrated in Figure 4.
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f

(4c) (4d)
fc

Figure 4: Left: the case (4c), producing excursions with a u FS ending with d.
Right: the case (4d), producing excursions with a u FS ending with fc (as well
as the excursion with all fc steps). The dotted part consists of d and fc steps.

Lemma 4. Assume that ω is equal to every Łukasiewicz path of length n with
probability p wt(ω). Then, for every positive path ω′ of length n, we have:

P
[

recover(ω) = ω′] = pqn wt(ω′).

Proof. A positive path can be built by the recover function in four different
ways: paths with odd height are built with (4a); paths with even non-zero
height and excursions with an f FS are built with (4b); excursions with a u FS
and ending with d are built with (4c); excursions with a u FS and ending with
fc, plus the excursion fc

n, are built with (4d).
Every path can be built exactly once in this way. Moreover, the number of

steps fc is not changed by recover, except in the case (4d), which adds one fc

step and happens with a probability multiplied by c.

To sample a positive path or excursion, we use Algorithm 2 or 3 with the
new recover function. The proofs are identical.

4 Schröder paths

In a Schröder path, flat steps have length 2 instead of 1. To avoid ambiguities,
we denote by |ω| the number of steps of ω, by |ω|f its number of flat steps,
and by ℓ(ω) = |ω| + |ω|f its length. Following [11], we build Schröder paths
by adding u, f and d steps with probabilities r, r2 and r, where r =

√
2 − 1,

satisfying 2r + r2 = 1, is the radius of convergence of the generating function of
Schröder paths.

Like a Dyck path, the length and height of a Schröder path have the same
parity. When n is odd, Ln is the uniform distribution on Łukasiewicz paths
of length n. However, a positive path may either reach length n exactly or
overstep it with a flat step. Therefore, a path distributed like Pn is equal to
every positive path of length n with probability proportional to 1 and to every
positive path of length n + 1 ending with f with probability proportional to r.

4.1 The recover operation

The recover operation should take a Łukasiewicz path of length n and output a
path of length either n or n + 1. Our first tool is the following random function,

7



which extends a path of length n into a path of length n + 1 in a recursive
manner:

extend:



























ω 7→ ωu with proba. r, (5a)

ω 7→ ωd with proba. r, (5b)

ωu 7→ ωf with proba. r2, (5c)

ωd 7→ ωf with proba. r2, (5d)

ωf 7→ extend(ω)f with proba. r2. (5e)

Rejection occurs with probability r2 if ω = ε and, because of the recursion, with
probability r2k+2 if ω = f

k. This function is illustrated in Figure 5.

(5a)

r

(5b)

r

(5c)

(5d)

r
2

(5e)

Figure 5: The three ways of extending a Schröder path: with probability r,
adding an up step (5a); with probability r, adding a down step (5b); with
probability r

2, turning the last up (5c) or down (5d) step into a flat step, or
recursively extend the part before the last flat step (5e).

Lemma 5. Assume that ω is equal to every positive path of length n with some
probability p. For every positive path ω′ of length n+1 and height > 0, we have:

P
[

extend(ω) = ω′] = pr.

Proof. We establish the result by induction on n. If ω′ ends with a u (resp. d),
then it can only be built with (5a) (resp. (5b)), yielding a probability pr. If it
ends with an f, then it can be built with (5c), (5d) or (5e), yielding a proba-
bility pr2 + pr2 + pr3 = pr by induction hypothesis. Note that the condition
h(ω′) > 0 is necessary in order to build ω′ using (5d).

Let qn = 1/(n + r). We define the recover function in the following way:

recover:











στ 7→ στ̃ with proba. qn, (6a)

σfτ 7→ 〈extend(στ̃ )〉2 f with proba. qn, (6b)

ωd 7→ ωf with proba. qnr. (6c)

To legitimize this definition, we note that there are |ω| factorizations of ω of type
στ and |ω|f factorizations of type σfτ ; those two numbers sum to n. Rejection
occurs in the case (6b) when extend(στ̃ ) has height 0.
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Lemma 6. Let n be odd and let ω be equal to every Lukasiewicz path of length n
with probability p. Then, for every positive path ω′ of length n, we have:

P
[

recover(ω) = ω′] = pqn

and for every positive path ω′ of length n + 1 ending with f, we have:

P
[

recover(ω) = ω′] = pqnr.

Proof. If ℓ(ω′) = n, then ω′ can only be produced with (6a), with a probabil-
ity pqn. If ℓ(ω′) = n + 1, then if h(ω′) > 0, it can only be produced by (6b),
and Lemma 5 shows that it occurs with probability pqnr; if h(ω′) = 0, it can
only be produced by (6c), with probability pqnr.

4.2 Main algorithms

We are finally ready to present our algorithms for random Schröder positive
paths and excursions, which are a bit more involved than in the Motzkin case.
Again, analysis is postponed to Section 5.

Algorithm 4: Random Schröder positive path of length n or n− 1

1 ω ← ε
2 while ℓ(ω) < n do

3 ω ← ωu, ωf or ωd with probabilities r, r2 and r
4 if h(ω) = −1 then ω ← recover(ω)
5 if ω = σf, ℓ(σ) = n− 1 then ω ← σ
6 return ω

As a consequence of Theorem 2 and Lemma 6, the output of Algorithm 4 is
either a path of length n with some probability p or a path of length n− 1 with
probability pr.

Algorithm 5: Random Schröder positive path of length n (odd)

1 ω ← random positive path of length n or n− 1
2 if ℓ(ω) = n− 1 then ω ← 〈extend(ω)〉1
3 return ω

In Algorithm 5, by Lemma 5, every path of length n is output with proba-
bility p(1 + r2).

In Algorithm 6, if the if branch is taken, extending produces every positive
path of length n+1 with probability pr. After folding, we get every Łukasiewicz
path of length n + 1 with a probability pr for each factorization of type στ and
each factorization of type σfτ , which adds up to pr(n + 1) for each path.

In Algorithm 7, finally, the branch in lines 1–3 produces every positive path
with probability p(n+1)/(n+1+r) and every non-excursion positive path with
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Algorithm 6: Random Schröder excursion of length n (even)

1 ω ← random positive path of length n or n− 1
2 if ℓ(ω) = n then

3 ω ← 〈extend(ω)〉1
4 στ̃ ← mid-height factorization of ω
5 return στ minus the last d step

6 else

7 στ̃ ← mid-height factorization of ω
8 return σfτ minus the last d step

Algorithm 7: Random Schröder positive path of length n (even)

1 with probability (n + 1)/(n + 1 + r) do

2 ω ← random positive path of length n or n− 1
3 if ℓ(ω) = n− 1 then ω ← 〈extend(ω)〉2
4 with probability r/(n + 1 + r) do

5 ω ← random excursion of length n
6 return ω

probability pr2(n + 1)/(n + 1 + r). The second branch produces every excursion
with probability pr(n + 1)r/(n + 1 + r). In total, we get every positive path
with probability p(1 + r2)(n + 1)/(n + 1 + r).

4.3 Little Schröder paths

Our last algorithms concern little Schröder paths, which are Schröder paths with-
out flat steps at height 0 (entries A247623 and A001003 of the OEIS). Non-little
and little paths are closely linked, as evidenced by the following classical bijec-
tion: by decomposing at the first flat step at height 0, any non-little Schröder
path can be written in a unique way as σfτ , where σ is a little excursion. Define:

lift : σfτ 7→ σuτ .

Obviously, lift is a bijection between non-little paths of length n and little paths
of length n − 1 and height ≥ 1. Moreover, ω 7→ lift(ω)d is a bijection between
non-little and little excursions. This shows the well-known fact that the number
of Schröder excursions of any positive length is exactly twice the number of little
Schröder excursions and immediately gives Algorithm 8.

Sampling little positive paths is a bit more complicated. We need the fol-
lowing lemma, which establishes how the extend operation behaves with respect
to little Schröder paths.

Lemma 7. Assume that ω is equal to every little positive path of length n with
probability p. For every little positive path ω′ of length n + 1, unless ω′ has
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Algorithm 8: Random little Schröder excursion of length n (even)

1 ω ← random excursion of length n
2 if ω is not little then ω ← lift(ω)d
3 return ω

height 1 and ends with f, we have:

P
[

extend(ω) = ω′] = pr.

Proof. We proceed similarly to Lemma 5, by induction on n. If ω′ ends with
u or d, it has probability pr. If it ends with f, then it has height at least 2
(since it is a little path not ending with f at height 1). Write ω′ = σ′

f. Then ω
can be σ′

u, σ′
d or σf when extend(σ) = σ′. In the latter case, σ has height at

least 1, which shows that σf is a little path. By induction hypothesis, we get a
probability of pr2 + pr2 + pr3 = pr.

Algorithm 9: Random little Schröder positive path of length n (even)

1 ω ← random positive path of length n
2 if ω is not little then

3 ω ← extend(lift(ω))
4 if ω is not little then reject
5 return ω

Algorithm 10: Random little Schröder positive path of length n (odd)

1 ω ← random little positive path of length n− 1
2 ω ← extend(ω)
3 if ω = σf and h(ω) = 1 then reject
4 if ω = σdd and h(ω) = −1 then ω ← σf

5 return ω

To show the uniformity of the output of Algorithm 9, note that since n is
even, every positive path of length n − 1 has height > 0. Therefore, lift ω is a
uniformly distributed little positive path. Moreover, no path of length n has
height 1, so by Lemma 7, extend(lift ω) is also uniform when it is a little path.

Let p be the probability of any path to be output by Algorithm 9. In
Algorithm 10, since n is odd, the result of extend(ω) is either a little positive
path or a little Łukasiewicz path. In the latter case, it necessarily ends with dd

(since ω is a little path); every such path appears with probability pr. Lemma 7
therefore shows the uniformity of the output.
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Note. For both excursions and positive paths, the lift operation can be made to
work in constant time: throughout all operations in the algorithms for Schröder
paths—adding a step, extending, unfolding—it is possible to keep track of the
first f step at height 0, if any, without any significant extra cost.

5 Complexity analysis

We analyse the algorithms presented in this paper in time and entropy complex-
ity, going as far as limit law analysis. For entropy complexity, we use a slightly
modified version of the model of [8]: we assume that the algorithms have access
to a primitive giving a random step (a fair coin toss in the Dyck case, a fair
3-sided die in the Motzkin case, a 3-sided die with probabilities r, r and r2 in
the Schröder case), which carries a cost equal to the entropy of its distribution.
Since the algorithms do not make any expensive computations (outside of draw-
ing random steps, which we already accounted for), we choose for our measure
of time complexity the number of steps in memory read or written.

Define the time factor of an algorithm to be its time complexity divided by
the number of steps of the output and, similarly, the entropy factor to be the
entropy complexity divided by the entropy of the output. In each case—positive
paths, excursions, exact-size or not—the entropy of the output is asymptotic to
the entropy of the random path of length n, which is equal to the entropy of
the random steps needed to generate it.

Let R be an inhomogeneous Poisson point process on (0, 1] with density func-
tion λ(x) = 1/(2x). Let L be the sum, for all x ∈ R, of independent variables
distributed like Unif[0, x] (this law is the same as in [1], and more information—
moments, density, tail distribution—can be found in that paper; note that L is
well-defined because, almost surely, the set R is infinite but summable). Finally,
let U be a random variable distributed like Unif[0, 1] independent from L.

Theorem 8. Recovering algorithms for positive paths (Algorithms 2, 4, 5, 7, 9
and 10) have an entropy factor tending to 1 and a time factor tending in distri-
bution to 1 + L (expected value 5/4). Algorithms for excursions (Algorithms 3,
6 and 8) have an entropy factor tending to 1 and a time factor tending in dis-
tribution to 1 + L + U (expected value 7/4).

For comparison, the Florentine algorithms for positive paths have, on aver-
age, entropy and time factors of 2. Their limit law is discussed in [3].

Proof. Let us start with Algorithms 2 and 4 (the basic recovering algorithms).
We also, for the moment, ignore the possibility of rejection and consider only
the final, successful run. There are two costs to account for: the cost of drawing
steps and writing them to memory (a fixed time and entropy factor of 1) and
the cost of recovery.

Let Rn be the set of lengths where recovery occurs. By Lemmas 3 and 6,
the probability that i is in Rn is qi/(1 + qi), where qi is asymptotic to 1/(2i) in
the Motzkin case and to 1/i when i is odd in the Schröder case. Moreover, since
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the distribution of the path is the same whether or not we recover, the events
i ∈ Rn are independent. This shows that Rn/n tends, as a point process, to R.
Since recovering costs O(log i) entropy and time equal to the size of a uniformly
distributed right factor of the path (the part τ of the path στ), its total cost in
entropy is O(log2 n) and its total contribution to the time factor tends to L.

Let us now estimate the cost of the unsuccessful runs. The probability of
rejection at length i is O(1/i) if we have to recover, or O(1/i2) total. The
probability of reaching length at least n without rejection is therefore:

n
∏

i=1

1−O(1/i2) = Ω(1).

Thus, we only reject O(1) times on average. Moreover, if we do reject before
length n, the average length we reach is:

n
∑

i=1

i · O(1/i2) = O(log n).

Therefore, the total cost of rejection is O(log n), which is negligible.
Finally, except in cases of probability O(1/n), all algorithms for positive

paths work by calling the basic algorithm and then performing operations taking
constant time, so their complexity is the same. The algorithms for excursions,
again except in cases with probability O(1/n), work by sampling a positive
path and folding; the latter costs no entropy and entails accessing a uniformly
distributed right factor of the path, hence the result.

Note. We can compute explicitly the probability of never having to reject. Let
pn be the probability of any one positive path of length n to be output. In the
Motzkin case, by Lemma 3, we have pn = pn−1/3 [1+1/(2n+1)], which entails:

pn = 3−n
n

∏

i=1

2i + 2

2i + 1
= 3−n Γ(n + 2)Γ(3/2)

Γ(n + 1/2)
∼ 3n

√
πn

2
.

Let Mn be the number of positive paths of length n. Classically, we have
Mn ∼ 3n+1/2/

√
πn. The probability of reaching length n is therefore:

pnMn →
√

3

2
.

This means that we have a more than 86% chance of succeeding in the first try.
In the Schröder case, we have, by Lemma 6, pn = pn−1r[1 + 1/(n + r)] if n

is odd and pn = pn−1r if n is even. Therefore, we have:

pn = rn

⌈n/2⌉
∏

i=1

2i + r

2i− 1 + r
∼ rn

√

n/2
Γ

(

1+r
2

)

Γ
(

1 + r
2

) .
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Let Sn be the number of positive paths of length n. Using the estimate Sn ∼
2−3/4/(rn+1

√
πn), the probability of reaching at least length n is:

pnSn + pnrSn−1 →
21/4

√
π

Γ
(

√
2

2

)

Γ
(

1+
√

2

2

)

.

Thus, we have a more than 94% chance of succeeding in the first try.
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