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Abstract

We consider the conjugation-action of an arbitrary standard parabolic subgroup
of the symplectic or the orthogonal group on the variety of nilpotent complex el-
ements of nilpotency degree 2 in its Lie algebra. By translating the setup to a
representation-theoretic context in the language of a symmetric quiver, we show
that these actions admit only a finite number of orbits. We specify systems of rep-
resentatives for the orbits for each parabolic in a combinatorial way by so-called
(enhanced) symplectic/orthogonal oriented link patterns and deduce information
about numerology and dimensions. Our results are restricted to the nilradical,
then.

1 Introduction

Let G be a classical complex group of rank n. Then G is either the general linear group
GLn(K) or the symplectic group SP2l(K), where n = 2l or the orthogonal group On(K),
where K = C. Let g be the corresponding Lie algebra.

The study of the adjoint action of (subgroups of) G on g and numerous variants thereof
is a well-established and much considered task in algebraic Lie theory. Employing
methods of geometric invariant theory, a classical topic is the study of orbits and their
closures, which is also known as the vertical problem [10].

One famous example of a classification problem alike is the study of GLn-conjugation
(or SLn-conjugation, this doesn’t make a difference) on the variety of complex matrices
of square–size n. A complete system of representatives up to conjugation is given by
the Jordan canonical form [9] which dates back to the 19th century. This system of
representatives is given by continuous parameters, the eigenvalues of the matrix, and
discrete parameters. In order to determine the latter, it suggests itself to restrict the
action to the nilpotent cone, namely to GLn-conjugation on the set of nilpotent matrices.
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The number of conjugacy classes of nilpotent matrices is finite and can be described
combinatorially by partitions of n.

One generalization of this setup is obtained by restricting the acting group from G to
parabolic subgroups P ⊆ G. In particular, the Borel subgroup B is considered, then,
and the question about a variety admitting only finitely many orbits is closely related
to the concept of so-called spherical varieties [5]. One example of a parabolic action
can be found in [8], where Hille and Röhrle prove a finiteness criterion for the number
of orbits of parabolic conjugation on the unipotent radical of g.

Another adaption of the above setup is given by restricting the nilpotent cone N of
nilpotent matrices to certain subvarieties. For example, Melnikov parametrizes the
Borel-orbits in the variety of 2-nilpotent elements in the nilradical n of g = Lie(GLn(K))
in [12] which is inspired by the study of orbital varieties. A parametrization in the sym-
plectic setup ias published by Barnea and Melnikov in [2].

In this article, we consider the algebraic subvarietyN(2) of 2–nilpotent elements of the
nilpotent cone of g, namely

N(2) = N(2,G) = {x ∈ g| x2 = 0}.

Every parabolic subgroup P of G acts on N(2). It is known that the number of orbits
is always finite, since Panyushev shows finiteness for the Borel-action in [15]. In case
G = GLn(K), a parametrization of the P-orbits and a description of their degenerations
is given in [4] and [3] for each parabolic subgroup P ⊂ G.

Our first goal in this article is to prove in a different manner that there are only finitely
many P-orbits inN(2) for the remaining classical groups, that is, for types B, C and D.
We approach the problem in a way closely related to [4] from a quiver-theoretic point of
view - but instead of translating to the representation variety of a quiver with relations
of a special dimension vector, we translate the orbits to certain (sets of) representations
of a symmetric quiver with relations of a fixed dimension vector. In this setup we show
that there are only finitely many of the latter.

Our second goal is to parametrize all orbits explicitly. The approach via a symmetric
quiver makes it possible to classify the orbits by representations, and thus, by com-
binatorial data. We are able to calculate the dimensions of the orbits by means of
representation theoretic methods. In the last section, we restrict our results to the ac-
tion of P on the nilradical n(2) of 2-nilpotent upper-triangular matrices in g and obtain
complete parametrizations, here.

Afterwards, we restrict our results to the nilradical n and obtain parametrizations of
parabolic orbits in N(2) ∩ n. The parametrization coincides with the parametrization
by so-called symplectic link patterns of [2] in the symplectic case, even though the
methods used to prove it are different.

Acknowledgments: The authors would like to thank Giovanna Carnovale for her input
concerning the results and methods of this work. Furthermore, the first author thanks
Martin Bender for discussions about Lie-theoretical background.
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2 Classical groups and Lie algebras

Let K be the field of complex numbers K := C and let n be an integer. We consider the
complex classical groups, that is, the general linear group GLn := GLn(K), the sym-
plectic group SPn := SPn(K), whenever n = 2l for some integer l, and the orthogonal
group On := On(K). The corresponding Lie algebras are denoted by gln := gln(K),
spn := spn(K) and on := on(K).

In general, given a vector space V endowed with a non-degenerate bilinear form 〈−,−〉,
let us denote by Sym(V) the group of symmetries of the vector space V which preserve
〈−,−〉|V×V . Then Sym(V) equals either the symplectic group SP(V) or the orthogonal
group O(V), depending on whether (V, 〈−,−〉) is symplectic or orthogonal). We define
sym(V) := Lie(Sym(V)).

Let l be an integer, then we denote by J = Jl the l × l anti-diagonal matrix with every
entry on the anti-diagonal being 1:

Jl =


0 1

1 0


It is easy to see (and well–known) that J−1 = J and that the conjugate J TAJ by J of the
transpose TA of a matrix A ∈ Kl×l is given by "the transpose of A with respect to the

anti-diagonal". For example, for l = 2, given A =

[
a b
c d

]
:

J TAJ =

[
0 1
1 0

] [
a c
b d

] [
0 1
1 0

]
=

[
d b
c a

]
.

We set
TA := J TAJ.

In this notation, it is easy to write down the elements of the symplectic and orthogonal
Lie algebras.

2.1 Symplectic group

Let V be an n = 2l–dimensional complex vector space. Let us fix a basis of V and a
bilinear form F = FV : V × V → K, F(v,w) = 〈v,w〉, associated with the matrix (still
denoted by F)

F =

[
0 Jl

−Jl 0

]
. (2.1)

The symplectic group SPn consists of those matrices A ∈ GLn which preserve this
bilinear form (i.e. 〈Av, Aw〉 = 〈v,w〉); in other words A satisfies the relation

TAFA = F.
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The Lie algebra spn of SPn consists of those matrices a ∈ gln which fulfill

TaF + Fa = 0. (2.2)

We write the matrix a into four l × l blocks a =

[
A B
C D

]
, so that condition (2.2)

translates into the following equations

a =

[
A B = TB

C = TC D = − TA

]
. (2.3)

In particular, spn has dimension l2 + l(l + 1) = l(n + 1). The intersection of spn with
the Borel subalgebra bn := bn(K) of upper-triangular matrices is a solvable subalgebra
of spn of dimension l(l + 1) = l2 + l. Since spn is a Lie algebra of type Cl, the number
of positive roots is l2 and the number of simple roots is l; we hence see that b(spn) :=
spn ∩ bn is a solvable subalgebra of maximal dimension and hence a Borel subalgebra.
Again, this is the advantage of working with the form F given by (2.1).

We will see in Subsection 4.1 that the same holds for the standard Borel subgroup B
of SPn which equals the intersection of the standard Borel subgroup of GLn with SPn.
In the same manner, the standard parabolic subgroups SPn are exactly given by the
intersections P ∩ SPn, where P are upper-block standard parabolic subgroups of GLn.

2.2 Orthogonal group

Let V be an n–dimensional complex vector space (where n can be even or odd). Let
us fix a basis of V and let us choose the non–degenerate bilinear form on V associated
with the matrix F = Jn. The orthogonal group On consists of those matrices A ∈ GLn

for which TAFA = F holds true. The Lie algebra on consists of those matrices a ∈ gln
satisfying (2.2) which translates into the relation

a = − Ta. (2.4)

In particular, on has dimension n(n−1)
2 . The intersection of on with the Borel subalgebra

bn of upper-triangular matrices, is a solvable subalgebra of on.

• If n = 2l, the dimension of such a solvable subalgebra is easily seen to be n(n−1)
2 −

l(l− 1) = l(2l− 1)− l(l− 1) = l2. Since on is a Lie algebra of type Dl, the number
of positive roots is l(l − 1) and the number of simple roots is l; we hence see that
b(on) := on∩bn is a solvable subalgebra of maximal dimension and hence a Borel
subalgebra.

• Similarly, if n = 2l + 1, the dimension of b(on) := on ∩ bn is easily seen to be
n(n−1)

2 − (l(l − 1) + l) = (2l + 1)l − l2 = l2 + l. Since on is a Lie algebra of type Bl,
the number of positive roots is l2 and the number of simple roots is l; we hence
see that b(on) is a solvable subalgebra of maximal dimension and hence a Borel
subalgebra.
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This is the advantage of working with the form F given by Jn.

In the same manner as in the symplectic case, we will see in Subsection 4.1 that the
standard Borel subgroup B of On equals the intersection of the standard Borel subgroup
of GLn with On. Furthermore, the standard parabolic subgroups of On are exactly given
by the intersections P ∩ On, where P is an arbitrary upper-block standard parabolic
subgroup of GLn.

3 Representation theory of (symmetric) quivers

We include basic knowledge about the representation theory of finite-dimensional al-
gebras via finite quivers [1] before we introduce the notion of a symmetric quiver and
discuss its representations. This theoretical background will be necessary later on to
prove our main results.

A finite quiver Q is a directed graph Q = (Q0,Q1, s, t), such that Q0 is a finite set of
vertices and Q1 is a finite set of arrows, whose elements are written as α : s(α)→ t(α).
The path algebra KQ is defined as the K-vector space with a basis consisting of all
paths in Q, that is, sequences of arrows ω = αs . . . α1, such that t(αk) = s(αk+1) for all
k ∈ {1, . . . , s − 1}; formally included is a path εi of length zero for each i ∈ Q0 starting
and ending in i. The multiplication is defined as the concatenation of paths ω = αs...α1
and ω′ = βt...β1, that is,

ω · ω′ =

{
αs...α1βt...β1, if t(βt) = s(α1);
0, otherwise.

Let rad(KQ) be the path ideal of KQ, that is, the (two-sided) ideal generated by all
paths of positive lengths. An ideal I ⊆ KQ is called admissible if there exists an integer
s with rad(KQ)s ⊂ I ⊂ rad(KQ)2. If this is the case for an ideal I, then the algebra
KQ/I is finite-dimensional.

We denote by rep(KQ) the abelian K-linear category of all representations of Q (which
is equivalent to the category of KQ-modules). In more detail, the objects are given as
finite-dimensional (K-)representations of Q which are given by tuples

((Mi)i∈Q0 , (Mα : Mi → M j)(α : i→ j)∈Q1 ),

where the Mi are K-vector spaces, and the Mα are K-linear maps. A morphism of
representations M = ((Mi)i∈Q0 , (Mα)α∈Q1 ) and M′ = ((M′i )i∈Q0 , (M′α)α∈Q1 ) consists of a
tuple of K-linear maps ( fi : Mi → M′i )i∈Q0 , such that f jMα = M′α fi for every arrow
α : i→ j in Q1.

Let us denote by rep(KQ/I) the category of representations of Q bound by I: For a
representation M and a path ω in Q as above, we denote Mω = Mαs · . . . ·Mα1 . A repre-
sentation M is called bound by I, if

∑
ω λωMω = 0 whenever

∑
ω λωω ∈ I. The category

rep(KQ/I) is equivalent to the category of finite-dimensional KQ/I-representations.

Let M be a KQ/I-representation, let Bi ⊆ εiM be a K-basis of εiM and let B be the
disjoint union of these sets Bi. We define the coefficient quiver Γ(M) = Γ(M, B) of M
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with respect to the basis B to be the quiver with exactly one vertex for each element of
B, such that for each arrow α ∈ Q1 and every element b ∈ Bs(α) we have

Mα(b) =
∑

c∈Bt(α)

λαb,cc

with λαb,c ∈ K. For each λαb,c , 0 we draw an arrow b → c with label α. Thus, the
quiver reflects the coefficients corresponding to the representation M with respect to
the chosen basis B.

Given a representation M ∈ rep(KQ), its dimension vector dimM ∈ NQ0 is defined by
(dimM)i = dimk Mi for i ∈ Q0. Given a fixed dimension vector d ∈ NQ0, we denote
by rep(KQ/I, d) the full subcategory of rep(KQ/I) which consists of representations of
dimension vector d.

For certain finite-dimensional algebras A := KQ/I, a convenient tool for the classi-
fication of the indecomposable representations (up to isomorphism) is the Auslander–
Reiten quiver Γ(A) of rep(A). Its vertices [M] are given by the isomorphism classes
of indecomposable representations of rep(A); the arrows between two such vertices
[M] and [M′] are parametrized by a basis of the space of so-called irreducible maps
f : M → M′.

By defining the affine space Rd(KQ) :=
⊕

α : i→ j HomK(Kdi ,Kd j ), one realizes that
its points m naturally correspond to representations M ∈ rep(KQ, d) with Mi = Kdi for
i ∈ Q0. Via this correspondence, the set of such representations bound by I corresponds
to a closed subvariety Rd(KQ/I) ⊂ Rd(KQ).

The algebraic group GLd =
∏

i∈Q0
GLdi acts on Rd(KQ) and on Rd(KQ/I) via base

change, furthermore the GLd-orbits OM of this action are in bijection to the isomor-
phism classes of representations M in rep(KQ/I, d).

3.1 Symmetric quivers

We introduce the notion of symmetry for a finite quiver and obtain an additional datum
as follows: A symmetric quiver is a pair (Q, σ) where Q is a finite quiver and σ :
Q0 ∪ Q1 → Q0 ∪ Q1 is an involution, such that σ(Q0) = Q0, σ(Q1) = Q1 and every

arrow i α // j is sent to the arrow σ( j)
σ(α) //σ(i) .

In this article, we represent the action of σ by adding the symbol ∗. For example,

1 a // 2 b // 3 b∗ // 2∗ a∗ // 1∗

is the symmetric quiver (Q, σ) with underlying quiver Q being equioriented of type A5,
such that σ acts on Q by sending an elment x ∈ Q0 ∪ Q1 to x∗; the vertex 3 is fixed by
σ.

A symmetric (K-)representation of a symmetric quiver (Q, σ) is a representation M =

({Mp}p∈Q0 , {Mα}α∈Q1 ) in rep(KQ) endowed with a non–degenerate bilinear form 〈−,−〉 :⊕
p∈Q0

Mp ×
⊕

q∈Q0
Mq → K, such that:
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(i) The equation
〈−,−〉|Mp×Mq = 0, (3.1)

holds true, unless q = σ(p);

(ii) The equation
〈Mα(v),w〉 + 〈v,Mσ(α)(w)〉 = 0 (3.2)

holds true for every v ∈ Mp, w ∈ Mσ(q) and for every arrow p α // q ∈ Q1.

A representation (M, 〈−,−〉) of a symmetric quiver (Q, σ) is called symplectic, if the
bilinear form is skew–symmetric and it is called orthogonal, if the bilinear form is
symmetric.

Let (Q, σ) be a symmetric quiver and let I be an ideal of KQ, such that σ · I ⊂ I. The
involution σ induces an involution on the algebra A := KQ/I and we can consider
symplectic and orthogonal representations of the algebra A: these are symplectic or
orthogonal representations of A which are annihilated by the ideal I. We denote the
categories of symmetric, symplectic and orthogonal representations by srep(A) and
make sure that it will always be clear from the context, which one is meant. The
restriction to the full subcategory of representations of a fixed dimension vector d is
denoted by srep(A, d). Analogously to the non-symmetric case, we associate a variety
SRd(A) to this category.

4 Parabolic actions and symmetric quivers

Let G ∈ {SPn,On} where n = 2l in the symplectic case and n ∈ {2l, 2l + 1} in the
orthogonal case for some integer l ∈ N and let g be the corresponding symplectic or
orthogonal Lie algebra. Let P be a standard parabolic subgroup of G, that is, a subgroup
of G which contains the standard Borel subgroup; its actual structure will be examined
in Subsection 4.1.

We consider the algebraic variety N(2) of 2–nilpotent elements of g, that is,

N(2) = N(2,G) = {x ∈ g| x2 = 0}.

Each parabolic subgroup P acts on N(2) via conjugation and our aim in this article is
to prove by means of symmetric quiver representations that the action admits only a
finite number of orbits. We thereby specify an explicit parametrization of the orbits.

4.1 Parabolic subgroups

Given a vector space V we denote its linear dual by V∗ = { f : V → K linear }. If V is
endowed with a given non–degenerate form 〈−,−〉V , then we identify V and its dual V∗

via the canonical map v 7→ 〈v,−〉V . Given another vector space W with a bilinear form
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〈−,−〉W and a linear map f : V → W, there exists a unique linear map f ∗ : W∗ → V∗

such that 〈 f (v),w〉W = 〈v, f ∗(w)〉V , for every v ∈ V and w ∈ W.

We often work in coordinates. To do so, we fix a basis of V and a basis of W. Let A be
the matrix representing the linear map f : Vp → Vq in these bases. We usually denote
by FV the matrix associated with a bilinear form on a vector space V with respect to
some basis. The matrix A∗ representing f ∗ is given by

A∗ = F−1
W AFV (4.1)

Let (V, 〈−,−〉) be a symmetric representation of a symmetric quiver (Q, σ). Let us fix
a basis of V and let us denote by F the matrix representing the form 〈−,−〉 on V . Our
default choice of F has been mentioned above: if V is symplectic, then F is represented

by the matrix
[

0 Jl

−Jl 0

]
, if V is orthogonal, then F = Jn.

The non–degenerate form 〈−,−〉 on V induces a non–degenerate form 〈−,−〉|Vp×Vσ(p)

for every p ∈ Q0; we denote by Fp the corresponding matrix. An automorphism ψ =

(ψp)p∈Q0 ∈
∏

p∈Q0
GL(Vp) of (V, 〈−,−〉) is an automorphism of the quiver representation

V , such that for every p ∈ Q0 the following diagram

Vp
ψp //

Fp

77
Vp

Fp // Vσ(p)
ψσ(p) // Vσ(p)

commutes. In other words, for every v ∈ Vp and w ∈ Vσ(p)

〈ψp(v), ψσ(p)(w)〉 = 〈v,w〉.

If p , σ(p), then ψσ(p) = Tψ−1 and if p = σ(p), then ψp belongs to Sym(Vp).

One of the advantages of endowing Vp with the bilinear form represented by the matrix
Jn is the following lemma:

Lemma 4.1. The intersection of Sym(Vp) with the Borel subgroup B of GL(Vp) of
upper-triangular matrices is a Borel subgroup BSym of Sym(Vp). This fact generalizes
to parabolics: the standard parabolic subgroups of Sym(Vp) are given by the standard
parabolics of GL(Vp), intersected with Sym(Vp).

Thus, every standard parabolic subgroup P is determined by its block sizes, that is,
(b1, ..., bk, bk, ..., b1) for n = 2l and (b1, ..., bk, 1, bk, ..., b1) for n = 2l + 1. We set bP :=
(b1, ..., bk) and call this vector the block size vector of P.

We notice that by having fixed the non–degenerate bilinear form on V either to be
symmetric or to be skew–symmetric, forces all the groups Sym(Vp) to be all orthogonal
or all symplectic. There is a more general construction due to Shmelkin [17] that allows
to have both types of groups, but we do not need to work in this generality in this paper.
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4.2 Stabilizers of standard flags

In order to approach our main goal, we translate the setup to the representation theory
of a symmetric quiver. To do so, we begin by discussing stabilizers of (incomplete)
standard flags. Let us look at an example first.

Example 4.2. Let us consider the quiver Q2

1 a // 2 b // 3 b∗ //

α

��
2∗ a∗ // 1∗

and the algebraA(2) = KQ/(α2, b∗b). Let us consider theA-representation M0 given
by

1 a // 2 b // 3

2 b // 3

3 b∗ // 2∗

3 b∗ // 2∗ a∗ // 1∗

(4.2)

and theA(2)-representation M′0 given by

1 a // 2 b // 3

2 b // 3

3

3 b∗ // 2∗

3 b∗ // 2∗ a∗ // 1∗

(4.3)

In view of (3.2), in order for M to be symmetric, the arrows a, b of Q2 must act by 1
and the arrows a∗, b∗ must act as −1.

The symmetric structure of M0 (that is, the choice of a non-degenerate bilinear form)
is induced by the symmetric structure on the vector space at vertex 3. In this 4–
dimensional vector space we consider the bilinear form given by the matrix

0 0 0 1
0 0 1 0
0 ±1 0 0
±1 0 0 0


(the sign ± depends if we work with a symplectic (-) or an orthogonal (+) representa-
tion).

The symplectic space Endsym(M0) has dimension 6 and can be represented by the ma-
trix 

a c f g
0 b e f
0 0 b c
0 0 0 a

 .

9



In orthogonal type, it is 4–dimensional and represented by
a c f 0
0 b 0 − f
0 0 −b −c
0 0 0 −a

 .
In a similar way, we proceed for the orthogonal group O5 and look at the representation
M′0. Then, as above, the stabilizer is given by

a c e f 0
0 b d 0 − f
0 0 0 −d −e
0 0 0 −b −c
0 0 0 0 −a


We have hence found the well known fact that the stabilizer of the complete standard
flag is the Borel subgroup in both the symplectic and orthogonal setup.

Clearly, Example 4.2 generalizes as follows, the proof is straight forward.

Lemma 4.3. Let P be a parabolic subgroup of G and let MP be the (incomplete)
standard flag corresponding to it. Then stabG(MP) � P. In particular, if M0 is the
complete standard flag, then stabG(M0) � B as in Example 4.2.

4.3 Translation

The translation from P–orbits in N(2) to the representation theory of a symmetric
quiver is done precisely as in [4] and is based on a theorem on associated fibre bundles
which we recall for the convenience of the reader. Its origin can be found in [16].

Theorem 4.4. Let G be an algebraic group, let X and Y be G–varieties, and let π :
X → Y be a G–equivariant morphism. Assume that Y is a single G–orbit, Y = Gy0.
Define H := StabG(y0) = {g ∈ G| g · y0 = y0} and F := π−1(y0). Then X is isomorphic to
the associated fibre bundle G ×H F, and the embedding ι : F → X induces a bijection
between H–orbits in F and G–orbits in X preserving orbit closures.

Corollary 4.5. With the notation of Theorem 4.4, given a point p ∈ F, we have
stabH(p) = stabG(p)

Proof. Since H is a subgroup of G, StabH(p) ⊆ StabG(p); viceversa, since H · p =

G · p ∩ F, the reversed inclusion also holds. �

Let P be a standard parabolic subgroup of G of block size vector bP = (b1, ..., bk) as in
Subsection 4.1.
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We defineA(k) to be the algebra given by the quiver

Qk : 1
a1 // 2

a2 // · · · ak−1 // k
ak // ω

α

�� a∗k // k∗
a∗k−1 // · · · a∗2 // 2∗

a∗1 // 1∗

with relations α2 = a∗kak = 0. Notice that the 2k vertices of Qk are colored; the choice
of the color will be clear in a few lines. We consider the dimension vector

dP = ((dP)1, ..., (dP)k, (dP)ω, (dP)k∗ , ..., (dP)1∗ ) = (b1, b1 + b2, · · · , l, n, l, · · · , b2 + b1, b1)

and the variety SRdP (A(k)). If the parabolic subgroup is clear from the context, we
may abbreviate (dP)i = di for 1 ≤ i ≤ k and (dP)ω = dω.

This variety is acted upon by the group

GLsym(P) := GL(d1) × GL(d2) × · · · × GL(l) × Sym(n)

where Sym(n) denotes either the symplectic or the orthogonal group on a vector space
of dimension n. Inside the variety SRdP (A(k)) we consider the open subset SRdP (A(k))0

corresponding to the full subcategory srep(A(k),dP)0 of srep(A(k),dP) of those repre-
sentations whose linear maps associated with the arrows ai and a∗i have maximal rank.

In view of Theorem 4.4, we can now prove the following key lemma, analogous to [3,
Lemma 3.1].

Lemma 4.6. There is a bijection between isoclasses of symplectic/orthogonal A(k)–
modules in srep(A(k),dP)0 and symplectic/orthogonal P–orbits inN(2). This bijection
respects orbit closure relations and dimensions of stabilizers.

Proof. Let Q̃k be the quiver obtained from Qk by removing the loop α and let Ã(k)
be the corresponding symmetric algebra without relations. By defining SRdP (Ã(k))0

analougously to SRdP (A(k))0, we see that this variety is acted upon transitively by
GLsym(P) and we denote the generating point by M0, which is a (non-)complete stan-
dard flag. The embedding Ã(k) ⊂ A(k) induces a GLsym(P)-equivariant projection

π : SRdP (A(k))0 // // SRdP p(Ã(k))0

which is just given by forgetting the linear map associated with the loop α. The fiber
of π equals the variety N(2).

The stabilizer of the symplectic/orthogonal representation M0 is the parabolic subgroup
P of the symplectic/orthogonal group, see Subsection 4.2. Thus, Theorem 4.4 proves
the claim. �

We are hence left to classify the isoclasses of symplectic/orthogonal representations of
A(k) of dimension vector dP with maximal rank maps, which in view of Remak–Krull–
Schmidt theorem is analogous to classifying the unique decompositions of elements of
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srep(A(k),dP)0 into indecomposable symplectic/orthogonal representations (up to iso-
morphism). Let M and M′ be two points of srep(A(k),dP)0 lying in different orbits.
Since π(M) = π(M′) under the morphism of the proof of Lemma 4.6, the only differ-
ence beetween them is given by the action of the loop α. This means that the only part
of the coefficient quivers of M and M′ which differs is the subquiver which represents
the loop α.

5 Representation theory ofA(k)

In this section, we look at the (symmetric) representation theory of the algebra A(k)
corresponding to the symmetric quiver Qk. With these considerations, we are able to
prove explicit parametrizations of the parabolic orbits in N(2) in Section 6.

5.1 Indecomposable symmetricA(k)–modules

The following proposition follows from [6, Section 3] by noticing that there are no
band modules.

Proposition 5.1. The algebraA(k) is a string algebra of finite representation type. In
particular, the indecomposable A(k)–modules are string modules and their isoclasses
are parametrized by words with letters in the arrows of Qk and their inverses, avoiding
relations.

Let us give names to the indecomposableA(k)–modules (where k + 1 := ω).

Mi j: For 1 ≤ i ≤ j ≤ k + 1, we denote by Mi j the string module associated with
the word ai · · · a j−1, i.e. it is the indecomposable module supported on vertices
i, i + 1, · · · , j; its coefficient quiver is given by

i // i + 1 // · · · // j − 1 // j

M∗i j: For 1 ≤ i ≤ j ≤ k + 1, we denote by M∗i j the string module associated with
the word a∗j−1 · · · a∗i , i.e. it is the indecomposable module supported on vertices
j∗, ( j − 1)∗, · · · , i∗; its coefficient quiver is given by

j∗ // ( j − 1)∗ // · · · // (i + 1)∗ // i∗

D+
i j: For 1 ≤ i ≤ j ≤ k + 1 we denote by D+

i j the indecomposable associated with the
word aiai+1 · · · akαa−k a−k−1 · · · a−j ; its coefficient quiver is given by

i // i + 1 // · · · // j // j + 1 // · · · // k // ω

��
j // j + 1 // · · · // k // ω

12



D−i j: For 1 ≤ i < j ≤ k + 1, we denote by D−i j the indecomposable associated with the
word aiai+1 · · · akα

−a−k a−k−1 · · · a−j ; its coefficient quiver has the following form

i // i + 1 // · · · // j // j + 1 // · · · // k // ω

j // j + 1 // · · · // k // ω

OO

C+
i j: For 1 ≤ i ≤ j ≤ k + 1 we denote by C+

i j the indecomposable module associated
with the word (a∗j)

−(a∗j−1)− · · · (a∗k)−α a∗ka∗k−1 · · · a∗i ; its coefficient quiver is given
by

ω // k∗ // · · · // j∗ // ( j − 1)∗ // · · · // (i + 1)∗ // i∗

ω

OO

// k∗ // · · · // j∗

C−i j: For 1 ≤ i < j ≤ k + 1 we denote by C−i j is the indecomposable associated with
the word (a∗j)

−(a∗j−1)− · · · (a∗k)−α−a∗ka∗k−1 · · · a∗i ; its coefficient quiver is given by

ω

��

// k∗ // · · · // j∗ // ( j − 1)∗ // · · · // (i + 1)∗ // i∗

ω // k∗ // · · · // j∗

Z+
i j: For 1 ≤ i, j ≤ k we denote by Z+

i j the indecomposable associated with the word
aiai+1 · · · akαa∗k · · · a∗j; its coefficient quiver is given by

i // i + 1 // · · · // k // ω

��
ω // k∗ // · · · // j∗

Z−i j: For 1 ≤ i, j ≤ k we denote by Z−i j the indecomposable associated with the word
aiai+1 · · ·αkα

−a∗k · · · a∗j; its coefficient quiver is given by

i // i + 1 // · · · // k // ω

ω

OO

// k∗ // · · · // j∗

Remark 5.2. All the modules above are non–isomorphic to each other, apart from
D+

k+1,k+1 ' C+
k+1,k+1 and Mk+1,k+1 ' M∗k+1,k+1.
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We consider the involution σ of Qk, which sends every vertex i to i∗ and every arrow
a to a∗ and fixes ω and α (here we use the convention that (−)∗∗ = (−)). Then (Qk, σ)
is a symmetric quiver and we can consider symmetric representations of A(k). The
involutionσ induces a duality on the category of representations ofA(k) that we denote
by ∇ (as in [7]).

Convention 5.3. Given an indecomposableA(k)–module M, we need to choose care-
fully the linear maps. Since we often work with its coefficient quiver, we fix one and for
all a convention about these:
The arrows of the coefficient quiver of M colored with a1, · · · , ak act as 1, while the
arrows colored with a∗k, · · · , a∗1 act as −1.

The two arrows ωi
α1 // ω j and ω j∗

α2 // ωi∗ colored with ω (if they exist) have
to satisfy the following conditions.

• For V to be orthogonal, α1 acts as 1 and α2 as −1.

• For V to be symplectic, if 1 ≤ i, j ≤ n or 1 ≤ i∗, j∗ ≤ n, then α1 and α2 both act
as 1, otherwise α1 acts as 1 and α2 as −1.

Proposition 5.4. With the above notation, we have: ∇Mi, j ' M∗i, j, ∇D+
i, j ' C+

i, j, ∇D−i, j '
C−i, j, ∇Z+

i, j ' Z+
j,i, ∇Z−i, j ' Z−j,i. In particular, ∇Mk+1,k+1 ' Mk+1,k+1 and ∇D+

k+1,k+1 '
D+

k+1,k+1

Proof. Let M be an indecomposable module as listed above. The coefficient quiver
of the dual ∇M of M is obtained from the coefficient quiver of M by reversing all the
arrows, changing their sign and then making a reflection through the middle vertex
ω = k + 1. �

Thus, we obtain the following classification lemma.

Lemma 5.5. The symplectic indecomposable representations ofA(k) are Z±ii , Mi j⊕M∗i j,
D±i j ⊕C±i j (for (i, j) , (k + 1, k + 1)), Dk+1,k+1 and Z±i j ⊕ Z±ji (for i , j).

The orthogonal indecomposable representations ofA(k) are Mi j⊕M∗i j, D±i j⊕C±i j, Z±i j⊕Z±ji
and Mk+1,k+1.

In particular, there is only one indecomposable A(k)–modules which can be endowed
with an orthogonal structure.

Remark 5.6. The reason why an indecomposable A(k)–module with symmetric di-
mension vector cannot be orthogonal, except for the case that it is one–dimensional,
is the following: let M be such a (at least two–dimensional) module and let Mα be
the linear map associated with the loop α. Such a map is a 2–nilpotent endomorphism
of an orthogonal two–dimensional vector space. In order for M to be orthogonal, Mα

must lie in the Lie algebra o2 of O2 and hence it must be zero, contradicting the fact
that M is indecomposable.
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For example, the following representation:

1 1 // 2 1 // 3 1 // 4 1 // ω

1

zz

2 1 // 3 1 // 4 1 // ω
1xx3 1 // 4 1 // ω

4 1 // ω

b

&&

ω
−1 // 4∗

ω
−1 &&

−1 // 4∗ −1 // 3∗

ω
−1 // 4∗ −1 // 3∗ −1 // 2∗

ω
−1 // 4∗ −1 // 3∗ −1 // 2∗ −1 // 1∗

is symplectic if b = 1 and orthogonal if b = −1.

5.2 Auslander–Reiten quiver ofA(k)

The algebra A(k) is a string algebra of finite representation–type, that is, it does only
admit a finite number of isomorphism classes of indecomposable representations. Its
Auslander–Reiten quiver can be obtained in several ways. We prefer to follow the
treatment of Butler–Ringel [4] and get the following result.

Proposition 5.7. The following are the Auslander–Reiten sequences ofA(k):

(i) Auslander–Reiten sequences starting with Mi j:

0 // M1,ω // Z−1,1 // M∗1,ω // 0 ,

0 // Mi,ω // Mi−1,ω ⊕ Z−i,1 // Z−i−1,1
// 0 , if i > 1,

0 // Mi, j // Mi, j−1 ⊕ Mi−1, j // Mi−1, j−1 // 0 , if i > 1 and j ≤ k,

0 // Mi,i = S i // Mi−1,i // Mi−1,i−1 // 0 , if i = j > 1.

(ii) Auslander–Reiten sequences starting with M∗i j:

0 // M∗1, j // M∗2, j ⊕ M∗1, j+1
// M∗2, j+1

// 0 , if j ≤ k − 1,

0 // M∗1,k // M∗2,k ⊕ Pω
// C+

1,k
// 0 ,

0 // M∗1,ω // M∗2,ω ⊕C1,1 // C−1,2 // 0 ,

0 // M∗i,i = S i∗ // M∗i,i+1
// M∗i+1,i+1

// 0 , if i < k,

0 // M∗k,k = S k∗ // C+
1,k

// C+
1,ω

// 0 ,

15



0 // S ω
// Mk,ω ⊕C−1,ω // Z−k,1 // 0 ,

0 // M∗i,ω // M∗i+1,ω ⊕C−1,i // C−1,i+1
// 0 , if 1 < i < k,

0 // M∗k,ω // S ω ⊕C−1,k // C−1,ω // 0 ,

0 // M∗i, j // M∗i+1, j ⊕ M∗i, j+1
// M∗i+1, j+1

// 0 , if i > 1 and j < k.

(iii) Auslander–Reiten sequences starting with D+
i j:

0 // D+
1,ω

// D+
1,k

// Mk,k = S k // 0 ,

0 // D+
i,ω

// D+
i−1,ω ⊕ D−i,k // D+

i−1,k
// 0 , if 1 < i ≤ k,

0 // Di,i // D+
i−1,i ⊕ D−i−1,i

// Di−1,i−1 // 0 , if 1 < i ≤ ω

0 // D+
1, j

// D+
1, j−1 ⊕ M j,k // M j−1,k // 0 , if 1 < j ≤ k,

0 // D+
i, j

// D+
i−1, j ⊕ D+

i, j−1
// D+

i−1, j−1
// 0 , if 1 < i < j ≤ k.

(iv) Auslander–Reiten sequences starting with D−i j:

0 // D−1,ω // D−1,k ⊕ S ω
// Mk,ω // 0 ,

0 // D−i,ω // D−i−1,ω ⊕ D−i,k // D−i−1,k
// 0 , if 1 < i ≤ k,

0 // D−1, j // D−1, j−1 ⊕ M j,ω // M j−1,ω // 0 , if 1 < j ≤ k,

0 // D−i, j // D−i−1, j ⊕ D−i, j−1
// D−i−1, j−1

// 0 , if 1 < i ≤ j ≤ k.

(v) Auslander–Reiten sequences starting with C+
i j:

0 // C+
1,ω

// Z+
k,1 = Pk ⊕C+

2,ω
// Z+

k,2
// 0 ,

0 // C+
i,ω

// Z+
k,i ⊕C+

i+1,ω
// Z+

k,i+1
// 0 , if 1 ≤ i ≤ k,

0 // C+
1,1 = Pω

// C+
1,2 ⊕C−1,2 // C2,2 // 0 ,

0 // C+
i, j

// C+
i+1, j ⊕C+

i, j+1
// C+

i+1, j+1
// 0 , if 1 < i ≤ j ≤ n.

(vi) Auslander–Reiten sequences starting with C−i j:

0 // C−i,ω // C−i+1,ω ⊕ Z−k,i // Z−k,i+1
// 0 , if 1 ≤ i < k,

0 // C−k,ω // Cω,ω ⊕ Z−k,k // D−k,ω // 0 ,

0 // C−i, j // C−i+1, j ⊕C−i, j+1
// C−i+1, j+1

// 0 , if 1 < i ≤ j ≤ k.
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(vii) Auslander–Reiten sequences starting with Z+
i j (note that Z+

1 j = I j∗ ):

0 // Z+
i,1 = Pi // Z+

i−1,1 ⊕ Z+
i,2

// Z+
i−1,2

// 0 , if i > 1,

0 // Z+
i, j

// Z+
i−1, j ⊕ Z+

i, j+1
// Z+

i−1, j+1
// 0 , if 1 < i, j ≤ k,

(viii) Auslander–Reiten sequences starting with Z−i j (note that Zi,ω = Di,ω):

0 // Z−1, j // Z−1, j+1 ⊕ M∗j,ω // M∗j+1,ω
// 0 ,

0 // Z−i, j // Z−i, j+1 ⊕ Z−i−1, j
// Z−i−1, j+1

// 0 , if i > 1.

The resulting Auslander–Reiten quiver of A(k) has the shape of a "christmas tree"; its
bottom part consists of pre–projective modules and its top consists of k + 1 periodic
τ–orbits. The duality ∇ acts as a reflection through the vertical line formed by the self–
dual A(k)–modules Z±ii and D+

k+1,k+1. Figure 1 shows the Auslander–Reiten quiver of
A(3).
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Figure 1: Auslander–Reiten quiver ofA(3)
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6 Parametrization of orbits

It is known that every parabolic acts finitely on the varietyN(2): Panyushev shows that
the Borel subgroup acts finitely onN(2) in [15]. We aim to prove explicit parametriza-
tions of the parabolic orbits by means of symmetric representations and, thus, in a very
combinatorial way. This way, we hope to be able to calculate e.g. degenerations in a
follow-up article by means of the used representation-theoretic methods. We begin by
discussing symplectic orbits in Subsection 6.1 and deduce orthogonal orbits in Subsec-
tion 6.2. In each type, we start by discussing the Borel orbits and generalize the results
to parabolic orbits afterwards.

6.1 Orbits in type C

Let G = SPn, where n = 2l for some integer l.

Parametrization of Borel-orbits

We denote by B the standard Borel subgroup of G and consider the algebra A(l) and
its symmetric representations as discussed in 5. Due to Lemma 4.6, we are interested
in symplectic representations of dimension vector dB = (1, 2, ..., l, 2l, l, ..., 2, 1).

Let us begin with an example.

Example 6.1. Figure 2 shows the complete list of isoclasses of symplectic representa-
tions in srep(A(2),dB)0, where n = 4 = 2l and B is the Borel subgroup.

This observation leads us to the following definition.

Definition 6.2. A symplectic oriented link pattern (solp for short) of size l consists of a
set of 2l colored vertices 1, 2, · · · , l, 1∗, 2∗, · · · , l∗ together with a collection of oriented
arrows between these vertices, such that

SO1 if there is an arrow from vertex i to vertex j, then there is an arrow from vertex
j∗ to vertex i∗ (with the convention that s∗∗ = s);

SO2 every vertex is touched by at most one arrow;

SO3 there are no loops (that is, no arrows from a vertex to itself).

We denote by Solpl the set of solps of size l.
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M0 = (M13 ⊕ M∗13)

⊕(M23 ⊕ M∗23)

· // · // ·
· // ·
· // ·
· // · // ·

D+12 ⊕ ∇D+12 · // · // ·
tt· // ·
·
**
// ·

· // · // ·

D−12 ⊕ ∇D−12 · // · // ·
· // ·

jj

· // ·
·
44
// · // ·

Z+12 ⊕ ∇Z+12 · // · // ·
xx

· // ·
&&
· // ·
· // · // ·

Z−21 ⊕ ∇Z−21 · // · // ·
· // ·
·

ff

// ·
·

88

// · // ·
Z+11 ⊕ (M23 ⊕ M∗23) · // · // ·

}}

· // ·
· // ·
· // · // ·

Z−11 ⊕ (M23 ⊕ M∗23) · // · // ·
· // ·
· // ·
·

==

// · // ·
Z+22 ⊕ (M23 ⊕ M∗23) · // · // ·

· // ·
** · // ·
· // · // ·

Z−22 ⊕ (M23 ⊕ M∗23) · // · // ·
· // ·
·
44
// ·

· // · // ·
Z+22 ⊕ Z+11 · // · // ·

~~

· // ·
** · // ·
· // · // ·

Z−22 ⊕ Z−11 · // · // ·
· // ·
·
44
// ·

·

``

// · // ·
Z+22 ⊕ Z−11 · // · // ·

· // ·
** · // ·
· //

``

· // ·

Z−22 ⊕ Z+11 · // · // ·

~~

· // ·
·
44
// ·

· // · // ·

Figure 2: Isoclasses of symplectic representations in srep(A(2),dB)0

Example 6.3. The collection of solps of size 2 is given by

1

��
2 2

∗
1
∗

1 2

��
2
∗

1
∗

1
��
2 2

∗
��

1
∗

1

��
2

��
2
∗

1
∗

1

��
2

��
2
∗

1
∗

1 2 2
∗

1
∗��

1 2 2
∗��

1
∗

1 2
��

2
∗

1
∗




1 2 2

∗��
1
∗��

1 2 2
∗



1
∗��

1

��
2 2

∗


1
∗

1 2

��
2
∗

1
∗��

1 2 2
∗

1
∗

We obtain a parametrization of symplectic Borel-orbits in N(2).

Theorem 6.4. The B–orbits in the variety N(2) ⊆ spn are in bijection with the set
Solpl of solps of size l.

Proof. By Krull–Remak–Schmidt, there is an obvious bijection between the set of
solps of size l and the set of symplectic representations in srep(A(l),dB)0 up to iso-
morphism which maps an isomorphism class [M] of a symplectic representation M to
the subquiver of the coefficient quiver of M induced by Mα. By Lemma 4.6, the claim
follows. �

We can, thus, count the number of orbits.

Proposition 6.5. Let sl be the cardinality of Solpl. Then the sequence {sl} is deter-
mined by
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• s0 = 1,

• s1 = 3,

• sl = 3sl−1 + 4(l − 1)sl−2.

Proof. We divide the set Solpl into the subset of symmetric link patterns where vertex
1 is not touched by any arrow and its complement. �

The sequence 1, 3, 13, 63, 345, 2043, ... of numbers of slps is classified in OEIS as
A202837 [14].

Remark 6.6. For GLn, the oriented link patterns considered in [4] only have to satisfy
conditions S O2 and S O3, that is, the 2–nilpotency conditions. We hence see that solps
are special oriented link patterns as defined in [4]. This is not surprising; indeed the
following fact is known by [11]: if two symplectic elements are conjugate under the
Borel of GLn, then they are conjugate under the Borel of SPn, as well.

Generalization to parabolic orbits

Let us consider the action of a parabolic subgroup P ⊆ G of block sizes (b1, ..., bk) on
N(2). As before, we define combinatorial data in order to parametrize the orbits.

Definition 6.7. An enhanced symplectic oriented link pattern (esolp. for short) of size
k of type (b1, ..., bk) consists of a set of 2k colored vertices 1, 2, · · · , k, 1∗, 2∗, · · · , k∗
together with a collection of oriented arrows between these vertices. Denote by xi the
number of sources at vertex i and by yi the number of targets of arrows at vertex i. Then
the following conditions define an esolp:

ESO1 for two different vertices i, j with i , j∗, the number of arrows from i to j equals
the number of arrows from vertex j∗ to vertex i∗ (with the convention that s∗∗ =

s);

ESO2 for each vertex i, i∗: 0 ≤ bi − xi − yi = bi − xi∗ − yi∗ .

Note that loops are allowed here.

Theorem 6.8. There is a natural bijection between the set of P-orbits in N(2) ⊆ spn
and the set of esolps of size k and of type (b1, ..., bk).

Proof. In an analogue manner to Theorem 6.4, by Krull–Remak–Schmidt, there is a
bijection between the set of esolps of size k of type (b1, ..., bk) and the set of isoclasses
of symplectic representations of A(k) in srep(A(k),dP)0 which maps an isomorphism
class [M] of a symplectic representation M to the subquiver of the coefficient quiver
of M induced by Mα and then restricts the latter as follows: all vertices i ∈ {1, 2, ..., l}
which correspond to direct indecomposable summands M with Mi−1 = 0 but Mi , 0
are glued together to vertex i. All vertices i∗ ∈ {1∗, ..., l∗} which correspond to direct
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indecomposable summands M with M(i−1)∗ = 0 but Mi∗ , 0 are glued together to vertex
i∗. This way, we obtain 2k vertices and vizualize all given arrows at the smaller pattern.
In terms of representations, this means:

Indecomposable direct summand Multiplicity given by
Mi,k+1 ⊕ M∗i,k+1 bi − xi − yi

D+
i, j ⊕C+

i, j, where i ≤ j number of arrows i→ j
= number of arrows j∗ → i∗

D−i, j ⊕C−i, j, where i < j , k + 1 number of arrows j→ i
= number of arrows i∗ → j∗

Z+
i, j ⊕ Z+

j,i, where i , j number of arrows i→ j∗

= number of arrows j→ i∗

Z−i j ⊕ Z−j,i, where i , j number of arrows j∗ → i
= number of arrows i∗ → j

Z+
i,i number of arrows i→ i∗

Z−i,i number of arrows i∗ → i

By Lemma 4.6, the claim follows. �

Clearly, solps are special esolps: they are of size l and of type (1, ..., 1), such that we
obtain the classification of Borel-orbits.

Example 6.9. Let P be the symplectic parabolic subgroup of block sizes (4, 2), thus,
b1 = 4 and b2 = 2. Then a symplectic representation of dimension vector (4, 6, 12, 6, 4)
is represented by a pattern of 12 coloured vertices which represents the map Mα of the
representation, for example by

1
∗

��
2
∗ ''

3
∗

4
∗

##
5
∗

6
∗

6
∗

5
∗

4
∗

cc
3
∗

AA
2
∗

1
∗

This pattern corresponds to the indecomposable direct sum decomposition

(D+
1,1 ⊕C+

1,1) ⊕ Z+
1,1 ⊕ (Z+

1,2 ⊕ Z−1,2) ⊕ (M2,3 ⊕ M∗2,3)

of a representation of the quiver Q2. The corresponding esolp is given by

1
∗
�� ����

2
∗

2
∗

1
∗
II]]

We have seen that b1 − x1 − y1 = 4−3−1 = 4−2−2 = b1 − x1∗ − y1∗ and b2 − x2 − y2 =

2 − 0 − 1 = 1 = 2 − 0 − 1 = b2 − x2∗ − y2∗ which give us the multiplicity of the
indecomposables M1,3 ⊕ M∗1,3 and M2,3 ⊕ M∗2,3.
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6.2 Orbits in types B and D

Let G = On, where n ∈ {2l, 2l + 1}. We denote by B the standard Borel subgroup of G
and consider the algebraA(l) as discussed in Section 5. We are interested in orthogonal
representations of dimension vector dB = (1, 2, ..., l, n, l, ..., 2, 1) by Lemma 4.6.

Parametrization of Borel-orbits

As before, we begin with an example.

Example 6.10. Figure 3 shows the complete list of isoclasses of orthogonal represen-
tations in srep(A(2),dB)0, where n = 4 = 2l. The isoclasses of orthogonal represen-
tations in srep(A(2),dB)0 corresponding to O5 are depicted in Figure 4. Note that the
dimension vector dB equals (1, 2, 4, 2, 1) for O4 and (1, 2, 5, 2, 1) for O5.

M0 = (M13 ⊕ M∗13)
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· // · // ·
· // ·
· // ·
· // · // ·

D+12 ⊕ ∇D+12 · // · // ·
tt· // ·
·
**
// ·

· // · // ·

D−12 ⊕ ∇D−12 · // · // ·
· // ·

jj

· // ·
·
44
// · // ·

Z+12 ⊕ ∇Z+12 · // · // ·
xx

· // ·
&&
· // ·
· // · // ·

Z−21 ⊕ ∇Z−21 · // · // ·
· // ·
·

ff

// ·
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Figure 3: Isoclasses of orthogonal representations in srep(A(2),dB)0
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Figure 4: Isoclasses of orthogonal representations in srep(A(2),dB)0

This observation leads us to the following definitions.

Definition 6.11. An orthogonal oriented link pattern (oolp for short) of size l is a solp
of size l, such that:

O4 There are no arrows from i to i∗ (with the convention that i∗∗ = i).
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We denote by Oolpl the set of oolps of size l.

Example 6.12. The collection of oolps of size 2 is given by

1
��
2 2

∗
��

1
∗

1

��
2

��
2
∗

1
∗

1 2 2
∗

1
∗

1 2
��

2
∗

1
∗




1 2 2

∗��
1
∗��

As in the symplectic case, the parametrization of the Borel-orbits in N(2) follows
straight away.

Theorem 6.13. The B–orbits in the variety N(2) ⊆ on, where n ∈ {2l, 2l + 1}, are in
bijection with the set Oolpl of oolps of size l.

Proof. In a similar manner to Theorem 6.4, there is an obvious bijection between the
set Oolpl of oolps of size l and the set of isoclasses of orthogonal representations of
A(l) in srep(A(l),dB)0 which maps an isomorphism class [M] of an orthogonal rep-
resentation to the subquiver of the coefficient quiver of M induced by Mα. As before,
the claim follows from Lemma 4.6. The fact that the Borel orbits for O2l and O2l+1
are classified by the same parametrizing set is due to the fact that each of the orthog-
onal representations in srep(A(l),dB)0 for odd type has Ml+1,l+1 as a direct summand.
This representation determines a fixed point as visualized in Figure 4 and the diagram
representing Mα can thus be restricted to 2l vertices. �

Proposition 6.14. Let ol be the cardinality of Oolpl. Then the sequence {ol} is deter-
mined by

• o0 = 1,

• o1 = 1,

• ol = ol−1 + 4(l − 1)ol−2.

Proof. We divide the set Oolpl into the subset of oolps where vertex 1 is not touched
by any arrow and its complement. �

The sequence 1, 1, 5, 13, 73, 281, 1741, ...which gives {ol} is classified in OEIS as A115329
[13].

Remark 6.15. As before, we see that oolps are special oriented link patterns. As in
the symplectic case, this fact also follows from [11]: if two orthogonal elements are
conjugate under the Borel of GLn, then they are conjugate under the Borel of On, as
well.
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Generalization to parabolic orbits

Let us consider the action of a parabolic subgroup P of On on the variety N(2) of
2-nilpotent elements in on.

Definition 6.16. An enhanced orthogonal oriented link pattern (eoolp for short) of size
k of type (b1, ..., bk) is an esolp of the 2k colored vertices 1, 2, · · · , k, 1∗, 2∗, · · · , k∗, such
that

EO3 There are no arrows from i to i∗ (with the convention that i∗∗ = i).

The classification of parabolic orbits follows similarly to the considerations in 6.8.

Theorem 6.17. There is a natural bijection between the set of P-orbits in N(2) ⊆ g
and the set of eoolps of size k and of type (b1, ..., bk).

Clearly, oolps are special eoolps, they are of size l and of type (1, ..., 1), such that we
obtain the classification of Borel-orbits.

7 Restriction to the nilradical

If we restrict a parabolic action on N(2) to the nilradical n(2) of 2-nilpotent upper-
triangular matrices in the given Lie algebra, then we still have a parabolic action. The
parametrization of the orbits can be obtained from our parametrizations of Section 6
straight away. Note that the action of the Borel subgroup in the symplectic case is
parametrized in [2], where the authors also derive a description of the orbit closures
and look at applications to orbital varieties in detail.

Definition 7.1. A symplectic link pattern (slp for short) of size k is a symplectic ori-
ented link pattern, such that every arrow goes from right to left, i.e. is of the form i→ j
where i > j or i∗ → j∗ where i < j or i∗ → j. In the same way, the natural notion of
orthogonal link pattern (orlp for short) enhanced symplectic and enhanced orthogonal
link pattern is obtained.

Note that the sets of (enhanced) symplectic and (enhanced) orthogonal link patterns are
obtained by taking all such oriented patterns and deleting the orientation. This is due
to the fact that all representations named −− produce arrows which are oriented from
right to left.

Corollary 7.2. There is a bijection between the parabolic orbits in the symplectic
nilradical n(2) (or orthogonal n(2), resp.) and the set of enhanced symplectic (or
orthogonal, resp.) link patterns.

Proof. The fact that all arrows are oriented from right to left corresponds equivalently
to the nilpotent map at the loop being upper-triangular. Thus, these are directly the
nilpotent elements contained in the nilradical of the particular Lie algebra. �
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We end the section with giving an example.

Example 7.3. For l = 2, the symplectic Borel-orbits in the nilradical of sp4 are
parametrized by slps which are emphasized with blue background colour in Figure
5, where their occurences as representations can be seen in detail.
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Figure 5: Representations corresponding to slps

Thus, the following is a list of all solps and all oolps (the latter are marked with green
colour).

1 2 2
∗

1
∗

1 2 2
∗

1
∗

1 2 2
∗

1
∗

1 2 2
∗

1
∗

1 2 2
∗

1
∗

1 2 2
∗

1
∗
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