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1 Introduction

Minimal free resolutions are an important and central topic in commutative algebra. For instance, in the
setting of modules over finitely generated graded k-algebras, these resolutions determine the Hilbert series,
Castelnuovo-Mumford regularity and other fundamental invariants. Minimal free resolutions also provide a
starting place for a myriad of homology and cohomology computations. For the essentials on minimal free
resolutions in our setting, see [8].

Much has been written about the extremal behavior of minimal free resolutions (e.g., [4, 14, 17]), and
about their combinatorial and computational properties (e.g., [3, 12, 15, 16]). In this paper we formalize
and explore the average behavior of minimal free resolutions, with respect to a probability distribution
on monomial ideals. Monomial ideals are a natural setting for this exploration; they define modules over
polynomial rings that are, in many ways, the simplest possible, and yet they are general enough to capture
the full spectrum of values for many algebraic properties [6, 12].

In [7], the authors introduced a probabilistic model for monomial ideals and characterized the distribution
of several invariants including the Hilbert function, the Krull dimension/codimension, and the number of
minimal generators. In their model with parameters n, D, and p, a random monomial ideal in n indetermi-
nants is defined by independently choosing generators of degree at most D with probability p each. Based
on extensive simulations, they stated conjectures on several properties related to minimal free resolutions,
including projective dimension and Cohen-Macaulayness. This work presents answers to these conjectures,
for a special case of the graded model described in [7]. We also settle a question about (strong) genericity,
and describe the properties of random Scarf complexes.

Throughout this paper, we consider random monomial ideals in n variables which are minimally generated
in a single degree D, where each monomial of degree D has the same probability p of appearing as a minimal
generator. That is, a minimal generating set G is sampled according to

P [xa ∈ G] =

{
p |a| = D

0 otherwise,

for all xa ∈ S = k[x1, . . . , xn]. We then set M = 〈G〉. Given the three parameters n, D, and p, we denote
this model byM(n,D, p), and write M ∼M(n,D, p). When we consider the asymptotic behavior of n→∞
or D →∞, we think of p as a function of n or D, respectively, and write p = p(n) or p = p(D).

The projective dimension of S/I, pdim(S/I), is the minimum length of a free resolution of S/I. Hilbert’s
celebrated syzygy theorem (see Section 19.2 in [8]) established that pdim(S/I) ≤ n for any I ⊆ S. In our
first result, we prove the existence of a threshold for the parameter p = p(D), above which almost every
random monomial ideal has projective dimension equal to n.

Theorem 1. Let S = k[x1, . . . , xn], M ∼M(n,D, p), and p = p(D). As D →∞, p = D−n+1 is a threshold
for the projective dimension of S/M . If p� D−n+1 then pdim(S/M) = 0 asymptotically almost surely and
if p� D−n+1 then pdim(S/M) = n asymptotically almost surely.

In other words, the case of equality in Hilbert’s syzygy theorem is the most typical situation for non-trivial
ideals.

Prior experiments had indicated that Cohen-Macaulayness is a rare property among random monomial
ideals [7]. Using Theorem 1 we prove this is indeed the case.
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Corollary 2. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). If D−n+1 � p� 1, then asymptoti-
cally almost surely S/M is not Cohen-Macaulay.

One of the key combinatorial tools for computing the minimal free resolution of a monomial ideal is
the Scarf complex, introduced in [3]. The Scarf complex is a simplicial complex, with vertices given by the
minimal generators of an ideal, that defines a chain complex contained in the minimal free resolution. In
general, however, the Scarf complex does not give a resolution of S/M . When it does, the Scarf complex is
actually a minimal free resolution of S/M , and we say that M is Scarf. If a monomial ideal M is generic or
strongly generic, then M is Scarf [3]. The next two theorems characterize when M ∼M(n,D, p) is generic,
and when it is Scarf.

Theorem 3. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). If p � D−n+2−1/n then M is not
Scarf asymptotically almost surely.

Theorem 4. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). As D → ∞, p = D−n+3/2 is a
threshold for M being generic and for M being strongly generic. If p � D−n+3/2 then M is generic or
strongly generic asymptotically almost surely, and if p � D−n+3/2 then M is neither generic nor strongly
generic asymptotically almost surely.

Notice that Theorem 3 does not provide a threshold result for being Scarf. Nevertheless, taken together
with Theorem 4 it indicates that being Scarf is almost equivalent to being generic in our probabilistic model.
Monomial ideals that are not generic but Scarf live in the small range D−n+3/2 � p � D−n+2−1/n. This
narrow “twilight zone” can be seen in the following figures as the transition region where black, grey, and
white are all present.
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Figure 1: Generic versus Scarf monomial ideals in computer simulations of the graded model.

As an application of the probabilistic method, by choosing parameters in the twilight zone, we can gener-
ate countless examples of ideals with the unusual property of being Scarf but not generic. An example found
while creating Figure 1 is I = 〈x4
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10〉 ⊆ k[x1, . . . x10], which has the following total Betti

numbers:
i 0 1 2 3 4 5 6 7 8
βi 1 10 45 114 168 147 75 20 2,

and is indeed Scarf. Creating—or even verifying—such examples by hand would be a rather difficult task!

2 The projective dimension of random monomial ideals

2.1 Witness sets for pdim(S/M) = n

In what follows let S = k[x1, . . . , xn], and let M = 〈G〉 ⊆ S be a monomial ideal with minimal generating
set G. We summarize a criterion for G, given in 2017 by Alesandroni, that is equivalent to the statement
pdim(S/M) = n. See [1, 2] for details and proofs.
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First, a few definitions. Let L be a set of monomials. An element m = xα1
1 · · ·xαnn ∈ L is a dominant

monomial (in L) if there is a variable xi such that the xi exponent of m, αi, is strictly larger than the xi
exponent of any other monomial in L. If every m ∈ L is a dominant monomial, then L is a dominant set.
For example, L1 = {x3

1x2x
2
3, x

2
2x3, x1x

3
3} is a dominant set in k[x1, x2, x3], but L2 = {x3

1x2x
2
3, x

2
2x3, x

3
1x

3
3}

is not. For monomials m = xα1
1 · · ·xαnn and m′ = xβ1

1 · · ·xβnn , we say that m strongly divides m′ if αi < βi
whenever αi 6= 0. Thus, x1x3 strongly divides x2

1x
3
3, but x1x3 does not strongly divide x1x

3
3.

We can now state the characterization.

Theorem 5. [2, Theorem 5.2, Corollary 5.3] Let M ⊆ S be a monomial ideal minimally generated by G.
Then pdim(S/M) = n if and only if there is a subset L of G with the following properties:

1. L is dominant.

2. #L = n.

3. No element of G strongly divides lcm(L).

More precisely, if L ⊆ G satisfies conditions 1, 2 and 3, then the minimal free resolution of S/M has a basis
element with multidegree lcm(L) in homological degree n. On the other hand, if there is a basis element with
multidegree xα and homological degree n, then G must contain some L′ satisfying 1, 2, 3 and the condition
lcm(L′) = xα.

The latter, stronger characterization is important to our results on Scarf complexes (Section 3). In this
section, we care only that pdim(S/M) = n is equivalent to the existence of a subset of generators satisfying the
conditions of Theorem 5. Since we frequently discuss such sets, we use the following terminology throughout
the paper.

Definition 6. When L is any set of minimal generators of M that satisfies the three conditions of Theorem
5, then L witnesses pdim(S/M) = n, and we say L is a witness set. The monomial xα ∈ S is a witness lcm
if L is a witness set and xα = lcm(L).

The distinction between witness sets and witness lcm’s is important, as several witness sets can have a
common lcm. We found it useful to think of the event “xα is a witness lcm” in geometric terms, as illustrated
in Figure 2 for the case of n = 3.

The monomials of total degree D are represented as lattice points in a regular (n− 1)-simplex with side
lengths D. Given xα = xα1

1 · · ·xαnn , the n inequalities x1 ≤ α1, . . . , xn ≤ αn determine a new regular simplex
∆α (shaded). If L is a dominant set that satisfies #L = n and lcm(L) = xα, then L must contain exactly
one lattice point from the interior of each facet of ∆α. (Monomials on the boundary of a facet are dominant
in more than one variable.) Meanwhile, the strong divisors of xα are the lattice points in the interior of ∆α.
The event “xα is a witness lcm” occurs when at least one generator is chosen in the interior of each facet of
∆α, and no generators are chosen in the interior of ∆α.

We will make use of some common probability laws, and so we review them briefly here. The first is
Markov’s inequality which states that if X is a nonnegative random variable and a ≥ 0, then

aP [X ≥ a] ≤ E [X] .

The second is the union bound. If X1, . . . , Xr are a collection of indicator variables, the probability that
any of the events occur (the union) is at most the sum of the probabilities that each one occurs. When the
variables are independent and identically distributed (i.i.d.) and each has probability p of occurring, then
the union bound implies the following useful inequality:

1− (1− p)r ≤ rp.

We will also use the second moment method. This is a special case of Chebyshev’s inequality and asserts
that

P [X = 0] ≤ Var [X]

E [X]
2 , (2.1)

for a nonnegative, integer-valued random variable X.

3



x3 = α3

x2 = α2

x1 = α1

(a) The simplex ∆α associated with
the witness lcm xα = xα1

1 xα2
2 xα3

3 is
defined by facets xi ≤ αi for i =
1, 2, 3.

× × ×
× ×
×

(b) For xα to be a witness lcm, at
least one monomial on the interior of
each facet (bold outline) must be cho-
sen, and none of the interior monomi-
als (crossed out) can be chosen.

(c) A situation where xα is a witness
lcm. Notice there are four different
ways to choose one generator from
each facet, so there are four witness
sets with this lcm.

Figure 2: Geometric interpretation of a witness set.

2.2 Most resolutions are as long as possible

This section comprises the proof of Theorem 1 and two of its consequences. First we show that for p below
the announced threshold, usually pdim(S/M) = 0. Let

mn(D) =

(
D + n− 1

n− 1

)
denote the number of monomials in n variables of degree D. This is a polynomial in D of degree n− 1 and
can be bounded, for D sufficiently large, by

1

(n− 1)!
Dn−1 ≤ mn(D) ≤ 2

(n− 1)!
Dn−1. (2.2)

Proposition 7. If p� D−n+1 then pdim(S/M) = 0 asymptotically almost surely as D →∞.

Proof. For each xα ∈ S, let Xα be the random variable indicating that xα ∈ G (Xα = 1) or xα 6∈ G (Xα = 0).
We define X =

∑
α∈S Xα, so that X records the cardinality of the random minimal generating set G. By

Markov’s inequality,

P [X > 0] ≤ E [X] =
∑
α∈S
|α|=D

E [Xα] = mn(D)p.

Letting D →∞, we have
lim
D→∞

P [X > 0] = lim
D→∞

mn(D)p = 0,

since p� D−n+1. So #G = 0, equivalently M = 〈0〉, with probability converging to 1 as D →∞. Therefore
below the threshold D−n+1, almost all random monomial ideals in our model have pdim(S/M) = 0.

For the case p � D−n+1, we use the second moment method. Recall that xα ∈ S is a witness lcm to
pdim(S/M) = n if and only if there is a dominant set L ⊆ G with #L = n, lcm(L) = xα, and no generator
in G strongly divides xα. For each α, we define an indicator random variable wα that equals 1 if xα is a
witness lcm and 0 otherwise. Next we define Wa, for integers a > 1, and W by

Wa =
∑

|α|=D+a
αi≥a ∀i

wα, W =

A∑
a=n−1

Wa

4



where A = b(p/2)−
1

n−1 c − n. The random variable Wa counts most witness lcm’s of degree D + a. The
reason for the restriction αi ≥ a is easily explained geometrically. In general, the probability that xα is
a witness lcm depends only on the side length of the simplex ∆α (see Figure 2). If, however, the facet
defining inequalities of ∆α intersect outside of the simplex of monomials with degree D, the situation is
more complicated and has many different cases. The definition of Wa bypasses these cases, and this does
not change the asymptotic analysis.

In Lemma 8, we compute the order of P [wα] and use this to prove that E [W ]→∞ as D →∞ in Lemma

9. Then in Lemma 10, we prove Var [W ] = o
(
E [W ]

2
)

and thus that the right-hand side of (2.1) goes to 0

as D →∞. In other words, P [W > 0]→ 1, meaning that M ∼M(n,D, p) will have at least one witness to
pdim(S/M) = n with probability converging to 1 as D → ∞. This proves the second side of the threshold
and establishes the theorem.

We first give the value of P [wα] for an exponent vector α with |α| = D + a and αi ≥ a for all i. The
monomials of degree D that divide xα form the simplex ∆α, and those that strongly divide xα form the
interior of ∆α. Thus there are mn(a) divisors and mn(a− n) strong divisors of xα in degree D. Recall that
for xα to be a witness lcm, for each variable xi there must be at least one monomial xβ in G with xβ in
the relative interior of the facet of ∆α parallel to the subspace {xi = 0}. In other words, there must be an
xβ ∈ G satisfying βi = αi and βj < αj for all j 6= i. Therefore xα−β is a monomial of degree a without xi
and with positive exponents for each of the other variables. See Figure 2. The number of such monomials
is mn−1(a − n + 1). The relative interiors of the facets of ∆α are disjoint, so the events that a monomial
appears in each one are independent. Additionally, G must not contain any monomials that strongly divide
xα, and the probability of this is qmn(a−n) where q = 1 − p. Therefore, for α with |α| = D + a and αi ≥ a
for all i,

P [wα] =
(

1− qmn−1(a−n+1)
)n

qmn(a−n). (2.3)

By linearity of expectation, a consequence of this formula is

E [Wa] = mn(D + a− na)
(

1− qmn−1(a−n+1)
)n

qmn(a−n), (2.4)

because the number of exponent vectors α with |α| = D + a and αi ≥ a for all i is mn(D + a− na).

Lemma 8. Let α be an exponent vector with a = |α| −D ≤ p− 1
n−1 and αi ≥ a for all i. Then,

1

2
pn (mn−1(a− n+ 1))

n ≤ P [wα] ≤ pn (mn−1(a− n+ 1))
n
. (2.5)

Proof. The union-bound implies that

1− qmn−1(a−n+1) ≤ pmn−1(a− n+ 1).

The upper bound on P [wα] follows from applying this inequality to the expression in (2.3). For the lower-
bound, note that P [wα] is bounded below by the probability that exactly one monomial is chosen to be in
G from the relative interior of each facet of ∆α, and no other monomials are chosen in ∆α. The probability
of this latter event is given by

pn (mn−1(a− n+ 1))
n
qmn(a)−n

since there are mn−1(a − n + 1) choices for the monomial picked in each facet. Now we use the fact that

mn(a) ≤ mn(A) ≤ p/2 (and this is the reason for the choice of A = b(p/2)−
1

n−1 c − n) to conclude

qmn(a)−n ≥ 1− (mn(a)− n)p ≥ 1− (a+ n)n−1

(n− 1)!
p ≥ 1

2
.

Lemma 9. If p� D−n+1 then
lim
D→∞

E [W ] =∞.

5



Proof. If limD→∞ p > 0, then E [Wn−1] ≥ mn(D − 1)pn which goes to infinity in D. Instead assume that
D−n+1 � p� 1. From Lemma 8, we have

P [wα] ≥ 1

2
pn (mn−1(a− n+ 1))

n ≥ 1

2
pn
(

(a− n)n−2

(n− 2)!

)n
.

For n−1 ≤ a ≤ A with A = b(p/2)−
1

n−1 c−n, one gets a� D, and hence for D sufficiently large, na < D/2,
which means D + a− na > D/2. Therefore

mn(D + a− na) ≥ Dn−1

2n−1(n− 1)!
.

Since mn(D + a− na) is the number of exponent vectors α with |α| = D + a and αi ≥ a for all i,

E [Wa] =
∑

|α|=D+a
αi≥a ∀i

P [wα] ≥ cnDn−1pn(a− n)n(n−2)

where cn > 0 is a constant that depends only on n. Summing up over a gives the bound

E [W ] =

A∑
a=n−1

E [Wa] ≥ cnDn−1pn
A∑

a=n−1

(a− 2n)n
2−2n.

The function f(A) =
∑A
a=n−1(a− 2n)n

2−2n is polynomial in A with lead term t = An
2−2n+1/(n2 − 2n+ 1).

Since A is proportional to p−
1

n−1 , for p sufficiently small f(A) ≥ t/2 and so

E [W ] ≥ cnDn−1pn
p−

n2−2n+1
n−1

2(n2 − 2n+ 1)
= c′nD

n−1p

and Dn−1p goes to infinity as D →∞.

Lemma 10. If p� D−n+1 then

lim
D→∞

Var [W ]

E [W ]
2 = 0.

Proof. Since W is a sum of indicator variables wα, we can bound Var [W ] by

Var [W ] ≤ E [W ] +
∑
(α,β)

Cov [wα, wβ ] .

The covariance is easy to analyze in the following two cases. If the degree of gcd(xα, xβ) is at most D, then
wα and wβ depend on two sets of monomials being in G which share at most one monomial. In this case
wα and wβ are independent so Cov [wα, wβ ] = 0. The second case is that xα|xβ and α 6= β. If wα = 1,
then G contains a monomial that strictly divides xβ . In this case wα and wβ are mutually exclusive, so
Cov [wα, wβ ] < 0. The cases with Cov [wα, wβ ] ≤ 0 are illustrated geometrically, for n = 3, in Figure 3.

Thus we focus on the remaining case, when deg gcd(xα, xβ) > D and neither of xα and xβ divides the
other. In other words ∆α and ∆β have intersection of size > 1 and neither is contained in the other.

Let a = deg(xα)−D, b = deg(xα)−D, which are the edge lengths of the simplices ∆α and ∆β respectively.
Let c = deg(gcd(xα, xβ)) −D, which is the edge length of the simplex ∆α ∩∆β . Note that 0 < c < a due
to assumptions made on α and β. The number of common divisors of xα and xβ of degree D is given by
mn(c). Let δα,i and δβ,i denote the relative interiors of the ith facets of ∆α and ∆β , respectively. The
type of intersection of ∆α and ∆β is characterized by signs of the entries of α − β, which is described by a
3-coloring C of [n] with color classes Cα, Cβ , Cγ for positive, negative, and zero, respectively.

Since wα is a binary random variable, Cov [wα, wβ ] = P [wαwβ ]− P [wα]P [wβ ], and hence it is bounded
by P [wαwβ ]. Therefore we will focus on bounding this quantity. Let wα,i be the indicator variable for the
event that G contains a monomial xu1

1 · · ·xunn with ui = αi and uj < αj for each j 6= i. Then

P [wαwβ ] ≤ P

[
n∏
i=1

wα,iwβ,i

]
.

6



(a) If gcd(xα, xβ) has degree ≤ D, then the intersection of ∆α (red/dotted)
and ∆β (blue/solid) is either empty or has cardinality 1. In either case,
Cov [wα, wβ ] = 0.

(b) If xα|xβ , then ∆α ⊆ ∆β . In this
case, Cov [wα, wβ ] < 0.

Figure 3: Pairs of witness lcm’s with zero or negative covariance.

For i ∈ Cα, the facet δα,i does not intersect ∆β . See Figure 4a. For each i ∈ Cα, we have

P [wα,i] = 1− qmn−1(a−n+1) ≤ mn−1(a− n+ 1)p ≤ an−2p ≤ An−2p ≤ p1/(n−1).

Similarly for i ∈ Cβ , P [wβ,i] ≤ p1/(n−1).
For each pair i ∈ Cβ and j ∈ Cα, facets δα,i and δβ,j intersect transversely. Let H be the bipartite graph

on Cβ ∪Cα formed by having {i, j} as an edge if and only if there is a monomial in G in δα,i ∩ δβ,j . Let ei,j
be the event that {i, j} is an edge of H. Let V denote the subset of Cβ ∪ Cα not covered by H. If wαwβ is
true, then for each i ∈ V ∩Cβ , there must be a monomial in G in δα,i \

⋃
j∈Cα δβ,j , and let vi be this event.

Similarly for each j ∈ V ∩ Cα, there must be a monomial in G in δβ,j \
⋃
i∈Cβ δα,i, and let vj be this event.

See Figure 4 for the geometric intuition behind these definitions.
Note that all events ei,j and vi are independent since they involve disjoint sets of variables. Therefore

P

 ∏
i∈Cα

wα,i
∏
i∈Cβ

wβ,i

 ≤∑
H

∏
{i,j}∈E(H)

P [ei,j ]
∏
i∈V

P [vi] .

For any (i, j) ∈ Cβ × Cα,

|δα,i ∩ δβ,j | ≤ mn−2(c) ≤ cn−3 ≤ p−n−3
n−1 .

Therefore
P [ei,j ] = 1− q|δα,i∩δβ,j | ≤ p|δα,i ∩ δβ,j | ≤ p

2
n−1 .

We also know that for i ∈ Cβ , P [vi] ≤ P [wα,i] ≤ p1/(n−1), and similarly for i ∈ Cα. So then∑
H

∏
{i,j}∈E(H)

P [ei,j ]
∏
i∈V

P [vi] ≤
∑
H

p
2|E(H)|+|V |

n−1 .

The number of graphs H is 2|Cβ ||Cα| ≤ 2n
2

and for any graph H, 2|E(H)| + |V | ≥ |Cβ | + |Cα| since every
element of Cβ ∪ Cα must be covered by H or in V . Then

P

 ∏
i∈Cα

wα,i
∏
i∈Cβ

wβ,i

 ≤ 2n
2

p
|Cβ |+|Cα|

n−1 .

Finally for each i ∈ Cγ , facets δα,i and δβ,i have full dimensional intersection. Again G may contain
distinct monomials in δα,i and δβ,i, or just one in their intersection. However, δα,i does not intersect any
other facets of ∆β so there are only two cases.

P [wα,iwβ,i] ≤ (1− qmn−1(a−n+1))2 + 1− qmn−1(c−n+1) ≤ p2/(n−1) + p1/(n−1) ≤ 2p1/(n−1).
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δβ,1

δβ,2

δβ,3

δα,1

δα,2

δα,3

1

3

2

(a) An intersection of ∆α (red/dotted) and ∆β

(blue/solid). The facets of the intersection are la-
beled 1, 2, 3, and the coloring of [3] associated with
this intersection is (−,+,+); equivalently Cα = {2, 3},
Cβ = {1} and Cγ = ∅. Since 1 ∈ Cβ , the facet δβ,1
does not intersect ∆α. Similarly, since Cα = {2, 3},
the facets δα,2 and δα,3 do not intersect ∆β .

δβ,1

δβ,2

δβ,3

δα,1

δα,2

δα,3

1

3

2

(b) A set of five generators (above, in black), for which
wαwβ = 1. Since one generator belongs to the intersec-
tion of facets 1 and 3, the associated bipartite graph H
(below) has edge {1, 3}. Here V = {2}, indicating that
G must contain a generator in δβ,2\(δα,1 ∪ δα,3).

1

2

3

Figure 4: An illustration of intersection types, color classes, the graph H, and the set V .

Combining these results, we have

P [wαwβ ] ≤ 2n
2

p
|Cβ |+|Cα|

n−1

∏
i∈Cα

p
1

n−1

∏
j∈Cβ

p
1

n−1

∏
i∈Cγ

2p
1

n−1

≤ 2n
2+|Cγ |p

2n−|Cγ |
n−1 .

To sum up over all pairs α, β with potentially positive variance, we must count the number of pairs of
each coloring C. To do so, first fix C and α and count the number of β such that the intersection of ∆α and
∆β have type C. Note that the signs of the entries of α− β are prescribed, and that the entries of α− β are

bounded by p−
1

n−1 because the degrees of xα and xβ are each within p−
1

n−1 of the degree of their gcd. A

rough bound then on the number of values of β is (p−
1

n−1 )n−|Cγ |. The number of values of α for each choice
of a is mn(D+a−na) ≤ Dn−1, so summing over all possible values of a, the number of α values is bounded

by p−
1

n−1Dn−1. Therefore∑
(α,β) of type C

Cov [wα, wβ ] ≤ #{(α, β) of type C}2n2+|Cγ |p
2n−|Cγ |
n−1

≤ p− 1
n−1Dn−1(p−

1
n−1 )n−|Cγ |2n

2+|Cγ |p
2n−|Cγ |
n−1

≤ 2n
2+nDn−1p ≤ 2n

2+n

c′n
E [W ] .

Then summing over all colorings C, of which there are less than 3n, shows that Var [W ] ≤ c′′n E [W ] for c′′n > 0
depending only on n. Therefore

lim
D→∞

Var [W ]

E [W ]
2 ≤ lim

D→∞

c′′n
E [W ]

= 0.
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Proof of Theorem 1. If p � D−n+1, Proposition 7 implies that pdim(S/M) = 0. If p � D−n+1, Lemma 9
proves that E [W ]→∞ as D →∞. Since Lemma 10 shows that P [W > 0]→ 1, we conclude that there is a
witness set asymptotically almost surely. This is equivalent to pdim(S/M) = n.

2.3 Consequences of Theorem 1

An S-module S/M is called Cohen-Macaulay if dim(S/M) = depth(S/M). Since S is a polynomial ring,
this condition is equivalent to dim(S/M) = n − pdim(S/M), by the Auslander-Buchsbaum theorem [8,
Corollary 19.10]. From Theorem 1 we obtain the proof of the Cohen-Macaulayness result announced in the
introduction.

Proof of Corollary 2. For a monomial ideal M ⊆ S, the Krull dimension of S/M is zero if and only if for
each i = 1, . . . , n, M contains a minimal generator of the form xji for j = 1, . . . , n. For M ∼M(n,D, p), this
can only occur if every monomial in the set {xD1 , xD2 , . . . , xDn } is chosen as a minimal generator, an event that
has probability pn. Thus for fixed n and p� 1, P [dim(S/M) = 0] = pn → 0 as D →∞. If also D−n+1 � p,
then by Theorem 1, P [pdim(S/M) = n] → 1. Together, these imply that P [S/M is Cohen-Macaulay] → 0
as D →∞.

Our probabilistic result on Cohen-Macaulayness is an interesting companion to a recent result of Erman
and Yang. In [9], they consider random squarefree monomial ideals in n variables, defined as the Stanley-
Reisner ideals of random flag complexes on n vertices, and study their asymptotic behavior as n → ∞.
Though the model is very different, they find a similar result: for many choices of their model parameter,
Cohen-Macaulayness essentially never occurs.

Our second corollary is about Betti numbers. A result of Alesandroni [2] is that
∑n
i=0 βi(S/M) ≥ 2n

whenever M is a monomial ideal with pdim(S/M) = n. The inequality
∑n
i=0 βi(S/M) ≥ 2n is of interest

because it would be implied by the long-standing Buchsbaum-Eisenbud-Horrocks conjecture [5, 11]. In [20],
M. E. Walker gives a highly technical proof of this inequality for monomial ideals in a large number of cases.
Here we show that the probabilistic version follows easily.

Corollary 11. Let M ∼ M(n,D, p) and p = p(D). If D−n+1 � p, then asymptotically almost surely∑n
i=0 βi(S/M) ≥ 2n.

Proof. Follows immediately from [2, Theorem 6.8] and Theorem 1.

3 Genericity and Scarf monomial ideals

Let M = 〈G〉 be a monomial ideal with minimal generating set G = {g1, . . . , gr}. For each subset I of
{1, . . . , r} let mI = lcm(gi | i ∈ I). Let aI ∈ Nn be the exponent vector of mI and let S(−aI) be the free
S-module with one generator in multidegree aI . The Taylor complex of S/M is the Zn-graded module

F =
⊕

I⊆{1,...,r}

S(−aI)

with basis denoted by {eI}I⊆{1,...,r}, and equipped with the differential:

d(eI) =
∑
i∈I

sign(i, I) · mI

mI\i
· eI\i,

where sign(i, I) is (−1)j+1 if i is the jth element in the ordering of I. This is a free resolution of S/M over
S having length r and 2r terms. The Scarf complex of M , written ∆M , is a simplicial complex on the vertex
set {1, . . . , r}. Its faces are defined by

∆M = {I ⊆ {1, . . . , r} | mI 6= mJ for all J ⊆ {1, . . . , r}, J 6= I}.
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The algebraic Scarf complex of M , written F∆M
, is defined as the subcomplex of the Taylor complex that

is supported on ∆M . The algebraic Scarf complex F∆M
is a subcomplex of every free resolution of S/M ,

in particular of every minimal free resolution [16, Section 6.2]. When F∆M
is a minimal free resolution of

S/M , we say that M is Scarf.
A sufficient condition for M to be Scarf is genericity. A monomial ideal M is strongly generic if no

variable xi appears with the same nonzero exponent in two distinct minimal generators of M . In [3], Bayer,
Peeva and Sturmfels proved that strongly generic monomial ideals are Scarf. (Note that the authors used
the term generic for what is now called strongly generic.)

Miller and Sturmfels defined a less restrictive notion of genericity in [16]. A monomial ideal M is generic
if whenever two distinct minimal generators gi and gj have the same positive degree in some variable, a third
generator gk strongly divides lcm(mi,mj). Monomial ideals that are generic in this broader sense are also
always Scarf.

3.1 Genericity of random monomial ideals

Since every monomial ideal in this paper is generated in degree D, M is generic if and only if it is strongly
generic, and these are characterized by the property that for every distinct pair of monomials xα and xβ in
G, either αi = 0 or αi 6= βi for all i = 1, . . . , n. Now we prove the threshold theorem about the genericity of
random monomial ideals.

Proof of Theorem 4. Let V be the indicator variable that M is strongly generic. For each variable xi and
each exponent c, let vi,c denote the indicator variable for the event that there is at most one monomial in G

with xi exponent equal to c, and let Vi =
∏D
c=1 vi,c. Then

V =

n∏
i=1

Vi.

Given a set Γ of monomials of degree D in S with |Γ| = m, the probability that G contains at most one
monomial in Γ is

P [|Γ ∩G| ≤ 1] = qm +mpqm−1

≥ 1−mp+mp(1− (m− 1)p) ≥ 1−m2p2.

On the other hand

P [|Γ ∩G| ≤ 1] ≤ P [|Γ ∩G| 6= 2] = 1−
(
m

2

)
p2qm−2.

Assuming that p� m−1 then for p sufficiently small, qm−2 ≥ 1/2 so

P [|Γ ∩G| ≤ 1] ≤ 1− (m− 1)2

4
p2. (3.1)

The above gives bounds on P [vi,c] by taking Γ to be the set of monomials of degree D with xi degree equal
to c. Then |Γ| = mn−1(D − c) ≤ Dn−2, hence

P [vi,c] ≥ 1−D2n−4p2.

By the union-bound,

P [V ] ≥ 1−
n∑
i=1

D∑
c=1

(1− P [vi,c]) ≥ 1− np2D2n−3.

Therefore, for p� D−n+3/2, P [V ] goes to 1.
For a lower bound on P [Vi], let Ui be the random variable that counts the number of values of c for

which vi,c is false. Assuming that p� D−n+2 and p sufficiently small, and using the upper bound on P [vi,c]
established in (3.1), we get

E [Ui] =

D∑
c=1

(1− P [vi,c]) ≥
p2

4

D∑
c=1

(mn−1(D − c)− 1)2.

10



The function f(D) =
∑D
c=1(mn−1(D−c)−1)2 is a polynomial inD with lead term t = D2n−3/(n−2)!2(2n−3).

Thus for D sufficiently large, f(D) ≥ t/2 so

E [Ui] ≥
p2D2n−3

8(n− 2)!2(2n− 3)
.

Therefore, for D−n+3/2 � p� D−n+2,
lim
D→∞

E [Ui] =∞.

Since the indicator variables vi,1, . . . , vi,D are independent, Var [Ui] ≤ E [Ui]. By the second moment method

0 = lim
D→∞

P [Ui = 0] = lim
D→∞

P [Vi] ≥ lim
D→∞

P [V ] .

Finally, note that for D fixed, P [V ] is monotonically decreasing in p. Therefore P [V ] goes to 0 as D goes
to infinity for all p� D−n+3/2.

3.2 Scarf complexes of random monomial ideals

The main result of this subsection is Theorem 3: as D → ∞, M is almost never Scarf when p grows faster
than D−n+2−1/n. We also know that M is almost never Scarf when p grows slower than D−n+1 for the trivial
reason that the ideal is usually empty. This leaves a gap where we do not know the asymptotic behavior.

The logic of this proof is as follows: suppose that L ⊆ G is a witness set to pdim(S/M) = n. By Theorem
5, the free module S(− lcm(L)) appears in the minimal free resolution of S/M in homological degree n.
Suppose further that there exists g ∈ G\L, such that g divides lcm(L). Then lcm(L) = lcm(L ∪ {g}), so by
definition S(− lcm(L)) does not appear in the Scarf complex of M . Thus, the minimal free resolution strictly
contains the Scarf complex, and M is not Scarf. When this occurs, we call L ∪ {g} a non-Scarf witness set.
We now show that for p� D−n+2−1/n, the number of non-Scarf witness sets is a.a.s. positive.

For each xα ∈ S, define yα as the indicator random variable:

yα =

{
1 xα is the lcm of a non-Scarf witness set

0 otherwise.

For each integer a ≥ 1, define the random variable Ya that counts the monomials of degree D + a that are
lcm’s of non-Scarf witness sets. Let Y be the sum of these variables over a certain range of a:

Ya =
∑

|α|=D+a
αi≥a ∀i

yα, Y =

A∑
a=2

Ya

where A = b(p/2)−
1

n−1 c − n.
For yα to be true, there must be a monomial in G in the relative interior of each facet of the simplex ∆α

and one of the facets must have at least two monomials in G. Additionally G must have no monomials in
the interior of ∆α. For xα ∈ S with |α| = D + a, and αi ≥ a for i = 1, . . . , n,

P [Ya] = mn(D + a− na)
((

1− qmn−1(a−n+1)
)n
−
(
mn−1(a− n+ 1)pqmn−1(a−n+1)−1

)n)
qmn(a−n). (3.2)

This follows from the same argument as the formula 2.3, subtracting the case that exactly one monomial
lies on each facet. The relevant bound is

Lemma 12. Let α be an exponent vector with a = |α| −D ≤ p− 1
n−1 and αi ≥ a for all i. Then,

1

4
pn+1mn−1(a− n+ 1)n+1 ≤ P [yα] ≤ 1

2
pn+1mn−1(a− n+ 1)n+1. (3.3)

11



Proof. The union-bound implies that

1− qmn−1(a−n+1) ≤ pmn−1(a− n+ 1).

The upper bound on P [yα] follows from applying this inequality to the expression in equation 2.3.
For the lower-bound, note that P [yα] is bounded below by the probability that exactly two monomials

are chosen to be in G from the relative interior of one of the facets of ∆α and exactly one is chosen from
each other facet, and no other monomials are chosen in ∆α. The probability of this event is given by(

mn(a− n)

2

)
mn(a− n)n−1pn+1qmn(a)−n−1

since there are mn(a− n) choices for the monomial chosen in each facet. Also by the union-bound we have

qmn(a)−n−1 ≥ 1− (mn(a)− n− 1)p ≥ 1− (a+ n)n−1

(n− 1)!
p ≥ 1

2
.

We can then find a threshold for p where non-Scarf witness sets are expected to appear frequently.

Lemma 13. If D−n+2−1/n � p then
lim
D→∞

E [Y ] =∞.

Proof. We follow the same argument as in the proof of Lemma 9. If limD→∞ p > 0, then E [Yn] ≥ mn(D −
2)pn+1q which goes to infinity in D. Instead assume that D−n+2−1/n � p� 1 and take n− 1 ≤ a ≤ p− 1

n−1 .
As in the proof of Lemma 9 for D sufficiently large

mn(D + a− na) ≥ Dn−1

2n−1(n− 1)!

Therefore
E [Ya] ≥ cnDn−1pn+1a(n+1)(n−2)

where cn > 0 is constants that depends only on n. Summing up over a gives the bound

E [Y ] ≥ c′nDn−1p
n
n−1

and Dn−1p
n
n−1 goes to infinity as D →∞.

Lemma 14. If p� D−n+2−1/n then

lim
D→∞

Var [Y ]

E [Y ]
2 = 0.

Proof. The proof follows the same structure as that of Lemma 10. We bound Var [Y ] by

Var [Y ] ≤ E [V ] +
∑
(α,β)

Cov [yα, yβ ] .

For the pair of exponent vectors (α, β), yα and yβ are independent or mutually exclusive in the same set
of cases as for wα and wβ , in which case Cov [yα, yβ ] is non-positive. The remaining case is when the
simplices ∆α and ∆β intersect and neither is contained in the other. Let C = (Cα, Cβ , Cγ) be the coloring
corresponding to this pair.

Define indicators ei, vi,j and graph H as in the proof of Lemma 10. It was shown that P [wαwβ ] is
bounded above by

B = 2n
2+|Cγ |p

2n−|Cγ |
n−1 .

For yαyβ to be true, it must be that wαwβ is true, plus an extra monomial appears in some facet of ∆α and
the same for ∆β . We will enumerate the cases of how this can occur, and modify the bound B in each case

12



to give a bound on P [yαyβ ]. Recall that for a set Γ of size m, we have that the probability of at least 2
monomials in G being chosen from Γ is bounded

P [|Γ ∩G| ≥ 2] ≤ m2p2.

There are two cases where a single monomial in G is the extra one for both yα and yβ :

• For some i ∈ Cγ , there are at least two monomials in δα,i ∩ δβ,i. The probability that this occurs is
bounded by

mn−1(A)2p2 ≤ p 2
n−1

and this replaces a factor in the original bound B of p
1

n−1 , so the probability of yαyβ being true and

this occurring for some fixed choice of i is bounded by Bp
1

n−1 .

• For some edge (i, j) of H, there are at least two monomials in δα,i ∩ δβ,j . The probability that this
occurs is bounded by

mn−2(A)2p2 ≤ p 4
n−1

and this replaces a factor in B of p
2

n−1 .

In the rest of the cases the extra monomial for vα is distinct from the extra one for vβ . For vαvβ to be true,
two of these cases must be paired. We describe the situation for vα, but the vβ case is symmetric.

• For some i ∈ Cβ , the vertex in the graph H has degree at least 2. In this case 2|E(H)| + |V | ≥
|Cα| + |Cβ | + 1, one greater than the bound in the original computation of B. Thus we pick up an

extra factor of p
1

n−1 over B.

• For i ∈ Cα or i ∈ Cβ ∩ V or i ∈ Cw with no monomial in δα,i ∩ δβ,i, there are at least two monomials

in δα,i \
⋃
j δβ,j . We replace a factor of p

1
n−1 in B by p

2
n−1 .

• For i ∈ Cβ \ V or i ∈ Cw with a monomial in δα,i ∩ δβ,i, there is a monomial in δα,i \
⋃
j δβ,j . Thus in

the bound we pick up an extra factor of p
1

n−1 over B.

The probability of the first case being true is bounded by is Bp
1

n−1 , while in all others it is bounded by

Bp
2

n−1 , and the former bound dominates. The total number of cases among all the situations above is some
finite N (depending only on n) so we can conclude that

P [yαyβ ] ≤ NBp 1
n−1 .

The remainder of the proof is identical to that of Lemma 10, and so we arrive at

Var [Y ] ≤ N2n
2+nDn−1p

n
n−1 ≤ N2n

2+n

c′n
E [Y ]

Therefore

lim
D→∞

Var [Y ]

E [Y ]
2 ≤ lim

D→∞

c′′n
E [Y ]

= 0.

Proof of Theorem 3. If p � D−n+2−1/n, Lemma 13 proves that E [Y ] → ∞ as D → ∞. By the second
moment method, Lemma 14 implies that P [Y > 0] → 1. We conclude that there is a non-Scarf witness set
asymptotically almost surely, in which case M is not Scarf.

13



10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

# generators, r

se
co
n
d
to
ta
l
B
et
ti
n
u
m
b
er
,
β
2

D = 5, avg.
D = 5, max.
D = 10, avg.
D = 10, max.
D = 15, avg.
D = 15, max.
D = 20, avg.
D = 20, max.(

r
2

)

Figure 5: Average and maximum β2 for n = 5. Each value is based on 1000 randomly sampled M .

4 Trends in the average Betti numbers of monomial resolutions

For a (strongly) generic monomial ideal in S = k[x1, . . . , xn] with r minimal generators, the Scarf complex
is a subcomplex of the boundary of an n-dimensional simplicial polytope with r vertices where at least one
facet has been removed [3, Proposition 5.3]. This implies that, when the number of minimal generators r is
fixed, the maximum of the possible Betti numbers βi+1(M) for a monomial ideal M ⊂ S for each homological
degree i + 1 is bounded by ci(n, r), the number of i-dimensional faces of the n-dimensional cyclic polytope
with r vertices. Let βi+1(n, r) be maxM{βi+1(M)} where the maximum is taken over all monomial ideals in
S with r minimal generators. The remark we just made means that βi+1(n, r) ≤ ci(n, r) [3, Theorem 6.3].
In particular, for n ≥ 4, β2(n, r) ≤

(
r
2

)
, and the extremal behavior of β2(n, r) has been characterized as a

consequence of a result on the order dimension of the poset of the complete graph with r vertices (see the
discussion on page 134 of [13]). For instance, β2(4, r) attains this binomial upper bound for 4 ≤ r ≤ 12,
but β2(4, 13) = 77 < 78 =

(
13
2

)
. Similarly, β2(5, r) = c1(5, r) for 5 ≤ r ≤ 81, but β2(5, 82) < c1(5, 82); and

β2(6, r) = c1(6, r) for 6 ≤ r ≤ 2646, but β2(6, 2647) < c1(6, 2647). See [19] for more of this sequence.
The plot in Figure 5 showcases the average behavior of β2(M), for M generated by r monomials in five

indeterminates, compared to the upper bound β2(5, r) =
(
r
2

)
. We also include the experimental maximum

second Betti number, taken over 1000 samples, for each r. Both the average and observed maximum β2

grow approximately linearly and they are far from the real maximum for even moderate number of minimal
generators. The extremal monomial ideals which give β2(n, r) seem to be truly extremal. We believe that
similar computations will shed light on the behavior of βi+1(n, r).

The proof of Theorem 3 showed that for p sufficiently large, βn(S/M) will be strictly greater than
fn−1(∆M ). Figure 6 suggests it may be possible to quantify this discrepancy. For example when n = 5, it
appears that E [β5] grows linearly with the number of minimal generators, while E [f4] remains essentially
constant. In fact, E [βi] looks remarkably well-behaved—even linear—for every i. These preliminary data
suggest that average Betti numbers, as a function of r, may have strikingly different growth orders than
their upper bounds.
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for n = 5 and D = 10. Each average is based on 100 randomly sampled M .
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