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18 Binary linear complementary dual codes

Masaaki Harada∗and Ken Saito†

Dedicated to Professor Masahiko Miyamoto on His 65th Birthday

Abstract

Linear complementary dual codes (or codes with complementary
duals) are codes whose intersections with their dual codes are triv-
ial. We study binary linear complementary dual [n, k] codes with the
largest minimum weight among all binary linear complementary dual
[n, k] codes. We characterize binary linear complementary dual codes
with the largest minimum weight for small dimensions. A complete
classification of binary linear complementary dual [n, k] codes with the
largest minimum weight is also given for 1 ≤ k ≤ n ≤ 16.

1 Introduction

An [n, k] code C over Fq is a k-dimensional vector subspace of Fn
q , where Fq

denotes the finite field of order q and q is a prime power. A code over F2 is
called binary. The parameters n and k are called the length and dimension
of C, respectively. The weight wt(x) of a vector x ∈ F

n
q is the number of non-

zero components of x. A vector of C is called a codeword of C. The minimum
non-zero weight of all codewords in C is called the minimum weight d(C) of
C and an [n, k] code with minimum weight d is called an [n, k, d] code. Two
[n, k] codes C and C ′ over Fq are equivalent, denoted C ∼= C ′, if there is an
n× n monomial matrix P over Fq with C ′ = C · P = {xP | x ∈ C}.
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The dual code C⊥ of a code C of length n is defined as C⊥ = {x ∈ F
n
q |

x · y = 0 for all y ∈ C}, where x · y is the standard inner product. A code
C is called linear complementary dual (or a linear code with complementary
dual) if C ∩ C⊥ = {0n}, where 0n denotes the zero vector of length n. We
say that such a code is LCD for short.

LCD codes were introduced by Massey [12] and gave an optimum linear
coding solution for the two user binary adder channel. LCD codes are an
important class of codes for both theoretical and practical reasons (see [2], [3],
[4], [7], [8], [10], [11], [12], [13], [14]). It is a fundamental problem to classify
LCD [n, k] codes and determine the largest minimum weight among all LCD
[n, k] codes. Recently, much work has been done concerning this fundamental
problem (see [3], [4], [7], [8], [11], [13]). In particular, we emphasize the recent
work by Carlet, Mesnager, Tang and Qi [4]. It has been shown in [4] that
any code over Fq is equivalent to some LCD code for q ≥ 4. This motivates
us to study binary LCD codes.

Throughout this paper, let d(n, k) denote the largest minimum weight
among all binary LCD [n, k] codes. Recently, some bounds on the mini-
mum weights of binary LCD [n, k] codes have been established in [8]. More
precisely, d(n, 2) has been determined and the values d(n, k) have been cal-
culated for 1 ≤ k ≤ n ≤ 12. In this paper, we characterize binary LCD
[n, k, d(n, k)] codes for small k. The concept of k-covers of m-sets plays an
important role in the study of such codes. Using the characterization, we give
a classification of binary LCD [n, 2, d(n, 2)] codes and we determine d(n, 3).
In this paper, a complete classification of binary LCD [n, k] codes having the
minimum weight d(n, k) is also given for 1 ≤ k ≤ n ≤ 16.

The paper is organized as follows. In Section 2, definitions, notations
and basic results are given. We also give a classification of binary LCD
[n, k, d(n, k)] codes for k = 1, n − 1. In Section 3, we give some characteri-
zation of binary LCD codes using k-covers of m-sets. This characterization
is used in Sections 4, 5 and 6. In Section 4, we study binary LCD codes of
dimension 2. We give a classification of binary LCD [n, 2, d(n, 2)] codes for
n = 6t (t ≥ 1), 6t + 1 (t ≥ 1), 6t + 2 (t ≥ 0), 6t + 3 (t ≥ 1), 6t + 4 (t ≥ 0)
and 6t + 5 (t ≥ 1) (Theorems 4.5 and 4.8). In Sections 5 and 6, we study
binary LCD codes of dimension 3. In Section 5, we show that d(n, 3) =

⌊

4n
7

⌋

if n ≡ 3, 5, 10, 12 (mod 14) and
⌊

4n
7

⌋

−1 otherwise, for n ≥ 3 (Theorem 5.1).
In Section 6, we establish the uniqueness of binary LCD [n, 3, d(n, 3)] codes
for n ≡ 0, 2, 3, 5, 7, 9, 10, 12 (mod 14). In Section 7, we give a complete clas-
sification of binary LCD [n, k] codes having the minimum weight d(n, k) for
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2 ≤ k ≤ n−1 ≤ 15. Finally, in Section 8, we give constructions of LCD codes
over Fq from self-orthogonal codes. As a consequence, the values d(n, 4) are
determined for n = 17, 18, 21, 25.

All computer calculations in this paper were done with the help ofMagma [1].

2 Preliminaries

2.1 Definitions, notations and basic results

Throughout this paper, 0s and 1s denote the zero vector and the all-one
vector of length s, respectively. Let Ik denote the identity matrix of order k
and let AT denote the transpose of a matrix A.

Let C be an [n, k] code over Fq. The weight enumerator of C is given by
∑n

i=0Aiy
i, where Ai is the number of codewords of weight i in C. It is trivial

that two codes with distinct weight enumerators are inequivalent. The dual
code C⊥ of C is defined as C⊥ = {x ∈ F

n
q | x · y = 0 for all y ∈ C}, where

x · y is the standard inner product. A code C is called linear complementary
dual (or a linear code with complementary dual) if C ∩ C⊥ = {0n}. We say
that such a code is LCD for short. A generator matrix of C is a k×n matrix
whose rows are a set of basis vectors of C. A parity-check matrix of C is a
generator matrix of C⊥. The following characterization is due to Massey [12].

Proposition 2.1. Let C be a code over Fq. Let G and H be a genera-
tor matrix and a parity-check matrix of C, respectively. Then the following
properties are equivalent:

(i) C is LCD,

(ii) C⊥ is LCD,

(iii) GGT is nonsingular,

(iv) HHT is nonsingular.

From now on, all codes mean binary unless otherwise specified. Through-
out this paper, let d(n, k) denote the largest minimum weight among all LCD
[n, k] codes.

Lemma 2.2. Let G (resp. H) be a generator matrix (resp. a parity-check
matrix) of an LCD code.
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(i) Suppose that some two columns of G are identical. Let G′ be the ma-
trix obtained from G by deleting the two columns. Then the code with
generator matrix G′ is LCD.

(ii) Suppose that some two columns of H are identical. Let H ′ be the ma-
trix obtained from H by deleting the two columns. Then the code with
parity-check matrix H ′ is LCD.

Proof. Since GGT = G′G′T and HHT = H ′H ′T , the new codes are also
LCD.

Lemma 2.3. Suppose that there is an LCD [n, k, d] code C. If d(n− 1, k) ≤
d− 1, then d(C⊥) ≥ 2.

Proof. Suppose that d(C⊥) = 1. Then some column of a generator matrix of
C is 0k. By deleting the column, an LCD [n−1, k, d] code is constructed.

Lemma 2.4. Suppose that there is an LCD [n, k, d] code C with d(C⊥) ≥ 2.
If n− k ≥ 2k, then there is an LCD [n− 2, k] code D with d(D⊥) ≥ 2.

Proof. We may assume without loss of generality that C has generator matrix
of the form G =

(

Ik M
)

, where M is a k×(n−k) matrix. Since d(C⊥) ≥
2, no column of M is 0k. Since n − k ≥ 2k, some two columns of M are
identical. By Lemma 2.2, D is LCD.

Let C be an [n + 1, k, d] code with d(C⊥) = 1. Then we may assume
without loss of generality that

C = {(x1, x2, . . . , xn, 0) | (x1, x2, . . . , xn) ∈ C∗},

where C∗ is a punctured [n, k, d] code of C.

Lemma 2.5. C is LCD if and only if C∗ is LCD.

In this way, every LCD [n+1, k, d] code C with d(C⊥) = 1 is constructed
from some LCD [n, k, d] code C∗. In addition, two LCD [n + 1, k, d] codes
C with d(C⊥) = 1 are equivalent if and only if two LCD [n, k, d] codes C∗

are equivalent. Hence, all LCD [n + 1, k, d] codes C with d(C⊥) = 1, which
must be checked to achieve a complete classification, can be obtained from
all inequivalent LCD [n, k, d] codes C∗.
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2.2 LCD codes of dimensions 1, n− 1

It is trivial that Fn
2 is an LCD [n, n, 1] code. It is known [7] that

(d(n, 1), d(n, n− 1)) =

{

(n, 2) if n is odd,

(n− 1, 1) if n is even.

Proposition 2.6. There is a unique LCD [n, 1, d(n, 1)] code, up to equiva-
lence.

Proof. Let C be an LCD [n, 1, d(n, 1)] code. We may assume without loss of
generality that C has generator matrix of the following form:

(

1 1 · · · 1 1
)

and
(

1 1 · · · 1 0
)

,

if n is odd and even, respectively. The result follows.

Proposition 2.7. (i) Suppose that n is odd. Then there is a unique LCD
[n, n− 1, 2] code, up to equivalence.

(ii) Suppose that n is even. Then there are n/2 inequivalent LCD [n, n−1, 1]
codes.

Proof. Let C be an LCD [n, n−1, d(n, n−1)] code. We may assume without
loss of generality that C has generator matrix of the following form:

G((a1, . . . , an−1)) =







a1

In−1
...

an−1






,

where ai ∈ F2 (i = 1, 2, . . . , n− 1). Then

H =
(

a1 a2 · · · an−1 1
)

is a parity-check matrix of C.

(i) Suppose that n is odd. Since d(C) = 2, ai = 1 (i = 1, 2, . . . , n − 1).
Since n is odd, HHT =

(

1
)

. Hence, there is a unique LCD [n, n−1, 2]
code, up to equivalence.

(ii) Suppose that n is even. Since C is LCD, the weight of (a1, . . . , an−1)
is even. Let C(x) denote the code with generator matrix of the form
G(x), where x ∈ F

n−1
2 and wt(x) is even. It is easy to see that C(x)

and C(y) are equivalent if and only if wt(x) = wt(y). Hence, there are
n/2 LCD [n, n− 1, 1] codes, up to equivalence.

This completes the proof.
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3 Constructions of LCD codes from k-covers

In this section, we study LCD codes constructed from k-covers of m-sets. We
give a characterization of LCD codes of dimensions 2 and 3 using k-covers.

3.1 LCD codes from k-covers

Let m and k be positive integers. Let X be a set with m elements (for short
m-set). A k-cover of X is a collection of k not necessarily distinct subsets of
X whose union is X [5]. This concept plays an important role in the study
of LCD codes for small dimensions.

We define a generator matrix from a k-cover {Y1, Y2, . . . , Yk} of an m-
set X = {1, 2, . . . , m} as follow. Since the matrix depends on the ordering
chosen for Y1, Y2, . . . , Yk, in this paper, we fix the order. More precisely, we
define a k-cover as a sequence Y = (Y1, Y2, . . . , Yk). Let Y = (Y1, Y2, . . . , Yk)
be a k-cover of X . We define the following subsets of {1, 2, . . . , k + ℓm}:

Z1 = {1} ∪ (k + Y1) ∪ (k +m+ Y1) ∪ · · · ∪ (k + (ℓ− 1)m+ Y1),
Z2 = {2} ∪ (k + Y2) ∪ (k +m+ Y2) ∪ · · · ∪ (k + (ℓ− 1)m+ Y2),

...
Zk = {k} ∪ (k + Yk) ∪ (k +m+ Yk) ∪ · · · ∪ (k + (ℓ− 1)m+ Yk),

where ℓ is an even positive integer and a+Yi = {a+y | y ∈ Yi} for a positive
integer a. Let zi be the characteristic vector of Zi (i = 1, 2, . . . , k). Then
define the k× (k+ ℓm) matrix G(Y) such that zi is the i-th row. We denote
the code with generator matrix of the form G(Y) by C(Y).

Proposition 3.1. The code C(Y) is an LCD [ℓm+k, k] code with d(C(Y)⊥) =
2.

Proof. Since ℓ is even, G(Y)G(Y)T = Ik. Thus, C(Y) is LCD. Since Y is a
k-cover of X , no column of G(Y) is 0k and some two columns of G(Y) are
identical. This implies that d(C(Y)⊥) = 2.

Now we consider the case k = 2, 3 and ℓ = 2. Let Y be a 2-cover and a
3-cover of X , respectively. Let C(Y) be a [2m+ 2, 2] code and a [2m+ 3, 3]
code with generator matrix of the form G(Y), respectively. Let C ′(Y) denote
the [2m + 3, 2] code and the [2m + 4, 3] code with generator matrix of the
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following form:

G′(Y) =

(

G(Y)
1
1

)

and



 G(Y)
0
1
1



 ,

respectively.

Proposition 3.2. The code C ′(Y) is LCD.

Proof. For k = 2 and 3, the result follows from

G′(Y)G′(Y)T =

(

0 1
1 0

)

and





1 0 0
0 0 1
0 1 0



 ,

respectively.

3.2 LCD codes from 2-covers

Proposition 3.3. Suppose that m ≥ 1. Let C be an LCD [2m + 2, 2] code
with d(C⊥) ≥ 2. Then there is a 2-cover (Y1, Y2) such that C ∼= C((Y1, Y2)).

Proof. We may assume without loss of generality that C has generator matrix
of the following form:

(

1 0
0 1

M

)

, (1)

where M is a 2× 2m matrix such that no column is 02. If 2m ≥ 4, then an
LCD [2m, 2] code is constructed by Lemma 2.4. By continuing this process,
an LCD [4, 2] code with generator matrix of the form (1) is constructed.
Hence, we show that such a code is constructed from a 2-cover.

Since no column of M is 02, it is sufficient to consider the codes with
generator matrices:

(

1 0 0 0
0 1 1 1

)

,

(

1 0 0 1
0 1 1 0

)

,

(

1 0 0 1
0 1 1 1

)

,

(

1 0 1 1
0 1 1 1

)

.

Only the first code and the last two codes are LCD. It can be seen by hand
that the last two LCD codes are equivalent. This means that the first code
and the last code are C((Y1, Y2)) and C((Y ′

1 , Y
′

2)), respectively, where Y1 =
∅, Y2 = Y ′

1 = Y ′

2 = {1}.
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Proposition 3.4. Suppose that m ≥ 1. Let C be an LCD [2m + 3, 2] code
with d(C⊥) ≥ 2. Then there is a 2-cover (Y1, Y2) such that C ∼= C ′((Y1, Y2)).

Proof. We may assume without loss of generality that C has generator matrix
of the following form:

(

1 0
0 1

M ′

)

, (2)

where M ′ is a 2× (2m+1) matrix such that no column is 02. If 2m+1 ≥ 4,
then an LCD [2m + 1, 2] code is constructed by Lemma 2.4. By continuing
this process, an LCD [5, 2] code with generator matrix of the form (2) is
constructed.

Since no column of M ′ is 02, it is sufficient to consider the [5, 2] codes
with generator matrices (2), where

M ′ =

(

0 0 0
1 1 1

)

,

(

0 0 1
1 1 0

)

,

(

0 0 1
1 1 1

)

,

(

0 1 1
1 0 1

)

,

(

0 1 1
1 1 1

)

,

(

1 1 1
1 1 1

)

.

Only the third code and the last code are LCD. It can be seen by hand that
the two LCD codes are equivalent. In addition, the last code is C ′((Y1, Y2)),
where Y1 = Y2 = {1}. This completes the proof.

3.3 LCD codes from 3-covers

Proposition 3.5. Suppose that m ≥ 1. Let C be an LCD [2m+3, 3] code with
d(C⊥) ≥ 2. Then there is a 3-cover (Y1, Y2, Y3) such that C ∼= C((Y1, Y2, Y3)).

Proof. We may assume without loss of generality that C has generator matrix
of the following form:





1 0 0
0 1 0 M
0 0 1



 , (3)

where M is a 3 × 2m matrix such that no column is 03. If 2m ≥ 8, then
an LCD [2m + 1, 3] code is constructed by Lemma 2.4. By continuing this
process, an LCD [n, 3] code with generator matrix of the form (3) is con-
structed, where n = 5, 7, 9. Hence, we show that such a code is constructed
from a 3-cover.
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Let C9 be an LCD [9, 3] code with generator matrix of the form (3)
satisfying that all columns of M are distinct. Our computer search shows
that C9 is equivalent to the code D9 with generator matrix





1 0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 1



 .

In addition, our computer search shows that D9 is equivalent to the code
with generator matrix





1 0 0 1 1 1 1 1 1
0 1 0 1 0 1 1 0 1
0 0 1 1 1 0 1 1 0



 .

This means that the code is C((Y1, Y2, Y3)), where Y1 = {1, 2, 3}, Y2 = {1, 3}
and Y3 = {1, 2}.

Let C7 be an LCD [7, 3] code with generator matrix of the form (3)
satisfying that all columns of M are distinct. Our computer search shows
that C7 is equivalent to one of the codesD7,1 andD7,2 with generator matrices





1 0 0 1 0 1 1
0 1 0 0 1 1 0
0 0 1 0 0 0 1



 and





1 0 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1



 ,

respectively. In addition, our computer search shows that D7,1 and D7,2 are
equivalent to the codes with generator matrices





1 0 0 1 1 1 1
0 1 0 1 1 1 1
0 0 1 1 0 1 0



 and





1 0 0 1 1 1 1
0 1 0 0 1 0 1
0 0 1 1 0 1 0



 ,

respectively. This means that the codes areC((Y1, Y2, Y3)) and C((Y ′

1 , Y
′

2 , Y
′

3)),
respectively, where Y1 = Y2 = Y ′

1 = {1, 2}, Y3 = Y ′

3 = {1} and Y ′

2 = {2}.
Our computer search shows that an LCD [5, 3] code is equivalent to one

of the codes C5,1, C5,2 and C5,3 with generator matrices





1 0 0 1 1
0 1 0 0 0
0 0 1 0 0



 ,





1 0 0 1 1
0 1 0 1 1
0 0 1 0 0



 and





1 0 0 1 1
0 1 0 1 1
0 0 1 1 1



 ,
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respectively. This means that the codes are C((Y1, Y2, Y3)), C((Y ′

1 , Y
′

2 , Y
′

3))
and C((Y ′′

1 , Y
′′

2 , Y
′′

3 )), respectively, where Y1 = Y ′

1 = Y ′

2 = Y ′′

1 = Y ′′

2 = Y ′′

3 =
{1} and Y2 = Y3 = Y ′

3 = ∅.

Proposition 3.6. Suppose that m ≥ 1. Let C be an LCD [2m+4, 3] code with
d(C⊥) ≥ 2. Then there is a 3-cover (Y1, Y2, Y3) such that C ∼= C ′((Y1, Y2, Y3)).

Proof. We may assume without loss of generality that C has generator matrix
of the following form:





1 0 0
0 1 0 M ′

0 0 1



 , (4)

where M ′ is a 3× (2m+1) matrix such that no column is 03. If 2m+1 ≥ 8,
then an LCD [2m + 2, 3] code is constructed by Lemma 2.4. By continuing
this process, an LCD [n, 3] code with generator matrix of the form (4) is
constructed, where n = 6, 8, 10.

Let C10 be an LCD [10, 3] code with generator matrix of the form (4)
satisfying that all columns of M ′ are distinct. Then C10 is equivalent to the
code D10 with generator matrix





1 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1
0 0 1 0 0 0 1 1 1 1



 .

Our computer search shows that D10 is equivalent to the code with generator
matrix





1 0 0 1 1 1 1 1 1 0
0 1 0 1 0 1 1 0 1 1
0 0 1 1 1 0 1 1 0 1



 .

This means that the code is C ′((Y1, Y2, Y3)), where Y1 = {1, 2, 3}, Y2 = {1, 3}
and Y3 = {1, 2}.

Let C8 be an LCD [8, 3] code with generator matrix of the form (4)
satisfying that all columns of M ′ are distinct. Our computer search shows
that C8 is equivalent to the code D8 with generator matrix





1 0 0 1 0 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 0 0 1 1



 .
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In addition, our computer search shows that D8 is equivalent to the code
with generator matrix





1 0 0 1 1 1 1 0
0 1 0 1 1 1 1 1
0 0 1 1 0 1 0 1



 .

This means that the code is C ′((Y1, Y2, Y3)), where Y1 = Y2 = {1, 2} and
Y3 = {1}.

Our computer search shows that an LCD [6, 3] code with generator is
equivalent to one of the codes C6,1, C6,2 and C6,3 with generator matrices
(

I3 A
)

, where

A =





0 0 0
1 1 1
1 1 1



 ,





1 1 0
0 0 1
0 0 1



 and





1 1 0
1 1 1
1 1 1



 ,

respectively, In addition, these codes are

C ′((Y1, Y2, Y3)), C
′((Y ′

1 , Y
′

2 , Y
′

3)) and C ′((Y ′′

1 , Y
′′

2 , Y
′′

3 )),

respectively, where Y1 = Y ′

2 = Y ′

3 = ∅ and Y2 = Y3 = Y ′

1 = Y ′′

1 = Y ′′

2 = Y ′′

3 =
{1}.

3.4 Remarks

The elements of an m-set X may be taken to be identical. In this case, X is
called unlabelled. Let Y = (Y1, Y2, . . . , Yk) be a k-cover ofX . The order of the
sets Y1, Y2, . . . , Yk may not be material. In this case, Y is called disordered [5].

Proposition 3.7. Let Y be a k-cover of an m-set X. Let Y ′ be the k-cover
obtained from Y by a permutation of Y1, Y2, . . . , Yk and a permutation of the
elements of X. Then C(Y) ∼= C(Y ′).

Proof. Consider a generator matrix G of the LCD code C(Y) constructed
from a k-cover Y = (Y1, Y2, . . . , Yk). A permutation of Y1, Y2, . . . , Yk implies
a permutation of rows of G. A permutation of the elements of X implies a
permutation of columns of G. The result follows.
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By the above proposition, when we consider codes C(Y) constructed from
all k-covers Y , which must be checked to achieve a complete classification, it
is sufficient to consider only disordered k-covers of unlabelled m-sets.

Now let us consider LCD codes constructed from 4-covers. Our com-
puter search shows that there are six inequivalent LCD [6, 4] codes D6,i

(i = 1, 2, . . . , 6) with d(D⊥

6,i) ≥ 2. These codes D6,i have generator matrices
(

I4 A
)

, where

A =









1 1
0 0
0 0
0 0









,









1 1
1 1
0 0
0 0









,









1 1
1 1
1 1
0 0









,









1 1
1 1
1 1
1 1









,









1 0
1 0
0 1
0 1









,









1 0
1 0
0 1
1 1









,

respectively. The weight enumerators W6,i of the codes D6,i are listed in
Table 1. It is easy to see that the number of disordered 4-covers of an
unlabelled 1-set is 4 [5, Table 1]. Only the codes D6,i (i = 1, 2, 3, 4) are
constructed from 4-covers.

Table 1: W6,i (i = 1, 2, . . . , 6)

i W6,i i W6,i

1 1 + 3y + 3y2 + 2y3 + 3y4 + 3y5 + y6 4 1 + 6y2 + 4y3 + y4 + 4y5

2 1 + 2y + 2y2 + 4y3 + 5y4 + 2y5 5 1 + 6y2 + 9y4

3 1 + y + 3y2 + 6y3 + 3y4 + y5 + y6 6 1 + 4y2 + 6y3 + 3y4 + 2y5

4 LCD codes of dimension 2

It was shown in [8] that

d(n, 2) =

{

⌊2n
3
⌋ if n ≡ 1, 2, 3, 4 (mod 6),

⌊2n
3
⌋ − 1 otherwise,

for n ≥ 2. Throughout this section, we denote d(n, 2) by dn. In this section,
we give a classification of LCD [n, 2, dn] codes for n = 6t (t ≥ 1), 6t + 1
(t ≥ 1), 6t + 2 (t ≥ 0), 6t + 3 (t ≥ 1), 6t + 4 (t ≥ 0) and 6t + 5 (t ≥ 1). In
Section 3, we gave some observation of LCD codes of dimension 2, which is
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established from the concept of 2-covers of m-sets. The observation is useful
to complete the classification.

Lemma 4.1. Suppose that n ≥ 2 and n ≡ 0, 1, 2, 3 (mod 6). If there is an
LCD [n, 2, dn] code C then d(C⊥) ≥ 2.

Proof. Write n = 6t + s, where 0 ≤ s ≤ 5. For s and dn, we have the
following:

s dn s dn s dn
0 4t− 1 2 4t+ 1 4 4t+ 2
1 4t 3 4t+ 2 5 4t+ 2

The result follows by Lemma 2.3.

Now suppose that C and C ′ are an LCD [2m + 2, 2] code and an LCD
[2m+3, 2] code with d(C⊥) ≥ 2 and d(C ′⊥) ≥ 2, respectively, for m ≥ 1. By
Propositions 3.3 and 3.4, we may assume without loss of generality that C
and C ′ have generator matrices of the following form:

G0(a, b, c) =

(

1 0
0 1

M(a, b, c) M(a, b, c)

)

and

G1(a, b, c) =

(

1 0
0 1

M(a, b, c) M(a, b, c)
1
1

)

,

respectively, where

M(a, b, c) =

(

1a 1b 0c

1a 0b 1c

)

. (5)

We denote the codes by C0(a, b, c) and C1(a, b, c), respectively. Then the
codes Cδ(a, b, c) have the following weight enumerators for δ ∈ {0, 1}:

1 + y1+2(a+b)+δ + y1+2(a+c)+δ + y2+2(b+c) (6)

For nonnegative integers a, b, c, n and δ ∈ {0, 1}, we consider the following
conditions:

dn ≤ 1 + 2(a+ b) + δ, (7)

dn ≤ 1 + 2(a+ c) + δ, (8)

dn ≤ 2 + 2(b+ c), (9)

2(a+ b+ c) + 2 + δ = n, (10)

b ≤ c. (11)

13



Lemma 4.2. (i) Let S be the set of (a, b, c) satisfying the conditions (7)–
(11), where δ = 1.

(1) If n = 6t+ 1 (t ≥ 1), then S = {(t− 1, t, t), (t, t− 1, t)}.

(2) If n = 6t+ 3 (t ≥ 1), then S = {(t, t, t)}.

(3) If n = 6t+ 5 (t ≥ 1), then

S =

{

(t− 1, t+ 1, t+ 1), (t, t, t+ 1),
(t+ 1, t− 1, t+ 1), (t+ 1, t, t)

}

.

(ii) Let S be the set of (a, b, c) satisfying the conditions (7)–(11), where
δ = 0.

(1) If n = 6t (t ≥ 1), then S = {(t− 1, t, t), (t, t− 1, t)}.

(2) If n = 6t+ 2 (t ≥ 1), then S = {(t, t, t)}.

(3) If n = 6t+ 4 (t ≥ 0), then S = {(t+ 1, t, t)}.

Proof. All cases are similar, and we only give the details for n = 6t+ 1.
From (9) and (10), we have a ≤ t. From (7), (8) and (10), we have

t− 1 ≤ a. Thus, we have
a ∈ {t− 1, t}.

Suppose that a = t − 1. From (7), we have t ≤ b. From (8), we have
t ≤ c. From (10), we have b+ c = 2t. Hence, we have b = c = t.

Suppose that a = t. From (7), we have t − 1 ≤ b. From (8), we have
t − 1 ≤ c. From (10), we have b + c = 2t − 1. From (11), we have (b, c) =
(t− 1, t).

Lemma 4.3. Cδ(a, b, c) ∼= Cδ(a, c, b) for δ ∈ {0, 1}.

Proof. The matrix Gδ(a, c, b) is obtained from Gδ(a, c, b) by permutations of
rows and columns.

Lemma 4.4. C1(a, b, c) ∼= C1(b, a, c) ∼= C1(c, b, a).

Proof. We denote the code with generator matrix of the formM(a, b, c) in (5)
by D(a, b, c). Let ri be the i-th row of M(a, b, c). By considering the matrices
(

r1
r1 + r2

)

and

(

r1 + r2
r2

)

, we have D(a, b, c) = D(b, a, c) = D(c, b, a).

Since C1(a, b, c) ∼= D(2a+ 1, 2b+ 1, 2c+ 1), the result follows.
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Theorem 4.5. (i) For t ≥ 1, there are two inequivalent LCD [6t, 2, 4t−1]
codes.

(ii) For t ≥ 1, there is a unique LCD [6t+ 1, 2, 4t] code, up to equivalence.

(iii) For t ≥ 1, there is a unique LCD [6t+2, 2, 4t+1] code, up to equivalence.

(iv) For t ≥ 1, there is a unique LCD [6t+3, 2, 4t+2] code, up to equivalence.

Proof. Let C be an LCD [n, 2] code with n ≥ 4. For the parameters [6t, 2, 4t−
1], [6t+1, 2, 4t], [6t+2, 2, 4t+1] and [6t+3, 2, 4t+2] (t ≥ 1), by Lemma 4.1,
we may assume without loss of generality that C has generator matrix of the
form Gδ(a, b, c) for δ = 0, 1, 0, 1, respectively. In addition, C satisfies (7)–
(10). By Lemma 4.3, we may assume without loss of generality that C
satisfies (11).

(i) Assume that n = 6t (t ≥ 1). By Lemma 4.2 (ii), (a, b, c) is (t−1, t, t) or
(t, t− 1, t). Let C1 and C2 be the LCD codes with generator matrices
G0(a, b, c) for these (a, b, c), respectively. By (6), the codes C1 and C2

have the following weight enumerators:

1 + 2y4t−1 + y4t+2 and 1 + y4t−1 + y4t + y4t+1,

respectively. Hence, the two codes are inequivalent.

(ii) Assume that n = 6t+1 (t ≥ 1). By Lemma 4.2 (i), (a, b, c) is (t−1, t, t)
or (t, t−1, t). Let C1 and C2 be the LCD codes with generator matrices
G1(a, b, c) for these (a, b, c), respectively. By Lemma 4.4, C1 and C2 are
equivalent.

(iii) For n = 6t+ 2 (t ≥ 1), the uniqueness follows from Lemma 4.2 (ii).

(iv) For n = 6t+ 3 (t ≥ 1), the uniqueness follows from Lemma 4.2 (i).

This completes the proof.

We remark that there is a unique LCD [3, 2, 2] code, up to equivalence,
by Proposition 2.7.

Lemma 4.6. (i) For t ≥ 0, there is a unique LCD [6t + 4, 2, 4t+ 2] code
C with d(C⊥) ≥ 2, up to equivalence.
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(ii) For t ≥ 1, there are two inequivalent LCD [6t + 5, 2, 4t + 2] codes C
with d(C⊥) ≥ 2.

Proof. Let C be an LCD [n, 2] code with d(C⊥) ≥ 2 and n ≥ 4. For the
parameters [6t+4, 2, 4t+2] (t ≥ 0) and [6t+5, 2, 4t+2] (t ≥ 1), since d(C⊥) ≥
2, we may assume without loss of generality that C has generator matrix of
the form Gδ(a, b, c) for δ = 0, 1, respectively. In addition, C satisfies (7)–(10).
By Lemma 4.3, we may assume without loss of generality that C satisfies (11).

(i) For n = 6t+ 4 (t ≥ 0), the uniqueness follows from Lemma 4.2 (ii).

(ii) Assume that n = 6t + 5 (t ≥ 1). By Lemma 4.2 (i), (a, b, c) is (t −
1, t + 1, t + 1), (t, t, t + 1), (t + 1, t − 1, t + 1) or (t + 1, t, t). Let Ci

(i = 1, 2, 3, 4) be the LCD code with generator matrix G1(a, b, c) for
these (a, b, c), respectively. By Lemma 4.4, C1

∼= C3 and C2
∼= C4.

By (6), the codes C1 and C2 have the following weight enumerators:

1 + 2y4t+2 + y4t+4 and 1 + y4t+2 + 2y4t+4,

respectively. Hence, the two codes are inequivalent.

This completes the proof.

Remark 4.7. By [8, Theorem 3], the dual codes of the codes given in the
above lemma have minimum weight 2.

Theorem 4.8. (i) For t ≥ 0, there are two inequivalent LCD [6t+4, 2, 4t+
2] codes.

(ii) For t ≥ 1, there are four inequivalent LCD [6t+ 5, 2, 4t+ 2] codes.

Proof. By Lemma 2.5, all LCD [n + 1, k, d] codes C with d(C⊥) = 1, which
must be checked to achieve a complete classification, can be obtained from
all inequivalent LCD [n, k, d] codes.

(i) By Theorem 4.5, there is a unique LCD [6t + 3, 2, 4t + 2] code, up to
equivalence, for t ≥ 1. The result follows from Lemma 4.6.

(ii) The result follows from Lemma 4.6 and the part (i).

This completes the proof.

We remark that there are three inequivalent LCD [5, 2, 2] codes (see Ta-
ble 3).
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5 LCD codes of dimension 3: d(n, 3)

The aim of this section is to show the following theorem. In Section 3, we
gave some observation of LCD codes of dimension 3, which is established
from the concept of 3-covers of m-sets. The observation is useful to do this.

Theorem 5.1. For n ≥ 3,

d(n, 3) =

{

⌊

4n
7

⌋

if n ≡ 3, 5, 10, 12 (mod 14),
⌊

4n
7

⌋

− 1 otherwise.

Throughout this section, we denote
⌊

4n
7

⌋

by αn.

Lemma 5.2. There is no LCD [n, 3, αn] code for n ≡ 2 (mod 7).

Proof. Suppose that there is an (unrestricted) [n, 3, d] code. By the Griesmer
bound, we have

n ≥ d+

⌈

d

2

⌉

+

⌈

d

4

⌉

.

Hence, we have

d(n, 3) ≤

{

αn − 1 if n ≡ 2 (mod 7),

αn otherwise.

The result follows.

Lemma 5.3. Suppose that n ≥ 3 and n ≡ 0, 4, 6, 7, 11, 13 (mod 14). If there
is an LCD [n, 3, αn] code C, then d(C⊥) ≥ 2.

Proof. Write n = 14t + s, where 0 ≤ s ≤ 13. For s and αn, we have the
following:

s αn s αn s αn s αn s αn

0 8t 3 8t+ 1 6 8t+ 3 9 8t + 5 12 8t+ 6
1 8t 4 8t+ 2 7 8t+ 4 10 8t + 5 13 8t+ 7
2 8t+ 1 5 8t+ 2 8 8t+ 4 11 8t + 6

The result follows by Lemma 2.3.
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For nonnegative integers a, b, c, d, e, f, g,m, α and δ ∈ {0, 1}, we consider
the following conditions:

α ≤ 1 + 2(a+ b+ f + g), (12)

α ≤ 1 + 2(a+ c+ e + g) + δ, (13)

α ≤ 1 + 2(a+ d+ e+ f) + δ, (14)

α ≤ 2 + 2(b+ c + e+ f) + δ, (15)

α ≤ 2 + 2(b+ d+ e + g) + δ, (16)

α ≤ 2 + 2(c+ d+ f + g), (17)

α ≤ 3 + 2(a+ b+ c+ d), (18)

a+ b+ c+ d+ e+ f + g = m. (19)

Define the following sets:

R1 =

{

r ∈ Z | α−m−
3 + δ

2
≤ r ≤ m−

3

4
α+

3 + δ

2

}

,

R2 =

{

r ∈ Z | α−m−
4 + δ

2
≤ r ≤ m−

3

4
α+

2 + δ

2

}

.

Lemma 5.4. Let a, b, c, d, e, f, g be nonnegative integers satisfying the con-
ditions (12)–(19).

(i) If δ = 0, then a, e, f, g ∈ R1 and b, c, d ∈ R2.

(ii) If δ = 1, then a, f, g ∈ R1 and b, c, d, e ∈ R2.

Proof. All cases are similar, and we only give the details for a ∈ R1 and
b ∈ R2.

From (15), (16), (17) and (19), we have a ≤ m − 3
4
α + 3+δ

2
. From (12),

(13), (14), (18) and (19), we have α − m − 3+δ
2

≤ a. Similarly, from (13),
(14), (17) and (19), we have b ≤ m − 3

4
α + 4+δ

2
. From (12), (15), (16), (18)

and (19), we have α−m− 4+δ
2

≤ b. The result follows.

Now suppose that C and C ′ are an LCD [2m + 3, 3] code and an LCD
[2m+ 4, 3] code with d(C⊥) ≥ 2 and d(C ′⊥) ≥ 2, respectively for m ≥ 1. By
Propositions 3.5 and 3.6, we may assume without loss of generality that C
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and C ′ have generator matrices of the following form:





1 0 0
0 1 0 M(a, b, c, d, e, f, g) M(a, b, c, d, e, f, g)
0 0 1



 and





1 0 0 0
0 1 0 M(a, b, c, d, e, f, g) M(a, b, c, d, e, f, g) 1
0 0 1 1



 ,

respectively, where

M(a, b, c, d, e, f, g) =





1a 1b 0c 0d 0e 1f 1g

1a 0b 1c 0d 1e 0f 1g

1a 0b 0c 1d 1e 1f 0g



 . (20)

We denote the codes by C0(a, b, c, d, e, f, g) and C1(a, b, c, d, e, f, g), respec-
tively. Then the codes Cδ(a, b, c, d, e, f, g) have the following weight enumer-
ators for δ ∈ {0, 1}:

1 + y1+2(a+b+f+g) + y1+2(a+c+e+g)+δ + y1+2(a+d+e+f)+δ

+ y2+2(b+c+e+f)+δ + y2+2(b+d+e+g)+δ + y2+2(c+d+f+g) + y3+2(a+b+c+d).
(21)

Lemma 5.5. There is an LCD [n, 3, αn] code for n ≡ 3, 5, 10, 12 (mod 14).

Proof. F
3
2 is the LCD [3, 3, 1] code. Suppose that n ≥ 5. Consider the

following codes:

C0(t+ 1, t, t, t, t, t, t), C1(t + 1, t, t, t, t, t+ 1, t+ 1),

C1(t+ 1, t+ 1, t, t, t, t+ 1, t+ 1) and

C0(t+ 1, t+ 1, t+ 1, t+ 1, t+ 1, t+ 1, t+ 1),

for t ≥ 0. These codes have lengths 14t+ 5, 14t+ 10, 14t+ 12 and 14t+ 17,
respectively. By (21), these codes have the following weight enumerators:

1 + 3y8t+2 + 3y8t+3 + y8t+5, 1 + 3y8t+5 + 3y8t+6 + y8t+7,

1 + y8t+5 + y8t+6 + 3y8t+7 + 2y8t+8 and 1 + 3y8t+9 + 3y8t+10 + y8t+11,

respectively. The result follows.
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For the above parameters, the uniqueness of LCD codes is established in
Section 6.

Lemma 5.6. There is no LCD [n, 3, αn] code for n ≡ 0, 4, 6, 7, 11, 13 (mod 14).

Proof. There is no LCD [4, 3, 2] code (see [8, Table 1]). Assume that n ≡
0, 4, 6, 7, 11, 13 (mod 14) and n ≥ 6. Suppose that there is an LCD [n, 3, αn]
code C. By Lemma 5.3, d(C⊥) ≥ 2. Hence, C ∼= C0(a, b, c, d, e, f, g) if
n ≡ 7, 11, 13 (mod 14) and C ∼= C1(a, b, c, d, e, f, g) if n ≡ 0, 4, 6 (mod 14)
for some (a, b, c, d, e, f, g).

Since C has minimum weight αn, (a, b, c, d, e, f, g) satisfies (12)–(19) with
n = 3 + 2m+ δ and α = αn.

• (n, αn) = (14t, 8t) (t ≥ 1): We have R2 = ∅, which is a contradiction.

• (n, αn) = (14t+ 4, 8t+ 2) (t ≥ 1), (14t+ 6, 8t+ 3) (t ≥ 0): We have

(a, b, c, d, e, f, g) = (t, t, t, t, t, t, t)

by Lemma 5.4. These contradict (12) and (19), respectively.

• (n, αn) = (14t + 7, 8t + 4) (t ≥ 0): We have R1 = ∅, which is a
contradiction.

• (n, αn) = (14t+ 11, 8t+ 6), (14t+ 13, 8t+ 7) (t ≥ 0): We have

(a, b, c, d, e, f, g) = (t+ 1, t, t, t, t+ 1, t+ 1, t+ 1)

by Lemma 5.4. These contradict (18) and (19), respectively.

This completes the proof.

Lemma 5.7. There is no LCD [n, 3, αn] code for n ≡ 1, 8 (mod 14).

Proof. Assume that n ≡ 1, 8 (mod 14) and n ≥ 8. Suppose that there is an
LCD [n, 3, αn] code C. Since n− 1 ≡ 0, 7 (mod 14) and αn = αn−1, we have

d(n− 1, 3) ≤ αn−1 − 1 = αn − 1

by Lemma 5.6. By Lemma 2.3, d(C⊥) ≥ 2. Hence, C ∼= C0(a, b, c, d, e, f, g)
if n ≡ 1 (mod 14) and C ∼= C1(a, b, c, d, e, f, g) if n ≡ 8 (mod 14) for some
(a, b, c, d, e, f, g).

Since C has minimum weight αn, (a, b, c, d, e, f, g) satisfies (12)–(19) with
n = 3 + 2m+ δ and α = αn.
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• (n, αn) = (14t+ 1, 8t) (t ≥ 1): We have

(a, e, f, g) = (t, t, t, t) and b, c, d ∈ {t− 1, t}

by Lemma 5.4. From (19), b+ c+ d = 3t− 1. Hence,

(b, c, d) = (t− 1, t, t), (t, t− 1, t) and (t, t, t− 1).

These contradict (12), (13) and (14), respectively.

• (n, αn) = (14t+ 8, 8t+ 4) (t ≥ 0): We have

a, f, g ∈ {t, t + 1} and (b, c, d, e) = (t, t, t, t)

by Lemma 5.4. From (19), a+ f + g = 3t+ 2. Hence,

(a, f, g) = (t, t+ 1, t+ 1), (t+ 1, t, t+ 1) and (t+ 1, t+ 1, t).

These contradict (18), (15) and (16), respectively.

This completes the proof.

Lemma 5.8. There is an LCD [n, 3, αn−1] code for n ≡ 0, 1, 2, 4, 6, 7, 8, 9, 11,
13 (mod 14) and n ≥ 4.

Proof. There is an LCD [4, 3, 2] code (see [8, Table 1]). Suppose that n ≥ 6.
Consider the following codes:

C1(t + 1, t, t, t, t, t, t), C0(t, t, t, t, t, t+ 1, t+ 1),

C1(t, t, t, t, t, t+ 1, t+ 1), C0(t+ 1, t, t, t, t, t+ 1, t+ 1),

C0(t + 1, t, t, t, t+ 1, t+ 1, t+ 1),

C0(t + 1, t+ 1, t, t, t+ 1, t+ 1, t+ 1),

C1(t + 1, t, t, t+ 1, t+ 1, t+ 1, t+ 1),

C0(t + 1, t+ 1, t, t+ 1, t+ 1, t+ 1, t+ 1),

C1(t + 1, t+ 1, t, t+ 1, t+ 1, t+ 1, t+ 1) and

C1(t + 1, t+ 1, t+ 1, t+ 1, t+ 1, t+ 1, t+ 1),

for t ≥ 0. We denote these codes by Ci (i = 1, 2, . . . , 10), respectively. The
codes Ci have lengths 14t+6, 14t+7, 14t+8, 14t+9, 14t+11, 14t+13, 14t+14,
14t + 15, 14t + 16 and 14t + 18, respectively. The weight enumerators Wi

of Ci (i = 1, 2, . . . , 10) are obtained by (21), where Wi are listed in Table 2.
The result follows.

Lemmas 5.2, 5.5, 5.6, 5.7 and 5.8 complete the proof of Theorem 5.1.
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Table 2: Wi (i = 1, 2, . . . , 10)

i Wi i Wi

1 1 + y8t+2 + 3y8t+3 + 2y8t+4 + y8t+5 6 1 + y8t+6 + 3y8t+7 + 2y8t+8 + y8t+9

2 1 + 3y8t+3 + 2y8t+4 + y8t+5 + y8t+6 7 1 + 3y8t+7 + 2y8t+8 + y8t+9 + y8t+10

3 1 + y8t+3 + 2y8t+4 + 3y8t+5 + y8t+6 8 1 + y8t+7 + 2y8t+8 + 3y8t+9 + y8t+10

4 1 + 2y8t+4 + 3y8t+5 + y8t+6 + y8t+7 9 1 + 2y8t+8 + 3y8t+9 + y8t+10 + y8t+11

5 1 + y8t+5 + 3y8t+6 + 3y8t+7 10 1 + y8t+9 + 3y8t+10 + 3y8t+11

6 LCD codes of dimension 3: uniqueness

In this section, we establish the uniqueness of LCD [n, 3, d(n, 3)] codes C
for n ≡ 0, 2, 3, 5, 7, 9, 10, 12 (mod 14) and n ≥ 5. By Lemma 2.3 and The-
orem 5.1, d(C⊥) ≥ 2. By Propositions 3.5 and 3.6, C ∼= C0(a, b, c, d, e, f, g)
if n ≡ 3, 5, 7, 9 (mod 14) and C ∼= C1(a, b, c, d, e, f, g) if n ≡ 0, 2, 10, 14
(mod 14) for some (a, b, c, d, e, f, g)

Lemma 6.1. (i) C0(a, b, c, d, e, f, g) ∼= C0(a, b, d, c, e, g, f)
∼= C0(a, c, b, d, f, e, g) ∼= C0(a, c, d, b, f, g, e) ∼= C0(a, d, b, c, g, e, f)
∼= C0(a, d, c, b, g, f, e).

(ii) C1(a, b, c, d, e, f, g) ∼= C1(a, b, d, c, e, g, f).

Proof. The result follows by considering permutations of rows and columns
of the generator matrices of C0(a, b, c, d, e, f, g) and C1(a, b, c, d, e, f, g).

By the above lemma, we may assume without loss of generality that

b ≤ c ≤ d if δ = 0,
c ≤ d if δ = 1.

(22)

Lemma 6.2. Let S be the set of (a, b, c, d, e, f, g) satisfying (12)–(19) and
(22).

(i) If (n, α) = (14t+ 3, 8t+ 1) (t ≥ 1), then S = {(t, t, t, t, t, t, t)}.

(ii) If (n, α) = (14t+ 5, 8t+ 2) (t ≥ 0), then S = {(t+ 1, t, t, t, t, t, t)}.

(iii) If (n, α) = (14t+10, 8t+5) (t ≥ 0), then S = {(t+1, t, t, t, t, t+1, t+1)}.
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(iv) If (n, α) = (14t+ 12, 8t+ 6) (t ≥ 0), then

S = {(t+ 1, t+ 1, t, t, t, t+ 1, t+ 1)}.

Proof. All cases are similar, and we only give the details for (iv), which is
the complicated case.

Suppose that n = 14t + 12 and α = 8t + 6 (t ≥ 0). By Lemma 5.4,
R1 = R2 = {t, t+ 1}. From (12), 4t+ 5

2
≤ a+ b+ f + g. Hence, we have

|{s ∈ {a, b, f, g} | s = t+ 1}| ≥ 3.

From (19), a+ b+ c+ d+ e+ f + g = 7t+ 4. Hence, we have

|{s ∈ {a, b, c, d, e, f, g} | s = t+ 1}| = 4.

Therefore, we have

(a, b, f, g) ∈







(t + 1, t+ 1, t+ 1, t), (t+ 1, t+ 1, t, t+ 1),
(t + 1, t, t+ 1, t+ 1), (t, t+ 1, t+ 1, t+ 1),
(t + 1, t+ 1, t+ 1, t+ 1)







.

Here, we remark that

|{s ∈ {c, d, e} | s = t+ 1}| ≤ 1. (23)

• (a, b, f, g) = (t+ 1, t+ 1, t+ 1, t): From (13), (16) and (17),

2t + 1 ≤ c+ e, 2t+
1

2
≤ d+ e and 2t+ 1 ≤ c+ d,

respectively. This contradicts (23).

• (a, b, f, g) = (t+ 1, t+ 1, t, t+ 1): From (14), (15) and (17),

2t + 1 ≤ d+ e, 2t+
1

2
≤ c+ e and 2t+ 1 ≤ c+ d,

respectively. This contradicts (23).

• (a, b, f, g) = (t+ 1, t, t+ 1, t+ 1): From (15), (16) and (18),

2t+
1

2
≤ c+ e, 2t+

1

2
≤ d+ e and 2t+

1

2
≤ c+ d,

respectively. This contradicts (23).

23



• (a, b, f, g) = (t, t+ 1, t+ 1, t+ 1): From (13), (14) and (18),

2t + 1 ≤ c+ e, 2t+ 1 ≤ d+ e and 2t+
1

2
≤ c+ d,

respectively. This contradicts (23).

The result follows.

Therefore, we have the following theorem.

Theorem 6.3. (i) For t ≥ 1, there is a unique LCD [14t + 3, 3, 8t + 1]
code, up to equivalence.

(ii) For t ≥ 0, there is a unique LCD [14t+ 5, 3, 8t+ 2] code, up to equiva-
lence.

(iii) For t ≥ 0, there is a unique LCD [14t + 10, 3, 8t + 5] code, up to
equivalence.

(iv) For t ≥ 0, there is a unique LCD [14t + 12, 3, 8t + 6] code, up to
equivalence.

Now we consider LCD [n, 3, d(n, 3)] codes for n ≡ 0, 2, 7, 9 (mod 14) and
n ≥ 7.

Lemma 6.4. Let S be the set of (a, b, c, d, e, f, g) satisfying (12)–(19) and
(22).

(i) If (n, α) = (14t, 8t− 1) (t ≥ 1), then

S = {(t, t− 1, t, t, t− 1, t, t), (t, t− 1, t− 1, t, t, t, t)}.

(ii) If (n, α) = (14t+ 2, 8t) (t ≥ 1), then

S = {(t, t, t, t, t− 1, t, t), (t, t, t− 1, t, t, t, t)}.

(iii) If (n, α) = (14t+ 7, 8t+ 3) (t ≥ 0), then

S =

{

(t, t, t, t, t+ 1, t, t+ 1), (t, t, t, t, t+ 1, t+ 1, t),
(t, t, t, t, t, t+ 1, t+ 1)

}

.
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(iv) If (n, α) = (14t+ 9, 8t+ 4) (t ≥ 0), then

S =

{

(t + 1, t, t, t, t+ 1, t, t+ 1), (t+ 1, t, t, t, t+ 1, t+ 1, t),
(t + 1, t, t, t, t, t+ 1, t+ 1)

}

.

Proof. All cases are similar, and we only give the details for (i).
Suppose that n = 14t and α = 8t− 1 (t ≥ 1). By Lemma 5.4, R1 = R2 =

{t− 1, t}. From (19), a+ b+ c+ d+ e+ f + g = 7t− 2. Hence, we have

|{s ∈ {a, b, c, d, e, f, g} | s = t− 1}| = 2. (24)

From (12), (13) and (14),

4t− 1 ≤ a+ b+ f + g,
4t− 3

2
≤ a+ c+ e + g and

4t− 1 ≤ a+ d+ e+ f,
(25)

respectively.
Now suppose that a = t − 1. From (25), we have b = c = d = e = f =

g = t. Since this contradicts (24), we have a = t. Suppose that g = t − 1.
From (25), we have b = c = d = e = f = t. Since this contradicts (24), we
have g = t. From (17),

4t−
3

2
≤ c+ d+ f + g. (26)

Suppose that f = t − 1. From (25) and (26), we have b = c = d = e = t.
Since this contradicts (24), we have f = t. Suppose that d = t−1. From (26),
we have c = t, which contradicts (22). Therefore, we have

(b, c, e) ∈ {(t− 1, t− 1, t), (t− 1, t, t− 1)}.

The result follows.

We denote the code with generator matrix of the form M(a, b, c, d, e, f, g)
in (20) byD(a, b, c, d, e, f, g). It is trivial that C0(a, b, c, d, e, f, g) ∼= D(2a, 2b+
1, 2c+1, 2d+1, 2e, 2f, 2g) and C1(a, b, c, d, e, f, g) ∼= D(2a, 2b+1, 2c+1, 2d+
1, 2e+ 1, 2f, 2g).

Lemma 6.5. (i) For t ≥ 1, D(2t, 2t − 1, 2t + 1, 2t + 1, 2t − 1, 2t, 2t) ∼=
D(2t, 2t− 1, 2t− 1, 2t+ 1, 2t+ 1, 2t, 2t).
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(ii) For t ≥ 1, D(2t, 2t+ 1, 2t− 1, 2t+ 1, 2t+ 1, 2t, 2t) ∼= D(2t, 2t+ 1, 2t+
1, 2t+ 1, 2t− 1, 2t, 2t).

Proof. Let ri be the i-th row of M(a, b, c, d, e, f, g). Consider the following
matrices:





r1
r3

r2 + r3



 and





r1
r2

r2 + r3





for (i) and (ii), respectively. The result follows.

Theorem 6.6. (i) For t ≥ 1, there is a unique LCD [14t, 3, 8t− 1] code,
up to equivalence.

(ii) For t ≥ 1, there is a unique LCD [14t+2, 3, 8t] code, up to equivalence.

(iii) For t ≥ 0, there is a unique LCD [14t+ 7, 3, 8t+ 3] code, up to equiva-
lence.

(iv) For t ≥ 0, there is a unique LCD [14t+ 9, 3, 8t+ 4] code, up to equiva-
lence.

Proof. For (i) and (ii), the result follows from Lemmas 6.4 and 6.5. For (iii)
and (iv), the result follows from Lemmas 6.1 and 6.4.

For the parameters [4, 3, 1], [6, 3, 2], [8, 3, 3], [11, 3, 5], [13, 3, 6] and [15, 3, 7],
a number of inequivalent LCD codes are known (see Table 3).

7 Classification of LCD codes for small pa-

rameters

In this section, we give a complete classification of LCD [n, k] codes having
minimum weight d(n, k) for 2 ≤ k ≤ n− 1 ≤ 15.

We describe how LCD [n, k] codes having minimum weight d(n, k) were
classified. Let dall(n, k) denote the largest minimum weight among all (un-
restricted) [n, k] codes. The values dall(n, k) can be found in [9]. For a fixed
pair (n, k), we found all inequivalent [n, k] codes by one of the following
methods. If there is no LCD [n, k, dall(n, k)] code, then we consider the case
dall(n, k)− 1.
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Let C be an [n, k, d] code with parity-check matrix H . Let D be a code
with parity-check matrix obtained from H by deleting a column. The code D
is an [n−1, k−1, d′] code with d′ ≥ d. By considering the inverse operation,
all [n, k, d] codes are obtained from [n−1, k−1, d′] codes with d′ ≥ d. Starting
from [n, 1, d′] codes with d′ ≥ d, all [n+ t, 1+ t, d] codes are found for a given
t ≥ 1. This was done one column at a time, and complete equivalence tests
are carried out for each new column added. It is obvious that all codes, which
must be checked to achieve a complete classification, can be obtained.

For some parameters, we employ the following method, due to the compu-
tational complexity. Every [n, k, d] code is equivalent to a code with generator
matrix of the form

(

Ik A
)

, where A is a k × (n − k) matrix. The set of
matrices A was constructed, row by row. Permuting the rows and columns of
A gives rise to different generator matrices which generate equivalent codes.
Here, we consider a natural (lexicographical) order < on the set of the vectors
of length n − k. Let ri be the i-th row of A. We consider only matrices A,
satisfying the condition r1 < r2 < · · · < rk and wt(ri) ≥ d− 1. It is obvious
that all codes, which must be checked to achieve a complete classification,
can be obtained.

For 2 ≤ k ≤ n−1 ≤ 15, the numbers N(n, k, d(n, k)) of inequivalent LCD
[n, k, d(n, k)] codes are listed in Table 3, along with the values d(n, k). All
generator matrices of the codes in the table can be obtained electronically
from http://www.math.is.tohoku.ac.jp/~mharada/LCD/.

We continue a classification of LCD codes with parameters [2m+3, 2m, 2]
and [2m+4, 2m+1, 2]. In Proposition 3.5, for an LCD [2m+3, 2m, 2] code C,
there is a 3-cover (Y1, Y2, Y3) such that C⊥ ∼= C((Y1, Y2, Y3)). In addition, by
Proposition 3.7, when we consider codes C(Y) constructed from all k-covers
Y , which must be checked to achieve a complete classification, it is sufficient
to consider only disordered k-covers of unlabelled m-sets. According to [5],
let Tdu(m, k) denote the number of disordered k-covers of an unlabelled m-
set. The formula Tdu(m, k) is given in [5, Theorem 2]. For m ≤ 7 and
k ≤ 8, Tdu(m, k) is numerically determined in [5, Table 1] (see also A005783
in [15]). Our computer search shows the following:

Proposition 7.1. If 1 ≤ m ≤ 11, then

N(2m+ 3, 2m, 2) = N(2m+ 4, 2m+ 1, 2) = Tdu(m, 3).
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Table 3: (d(n, k), N(n, k, d(n, k)))

n\k 2 3 4 5 6 7 8
3 (2, 1)
4 (2, 2) (1, 2)
5 (2, 3) (2, 1) (2, 1)
6 (3, 2) (2, 3) (2, 4) (1, 3)
7 (4, 1) (3, 1) (2, 9) (2, 2) (2, 1)
8 (5, 1) (3, 3) (3, 1) (2, 9) (2, 6) (1, 4)
9 (6, 1) (4, 1) (4, 1) (3, 2) (2, 23) (2, 3) (2, 1)
10 (6, 2) (5, 1) (4, 5) (3, 11) (3, 2) (2, 23) (2, 9)
11 (6, 4) (5, 6) (4, 20) (4, 4) (4, 1) (3, 1) (2, 51)
12 (7, 2) (6, 1) (5, 6) (4, 37) (4, 11) (3, 22) (2, 396)
13 (8, 1) (6, 6) (6, 2) (5, 5) (4, 146) (4, 4) (3, 27)
14 (9, 1) (7, 1) (6, 16) (5, 101) (5, 4) (4, 301) (4, 8)
15 (10, 1) (7, 8) (6, 89) (6, 10) (6, 2) (5, 1) (4, 985)
16 (10, 2) (8, 1) (7, 7) (6, 283) (6, 60) (5, 1596) (5, 1)
n\k 9 10 11 12 13 14 15
10 (1, 5)
11 (2, 4) (2, 1)
12 (2, 51) (2, 12) (1, 6)
13 (2, 619) (2, 103) (2, 5) (2, 1)
14 (3, 31) (2, 1370) (2, 103) (2, 16) (1, 7)
15 (4, 2) (3, 34) (2, 2143) (2, 196) (2, 7) (2, 1)
16 (4, 1772) (4, 7) (3, 34) (2, 4389) (2, 196) (2, 20) (1, 8)

8 A construction of LCD codes over Fq using

self-orthogonal codes

A code C over Fq is called self-orthogonal and self-dual if C ⊂ C⊥ and
C = C⊥, respectively. In this section, we give a construction of LCD codes
over Fq using self-orthogonal codes.

Proposition 8.1. Suppose that there is a self-orthogonal [n1, k, d1] code over
Fq and there is an LCD [n2, k, d2] code over Fq. Then there is an LCD
[n1 + n2, k, d

′] code over Fq with d′ ≥ d1 + d2.

Proof. Let G1 and G2 be generator matrices of a self-orthogonal [n1, k, d1]
code C1 over Fq and an LCD [n2, k, d2] code C2 over Fq, respectively. Consider
an [n1+n2, k, d

′] code C with generator matrix of the form G =
(

G1 G2

)

.
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Since GGT = G2G
T
2 , C is LCD. The minimum weight of C follows from the

minimum weights of C1 and C2.

Remark 8.2. Theorem 18 in [13] corresponds to the case G2 = Ik.

By considering the case q = 2, the above proposition yields lower bounds
on d(n, k) as follow. There is a self-dual [2k, k, 2] code and there is self-
orthogonal [2k + 1, k, 2] code for k ≥ 1. Hence, Proposition 8.1 gives

d(n+ 2k, k) ≥ d(n, k) + 2 for k ≥ 1,

d(n+ 2k + 1, k) ≥ d(n, k) + 2 for k ≥ 1.

In addition, it is known that there is a self-orthogonal code for the parameters
[7, 3, 4], [8, 4, 4], [11, 5, 4]. Hence, Proposition 8.1 gives

d(n+ 7, 3) ≥ d(n, 3) + 4,

d(n+ 8, 4) ≥ d(n, 4) + 4, (27)

d(n+ 11, 5) ≥ d(n, 5) + 4.

It is known that there is a self-dual [n, n/2, d] code:

d = 4 if and only if n = 8, n ≥ 12,

d = 6 if and only if n ≥ 22,

d = 8 if and only if n = 24, 32, n ≥ 36,

d = 10 if and only if n ≥ 46,

(see [6]). Hence, Proposition 8.1 gives

d(n+ 2k, k) ≥ d(n, k) + 4 for k ≥ 6,

d(n+ 2k, k) ≥ d(n, k) + 6 for k ≥ 11,

d(n+ 2k, k) ≥ d(n, k) + 8 for k = 12, 16, k ≥ 18,

d(n+ 2k, k) ≥ d(n, k) + 10 for k ≥ 23.

As a consequence, we determine d(n, 4) for n = 17, 18, 21, 25.

Proposition 8.3.

d(17, 4) = 8, d(18, 4) = 8, d(21, 4) = 10, d(25, 4) = 12.
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Proof. From Table 3, d(n, 4) = d for (n, d) = (9, 4), (10, 4), (13, 6). From (27),
we have d(17, 4) ≥ 8, d(18, 4) ≥ 8 and d(21, 4) ≥ 10. Again, applying (27)
to d(17, 4) ≥ 8, we have d(25, 4) ≥ 12. It is known that dall(17, 4) = 8,
dall(18, 4) = 8, dall(21, 4) = 10 and dall(25, 4) = 12 (see [9]). The result
follows.

Similarly, we have the following:

d(19, 4) = 8 or 9, d(20, 4) = 9 or 10, d(22, 4) = 10 or 11,
d(23, 4) = 11 or 12, d(24, 4) = 11 or 12, d(26, 4) = 12 or 13,
d(27, 4) = 12, 13 or 14, d(28, 4) = 13 or 14, d(29, 4) = 14 or 15.

We remark that an LCD [19, 4, 9] code is constructed in [13, Table 1]. Hence,
d(19, 4) = 9.
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