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Abstract

There is a natural analogue of weak Bruhat order on the involutions in any Coxeter group,
which was first considered by Richardson and Springer in the context of symmetric varieties.
The saturated chains in this order from the identity to a given involution are in bijection with
the reduced words for a certain set of group elements which we call atoms. We study the
combinatorics of atoms for involutions in the group of signed permutations. This builds on
prior work concerning atoms for involutions in the symmetric group, which was motivated by
connections to the geometry of certain spherical varieties. We prove that the set of atoms for
any signed involution naturally has the structure of a graded poset whose maximal elements
are counted by Catalan numbers. We also characterize the signed involutions with exactly one
atom and prove some enumerative results about reduced words for signed permutations.

1 Introduction

1.1 Atoms

Let (W,S) be a Coxeter system with length function ℓ. There is a unique associative product
◦ :W ×W →W such that s ◦ s = s for s ∈ S and u ◦ v = uv for u, v ∈W with ℓ(u) + ℓ(v) = ℓ(uv)
[25, Theorem 7.1]. This is sometimes called the Demazure product, while (W, ◦) is the 0-Hecke
monoid of (W,S). Write I(W ) = {w ∈ W : w−1 = w} for the set of involutions in W . The
operation w 7→ w−1 ◦ w is a surjection W → I(W ), and we let

Ahecke(z) =
{

w ∈W : w−1 ◦ w = z
}

denote the (nonempty) preimage of z ∈ I(W ) under this map. In turn, define A(z) as the subset
of minimal length elements in Ahecke(z). These sets are the main objects of interest in this paper.
Following [14], we refer to the elements of Ahecke(z) as the Hecke atoms of z ∈ I(W ), and we call
the elements of A(z) the atoms of z.

For involutions in symmetric groups, the sets Ahecke(z) and A(z) have some remarkable com-
binatorial properties which are explored in the recent papers [6, 7, 14, 21, 30]. For example, the
inverse Hecke atoms Ahecke(z)

−1 = {w−1 : w ∈ Ahecke(z)} are precisely the equivalence classes in
the symmetric group under the so-called Chinese relation studied in [8, 9]. The number of atoms
for the reverse permutation n · · · 321 in given by the double factorial (n−1)!! [6]. In finite and affine
symmetric groups, there is a natural partial order which makes A(z) into a bounded, graded poset
(and conjecturally, a lattice) [14, 30]. The goal of this work to extend some of these properties to
the atoms of signed permutations, that is, involutions in the finite Weyl group of type B.
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1.2 Motivation

Atoms are central to certain enumerative problems related to reduced words. An expression w =
s1s2 · · · sl is a reduced word for w ∈ W if each si ∈ S and the number of factors l is as small as
possible. Let R(w) be the set of reduced words for w ∈ W and define R̂(z) =

⊔

w∈A(z)R(w) for
z ∈ I(W ). When W is finite and w0 ∈W is the unique longest element, there are striking formulas
for |R(w0)| and |R̂(w0)| in terms of tableaux.

The first result of this type dates to Stanley’s paper [37]. Fix a positive integer n and write
Sn for the symmetric group of permutations of [n] = {1, 2, . . . , n}, viewed as the Coxeter group
of type An−1 relative to the simple generators s1, s2, . . . , sn−1 where si = (i, i + 1). Let wAn

0 =
(n+1)n · · · 321 denote the longest permutation in Sn+1. Given a partition λ of n, let fλ denote the
number of standard Young tableaux of shape λ, or equivalently the dimension of the corresponding
irreducible representation of Sn.

Theorem 1.1 (Stanley [37]). It holds that
∣

∣

∣R
(

wAn

0

)∣

∣

∣ = f (n,n−1,...,2,1) =
(n+1

2 )!
∏

n

i=1
(2i−1)i

.

The longest element of a Coxeter group is always an involution, and there is an analogue of

the previous theorem for R̂
(

wAn

0

)

. The following shows that the size of this set is the number of

standard marked shifted tableaux (see [39, §6]) of shape (n, n− 2, n − 4, . . . ).

Theorem 1.2 (Hamaker, Marberg, and Pawlowski [13]). Let p = ⌊n2 ⌋ and q = ⌈n2 ⌉. Then

∣

∣

∣
R̂

(

wAn

0

)∣

∣

∣
=

(

(p
2

)

+
(q
2

)

(

p
2

)

)

f (p−1,p−2,...,2,1)f (q−1,q−2,...,2,1).

Let [±n] = [n]⊔−[n] and writeWn for the hyperoctahedral group of bijections w : [±n] → [±n]
with w(−i) = −w(i) for each i ∈ [n]. We refer to the elements of Wn as signed permutations.
Define t0 = (−1, 1) ∈Wn and ti = (−i,−i− 1)(i, i+1) ∈Wn for i ∈ [n− 1]. With respect to these
generators, Wn is a Coxeter group of type B (and type C). The longest element wBn

0 ∈ Wn is the
signed permutation mapping i 7→ −i for all i ∈ [±n]. Our primary motivation to study the sets
A(w) for w ∈ I(Wn) is the following theorem, which was conjectured in our first joint paper with
Pawlowski [13]. This is proved in [31] using the results from the present work:

Theorem 1.3 (Marberg and Pawlowski [31]). If n ≥ 2 then
∣

∣

∣R̂
(

wBn

0

)∣

∣

∣ =
∣

∣

∣R
(

wAn

0

)∣

∣

∣.

In type A, the study of atoms is also motivated by the geometry of symmetric varieties [33, 34].
Suppose G is a reductive algebraic group with Borel subgroup B. Assume G is defined over a field
of characteristic not equal to two and let K be the fixed point subgroup of an automorphism of
G of order two. The (not necessarily connected) reductive group K acts with finitely many orbits
on G/B, as does the opposite Borel subgroup, whose orbit closures are the Schubert varieties Xw

indexed by the elements of the Weyl group W .
When G = GLn, the subgroup K can be On, Spn (when n is even), or GLp × GLq (when

p+ q = n). Here, the K-orbit closures Yz in G/B are respectively indexed by either the involutions
in the symmetric group, the fixed-point-free involutions in the symmetric group, or certain objects
called clans (essentially, involutions with signed fixed points) [7, 41]. Atoms arise in a formula of
Brion [5] relating the cohomology classes of Yz and Xw. In the On-case, for example, we have

[Yz] = 2c(z)
∑

w∈A(z)

[Xw] (1.1)

2



where c(z) is the number of 2-cycles in z [5]. Similar results hold for the Spn- and GLp×GLq-cases.
The combinatorics of Hecke atoms likewise informs the K-theory of symmetric varieties, though
the connections are less direct; see [18, 42].

The hyperoctahedral group Wn is the Weyl group for both G = SO2n+1 (type B) and G = Sp2n
(type C). In these types, the possibilities for (G,K) are (SO2n+1,SOp× SOq) when p+ q = 2n+1,
(Sp2n,Sp2p× Sp2q) when p+ q = n, and (Sp2n,GLn). For each of these cases, the K-orbits in G/B
are indexed by clan-like objects [32, 41] which may be interpreted as involutions in Wn with some
auxiliary data. In type A, the combinatorial properties of clans and involutions are quite similar,
and we expect that our present study will serve as a useful first step towards better understanding
the combinatorics of K-orbit closures in types B and C.

1.3 Outline of results

Throughout, we use the term word to refer a finite sequence of integers. The one-line representation
of a permutation w in Sn or Wn is the word w1w2 · · ·wn where wi = w(i). We sometimes write m
in place of −m so that, for example, the 8 elements of W2 are 12, 12, 12, 12, 21, 21, 21, and 21.
Define ⊳A as the relation on n-letter words with

· · · cab · · · ⊳A · · · bca · · · (1.2)

whenever a < b < c and the corresponding ellipses mask identical subsequences. We apply ⊳A to
permutations via their one-line representations.

A poset is graded if all maximal chains have the same length, and bounded if it has a unique
minimum and a unique maximum. The transitive closure <A of ⊳A is a partial order, which we
call the atomic order of type A on account of the following:

Theorem 1.4 (See [14]). If z ∈ I(Sn) then A(z)−1 is a bounded, graded poset under <A.

Here, we write A(z)−1 for the sets {w−1 : w ∈ A(z)}, which are denoted W(z) in [6, 7]. Our
preference for stating results in terms of A(z), despite the frequent need to invert this set, comes
from formulas like (1.1).

As will be reviewed in Section 3, we can give an explicit construction for the minimal and
maximal elements in the posets (A(z)−1, <A) for z ∈ I(Sn), and there is a simple algorithm to
recover z from the one-line representation of w ∈ A(z)−1. Such properties play a key technical role
in [15, 16, 17] and are what we aim to generalize to type B.

Over the course of this paper, we will discuss three partial orders which serve as natural type
B analogues of <A. For the purposes of this introduction, it is only necessary to define the weakest
of the three. Write ⊳B for the relation on n-letter words with

ba · · · ⊳B ab · · · and cba · · · ⊳B cab · · · (1.3)

whenever 0 < a < b < c and the corresponding ellipses mask identical subwords. Unlike ⊳A, this
relation only changes the letters at the start of a word. The (weak) atomic order <B of type B is
the transitive closure of both ⊳A and ⊳B. We apply these relations on words to elements of Wn

via their one-line representations. Let Neg(z) = {i ∈ [n] : z(i) = −i} be the set of negated points
of z ∈ I(Wn). We can summarize several of our main results with the following theorem, which
combines Corollaries 3.7, 4.8, 5.9, and 6.3 and Theorems 5.5 and 5.6.
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Theorem 1.5. Let z ∈ I(Wn) be an involution in the hyperoctahedral group.

(a) The set A(z)−1 is preserved by ⊳A and ⊳B and is a graded poset relative to <A and <B .

(b) Let m = |Neg(z)|. The poset (A(z)−1, <A) has
(

m
⌊m/2⌋

)

connected components, which are

naturally in bijection with the matchings on Neg(z)⊔−Neg(z) = {i ∈ [±n] : z(i) = −i} that
are perfect, noncrossing, and symmetric with respect to negation.

(c) Moreover, each component in (A(z)−1, <A) is isomorphic to (A(ζ)−1, <A) for some ζ ∈ I(Sn).

(d) Let k = ⌈m/2⌉. The poset (A(z)−1, <B) is connected and has 1
k+1

(2k
k

)

maximal elements.

It is interesting to note the appearance of the Catalan numbers in part (d) and the “type B”
Catalan numbers in part (b). Our proof of the theorem will establish more than what is stated here.
In particular, we will completely describe the minimal and maximal elements in (A(z)−1, <A) for
z ∈ I(Wn), and give an explicit construction of the bijection mentioned in part (b). The assertion
that (A(z)−1, <B) is connected for all z ∈ I(Wn) is equivalent to a recent result of Hu and Zhang
[22, Theorem 4.8]. Our methods do not rely on [22] and therefore provide a conceptually simpler
alternate approach to the proof of Hu and Zhang’s theorem.

Example 1.6. The Hasse diagram of (A(z)−1, <B) for z = 1234 ∈ I(W4) is

1234

1342 2134 1423

3412 2341 4123

4312 3421 4231

4321

The solid arrows indicate the relations ⊳A while the dashed arrows indicate ⊳B. The six minimal
elements relative to <A are in bijection with the six perfect noncrossing symmetric matchings on
the set [±4] via the following correspondence, which is described in general in Section 5:

4321 ↔ • • • • • • • •

3421 ↔ • • • • • • • •

1423 ↔ • • • • • • • •

4312 ↔ • • • • • • • •

4231 ↔ • • • • • • • •

3412 ↔ • • • • • • • •

The partial orders <A and <B extend to relations whose equivalence classes are the sets of Hecke
atoms for involutions in Sn and Wn. To be precise, let ≈A be the weakest equivalence relation on
words with · · · bca · · · ≈A · · · cab · · · ≈A · · · cba · · · whenever a < b < c, where the corresponding
ellipses indicate identical entries. This relation was studied independently in [8, 9].

Theorem 1.7 (See [14]). The ≈A-equivalence classes in Sn are the sets Ahecke(z)
−1 for z ∈ I(Sn).
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A similar result holds for the affine symmetric group [29, Proposition 1.10]. To adapt these
statements to type B, we define ≈B as the weakest equivalence relation on words that extends ≈A

and has ba · · · ≈B ab · · · ≈B ab · · · and cba · · · ≈B cab · · · ≈B cab · · · whenever 0 < a < b < c, with
ellipses again indicating identical entries. In the latter equivalences, only the initial letters of each
word vary. We prove the following in Section 7:

Theorem 1.8. The ≈B-equivalence classes in Wn are the sets Ahecke(z)
−1 for z ∈ I(Wn).

Here is a brief outline of the paper. After some preliminaries in Section 2, we spend Sections 3,
4, 5, and 6 proving Theorem 1.5. Our discussion of Hecke atoms is mostly limited to Section 7. In
Section 8, as an application of Theorem 1.5, we classify and enumerate the atomic involutions in
Wn, that is, the elements z ∈ I(Wn) with |A(z)| = 1. Section 9 discusses some open questions and
conjectures of interest. An index of symbols appears in Appendix A.
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2 Preliminaries

We write Z for the integers, N for the nonnegative integers, and set [n] = {1, 2, . . . , n} for n ∈ N.
Let (W,S) be a Coxeter system with length function ℓ : W → N and Demazure product ◦, as
described at the start of the introduction. We begin with a few remarks about how to compute
with ◦. If w ∈W and s ∈ S then w◦s is either w or ws, while s◦w is either w or sw. If w ∈W and
w = s1s2 · · · sl is a reduced word then w = s1 ◦ s2 ◦ · · · ◦ sl. It follows from the exchange principle
that if s ∈ S and z ∈ I(W ) = {w ∈W : w2 = 1} have ℓ(szs) = ℓ(z) then szs = z [24, Lemma 3.4].
Conjugation using ◦ therefore take the following form:

Lemma 2.1. If s ∈ S and z ∈ I(W ) then s ◦ z ◦ s =











szs if zs 6= sz and ℓ(zs) > ℓ(z)

zs if zs = sz and ℓ(zs) > ℓ(z)

z if ℓ(zs) < ℓ(z).

It follows by an easy inductive argument that Ahecke(z) = {w ∈W : w−1 ◦w = z} is nonempty
for all z ∈ I(W ). Denote the left and right descent sets of w ∈W by

DesL(w) = {s ∈ S : ℓ(sw) < ℓ(w)} and DesR(w) = {s ∈ S : ℓ(ws) < ℓ(w)}.

A finite Coxeter group has a unique longest element with no right or left descents. In Sn this
element is the reverse permutation n · · · 321, while in Wn it is the central element 123 · · · n. Write
<L and <R for the left and right weak orders on W . Recall that A(z) for z ∈ I(W ) is the set of
minimal length elements in Ahecke(z). The following property is sometimes useful:

Proposition 2.2. Suppose z ∈ I(W ) and w ∈ A(z). Then DesR(w) ⊂ DesR(z). Moreover, if
v ∈W has v <R w then v ∈ A(y) for some y ∈ I(W ).

Proof. We have z = vw for some v ∈W with ℓ(z) = ℓ(v) + ℓ(w).
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The involution length function ℓ̂ : I(W ) → N is the map which assigns to z ∈ I(W ) the common
value of ℓ(w) for w ∈ A(z). The absolute length function ℓ′ : W → N is the map which assigns to
w ∈W the minimum number of factors l needed to express w = t1t2 · · · tl as a product of reflections
ti ∈ T = {wsw−1 : (w, s) ∈W×S}. Hultman [23] proves that these functions are related as follows:

Proposition 2.3. If z ∈ I(W ) then ℓ̂(z) = 1
2 (ℓ(z) + ℓ′(z)).

Remark 2.4. These sorts of general results concerning I(W ), ◦, Ahecke(z), and A(z) have been
noted several times in the literature, with widely varying terminology and notation. Important
references include the papers of Richardson and Springer [33, 34] and Hultman [23, 24].

We show how to interpret these constructions for permutations and signed permutations. Con-
tinue to let si = (i, i + 1) ∈ Sn for i ∈ [n − 1]. Relative to these simple generators, Sn is the
Coxeter group of type An−1. Write Inv(w) for the set of inversions of w ∈ Sn in [n], that is, pairs
(i, j) ∈ [n] × [n] with i < j and w(i) > w(j), and define inv(w) = | Inv(w)|. When w ∈ Sn, it is
well-known that ℓ(w) = inv(w) and that si ∈ DesR(w) if and only if w(i) > w(i+ 1).

The reflections in Sn are the transpositions (i, j) for i 6= j in [n]. A cycle of w ∈ Sn is an orbit
in [n] under the action of the cyclic group 〈w〉. If w ∈ Sn has k cycles in [n] then ℓ′(w) = n − k,
and if z ∈ I(Sn) then ℓ

′(z) is the number of 2-cycles of z, that is, cycles of size two.
If w ∈ Sn and i ∈ [n− 1] then the Demazure product for Sn satisfies w ◦ si = wsi if and only if

w(i) < w(i+1). The operation z 7→ si ◦z ◦si for an involution z ∈ I(Sn) has the following concrete
interpretation. The cycles of z all have size at most two, so we can visualize z as a matching in [n].
If i and i+1 are isolated points in this matching, then si ◦ z ◦ si is formed by adding the new edge
{i, i + 1}. Otherwise, if z(i) < z(i + 1), then we form si ◦ z ◦ si by interchanging the positions of
vertices i and i+ 1 and then reversing their labels.

Example 2.5. The atoms of 321 = s2 ◦ s1 ◦ s1 ◦ s2 = s1 ◦ s2 ◦ s2 ◦ s1 ∈ I(S3) are 231 = s1s2 and
312 = s2s1, while the Hecke atoms are these elements plus 321 = s1s2s1 = s2s1s2.

As in the introduction, let t0 = (−1, 1) ∈Wn and ti = (−i,−i− 1)(i, i+1) ∈Wn for i ∈ [n− 1].
With respect to these generators, Wn is a Coxeter group of type B. If σ = σ1σ2 · · · σn ∈ Wn then
σt0 = σ1σ2 · · · σn and σti = σ1 · · · σi+1σi · · · σn for i ∈ [n − 1]. Let ℓ0(σ) = |{i ∈ [n] : σ(i) < 0}|.
One can show that t0 appears exactly ℓ0(σ) times in any reduced word for σ ∈Wn.

It is well-known that if σ ∈Wn then ℓ(σ) = 1
2(inv(σ)+ℓ0(σ)), where inv(σ) denotes the number

of inversions of σ in the set [±n]. It follows that if we let σ0 = 0 and i ∈ {0}⊔ [n], then ti ∈ DesR(σ)
if and only if σi > σi+1.

The reflections in Wn are the elements sii = (i,−i), sij = (i,−j)(j,−i), and tij = (i, j)(−i,−j)
for i, j ∈ [n] with i 6= j. Let ℓ′0(σ) denote the number of cycles of σ ∈Wn in [±n] = [n]⊔−[n] which
are preserved by the negation map. One can show that ℓ′(σ) = n − 1

2(k − ℓ′0(σ)) where k is the
number of cycles of σ in [±n]. Let z ∈ I(Wn). Define Pair(z) = {(a, b) ∈ [±n]× [n] : |a| < z(a) = b}
and pair(z) = |Pair(z)|, and let neg(z) = |Neg(z)| where Neg(z) = {i ∈ [n] : z(i) = −i}. Then
ℓ′(z) = neg(z) + pair(z).

Let z ∈ I(Wn) and consider the symmetric matching on [±n] whose edges are the cycles of z.
The operation z 7→ ti ◦ z ◦ ti may be described in terms of this matching as follows. If −1 and 1
are isolated points, then t0 ◦ z ◦ t0 is formed by adding the edge {−1, 1}, while if z(−1) < z(1) then
t0 ◦ z ◦ t0 is formed by interchanging vertices −1 and 1. Assume i ∈ [n − 1] and z(i) < z(i + 1).
There are then three possibilities. We obtain ti◦z◦ti by adding the edges {i, i+1} and {−i,−i−1}
when i and i+ 1 are isolated points, by interchanging the vertices i and i+ 1 when z(i+ 1) = −i,
or else by interchanging vertices i and i+ 1 and then also −i and −i− 1.
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Example 2.6. The permutations 21 = t0t1t0 and 12 = t1t0t1 belong to A(12), while 321 =
t0t1t2t0t1t0 and 231 = t0t1t2t1t0t1 belong to A(123), and 231 = t0t1t2t0t1t0t1 ∈ Ahecke(123).

The Hecke atoms of w0 = 123 · · ·n ∈ Wn have a nontrivial symmetry which is not apparent
from our new results but worth noting. The following is a special case of [14, Corollary 4.10].

Proposition 2.7 (See [14]). It holds that Ahecke(w0) = Ahecke(w0)
−1 and A(w0) = A(w0)

−1.

There is a useful embedding of Wn in S2n. Define Ψn : Wn → S2n by

Ψn(σ) = ψ ◦ σ ◦ ψ−1 for σ ∈Wn, (2.1)

where ψ is the order-preserving bijection [±n] → [2n]. The map Ψn is evidently an injective group
homomorphism. Moreover, Ψn is the unique monoid homomorphism (Wn, ◦) → (S2n, ◦) under
which t0 7→ sn and ti 7→ sn+isn−i for i ∈ [n− 1]. As a consequence, we have

ℓ (Ψn(σ)) = 2ℓ(σ)− ℓ0(σ) and ℓ′ (Ψn(σ)) = 2ℓ′(σ)− ℓ′0(σ) for σ ∈Wn. (2.2)

As a group homomorphism, Ψn restricts to a map I(Wn) → I(S2n), so we have

ℓ̂ (Ψn(z)) = 2ℓ̂(z)− 1
2 (ℓ0(z) + neg(z)) for z ∈ I(Wn). (2.3)

The following criteria will be of use later.

Lemma 2.8. Suppose σ ∈ Wn and z ∈ I(Wn). Then σ ∈ A(z) if and only if it holds that
Ψn(σ) ∈ Ahecke (Ψn(z)) and ℓ (Ψn(σ))− ℓ (Ψn(z)) =

1
2 (ℓ0(z) + neg(z)) − ℓ0(σ).

Proof. Since Ψn is injective, σ−1 ◦σ = z if and only if Ψn(σ)
−1 ◦Ψn(σ) = Ψn(z). By Equations 2.2

and 2.3, ℓ(σ) = ℓ̂(z) if and only if the given length condition holds.

Remark 2.9. There is an injective homomorphism Sn →֒ Wn with si 7→ ti for i ∈ [n − 1], which
also defines a homomorphism of monoids (Sn, ◦) → (Wn, ◦). Via this embedding, everything we
prove about atoms for involutions in Wn can be viewed as generalizations of results in [13, 14, 15]
about atoms for elements of Sn. We rarely need to reference this map directly, however.

3 Nested descents

A word is a finite sequence of integers. A (one-line) descent of a word w = w1w2 · · ·wn is a
pair (wi, wi+1) with wi > wi+1. Let Des(w) be the set of descents of w. A subword of w
is any (not necessarily consecutive) subsequence. Define sortL(w) (respectively, sortR(w)) as
the subword of w formed by omitting wi+1 (respectively, wi) whenever (wi, wi+1) ∈ Des(w).
Adapt these definitions to elements of Sn or Wn by identifying permutations with their one-
line representations. For example, if w = 2134765 ∈ S7 then Des(w) = {(2, 1), (7, 6), (6, 5)},
so sortL(w) = 2347 and sortR(w) = 1345. On the other hand, if σ = 2134765 ∈ W7 then
Des(σ) = {(1,−3), (4,−7), (6,−5)}, so sortL(σ) = 2146 and sortR(σ) = 2375.

Suppose X is a set of n integers x1 < x2 < · · · < xn. Let SX denote the group of permutations
of X, viewed as a Coxeter group relative to the generators (xi, xi+1) for i ∈ [n − 1]. The one-
line representation of σ ∈ SX is the word σ(x1)σ(x2) . . . σ(xn). As a Coxeter group, SX has a

7



Demazure product ◦, which gives us a set of atoms A(z) for each involution z ∈ I(SX). For
example, if X = {1, 3, 5} then 531 ∈ I(SX) are A(531) = {513, 351}.

If w = w1w2 · · ·wn is a word, then we write [[w]] for the subword formed by omitting each
repeated letter after its first appearance, going left to right. For z ∈ I(SX), define

CycA(z) = {(a, b) ∈ X ×X : a ≤ b = z(a)}.

Suppose we have CycA(z) = {(a1, b1), (a2, b2), . . . , (al, bl)} = {(c1, d1), (c2, d2), . . . , (cl, dl)} where
a1 < a2 < · · · < al and d1 < d2 < · · · < dl. We define the permutations 0A(z), 1A(z) ∈ SX by

0A(z) = [[b1a1b2a2 · · · blal]] and 1A(z) = [[d1c1d2c2 · · · dlcl]]. (3.1)

Alternatively, 0A(z) and 1A(z) are the unique elements of SX for which sortR(0A(z)) and sortL(1A(z))
are increasing and Des(0A(z)) = Des(1A(z)) = {(b, a) ∈ X × X : a < b = z(a)}. Thus
if z = (1, 2)(4, 7)(5, 6) ∈ I(S7) then 0A(z) = 2137465 and 1A(z) = 2136574, while if z =
(1, 2)(4, 7)(5, 6) ∈ I

(

S{1,2,4,5,6,7}
)

then 0A(z) = 217465 and 1A(z) = 216574.
The symbol ⊳A defined by (1.2) is the relation on n-letter words with v ⊳A w if for some

i ∈ [n−2] and some numbers a < b < c, it holds that vivi+1vi+2 = cab and wiwi+1wi+2 = bca while
vj = wj for j /∈ {i, i+ 1, i+2}. Again let <A be the transitive closure of ⊳A, and write ∼A for the
symmetric closure of <A. Theorem 1.4 is a corollary of the following more explicit statement.

Theorem 3.1 (See [14]). Suppose X ⊂ Z is a finite set and z ∈ I(SX). Then

A(z)−1 = {w ∈ SX : 0A(z) ≤A w} = {w ∈ SX : w ≤A 1A(z)} .

Proof. It suffices to assume X = [n]; the result is then [14, Theorem 6.10 and Proposition 6.14].

Remark 3.2. The theorem gives an efficient algorithm for generating the atoms of any z ∈ I(Sn):
simply read off the permutations 0A(z) and 1A(z) from the cycle structure of z, then find all
elements spanned from these by the covering relation ⊳A and take inverses.

We can apply ⊳A, <A, and ∼A to signed permutations in one-line notation. These relations
preserve (but no longer span) all of the sets A(z)−1 for z ∈ I(Wn) in the following sense.

Lemma 3.3. If w ∈Wn, z ∈ I(Wn), v ∈ A(z)−1, and v ∼A w, then w ∈ A(z)−1.

Proof. If v,w ∈Wn then v ⊳A w iff v = uti+1ti and w = utiti+1 for (i, u) ∈ [n−1]×W with ℓ(v) =
ℓ(w) = ℓ(u) + 2. The lemma follows since (ti+1ti)

−1 ◦ (ti+1ti) = (titi+1)
−1 ◦ (titi+1) = titi+1ti.

We will say that a word w1w2 · · ·wn has a consecutive 321-pattern if for some i ∈ [n − 2] it
holds that wiwi+1wi+2 = cba where a < b < c. Define consecutive 312- and 231-patterns similarly.
A permutation in Sn or Wn has a consecutive 321-pattern if its one-line representation does.

Proposition 3.4. If w ∈ A(z)−1 for z in I(Sn) or I(Wn), then w has no consecutive 321-patterns.

Proof. If w ∈ Wn has w(i) > w(i + 1) > w(i + 2), then we can write w = vtiti+1ti = vti+1titi+1

where v ∈ Wn has ℓ(w) = ℓ(v) + 3, in which case ℓ(wti) < ℓ(w) and w−1 ◦ w = (wti)
−1 ◦ (wti), so

w−1 is not an atom of any involution. The same conclusion holds when w ∈ Sn by Remark 2.9.

Lemma 3.5. Assume a word w has no consecutive 321-patterns. Then w is minimal (respectively,
maximal) relative to <A if and only if sortR(w) (respectively, sortL(w)) is increasing.
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Proof. The word sortR(w) (respectively, sortL(w)) fails to be increasing precisely when w has a
consecutive 321- or 312-pattern (respectively, 321- or 231-pattern).

Corollary 3.6. Suppose E is the ∼A-equivalence class of a word with distinct letters which is
minimal under <A and has no consecutive 321-patterns. If X is the set of letters in this word then
E = A(z)−1 for some z ∈ I(SX).

Proof. Suppose w = w1w2 · · ·wn is a word with distinct letters which is minimal under <A and has
no consecutive 321-patterns. If X = {w1, w2, . . . , wn} then there is a unique involution z ∈ I(SX)
with w = 0A(z), and the ∼A-equivalence class of w is A(z)−1 by Theorem 3.1.

Suppose X is a set with [±n] = X ⊔−X. The one-line representation of each σ ∈ SX is also the
one-line representation of an element of Wn. Define Wembed(z) ⊂ Wn for z ∈ I(SX) as the image
of A(z)−1 under this inclusion SX →֒Wn. The following is equivalent to Theorem 1.5(c):

Corollary 3.7. Suppose z ∈ I(Wn) and E is an equivalence class in A(z)−1 under ∼A. Then
E = Wembed(ζ) where X is some subset with [±n] = X ⊔ −X and ζ is some involution in SX .
Consequently, E has a unique minimal element and a unique maximal element under <A.

Proof. Choose an element w ∈ E which is minimal under <A. By Proposition 3.4, w has no
consecutive 321-patterns, so the result follows by Corollary 3.6.

Example 3.8. The Hasse diagram of (A(z)−1, <A) for z = 1243 ∈ I(W4) is

2143 1243

2431 1432

4321 4312

and A(z)−1 = Wembed(ζ1) ⊔Wembed(ζ2) for ζ1 = 4213 = (3, 4)(2)(1) and ζ2 = 4123 = (3, 4)(2, 1).

We introduce the following terminology to associate a certain directed graph to any word. Define
the children of a word w to be the subwords formed by removing a single descent. Inductively
define the descendants of w to consist of w along with the descendants of each of its children. Now
construct the nested descent graph of w as the directed graph on the set of descendants of w with a
directed edge u→ v whenever v is a child of u. Label each edge in this graph by the unique descent
(b, a) which is removed from the source to get the target. As usual, we adapt this definition to a
permutation w in Sn or Wn by identifying w with its one-line representation.

Example 3.9. The nested descent graph of w = 54321 is shown below:

54321

321 521 541 543

1 3 5

54 43
32 21

3
2

21

52
2143 41 4

3

54
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By construction, a word w is the unique global source in its nested descent graph.

Theorem-Definition 3.10. Suppose z ∈ I(Wn) and w ∈ A(z)−1. The nested descent graph
of w then has a unique global sink. Choose a path from w to the global sink and suppose
(b1, a1), (b2, a2), . . . , (bl, al) is the corresponding sequence of edge labels. The set

NDes(w) = {(b1, a1), (b2, a2), . . . , (bl, al)} (3.2)

is then independent of the choice of path. Moreover, if X = {w(1), w(2), . . . , w(n)} then it holds
that w ∈ Wembed(ζ) for ζ = (a1, b1)(a2, b2) · · · (al, bl) ∈ I(SX).

Proof. By Corollary 3.7, there exists a set X with [±n] = X⊔−X and an involution ζ ∈ I(SX) such
that w ∈ Wembed(ζ). Let σ ∈ A(ζ)−1 be the preimage of w under the map A(ζ)−1 → Wembed(ζ). To
prove this result, it suffices to show that (a) the nested descent graph of σ has a unique global sink
ξ, (b) the set of edge labels in the nested descent graph of σ is the same for all paths from σ to ξ,
and (c) the set NDes(ζ) of edge labels described in (b) is precisely {(b, a) ∈ X ×X : a < b = ζ(a)}.
These claims are a special case of [30, Theorem 7.3]. Alternatively, one can check (a), (b), and (c)
directly for σ = 0A(ζ), and then deduce by induction that the desired properties hold in general.

Let z ∈ I(Wn) and w ∈ A(z)−1. We call NDes(w) the set of nested descents of w. Write ξ(w)
for the unique global sink in the nested descent graph of w ∈ A(z)−1. Define NFix(w) as the set of
letters in ξ(w) that are positive, and define NNeg(w) as the set of absolute values of the letters in
ξ(w) that are negative. We call elements of these sets nested negated points and nested fixed points
of w. If w = w1w2 · · ·wn and NDes(w) = {(b1, a1), (b2, a2), . . . , (bl, al)}, then

{w1, w2, . . . , wn} = {a1, a2, . . . , al} ⊔ {b1, b2, . . . , bl} ⊔NFix(w) ⊔ −NNeg(w).

Example 3.11. The nested descent graph of w = 167234895 ∈W9 is shown below:

167234895

1634895 1672345

14895 16345

145

72
89

6
3

89 7
2

89 63

We have w ∈ A(z)−1 for z = (1, 1)(2, 7)(2, 7)(3, 6)(3, 6)(8, 8)(9, 9) ∈ I(W9). As predicted by
Theorem-Definition 3.10, the nested descent graph of w has a unique global sink ξ(w) = 145, and
all paths from the source to the sink have edge labels (8,−9), (7,−2), (6, 3) in some order. We
therefore have NDes(w) = {(8,−9), (7,−2), (6, 3)}, NNeg(w) = {1}, and NFix(w) = {4, 5}.

Corollary 3.12. Let z ∈ I(Wn) and suppose v,w ∈ A(z)−1.

(a) No word in the nested descent graph of w has a consecutive 321-pattern.
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(b) If v ∼A w then NDes(v) = NDes(w), NFix(v) = NFix(w), and NNeg(v) = NNeg(w).

Proof. Part (a) is necessary for NDes(w) to be well-defined. Part (b) is an immediate consequence
of Corollary 3.7 and Theorem-Definition 3.10.

Can, Joyce, and Wyser’s results in type A [7] have this consequence for signed involutions.

Lemma 3.13. Let z ∈ I(Wn) and w ∈ A(z)−1. Suppose e, e′ ∈ NFix(w) ⊔ −NNeg(w) and
(a, b), (a′, b′) ∈ NDes(w). The following properties then hold: (1) If e < e′ then ee′ is a subword of
w = w1w2 · · ·wn. (2) If e < a < b (respectively, a < b < e) then eba (respectively, bae) is a subword
of w. (3) Finally, if a < a′ and b < b′ then bab′a′ is a subword of w.

Proof. Because w ∈ Wembed(ζ) for the involution ζ ∈ I(S{w1,w2,...,wn}) whose nontrivial cycles are
the pairs in NDes(w), these properties are equivalent to [7, Theorem 2.5]. It is also an instructive
exercise to derive the lemma by considering the nested descent graph of w. For each hypothesis,
one can check that the desired conclusion fails only if an extraneous descent appears in NDes(w)
or if we can relate w via ∼A to an element v ∈Wn with a consecutive 321-pattern.

A word w1w2 · · ·wn has a consecutive 12-pattern if for some i ∈ [n− 1] it holds that 0 > wi >
wi+1. A permutation in SX or Wn has a consecutive 12-pattern if its one-line representation does.
We conclude this section with a type B analogue of Proposition 3.4:

Proposition 3.14. If w ∈ A(z)−1 for some z ∈ I(Wn), then neither w nor any other word in w’s
nested descent graph has a consecutive 12-pattern.

The proof of Proposition 3.14 requires the following technical lemma.

Lemma 3.15. Let z ∈ I(Wn), w ∈ A(z), and i ∈ [n]. Suppose w(1) = i and w(2) = −(i + 1).
Then z(1) = −1 and z(2) = −2.

Proof. Let u = wt1t0t1 and y = u−1 ◦ u ∈ I(Wn). Then ℓ(w) = ℓ(u) + 3, so u ∈ A(y) and
t1 /∈ DesR(y). Since yt1 = u−1 ◦ ti ◦ u = t1y, we have either y(1) = 1 and y(2) = 2, or y(1) = −2
and y(2) = −1. The second case is impossible since y < t1 ◦y ◦ t1 = yt1 < t0 ◦ (yt1)◦ t0, so it follows
that z = t1 ◦ t0 ◦ t1 ◦ y ◦ t1 ◦ t0 ◦ t1 = yt0t1t0t1 and consequently that z(1) = −1 and z(2) = −2.

Proof of Proposition 3.14. Suppose that w ∈ Wn has w−1(1) = −i and w−1(2) = −(i + 1) where
i ∈ [n − 1], and assume w ∈ A(z)−1 for some z ∈ I(Wn). We produce a contradiction. Since
t0w <L w, we have t0w ∈ A(y)−1 for some y ∈ I(Wn) by Proposition 2.2. As (t0w)

−1(1) = i
and (t0w)

−1(2) = −(i + 1), it follows from Lemma 3.15 that y(1) = −1. But this means that
y = (t0w) ◦ (t0w)

−1 = w ◦ w−1 = z, which is impossible since ℓ(t0w) < ℓ(w) and w−1 ∈ A(z).
Next suppose w ∈ Wn is an arbitrary permutation with a consecutive 12-pattern, so that for

some a < b in [n] it holds that w−1(a) = −i and w−1(b) = −(i + 1). It is an exercise to construct
an element v ∈ Wn with v−1 <R w−1 and v−1(1) = −i and v−1(2) = −(i + 1). By the previous
paragraph, v−1 is not an atom for any involution, so by Proposition 2.2 neither is w−1. This shows
that no inverse atom of a signed involution has a consecutive 12-pattern. By Corollary 3.12(a), the
same holds for all words in the nested descent graph of an inverse atom.
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4 Partial orders

The symbol ⊳B defined by (1.3) is the relation on n-letter words with v ⊳B w if either vj = wj for
j /∈ {1, 2} while v1 = w2 < v2 = w1 < 0, or if vj = wj for j /∈ {1, 2, 3} while v1 = w1 < v2 = w3 <
v3 = −w2 < 0. As in the introduction, define <B as the transitive closure of both ⊳A and ⊳B, and
let ∼B be the symmetric closure of <B . We apply <B, ⊳B and ∼B to elements of Wn via their
one-line representations.

Lemma 4.1. If w ∈Wn, z ∈ I(Wn), v ∈ A(z)−1, and v ∼B w, then w ∈ A(z)−1.

Proof. Suppose v,w ∈Wn are such that v ⊳B w. If v1v2 = ba and w1w2 = ab where 0 < a < b, then
there exists σ ∈Wn such that v = σ◦21, w = σ◦12, and ℓ(v) = ℓ(w) = ℓ(σ)+3. If v1v2v3 = cba and
w1w2w3 = cab where 0 < a < b < c, then there exists σ ∈Wn such that v = σ ◦ 321, w = σ ◦ 312,
and ℓ(v) = ℓ(w) = ℓ(σ) + 6. The lemma follows by checking that 21 = t0t1t0 and 12 = t1t0t1 are
inverse atoms of 12, while 321 = t0t1t0t2t1t0 and 312 = t1t0t1t2t1t0 are inverse atoms of 123.

Define ⊳
+
B as the “extended” relation on n-letter words with v ⊳

+
B w if for some i ∈ [n− 1]

v1 < v2 < · · · < vi = wi+1 < vi+1 = −wi < 0 and vj = wj if j /∈ {i, i+ 1}. (4.1)

Thus z · · · cba · · · ⊳+
B z · · · cab · · · if 0 < a < b < c < · · · < z. We have ⊳B ⇒ ⊳

+
B . Conversely:

Lemma 4.2. If v and w are words with n letters and v ⊳
+
B w, then v ∼B w.

Proof. Assume v, w, and i are as in (4.1). Form v′ from v by replacing vj−1vj by vjvj−1 for each
even index j < i. If i is odd (respectively, even), then define v′′ by removing the subword vivi+1

(respectively, vi−1vivi+1) from v′ and placing it at the start of the word. Define w′ from w and w′′

from w′ analogously. By induction on i, we can assume that v ∼B v′ and w′ ∼B w. It is an exercise
to check that v′ <A v

′′ and w′ <A w
′′, and it holds by definition that v′′ ⊳B w′′, so v ∼B w.

Next define <⊳B as the relation on n-letter words with v <⊳B w if for some i ∈ [n− 1] and some
positive numbers a, b it holds that vj = wj for j /∈ {i, i + 1} while

vivi+1 = ba, wiwi+1 = ab, and 0 < a < b = min{|v1|, |v2|, . . . , |vi|}. (4.2)

When v1 < v2 < · · · < vi these conditions are equivalent to (4.1), so <⊳B ⇒ ⊳
+
B .

Lemma 4.3. Let z ∈ I(Wn) v ∈Wn, and w ∈ A(z)−1. If v <⊳B w then w ∼B v ∈ A(z)−1.

The converse does not hold: when v <⊳B w and v ∈ A(z)−1 it may occur that w /∈ A(z)−1.

Proof. Assume v, w, and i are as in (4.2) and w ∈ A(z)−1. Let j be the maximal index in
{1, 2, . . . , i} such that wj > 0. If i = j then the numbers w1, w2, . . . , wi−1 are all negative, so it
follows from Proposition 3.14 that v ⊳

+
B w whence v ∼B w by Lemma 4.2.

Suppose j < i. Proposition 3.4 then implies that j < i−1. First consider the case when j < i−2,
and let e = vj = wj , c = vj+1 = wj+1, and d = vj+2 = wj+2. Since c and d are both negative, it
follows by Proposition 3.14 that c < d < 0 < e so we have ecd ⊳A dec. Form v′ and w′ from the
one-line representations of v and w by replacing the subword ecd = vjvj+1vj+2 = wjwj+1wj+2 by
dec. Then v ⊳A v

′ <⊳B w′ and w ⊳A w
′ ∈ A(z)−1, so by induction v ∼B v′ ∼B w′ ∼B w.
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Now consider the case when j = i − 2, and let d = vi−2 = wi−2 and c = −vi−1 = −wi−1. By
construction both c and d are positive and greater than b > a, so we have dcab ⊳A adcb. It follows
by Proposition 3.14 that b < c, so we also have adcb ⊳A abdc and similarly dcba ⊳A bdca ⊳A badc.
Let v′′ and w′′ be the signed permutations formed from the one-line representations of v and w by
replacing the subword dcba by badc and the subword dcab by abdc. Then v <A v′′ <⊳B w′′ and
w <A w

′′ ∈ A(z)−1, so again by induction v ∼B v′′ ∼B w′′ ∼B w.

The following lemma concerns the sets NDes(w), NFix(w), and NNeg(w) from Section 3.

Lemma 4.4. Suppose v,w ∈ Wn and i ∈ [n − 1] are as in (4.2) so that v <⊳B w. Assume
v,w ∈ A(z)−1 for some z ∈ I(Wn), and set a = −vi+1 = wi < b = −vi = −wi+1. Then
NDes(w) = NDes(v) ⊔ {(a,−b)}, NNeg(v) = NNeg(w) ⊔ {a, b}, and NFix(v) = NFix(w).

Proof. By Corollary 3.12(a) and Proposition 3.14, we know that (1) none of the vertices in the
nested descent graphs of v or w have 321- or 12-patterns, and we assume by hypothesis that (2)
0 < a < b < min{|v1|, |v2|, . . . , |vi−1|} = min{|w1|, |w2|, . . . , |wi−1|}. It follows that we may choose a
path from w to the global sink in its nested descent graph whose last edge is the unique one labeled
by the descent ab. Replacing the subword ab by ba in all but the last vertex in this path produces
a path from the source to some vertex in the nested descent graph of v. In view of (1) and (2), this
vertex must be the global sink. The lemma now follows from Theorem-Definition 3.10.

The (weak) atomic order of type B is the transitive closure <B of ⊳A and ⊳B . Define the strong
atomic order ≪B of type B as the transitive closure of the relations ⊳A and <⊳B .

Corollary 4.5. If z ∈ I(Wn) then <B and ≪B restrict to partial orders on A(z)−1.

Proof. Define h(u) = |{(a,−b) ∈ NDes(u) : 0 < a < b}| for u ∈ A(z)−1. It suffices to show that
≪B is antisymmetric. This follows since if v,w ∈ A(z)−1 have v ⊳A w or v ⊳B w, then either w
exceeds v in reverse lexicographic order while h(w) = h(v), or h(w) = h(v) + 1 by Lemma 4.4.

In the example shown in Figure 1, the orders <B and ≪B restricted to A(z)−1 are graded and
connected, and (A(z)−1,≪B) has a unique minimal element. We will show that these properties
are general phenomena. Fix z ∈ I(Wn). Let Fix(z) = {i ∈ [n] : z(i) = i} and define Pair(z) and
Neg(z) as in Section 2. Let

CycB(z) = Pair(z) ⊔ {(−a,−a) : a ∈ Neg(z)} ⊔ {(a, a) : a ∈ Fix(z)}. (4.3)

If CycB(z) = {(a1, b1), (a2, b2), . . . , (al, bl)} where a1 < a2 < · · · < al, then we finally define

0B(z) = [[b1a1b2a2 · · · blal]]. (4.4)

Recall that [[w]] denotes the subword of w = w1w2 · · ·wn formed by omitting all repeated letters
after their first appearance. Thus 0B(z) is a word with distinct letters by construction, and it
is straightforward to check that 0B(z) is in fact the one-line representation of an element of Wn.
If z = (1, 1)(2, 7)(2, 7)(3, 6)(3, 6)(8, 8)(9, 9) ∈ I(W9) as in Example 3.11, then Neg(z) = {1, 8, 9},
Fix(z) = {4, 5}, and Pair(z) = {(−2, 7), (3, 6)}, so 0B(z) = 987216345.

Lemma 4.6. If z ∈ I(Wn) then 0B(z) ∈ A(z)−1.
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12345

12453 23145 31245 12534

14523 23451 32145 31452 51234 25134

51423 45123 24531 32451 34512 51342 52134 25341

54123 45231 34521 45312 53412 52341

54231 45321 54312 53421

54321

Figure 1: The Hasse diagram of the poset (A(z)−1,≪B) for z = 12345 ∈ I(W5). The solid arrows
correspond to the covering relations ⊳A, the dashed arrows correspond to ⊳B, and the dotted
arrows correspond to the remaining relations <⊳B.

Proof. Fix z ∈ I(Wn) and recall the definition of Ψn : Wn → S2n from Section 2. Since
1
2(ℓ0(z)+neg(z)) = ℓ0(0B(z)

−1) by definition, it suffices by Lemma 2.8 to check that Ψn(0B(z))
−1 ∈

A(Ψn(z)). This follows by applying [7, Theorem 2.5], which is just Lemma 3.13 restricted to
Sn →֒ Wn. In detail, if υ ∈ Sn, ζ ∈ I(Sn), and CycA(ζ) = {(a, b) ∈ [n] × [n] : a ≤ b = ζ(a)},
then we have υ ∈ A(ζ)−1 precisely when (1) if (a, b) ∈ CycA(ζ) then b is weakly left of a in the
one-line representation of υ, and no number e ∈ [n] with a < e < b appears between a and b, and
(2) if (a, b), (a′, b′) ∈ CycA(ζ) are such that a < a′ and b < b′ then ba′ is a subword of υ. It is
straightforward to check that (1) and (2) hold for ζ = Ψn(z) and υ = Ψn(0B(z)).

Putting things together leads to a short proof of the following theorem.

Theorem 4.7. If z ∈ I(Wn) then 0B(z) is the unique minimum in (A(z)−1,≪B).

Proof. Fix z ∈ I(Wn) and w ∈ A(z)−1. Corollary 3.7 and Proposition 3.14 imply that v ≤A w for a
unique element of the form v = [[b1a1b2a2 · · · blal]] ∈Wn where ai = bi or ai < bi > 0 for each i ∈ [l]
and a1 < a2 < · · · < al. We have NDes(w) = NDes(v) = Des(v) = {(bi, ai) : i ∈ [l], ai < bi} by
Corollary 3.12(b). As in the proof of Corollary 4.5, let h(w) = |{(a,−b) ∈ NDes(w) : 0 < a < b}|.
If h(w) = 0, then evidently v = 0B(y) for some y ∈ I(Wn), in which case we must have y = z
by Lemma 4.6, so 0B(z) = v ≤A w. Assume h(w) > 0 and let j ∈ [l] be the smallest index such
that aj < 0 < bj < −aj . Then whenever i < j and ai < bi, it must hold that ai < aj < 0
and −aj < bj, so we have ai < aj < bj < bi. Therefore u <⊳B v for the signed permutation
u = [[b1a1 · · · ajbj · · · blal]] ∈ Wn. Since h(u) + 1 = h(v) = h(w) by Lemma 4.4, we may assume by
induction that 0B(z) = u or 0B(z) ≪B u, so 0B(z) ≪B w since u <⊳B v ≤A w.

Corollary 4.8. If z ∈ I(Wn) then A(z)−1 is a single equivalence class under ∼B .
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Proof. This is immediate from the preceding theorem and Lemma 4.3.

Let R(w) denote the set of reduced words for w ∈ Wn and define R̂(z) =
⊔

w∈A(z)R(w)
when z ∈ I(Wn). It is well-known that R(w) is spanned and preserved by the braid relations
· · · t0t1t0t1 · · · ∼ · · · t1t0t1t0 · · · and · · · titi+1ti · · · ∼ · · · ti+1titi+1 · · · for i ∈ [n − 1], where as
usual the corresponding ellipses are required to mask identical subwords. The previous corollary is
equivalent to the following result of Hu and Zhang [22, Theorem 4.8].

Corollary 4.9 (Hu and Zhang [22]). If z ∈ I(Wn) then R̂(z) is spanned and preserved by the usual
set of braid relations for Wn plus the extra “initial” relations titi+1 · · · ∼ ti+1ti · · · for i ∈ [n − 1]
and t0t1t0 · · · ∼ t1t0t1 · · · and t0t1t2t0t1t0 · · · ∼ t0t1t2t1t0t1 · · · .

Proof. To deduce this from Corollary 4.8 or vice versa, it suffices to check that z ∈ I(Wn) has
atoms v,w ∈ A(z) with v−1

⊳A w−1 or v−1
⊳B w−1 if and only if v and w have reduced words

connected by the given relations. This holds by a simple calculation using Proposition 3.14.

Hansson and Hultman, extending this result, have found a general description of the relations
needed to span the sets R̂(z) for involutions z in any (twisted) Coxeter group [20].

5 Noncrossing shapes

The connected posets (A(z)−1, <B) and (A(z)−1,≪B) for z ∈ I(Wn) are no longer intervals as in
type A. In this section, we study these posets’ extremal elements and characterize the components
of the disconnected poset (A(z)−1, <A).

Consider a subsetX ⊂ [±n] withX = −X. A matching in (the complete graph on) X is a setM
of pairwise disjoint 2-element subsets of X. A matching M is symmetric if {−i,−j} ∈M whenever
{i, j} ∈M ; perfect if for each i ∈ X there exists a unique j ∈ X with {i, j} ∈M ; and noncrossing
if no two subsets {i, k}, {j, l} ∈ M have i < j < k < l. The 3 perfect noncrossing symmetric
matchings in [±3] are {{1, 1}, {2, 2}, {3, 3}}, {{1, 2}, {1, 2}, {3, 3}}, and {{1, 1}, {2, 3}, {2, 3}}. In
general, there are

( n
⌊n/2⌋

)

symmetric noncrossing perfect matchings in [±n], and such matchings are

in bijection with many other combinatorially defined objects (see [36, A001405]).
Let z ∈ I(Wn) and recall the sets Neg(z), Fix(z), and Pair(z) introduced before Lemma 4.6.

Define NCSP(z) as the set of noncrossing, symmetric, perfect matchings in Neg(z)⊔−Neg(z). For
each matching M ∈ NCSP(z), we define three related sets:

Neg(z,M) = {i ∈ Neg(z) : {i,−i} ∈M},

Pair(z,M) = Pair(z) ⊔ {(−b, a) : {a, b} ∈M and 0 < a < b},

CycB(z,M) = Pair(z,M) ⊔ {(−a,−a) : a ∈ Neg(z,M)} ⊔ {(a, a) : a ∈ Fix(z)}.

(5.1)

Suppose we have CycB(z,M) = {(a1, b1), (a2, b2), . . . , (al, bl)} = {(c1, d1), (c2, d2), . . . , (cl, dl)} where
a1 < a2 < · · · < al and d1 < d2 < · · · < dl. We then define 0B(z,M) and 1B(z,M) as the words

0B(z,M) = [[b1a1b2a2 · · · blal]] and 1B(z,M) = [[d1c1d2c2 · · · dlcl]]. (5.2)

Example 5.1. Let z = (1, 1)(2, 7)(2, 7)(3, 6)(3, 6)(8, 8)(9, 9) ∈ I(W9) as in Example 3.11, so that
Neg(z) = {1, 8, 9}. The three elements of NCSP(z) are

M1 = {{9, 9}, {8, 8}, {1, 1}}, M2 = {{9, 9}, {1, 8}, {1, 8}}, M3 = {{8, 9}, {1, 1}, {8, 9}}.
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We have Neg(z,M1) = Neg(z) = {1, 8, 9} and Pair(z,M) = Pair(z) = {(2, 7), (3, 6)}, so

0B(z,M
1) = 987216345 and 1B(z,M

1) = 981456372.

Similarly Neg(z,M2) = {9} and Pair(z,M) = {(2, 7), (3, 6), (1, 8)}, so

0B(z,M
2) = 918726345 and 1B(z,M

2) = 918456372.

Finally Neg(z,M3) = {1} and Pair(z,M) = {(2, 7), (3, 6), (8, 9)}, so

0B(z,M
3) = 897216345 and 1B(z,M

3) = 145637289.

Proposition 5.2. Let z ∈ I(Wn) and M ∈ NCSP(z). The words 0B(z,M) and 1B(z,M) may be
interpreted as elements of Wn written in one-line notation. Under <A, the permutation 0B(z,M)
is minimal while 1B(z,M) is maximal, and it holds that 0B(z,M) ≤A 1B(z,M).

Proof. Let X be the set of numbers a and b occurring in pairs (a, b) ∈ CycB(z,M). Check that
[±n] = X ⊔ −X, and conclude that 0B(z,M) and 1B(z,M) belong to Wn. Define ζ ∈ I(SX) as
the involution with a < b = z(a) for a, b ∈ X if and only if (a, b) ∈ Pair(z,M). Then we have
0B(z,M) = 0A(ζ) and 1B(z,M) = 1A(ζ) as words, so the result follows from Theorem 3.1.

We have Neg(z) = Neg(z,Mmin), Pair(z) = Pair(z,Mmin), and 0B(z) = 0B(z,Mmin) forMmin =
{{i,−i} : i ∈ Neg(z)}. The following corollary refers to the map Ψn :Wn → S2n from Section 2.

Corollary 5.3. If z ∈ I(Wn) and w ∈Wn are such that 0B(z) ≤A w, then Ψn(w)
−1 ∈ A(Ψn(z)) .

Proof. Let z ∈ I(Wn). We know that 0B(z) ∈ A(z)−1 by Lemma 4.6. If u, v ∈Wn and u ⊳A v, then
Ψn(u) ⊳A w ⊲A Ψn(v) for some w ∈ S2n. Hence if u, v ∈ Wn and u ∼A v then Ψn(u) ∼A Ψn(v),
so the corollary follows from Theorem 3.1.

If w ∈ A(z)−1 for z ∈ I(Wn), then we define NDesB(w) as the subset of NDes(w) given by
removing all pairs of the form (a,−b) where 0 < a < b, and we define NNegB(w) as the set
given by adding to NNeg(w) both a and b for each pair (a,−b) ∈ NDes(w) with 0 < a < b.
For example, if w = 167234895 then NDes(w) = {(8,−9), (7,−2), (6, 3)} and NNeg(w) = {1}, so
NDesB(w) = {(7,−2), (6, 3)} and NNegB(w) = {1, 8, 9}.

Given w ∈ A(z), one can recover z by finding a reduced word w = ti1ti2 · · · til and then
calculating z = til ◦ · · · ◦ ti2 ◦ ti1 ◦ ti1 ◦ ti2 ◦ · · · ◦ til . This naive algorithm is very inefficient. The
following result shows that z is in fact determined by the nested descent set of w−1.

Lemma 5.4. Let z ∈ I(Wn) and w ∈ A(z)−1. Then Fix(z) = NFix(w), Neg(z) = NNegB(w) and
Pair(z) = {(a, b) : (b, a) ∈ NDesB(w)}.

Proof. It straightforward to check that each claim holds if w = 0B(z) by inspection and when
w ∼B 0B(z) by Corollary 3.12(b) and Lemma 4.4, so is true for all w ∈ A(z)−1 by Corollary 4.8.

When M is a symmetric matching we call {i, j} ∈ M a trivial block if i + j = 0. Suppose
z ∈ I(Wn) and w ∈ A(z)−1. Define the shape of w to be the symmetric perfect matching sh(w)
whose nontrivial blocks are the subsets {a, b} and {−a,−b} for each pair (a,−b) ∈ NDes(w) with
0 < a < b, and whose trivial blocks are the subsets {e,−e} for each e ∈ NNeg(w). By the previous
theorem, sh(w) is a matching in the set Neg(z) ⊔ −Neg(z) = {i ∈ [±n] : z(i) = −i}. For example,
if w = 167234895 then sh(w) = {{8, 9}, {1, 1}, {8, 9}}.

The following shows that w 7→ sh(w) is a well-defined map A(z)−1 → NCSP(z).
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Theorem 5.5. If z ∈ I(Wn) and w ∈ A(z)−1 then sh(w) ∈ NCSP(z), i.e., the shape of w is a
perfect matching which is symmetric and noncrossing.

Proof. Let z ∈ I(Wn). The value of sh(·) is constant on ∼A-equivalence classes by Corollary 3.12(b),
and sh(0B(z)) = {{i,−i} : i ∈ Neg(z)} ∈ NCSP(z). Suppose v,w ∈ A(z)−1 and i ∈ [n − 1] are as
in (4.1) so that v ⊳

+
B w and v1 = w1 < v2 = w2 < · · · < vi−1 = wi−1 < vi < 0. Set a = −vi+1 = wi

and b = −vi = −wi+1 so that 0 < a < b. Since ∼B is the transitive, symmetric closure ⊳A and
⊳

+
B and since 0B(z) ∈ A(z)−1, it suffices by Corollary 4.8, to show that sh(v) is noncrossing if and

only if sh(w) is noncrossing.
We have sh(v)\sh(w) = {{a,−a}, {b,−b}} and sh(w)\sh(v) = {{a, b}, {−a,−b}} by Lemma 4.4.

If sh(w) is noncrossing, then the only way sh(v) can fail to be noncrossing is if there exists a
nontrivial block {c, d} ∈ sh(v) ∩ sh(w) with 0 < c < a < b < d. But this would imply that both
(a,−b) and (c,−d) were elements of NDes(w), contradicting Lemma 3.13(3) since cdab is not a
subword of w.

Conversely, if sh(v) is noncrossing, then sh(w) can fail to be noncrossing only is if there exists a
trivial block {e,−e} ∈ sh(v) ∩ sh(w) with a < e < b. But then we would have {a, b, e} ⊂ NNeg(v),
so Lemma 3.13(1) would imply that bea is a subword of v, which is impossible as b and a are
consecutive in v. Thus sh(v) is noncrossing if and only if sh(w) is also.

Let z ∈ I(Wn) and M ∈ NCSP(z). If 0B(z,M) and 1B(z,M) are contained in A(z)−1, then
they evidently have shape sh(0B(z,M)) = sh(1B(z,M)) = M , as do all elements w ∈ A(z)−1

with 0B(z,M) ≤A w ≤A 1B(z,M) by Corollary 3.12(b). The previous theorem shows that only
noncrossing shapes are possible for inverse atoms; the following confirms that all such shapes occur.
The map sh : A(z)−1 → NCSP(z) therefore provides the bijection mentioned in Theorem 1.5(b).

Theorem 5.6. Let z ∈ I(Wn). If M ∈ NCSP(z) then 0B(z,M) and 1B(z,M) are minimal and
maximal elements of (A(z)−1, <A), respectively. Moreover, all minimal (respectively, maximal)
elements in (A(z)−1, <A) have the form 0B(z,M) (respectively, 1B(z,M)) for some M ∈ NCSP(z).

Proof. Suppose w ∈ A(z)−1 is minimal under <A and M = sh(w) ∈ NCSP(z). As sortR(w) is then
increasing by Lemma 3.5, it follows that NDes(w) = Des(w). From this observation and Lemma 5.4,
it is an exercise to deduce that w must be equal to 0B(z,M). If w ∈ A(z)−1 is maximal under <A,
then it follows similarly that w = 1B(z, sh(w)).

Choose an arbitrary matching M ∈ NCSP(z). It remains to show that 0B(z,M) and 1B(z,M)
in fact belong to A(z)−1. From Lemma 3.3, Corollary 3.7, and the previous paragraph, it is
enough to construct a single element w ∈ A(z)−1 with sh(w) = M . We prove this by induction
on the number of nontrivial blocks in M . If M has no nontrivial blocks then 0B(z,M) = 0B(z)
has shape M and belongs to A(z)−1 by Corollary 5.3. Otherwise, we can find a nontrivial block
{a, b} ∈ M with 0 < a < b such that no {a′, b′} ∈ M has 0 < a′ < a < b < b′. Replacing {a, b}
and {−a,−b} in M by {a,−a} and {b,−b} yields another noncrossing matching M ′ ∈ NCSP(z)
with strictly fewer nontrivial blocks. Let v = 1B(z,M

′). By induction, we may assume that
v ∈ A(z)−1. Since M is noncrossing, we must have {a, b} = {a, a + 1, . . . , b} ∩ Neg(z,M ′), so
v1 < v2 < · · · < vi = −b < vi+1 = −a < 0 for some i ∈ [n − 1]. Replacing the subword vivi+1 = ba
in the one-line representation of v by ab gives a signed permutation w with v ∼B w ∈ A(z)−1 by
Lemma 4.2, and it follows by Lemma 4.4 that sh(w) =M .

Corollary 5.7. If z ∈ I(Wn) then (A(z)−1, <A) is connected if and only if neg(z) ≤ 1.
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Proof. The number of components in (A(z)−1, <A) is |NCSP(z)|, which is 1 iff neg(z) ≤ 1.

Let NCSPk(z) for z ∈ I(Wn) be the set of matchings in NCSP(z) with at most k trivial blocks.
We have NCSP

0(z) = NCSP
1(z) if neg(z) is even and NCSP

0(z) = ∅ if neg(z) is odd.

Corollary 5.8. Let z ∈ I(Wn). The permutations 1B(z,M) for M ∈ NCSP
1(z) are the maximal

elements in A(z)−1 under both atomic orders <B and ≪B. Moreover, A(z)−1 is the union of the
lower intervals in (Wn,≪B) bounded above by these elements.

Proof. Each maximal element in A(z)−1 under either atomic order is necessarily of the form
1B(z,M) for some M ∈ NCSP(z) by Theorem 5.6. If M ∈ NCSP(z) has k trivial blocks, then
we can write 1B(z,M) = ak · · · a2 a1b1b2 · · · bn−k where 0 < a1 < a2 < · · · < ak, 0 < b1, and
b1b2 · · · bn−k contains no consecutive negative numbers. Evidently 1B(z,M) is maximal under <B

(and also ≪B) if and only if k < 2. The last assertion in the corollary holds by Lemma 4.3.

This result has the following amusing consequence.

Corollary 5.9. If z ∈ I(Wn) and m = ⌈12 neg(z)⌉, then the number of elements in A(z)−1 which

are maximal under <B (equivalently, ≪B) is the mth Catalan number Cm = 1
m+1

(2m
n

)

.

Proof. There is a simple bijection from NCSP
1(z) to the set of noncrossing perfect matchings in

[2m], whose enumeration by Cm is well-known: remove all blocks without positive elements from
M ∈ NCSP

1(z) and standardize the numbers in the remaining blocks to be 1, 2, . . . , 2m.

6 Rank functions

In this section we show that the atomic orders <B and ≪B are graded. Fix z ∈ I(Wn) and
w ∈ A(z)−1. Define offsetA(w) as the number of pairs ((b1, a1), (b2, a2)) ∈ NDes(w) × NDes(w)
with a1 < a2 < b2 < b1. Let

L = {b : (b, a) ∈ NDes(w) for some a} and R = {w1, w2, . . . , wn} \ L

and define rankA : A(z)−1 → Z as the function with

rankA(w) = inv(w|R)− inv(w|L) + offsetA(w) ∈ Z,

where w|R and w|L are the words formed from w1w2 · · ·wn by omitting all entries not in R and
L, respectively, and inv(v) = |{(i, j) ∈ [k] × [k] : i < j and vi > vj}| for a word v = v1v2 · · · vk.
If z = 54321 and w = 34512 ∈ A(z)−1, for example, then NDes(w) = {(1, 2), (4, 5)}, L = {1, 4},
R = {2, 3, 5}, w|R = 352, w|L = 41, and inv(w|R) = inv(w|L) = offsetA(w) = rankA(w) = 1. As a
consequence of Corollary 3.7, the following result is equivalent to [14, Lemma 6.13].

Proposition 6.1. Let z ∈ I(Wn). If v,w ∈ A(z)−1 and v ⊳A w, then rankA(w) = rankA(v) + 1,
and an element w ∈ A(z)−1 is minimal relative to <A if and only if rankA(w) = 0.

Proof. The first claim is immediate from the way we define ⊳A and NDes(w). By Lemma 3.5,
w ∈ A(z)−1 is minimal relative to <A if and only if inv(w|R) = 0 and inv(w|L) = offsetA(w).
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Still with z ∈ I(Wn) and w ∈ A(z)−1, define offsetB(w) as the number of pairs of nested
descents ((b1, a1), (b2, a2)) ∈ NDes(w) ×NDes(w) satisfying a1 ≤ a2 < −b1 < 0 < b1 ≤ b2. Set

rankB(w) = rankA(w) + offsetB(w) ∈ N.

The value of offsetB(w) is the sum of three quantities: the number of descents (a,−b) ∈ NDes(w)
with a < b, the number of pairs (a1,−b1), (a2,−b2) ∈ NDes(w) with a1 < a2 < b2 < b1, and
the number of pairs (a1,−b1), (b2,−a2) ∈ NDes(w) with a1 < a2 < min{b1, b2}. For example,
if w = 152364 then NDes(w) = {(1, 5), (2, 3), (6, 4)}, w|L = 126, w|R = 534, inv(w|L) = 0,
inv(w|R) = offsetA(w) = 1, rankA(w) = 2, offsetB(w) = 4, and rankB(w) = 6.

The function offsetB(·) is constant on ∼A-equivalence classes by Corollary 3.12(b), so we have
rankB(w) = rankB(v) + 1 for v,w ∈ A(z)−1 with v ⊳A w by Proposition 6.1. In addition:

Proposition 6.2. Let z ∈ I(Wn). If v,w ∈ A(z)−1 and v <⊳B w, then rankB(w) = rankB(v) + 1,
and an element w ∈ A(z)−1 is minimal relative to ≪B if and only if rankB(w) = 0.

Proof. Fix v,w ∈ A(z)−1. First assume v ⊳
+
B w and let i ∈ [n−1] be as in (4.1). Let a = −vi+1 = wi

and b = −vi = −wi+1 so that 0 < a < b and NDes(w) = NDes(v) ⊔ {(a,−b)}. Then vj = wj ∈
NNeg(v) ∩ NNeg(w) for 1 ≤ j < i. From Theorem-Definition 3.10 and Lemma 3.13, we deduce
that the difference A = inv(v|R)− inv(w|R) is the number of pairs (y, x) ∈ NDes(v) with x < −a,
the difference B = inv(w|L) − inv(v|L) is the number of pairs (y, x) ∈ NDes(v) with y < a, and
the difference C = offsetA(w)− offsetA(v) is the number of pairs (y, x) ∈ NDes(v) with either x <
−b < a < y or −b < x < y < a. On the other hand, the difference D = offsetB(w)− offsetB(v)− 1
is the number of pairs (y, x) ∈ NDes(v) with −b < x < −a < 0 < a < y. To prove that
rankB(w) = rankB(v) + 1, it suffices to show that A + B = C + D. This is straightforward on
noting that NDes(w) contains no elements (y, x) with x < −b < y < a by Lemma 3.13(3), or with
−b < x < −a < 0 < y < a since sh(w) is noncrossing.

Next suppose that v <⊳B w and let i ∈ [n − 1] be as in (4.2). Since we have |vi+1| < |vi| =
max{|v1|, |v2|, . . . , |vi|}, and since inverse atoms do not have consecutive 321- or 12-patterns, it
follows by Lemma 3.13 that there are chains of elements v = v0 ⊳A v1 ⊳A · · · ⊳A vk and w =
w0

⊳A w1
⊳A · · · ⊳A wk with vk ⊳

+
B wk. By Proposition 6.1 and the previous paragraph, we

deduce that rankB(w) = rankB(w
k)− k = rankB(v

k) + 1− k = rankB(v) + 1.
The last assertion follows from Proposition 6.1 since offsetB(w) = 0 only if sh(w) is trivial.

Propositions 6.1 and 6.2 let us conclude the following:

Corollary 6.3. If z ∈ I(Wn) then (A(z)−1, <A), (A(z)−1, <B), and (A(z)−1,≪B) are graded.

A notable property of (A(z)−1, <B) and (A(z)−1,≪B), apparent in Example 1.6 and Figure 1,
is that these connected, graded posets have unique elements of maximal rank. To prove that this
holds in general, we are lead to consider a third variation of the covering relation ⊳B .

Define<◭B as the relation on n-letters words which has v <◭B w if for some indices 1 ≤ i < j < n
and some positive numbers a, b, c it holds that vk = wk for k /∈ {i, j, j + 1} while

vivjvj+1 = cab, wiwjwj+1 = abc, and max{|w1|, |w2|, . . . , |wj−1|} = a < b < c. (6.1)

Equivalently, we have · · · c · · · ab · · · <◭B · · · a · · · bc · · · whenever the corresponding ellipses mask
identical subsequences and 0 < a < b < c and all hidden letters to the left of a in the first word
(equivalently, to the left of b in the second word) have absolute value less than a. As usual, we
apply this relation to signed permutations via their one-line representations.
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Proposition 6.4. Let z ∈ I(Wn). Suppose v,w ∈Wn are such that v <◭B w. Then v ∈ A(z)−1 if
and only if w ∈ A(z)−1, and if this holds then rankB(w) = rankB(v) + 1.

Proof. Let 1 ≤ i < j < n be such that (6.1) holds. We prove the result by induction on i + j.
Our argument relies on two base cases. When i = j − 1 = 1, the result follows from Lemma 4.1
and Proposition 6.2 since cba ⊳B cab and cba ⊳B bca ⊳A abc for any 0 < a < b < c. When
i = j − 1 = 2 the lemma follows similarly from the fact that if 0 < a < b < c < d then
dcba ⊳B dbca ⊳A dabc ⊳B adbc and dcba ⊳B cd ba ⊳A bcda ⊳A bacd ⊳B abcd.

For the inductive step, let 0 < a = vj = −wi < b = −vj+1 = wj < c = −vi = −wj+1. First
suppose i < j − 1. Define v′ from v by replacing the subword vj−1vjvj+1 by vjvj+1vj−1, and form
w′ from w similarly. Since vj−1 = wj−1 is less than a in absolute value, it follows that v′ ⊳A v and
w′

⊳A w and v′ <◭B w′. By induction, the proposition holds with v and w replaced by v′ and w′,
so by Lemma 4.1 and Proposition 6.2, the result also holds for v and w.

Suppose alternatively that 2 < i = j − 1. We may assume that at least one of v or w belongs
to A(z)−1. Since inverse atoms do not have consecutive 321- or 12-patterns and since all numbers
in the subwords v1v2 · · · vi−1 = w1w2 · · ·wi−1 have absolute value less than a, it must hold that
vi < vi−2 < vi−1 and wi < wi−2 < wi−1. Define v′ from v by replacing the subword vi−2vi−1vi by
vi−1vivi−2, and form w′ from w similarly. We once again have v′ ⊳A v and w′

⊳A w and v′ <◭B w′,
and may deduce that the proposition holds by induction.

If i = j − 1 ∈ {1, 2}, finally, then we are in one of the base cases already considered.

Fix z ∈ I(Wn) with m = neg(z), and suppose {i ∈ [±n] : z(i) = −i} = {a1 < a2 < · · · < a2m}.
Let Mmax = {{a1, a2}, {a3, a4}, . . . , {a2m−1, a2m}} ∈ NCSP(z) and define

1B(z) = 1B(z,Mmax). (6.2)

For example, if z = 1234 then 1B(z) = 1234 while if z = 12345 then 1B(z) = 12345. Theorem 5.6
implies that 1B(z) ∈ A(z)−1. We have 0B(z) = 0B(z,Mmin) for Mmin = {{i,−i} : i ∈ Neg(z)}.
Define ≪B as the transitive closure of the three relations ⊳A, <⊳B , and <◭B. For lack of a better
term, we refer to ≪B as the very strong atomic order of type B.

Proposition 6.5. Restricted to A(z)−1 for any z ∈ I(Wn), the relation ≪B is a bounded, graded
partial order, whose unique minimum is 0B(z) and whose unique maximum is 1B(z).

This result is reminiscent of Stembridge’s discussion of the top and bottom classes of a permu-
tation in [40, §4]. Beyond formal analogies, however, there does not seem to be a direct connection
between our methods and the results in [40].

Proof. Let z ∈ I(Wn). The claim that ≪B is a graded partial order on A(z)−1 with 0B(z) as its
unique minimum is immediate from Propositions 6.2 and 6.4. LetM ∈ NCSP

1(z). By Corollary 5.8,
it is enough to show that 1B(z,M) is not maximal under ≪B if M 6=Mmax.

To this end, assume M 6= Mmax and write {i ∈ [±n] : z(i) = −i} = {a1 < a2 < · · · < a2m} as
above. Since M is noncrossing and symmetric with at most one trivial block, there must exist a
pair of nesting blocks {ai, ak+1}, {aj , ak} ∈M with i < j < k and m < j. If possible, choose these
blocks such that i = 2m − k so that {ai, ak+1} is trivial; this is always possible if M has a trivial
block distinct from {am, am+1}. Let a = aj , b = ak, and c = ak+1 so that 0 < a < b < c. Since
{ai, ak+1} is then the only block {x, y} ∈ M with x < a < b < y, the one-line representation of
1B(z,M) has the form · · · c · · · ab · · · and all letters to the left of a in this word have absolute value
less than a. Hence 1B(z,M) is not maximal with respect to ≪B , as needed.

20



1234

1342 2134 1423

3412 2341 4123

4312 3421 4231

4321

Figure 2: The Hasse diagram of (A(z)−1,≪B) for z = 1234 ∈ I(W4); compare with Example 1.6.
The solid, dashed, and dotted arrows correspond to ⊳A, <⊳B, and <◭B, respectively.

Corollary 6.6. If z ∈ I(Wn) then 1B(z) is the unique element at which rankB : A(z)−1 → N

attains its maximum value.

7 Hecke atoms

In this brief section, we convert a few of the preceding results into statements about the sets of
Hecke atoms Ahecke(z) = {w ∈ Wn : w−1 ◦ w = z}. The symbol ≈A defined in the introduction
is the weakest equivalence relation on words w = w1w2 · · ·wn with u ≈A v ≈A w if, for some
i ∈ [n− 2], it holds that uj = vj = wj for j /∈ {i, i+ 1, i + 2} while

uiui+1ui+2 = cba, vivi+1vi+2 = cab, and wiwi+1wi+2 = bca (7.1)

for some numbers a < b < c. We apply≈A to signed permutations via their one-line representations.

Lemma 7.1. If v,w ∈Wn are such that v ≈A w, then v ◦ v
−1 = w ◦ w−1.

Proof. If u, v, w ∈Wn and i ∈ [n− 2] are as in (7.1) then we can write u = σtiti+1ti = σti+1titi+1,
v = σti+1ti, and w = σtiti+1 for some σ ∈Wn with ℓ(u) = ℓ(σ) + 3 and ℓ(w) = ℓ(v) = ℓ(σ) + 2. It
follows that u ◦ u−1 = v ◦ v−1 = w ◦w−1 since titi+1ti ◦ titi+1ti = ti+1ti ◦ titi+1 = titi+1 ◦ ti+1ti.

Define ≈B , as in the introduction, as the weakest equivalence relation on n-letter words which
has v ≈B w when v ≈A w, and which has u ≈B v ≈B w either if uj = vj = wj for j /∈ {1, 2} while

u1u2 = ab, v1v2 = ba, and w1w2 = ab (7.2)

for some numbers 0 < a < b, or if uj = vj = wj for j /∈ {1, 2, 3} while

u1u2u3 = cab, v1v2v3 = cba, and w1w2w3 = cab (7.3)

for some numbers 0 < a < b < c. This relation includes <A, ∼A, ≈A, <B, and ∼B as subrelations.

Lemma 7.2. If v,w ∈Wn are such that v ≈B w, then v ◦ v−1 = w ◦ w−1.
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Proof. If u, v, w are as in (7.2) then there exists a common element σ ∈Wn such that u = σ ◦ 12,
v = σ ◦ 21, w = σ ◦ 12, and ℓ(u)− 1 = ℓ(v) = ℓ(w) = ℓ(σ) + 3. If u, v, w are as in (7.3) then there
exists σ ∈Wn such that u = σ◦312, v = σ◦321, w = σ◦312, and ℓ(u)−1 = ℓ(v) = ℓ(w) = ℓ(σ) = 6.
The lemma follows by checking that the inverses of 12 = t1t0t1t0, 21 = t0t1t0, and 12 = t1t0t1
are all Hecke atoms of 12, while the inverses of 312 = t1t0t1t0t2t1t0, 321 = t0t1t0t2t1t0, and
312 = t1t0t1t2t1t0 are all Hecke atoms of 123.

Lemma 7.3. Let u, v, w be words with n letters. Suppose, for some i ∈ [n−1], that v1 < v2 < · · · <
vi = ui+1 = wi+1 < vi+1 = ui = −wi < 0 and uj = vj = wj if j /∈ {i, i + 1}. Then u ≈B v ≈B w.

In other words, z · · · cab · · · ≈B z · · · cba · · · ≈B z · · · cab · · · if 0 < a < b < c < · · · < z.

Proof. Define v′ and v′′ from v as in the proof of Lemma 4.2. That result already shows that
v ∼B w, which implies v ≈B w, so we only need to check that u ≈B v. Define u′ and u′′ from
u analogously: in other words, form u′ from u by replacing uj−1uj by ujuj−1 for each even index
j < i; then, if i is odd (respectively, even), define u′′ by removing the subword uiui+1 (respectively,
ui−1uiui+1) from u′ and placing it at the start of the word. Lemma 4.2 shows that that u ∼B u′

and v′ ∼B v, it is an exercise to check that u′ <A u
′′ and v′ <A v

′′, and by definition u′′ ≈B v′′.

The following repeats Theorem 1.8 from the introduction.

Theorem 7.4. The ≈B-equivalence classes in Wn are the sets Ahecke(z)
−1 for z ∈ I(Wn).

Proof. Lemma 7.2 implies that each set Ahecke(z)
−1 for z ∈ I(Wn) is preserved by ≈B. Let

w ∈ Wn. It suffices to show that w is equivalent under ≈B to an element of A(z)−1 for some
z ∈ I(Wn). By Theorems 3.1 and 1.7, we have v ≈A w for a signed permutation v ∈ Wn of the
form v = [[b1a1b2a2 · · · blal]] where ai ≤ bi for each i ∈ [l] and a1 < a2 < · · · < al. Consider the
minimal index j with aj < bj < |aj |, if such an index exists. Use the relation ∼A to move all
descents biai with i < j and aj < 0 < |ai| < bi to the right of bjaj, then apply Lemma 7.3 to change
bjaj to ajc where c = |bj | < −aj, then use ∼A to move the descents biai back to their original
positions, and finally use ≈A to transform the subword [[ cbj+1aj+1 · · · blal]] to a word of the form
[[b′1a

′
1 · · · b

′
ka

′
k]] where a

′
i ≤ b′i for each i ∈ [k] and a1 < · · · < aj < a′1 < · · · < a′k. This results in

an element equivalent to v under ≈B and of the same form, but in which the first occurrence of a
one-line descent ba with a < b < |a|, if one exists, is farther to the right than before. By repeating
this process and replacing v with the result, we may assume that w ≈B v where v, defined as above,
has no descents bjaj with aj < bj < |aj |. This element v ∈ Wn is equal to 0B(z) ∈ A(z)−1 for
the involution z ∈ I(Wn) whose cycles in [±n] consist of {−aj , aj} for each j ∈ [l] with aj = bj
together with {aj , bj} and {−aj ,−bj} for each j ∈ [l] with aj < bj.

8 Atomic elements

In this section, let n be a fixed positive integer. An involution z in a Coxeter group is atomic if
it has exactly one atom, i.e., if |A(z)| = 1. An element of a Coxeter group is fully commutative if
each of its reduced words can be transformed to any other by a sequence of moves interchanging
adjacent commuting simple factors.

Theorem 8.1 (See [14]). Every fully commutative involution in a Coxeter group is atomic.
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In type A, there is an equivalence between these notions.

Theorem 8.2 (See [14]). If z ∈ I(Sn) then the following are equivalent: (a) z is atomic; (b) the
permutations 0A(z) and 1A(z) are equal; (c) z has no cycles {a, d}, {b, c} with a < b ≤ c < d; (d) z
is 321-avoiding; (e) z is fully commutative.

Corollary 8.3. There are
( n
⌊n/2⌋

)

atomic involutions in Sn.

Proof. It is well-known (see [35]) that this is the number of 321-avoiding involutions in Sn.

Every atomic involution in the affine symmetric group S̃n is also fully commutative [30, Corollary
6.17]. This property does not extend to Wn, however. The following is evident from Theorem 5.6:

Proposition 8.4. Let z ∈ I(Wn) and define Mmin = {{−i, i} : i ∈ Neg(z)}. Then z is atomic if
and only if neg(z) ≤ 1 and 0B(z) = 0B(z,Mmin) = 1B(z,Mmin).

The cycles of a signed permutation w ∈Wn are the orbits of the cyclic group 〈w〉 acting on the
set [±n]. Each cycle of an involution z ∈ I(Wn) has one or two elements.

Proposition 8.5. An involution in Wn is atomic if and only if it has at most one negated point
and it does not have two cycles {a, d}, {b, c} in [±n] with −d 6= a < b ≤ c < d.

Thus, an atomic involution can have nesting cycles, but only if the outer cycle is symmetric.

Proof. Suppose z ∈ I(Wn) has neg(z) ≤ 1 andMmin = {{−i, i} : i ∈ Neg(z)}. If the given condition
holds then evidently no pairs (a, d), (b, c) ∈ CycB(z) can have a < b ≤ c < d, so 0B(z,Mmin) =
1B(z,Mmin). Conversely, suppose z has two cycles {a, d}, {b, c} in [±n] with −d 6= a < b ≤ c < d.
Since the set of cycles of z is symmetric under the map induced by i 7→ −i, we may assume that
|a| < d. By invoking this symmetry a second time, we may further assume that either 0 < b = c or
|b| < c. But then (a, d) and (b, c) are both in CycB(z), so 0B(z,Mmin) 6= 1B(z,Mmin).

We can describe the atomic elements of I(Wn) more precisely. Let X 0
n and X 1

n be the sets of
atomic involutions in Wn with 0 and 1 negated points, respectively, and let Xn = X 0

n ⊔ X 1
n . Define

the radius of z ∈ Xn to be the largest integer r ∈ [n] such that z(r) < −r, or 0 if no such r exists.
Denote the radius of z by ρ(z), and let Xn,r = {z ∈ Xn : ρ(z) = r} and X i

n,r = X i
n ∩ Xn,r. The

set Xn,0 consists of the atomic involutions z = z1z2 · · · zn ∈ I(Wn) with zi ∈ [n] for all i. These
elements may be identified with the atomic involutions in Sn, so |Xn,0| =

( n
⌊n/2⌋

)

.

Lemma 8.6. If z ∈ Xn then ρ(z) ≤ ⌊n/2⌋.

Proof. Suppose n < 2r and z ∈ I(Wn) has z(r) < −r. Since [±n] \ [±r] has 2n− 2r < 2r elements,
z must have a cycle {i, j} with z(r) < −r < i < j < r, so z is not atomic by Proposition 8.5.

Let r = ⌊n/2⌋. When n ≥ 2, define η : {±1}r−1 → I(Wn) as the map given as follows: for
ǫ = (ǫ1, ǫ2, . . . , ǫr−1) ∈ {±1}r−1, let a1 < a2 < · · · < ar−1 be the numbers iǫi for i ∈ [r− 1] listed in
order, and let η(ǫ) be the unique involution z ∈ I(Wn) with z(r + 1) = −r, with z(r + 1 + i) = ai
for i ∈ [r− 1], and with z(n) = n if n = 2r+1 is odd. The map η is clearly injective. For example,
if n = 7 so r = 3 and ǫ = (−1,+1), then a1 = −1 and a2 = 2 so

η(ǫ) = 5643127 = (3, 4)(3, 4)(5, 1)(5, 1)(6, 2)(6, 2) ∈ I(W7).

Define Yn =
{

z ∈ X 0
n : z(⌊n/2⌋) < −⌊n/2⌋

}

when n ≥ 2, and set Y0 = Y1 = {1} ⊂Wn.
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Lemma 8.7. Let r = ⌊n/2⌋. If n ≥ 2 then X 0
n,r = Yn and η : {±1}r−1 → Yn is a bijection.

Proof. Assume n ≥ 2 and let z ∈ Yn. Since z is atomic with no negated points, every number
i ∈ [±r] must have z(i) < −r or r < z(i). It follows that there are 2r numbers i ∈ [±n] \ [±r] with
z(i) ∈ [±r]. Since [±n] \ [±r] has at most 2r+2 elements, we deduce that z(n) = n if n is odd, and
that every i ∈ [±2r] \ [±r] has z(i) ∈ [±r]. Thus X 0

n,r ⊃ Yn, so we have X 0
n,r = Yn since the reverse

containment holds by definition. As z(r) < −r and r < z(−r), it must hold that −r = z(r + 1)
since otherwise we would have −r < z(r + 1) < r + 1 < z(r), contradicting Proposition 8.5. By
the same lemma, it follows that −r = z(r + 1) < z(r + 2) < · · · < z(2r) < r. We conclude that if
ǫ ∈ {±1}r−1 is the sequence of signs of z(r + 2), z(r + 3), . . . , z(2r) then z = η(ǫ).

Consider an arbitrary sequence ǫ = (ǫ1, ǫ2, . . . , ǫr−1) ∈ {±1}r−1. The involution η(ǫ) has no
negated points and satisfies η(ǫ)(r) < −r, so to finish the proof of the lemma it suffices to check
that η(ǫ) is atomic, whence contained in Yn. This is easy to deduce from Proposition 8.5.

Let Zn be the set of atomic involutions in Sn. For each r ∈ N, define Zn,r as the subset of
involutions w ∈ Zn with i < w(i) for i ∈ [r], so that Zn,0 = Zn and Zn,r = ∅ if 2r > n.

Lemma 8.8. If 0 ≤ r ≤ ⌊n/2⌋ then |Zn,r| =
(

n−r
⌈n/2⌉

)

.

Proof. The formula for |Zn,0| holds by Corollary 8.3. If z ∈ Zn then either z ∈ Zn,1 or z(1) = 1,
so |Zn| = |Zn−1| + |Zn,1| and |Zn,1| = |Zn| − |Zn−1| =

(

n
⌈n/2⌉

)

−
(

n−1
⌈(n−1)/2⌉

)

=
(

n−1
⌈n/2⌉

)

. Assume

0 < r ≤ ⌊n/2⌋. If z ∈ Zn,r and z(r+1) < r+1 then necessarily z(r+1) = 1. In this case, removing 1
and r+1 from the one-line representation of z and standardizing what remains produces an arbitrary
element of Zn−2,r−1. It is not possible for z ∈ Zn,r to have z(r+1) = r+1 and the set of elements
z ∈ Zn,r with r+ 1 < z(r+ 1) is precisely Zn,r+1. We conclude that |Zn,r| = |Zn−2,r−1|+ |Zn,r+1|,
so by induction |Zn,r+1| = |Zn,r| − |Zn−2,r−1| =

(

n−r
⌈n/2⌉

)

−
(

n−r−1
⌈n/2⌉−1

)

=
(

n−r−1
⌈n/2⌉

)

.

Fix 0 < r ≤ ⌊n/2⌋ and x ∈ X 0
n,r. Let I = [±r] ⊔ x([±r]) and J = x([±r]) ∩ [n]. Since

x([±r]) ∩ [±r] = ∅, and we have |I| = 4r and |J | = r. Define y = φ−1 ◦ x ◦ φ ∈ I(W2r) where
φ is the unique order-preserving bijection [±2r] → I. Now let j1 < j2 < · · · < jr be the distinct
elements of J , set w = (1, j1)(2, j2) · · · (r, jr) ∈ Sn, and define z ∈ I(Sn) as the involution with
z(i) = w(i) if i ∈ [r] ⊔ J and with z(i) = x(i) for all other i ∈ [n]. We write

π0 : X 0
n,r → I(W2r)× I(Sn)

for the map with π0(x) = (y, z). When r = 0 and x ∈ X 0
n,0, we set y = 1 and z = x|[n] ∈ I(Sn).

Example 8.9. This map may be understood in terms of the symmetric matchings on [±n] which
we draw to represent involutions in Wn. For example, if n = 12, r = 3, and x ∈ X 0

n,r is

x =



 • • • • • • • • • • • • • • • • • • • • • • • •
12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12





then y is obtained by first removing all edges which do not have an endpoint in [±r] to get

• • • • • • • • • • • • • • • • • • • • • • • •
12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12
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We then remove the isolated vertices from this picture and standardize what remains:

y =



 • • • • • • • • • • • •
6 5 4 3 2 1 1 2 3 4 5 6



 ∈ I(W2r).

To construct the involution z, we remove from the diagram of x all edges which do not have an
endpoint in [n] \ [r] = {4, 5, . . . , 12} to get

• • • • • • • • • • • • • • • • • • • • • • • •
12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12

We then remove all isolated vertices up to r = 3 and relabel the endpoints 3, 1, 2 as 1, 2, 3:

z =



 • • • • • • • • • • • •
1 2 3 4 5 6 7 8 9 10 11 12



 ∈ I(Sn).

We also have a simpler map π1 : X 1
n+1,r → I(Wn)×{r+1, r+2, . . . , n+1} given as follows. If x ∈

X 1
n+1,r has Neg(x) = {m}, and ψ is the unique order-preserving bijection [±n] → [±(n+1)]\{±m},

then we set y = ψ−1 ◦ x ◦ ψ and π1(x) = (y,m). In terms of matchings, y is obtained from x by
removing the single symmetric edge {−m,m} and standardizing the remaining vertices.

Lemma 8.10. Suppose 0 ≤ r ≤ ⌊n/2⌋.

(a) The map π0 is a bijection X 0
n,r → Y2r ×Zn,r.

(b) The map π1 is a bijection X 1
n+1,r → X 0

n,r × {r + 1, r + 2, . . . , n+ 1}.

Proof. One can verify the lemma directly when r = 0, so assume 0 < r ≤ ⌊n/2⌋. Let x ∈ X 0
n,r and

(y, z) = π0(x) ∈ I(W2r)×I(Sn). By construction y has no negated points and satisfies y(r) < −r.
It follows from Proposition 8.5 that y and z are also atomic, so we have y ∈ Y2r and z ∈ Zn,r. To
show that π0 is a bijection, consider the inverse map defined as follows. Given (y, z) ∈ Y2r ×Zn,r,
let E = [±r] ⊔ z([r]) ⊔ −z([r]), write θ for the unique order preserving bijection [±2r] → E, and
define x ∈ Wn as the permutation with x(i) = (θ ◦ y ◦ θ−1)(i) for i ∈ E and with x(i) = z(i) and
x(−i) = −z(i) for i ∈ [n] \ E. Since y and z are both atomic and since y has no negated points,
it follows from Proposition 8.5 that x ∈ X 0

n,r, and it is easy to see that (y, z) 7→ x is the inverse of
π0, which is therefore a bijection.

For part (b), suppose x ∈ X 1
n+1,r and (y,m) = π1(x). Proposition 8.5 implies that the single

negated pointm ∈ Neg(x) is greater than r, so y ∈ X 0
n,r. It is straightforward to construct an inverse

map X 0
n,r × {r + 1, r + 2, . . . , n+ 1} → X 1

n+1,r, and we conclude that π1 is also a bijection.

Theorem 8.11. Suppose r ∈ N. The following identities hold:

(a) It holds that |X 0
n,r| =

⌈

2r−1
⌉ (

n−r
⌈n/2⌉

)

and |X 1
n+1,r| = (⌈n/2⌉ + 1)

⌈

2r−1
⌉ (

n−r+1
⌈n/2⌉+1

)

.

(b) If n is odd then |X 1
n,r| =

1
2(n+ 1)|X 0

n,r|.

(c) If n is even and r > 0 then |X 1
n,0| =

1
2 (n+ 2)|X 0

n+1,1| and |X 1
n,r| =

1
4(n+ 2)|X 0

n+1,r+1|.
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Proof. Part (a) follows from Lemmas 8.7, 8.8, and 8.10. Parts (b) and (c) follow from (a).

The elements of X 0
n are also naturally partitioned by their absolute lengths. Let X 0,k

n be the
set of atomic involutions z ∈ I(Wn) with zero negated points and absolute length ℓ′(z) = k.

Equivalently, X 0,k
n is the set of atomic involutions in Wn with 2k distinct 2-element cycles in [±n].

To count the elements in these sets, we relate them to lattice paths of the following type.
Define Dn as the set of n-step paths (p0, p1, . . . , pn) in the nonnegative quadrant N

2 which
being at p0 = (0, 0) and end at a point pn ∈ {(n, 2m) : m ∈ N}, which have pi − pi−1 ∈
{(1, 1), (1,−1), (1, 0)} for each i ∈ [n], but which have pi − pi−1 = (1, 0) only if pi is on the x-
axis. Paths of this type terminating at (n, 0) are sometimes called dispersed Dyck paths. Each path
in Dn must have an even number of steps not equal to (1, 0). For each k ∈ N let Dn,k denote the
subset of paths in Dn which have pi − pi−1 = (1, 0) for exactly n− 2k values of i ∈ [n].

Lemma 8.12. If 0 ≤ k ≤ ⌊n/2⌋ then |Dn,k| =
(n
k

)

.

Proof. Showing that |D2k,k| =
(

2k
k

)

for k ∈ N is a standard exercise using the reflection principle
(see, e.g., [10, §III.1]). among the 2k-step paths starting at the origin in Z

2 using just the steps
(1, 1) and (1,−1), those which do not stay in N

2 are in bijection with those which do not terminate
at (2k, 0); the number of paths of the latter type is evidently

∑

j 6=k

(2k
j

)

, and subtracting this from

22k gives |D2k,k| =
(2k
k

)

. It is also apparent that |Dn,0| = 1 for all n ∈ N.
Assume 0 < k < ⌊n/2⌋. The subset of paths in Dn,k beginning with a horizontal step are

clearly in bijection with Dn−1,k, while the subset of paths in Dn,k beginning with an up step are
in bijection with Dn−1,k−1 via the following operation: given a path in Dn,k, remove its initial
up step and replace the first down step which returns to the x-axis with a horizontal step. Such
a down step exists since a path in Dn,k contains n − 2k > 0 horizontal steps. We deduce that
|Dn,k| = |Dn−1,k|+ |Dn−1,k−1|, so by induction |Dn,k| =

(n
k

)

for all k ∈ N.

Theorem 8.13. If 0 ≤ k ≤ ⌊n/2⌋ then |X 0,k
n | =

(n
k

)

.

Proof. By the previous lemma, it suffices to construct a bijection X 0,k
n → Dn,k. Given z ∈ X 0,k

n ,
define p = (p0, p1, . . . , pn) as the path starting at p0 = (0, 0) for which the step pi − pi−1 is given
by (1, 0), (1, 1), or (1,−1) according to whether j = −n+ i− 1 has z(j) = j, j < z(j), or z(j) < j,

respectively. It follows from Proposition 8.5 that p ∈ Dn,k, so z 7→ p gives a map X 0,k
n → Dn,k.

One defines an inverse map as follows. Fix a path p = (p0, p1, . . . , pn) ∈ Dn,k and let U and D
be the respective set of indices i ∈ [n] where pi − pi−1 = (1,−1) and pi − pi−1 = (1,−1). Write
a0 < a1 < · · · < a2k−1 for the numbers in {−n+i−1 : i ∈ U}⊔{n−i+1 : i ∈ D} arranged in order,
and define z ∈ I(Wn) as the unique involution which has z(ai) = −a2k−i for i = 0, 1, . . . , 2k − 1
and which fixes all numbers not equal to ai or −ai for some i. Since the path p remains in N

2, we
have ai < −a2k−i for each i. An index i ∈ [n] corresponds to a horizontal step in p if and only if
−n+ i− 1 and n− i+1 are fixed points of z; since these steps are all at height zero, z has no fixed
points b with a < b < z(a) for any a ∈ [±n]. This is enough to conclude by Proposition 8.5 that
z is atomic. Since z has 2k left endpoints i ∈ [±n] with i < z(i), it follows that z has no negated

points and belongs to X 0,k
n . Moreover, it holds essentially by definition that p 7→ z is the inverse of

the map z 7→ p described in the first paragraph. Thus |X 0,k
n | = |Dn,k| =

(n
k

)

.
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Corollary 8.14. The number a0n = |X 0
n | of atomic involutions in Wn with no negated points is

a0n =

(

n

⌈n/2⌉

)

+

⌊n/2⌋
∑

r=1

2r−1

(

n− r

⌈n/2⌉

)

=

⌊n/2⌋
∑

k=0

(

n

k

)

=

{

2n−1 if n is odd

2n−1 + 1
2

(

n
n/2

)

if n is even.

Proof. Rewrite |X 0
n | =

∑

r |X
0
n,r| =

∑

k |X
0,k
n | using Theorems 8.11 and 8.13.

The sequence
{

a0n
}

n=0,1,2,...
= (1, 1, 3, 4, 11, 16, 42, 64, . . . ) is [36, A027306].

Corollary 8.15. Let a1n = |X 1
n | be the number of atomic involutions inWn with one negated point.

(a) If n is odd then a1n = (n+ 1)2n−2.

(b) If n is even then a1n = 1
4(n+ 2)

(

2n −
( n
n/2

)

)

.

Proof. Theorem 8.11 implies that if n is odd then |X 1
n | =

∑

r |X
1
n,r| =

1
2(n+1)|X 0

n | and if n is even

then |X 1
n | =

1
4(n + 2)

(

|X 0
n+1| − |X 0

n+1,0|+ |X 0
n+1,1|

)

= 1
4(n + 2)

(

|X 0
n+1| −

( n+1
n/2+1

)

+
( n
n/2+1

)

)

. The

corollary follows by substituting Corollary 8.14 and the identity
(

n+1
n/2+1

)

=
(

n
n/2+1

)

+
(

n
n/2

)

.

Combining Corollaries 8.14 and 8.15 finally gives the following:

Corollary 8.16. The number an = a0n + a1n of atomic involutions in Wn is as follows:

(a) If n is odd then an = (n+ 3)2n−2.

(b) If n is even then an = (n+ 4)2n−2 − n
4

( n
n/2

)

.

The even-indexed terms of {an}n=0,1,2,... = (1, 2, 5, 12, 26, 64, 130, 320, . . . ) form the sequence
[36, A003583]. The odd-indexed terms are a subsequence of [36, A045623].

Let R(w) be the set of reduced words for w and define R̂(z) =
⊔

w∈A(z)R(w) as in the intro-
duction. We mention an application of the preceding results to the enumeration of the latter sets.
Suppose λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) is an integer partition and µ = (µ1 > µ2 > · · · > µl > 0)
is a strict partition of a number N . The diagram of λ is the set of positions (i, j) for i ∈ [l] and
j ∈ [λi], oriented as in a matrix. The shifted diagram of µ is the set of positions (i, i + j − 1) for
i ∈ [l] and j ∈ [µi]. A standard tableaux of shape λ (respectively, standard shifted tableaux ) is an
arrangement of the numbers 1, 2, . . . , N in the diagram of λ (respectively, the shifted diagram of
µ) such that rows and columns are increasing from left to right and top to bottom. Let fλ be the
number of standard tableaux of shape λ and let gµ be the number of standard shifted tableaux of
shape µ. For the well-known hook-length formulas for these quantities, see [38].

Proposition 8.17. Let p = ⌊n+1
2 ⌋, q = ⌈n+1

2 ⌉, and γn = n · · · 21 ∈ I(Wn). Then

|R̂(γn)| = fλ = gµ =
0! · 1! · 2! · · · (p− 1)! · (pq)!

q! · (q + 1)! · · · (q + p− 1)!

where λ = pq = (p, p, . . . , p) and µ = (n, n− 2, n− 4, . . . ).

An element w ∈ Wn is Grassmannian if w(1) < w(2) < w(3) < . . . . The only Grassmannian
involutions in Wn apart from 1 are the permutations γm for m ≤ n defined in this proposition.
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Proof. By Lemma 4.6 and Proposition 8.5, γn is atomic and its unique atom v = 0B(z)
−1 is either

v = n (n− 2) · · · 42135 · · · (n− 1) or v = n (n− 2) · · · 31246 · · · (n− 1). We have |R(v)| = gµ by [28,
Corollaries 3.3 and 4.4] (see also [2, Proposition 3.14]); the second equality is a special case of [11,
Proposition 8.11]; and the third equality holds by standard hook-length formulas.

The sequence {|R̂(γn)|}n=1,3,5,... = (1, 2, 42, 24024, 701149020, . . . ) is [36, A039622]. These num-
bers also count the reduced words for 12 · · · q where q = (n + 1)/2 by [12, Theorem 5.12]. The
numbers {|R̂(γn)|}n=2,4,6,... = (1, 5, 462, 1662804, . . . ) are sequence [36, A060855], and count the
winnowed expressions for 12 · · · q where q = n/2, that is, the expressions obtained by omitting all
factors t0 from a reduced word [12, Theorem 5.16].

9 Future directions

We include some comments about related conjectures and open problems.
It seems possible that the atomic orders <A, <B, ≪B , and ≪B have even more structure than

what is shown in this paper. The following is stated in [30] in a slightly more general form:

Conjecture 9.1. If z ∈ I(Sn) then (A(z)−1, <A) is a lattice.

The poset (A(z)−1,≪B) is not always a lattice for z ∈ I(Wn); counterexamples exist when
n = 7. Computations show that (A(z)−1,≪B) is a lower semilattice for at least n ≤ 8, however.

Question 9.2. Can one define a partial order on A(z)−1 extending ≪B so that it is a lattice?

More generally, it would be interesting to define a type-independent partial order on A(z) so
that it is a lattice.

It is an open problem to efficiently determine the setsA(z) when z is an involution in an arbitrary
Coxeter group. A combinatorial description of the atoms for involutions in affine symmetric groups
appears in [30]. For finite Coxeter groups we have the following criterion [14, Theorem 4.12] which
is conjectured to hold for arbitrary (twisted) Coxeter systems.

Theorem 9.3. Let W be a finite Coxeter group and z ∈ I(W ). Then A(z) is the set of elements
w ∈W of minimal possible length such that wz ≤ w.

This succinct classification tends not to be very explicit in practice.

Problem 9.4. Give a type-independent combinatorial characterization of the sets A(z).

A natural first step towards solving this general problem is the following:

Problem 9.5. Give combinatorial descriptions of the atoms in all finite and affine Coxeter groups.

Suppose (W,S) is a Coxeter system with an involution ∗ ∈ Aut(W ) that preserves the set S.
When z ∈ I∗(W ) = {w ∈W : w∗ = w−1}, it is natural to study the sets of (twisted) atoms A∗(z),
consisting of the minimal length elements w ∈ W with (w∗)−1 ◦ w = z. This is the perspective
of [14], and the previous problem should be considered in this more general context. The present
work only considers the case when ∗ = id since this is the only possibility if (W,S) has type B.
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A Index of symbols

The table below lists our non-standard notations, with references to definitions where relevant.

Symbol Meaning

SX The group of permutations of a finite set X §3
Ψn An injective group homomorphism Wn → S2n (2.1)
si The adjacent transposition (i, i + 1) ∈ Sn
ti Either (−1, 1) for i = 0 or (−i− 1,−i)(i, i + 1) for i ∈ [n− 1]

CycA(z) The set {(a, b) ∈ X ×X : a ≤ b = z(a)} for z ∈ I(SX)
Pair(z) The set {(a, b) ∈ [±n]× [n] : |a| < z(a) = b} for z ∈ I(Wn)
Neg(z) The set {i ∈ [n] : z(i) = −i} for z ∈ I(Wn)
Fix(z) The set {i ∈ [n] : z(i) = i} for z ∈ I(Wn)

Des(w) The set of pairs (wi, wi+1) with wi > wi+1 for a word w §3
NDes(w) Nested descent set of an inverse atom w for z ∈ I(Wn) (3.2)
NFix(w) Nested fixed points of an inverse atom w for z ∈ I(Wn) Def. 3.10
NNeg(w) Nested negated points of an inverse atom w for z ∈ I(Wn) Def. 3.10

NCSP(z) Noncrossing symmetric perfect matchings on {i : z(i) = −i} §5
sh(w) Shape of an inverse atom w ∈ A(z)−1 for z ∈ I(Wn) §5
Pair(z,M) Variant of Pair(z,M) for z ∈ I(Wn) and M ∈ NCSP(z) (5.1)
Neg(z,M) Variant of Neg(z,M) for z ∈ I(Wn) and M ∈ NCSP(z) (5.1)
CycB(z,M) A certain set of pairs for z ∈ I(Wn) and M ∈ NCSP(z) (5.1)

⊳A Covering relation with · · · cab · · · ⊳A · · · bca · · · (1.2)

⊳B Covering relation with ba · · · ⊳B ab · · · and cba · · · ⊳B cab · · · (1.3)
⊳

+
B A stronger form of ⊳B (4.1)

<⊳B A stronger form of ⊳+
B (4.2)

<◭B A stronger form of <⊳B (6.1)

<A The transitive closure of ⊳A

<B The transitive closure of ⊳A and ⊳B

≪B The transitive closure of ⊳A and <⊳B

≪B The transitive closure of ⊳A, <⊳B, and <◭B

∼A The symmetric closure of <A

∼B The symmetric closure of <B

≈A Equiv. relation with · · · cba · · · ∼A · · · cab · · · ∼A · · · bca · · · (7.1)
≈B Type B analogue of the equivalence relation ≈A (7.2)

0A(z), 1A(z) Extremal inverse atoms for z ∈ I(Sn) under <A (3.1)
0B(z,M) Minimal inverse atom for z ∈ I(Wn) under <A (5.2)
1B(z,M) Maximal inverse atom for z ∈ I(Wn) under <A (5.2)
0B(z) Minimum inverse atom for z ∈ I(Wn) under <B (4.4)
1B(z) Maximum inverse atom for ∈ I(Wn) under ≪B (6.2)
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