
A unifying framework for the modelling and
analysis of STR DNA samples arising in

forensic casework

Robert G. Cowell

February 28, 2018

Abstract

This paper presents a new framework for analysing forensic DNA sam-
ples using probabilistic genotyping. Specifically it presents a mathematical
framework for specifying and combining the steps in producing forensic
casework electropherograms of short tandem repeat loci from DNA sam-
ples. It is applicable to both high and low template DNA samples, that is,
samples containing either high or low amounts DNA. A specific model is
developed within the framework, by way of particular modelling assump-
tions and approximations, and its interpretive power presented on examples
using simulated data and data from a publicly available dataset.

The framework relies heavily on the use of univariate and multivariate
probability generating functions. It is shown that these provide a succinct
and elegant mathematical scaffolding to model the key steps in the process.
A significant development in this paper is that of new numerical methods
for accurately and efficiently evaluating the probability distribution of am-
plicons arising from the polymerase chain reaction process, which is mod-
elled as a discrete multi-type branching process. Source code in the scripting
languages Python, R and Julia is provided for illustration of these methods.
These new developments will be of general interest to persons working out-
side the province of forensic DNA interpretation that this paper focuses on.

Keywords: DNA profiles; forensic statistics; polymerase chain reaction;
branching process; probability generating functions; Fast Fourier Trans-
form.
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Introduction
Genetic fingerprinting, also called DNA profiling, has grown to be an indispens-
able tool for identification of individuals in the investigative and judicial process
associated with criminal cases. Judiciaries throughout the world have built up
large databases of DNA profiles of convicted, and additionally in some cases
non-convicted, individuals. These databases are based, in the main, upon short-
tandem-repeat (STR) loci. Although newer DNA identification techniques based
upon genomic sequencing (next generation sequencing) are being actively devel-
oped, the size of the currently existing databases, and the comparative low cost
and reliability of the laboratory process for dealing with STR loci means that
STR DNA profiling will remain in use for several years to some.

Ever since the pioneering work instigated by Jeffreys et al. (1985), advances of
techniques in the collection and processing of crime scene DNA samples have led
to forensic laboratories routinely processing small amounts of DNA, for example
as may be contained in just a few cells extracted from a fingerprint. Indeed, cur-
rent technology allows for the amplification of even as little DNA as is contained
within one cell (Findlay et al., 1997). Such low template DNA (LTDNA) sam-
ples can present challenges to the forensic scientist in their interpretation. Such
examples typically show signs of containing DNA from two or more persons.
These LTDNA mixtures are also subject to various artefacts such as degradation,
drop-in, drop-out and stutter which further exacerbate the problems of their inter-
pretation. Over the years a variety of methods have been developed and applied
to provide interpretation in court.

It is convenient to distinguish two phases of DNA processing. The first is
the laboratory processing of the physical DNA. This part is described in detail in
(Butler, 2011). The end result of this is one or more electropherograms (EPGs),
described further in Section 1.2 below. Each EPG is then subject to interpretation
by the forensic statistician; interpretation issues are described in detail in (Butler,
2014).

In recent years probabilistic genotyping models have been gaining acceptance
within the forensic science community and in court for interpreting challenging
DNA mixtures. These models typically describe themselves as fully continuous,
by which is meant (at least as understood by the author) that they model the peak
heights seen in the EPG as realisations of continuous random variables in statis-
tical models for evaluating the weight of evidence of competing hypotheses pre-
sented to a court.

It is perhaps fair to say that that such models begin their interpretation with the
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EPG, or EPGs in case of the analysis of multiple replicates from a sample, and
that much of the information contained in the processing of the DNA sample that
lead to the EPG is not used. It is the contention of this paper that, particularly for
low template analyses, these steps need to be explicitly or implicitly incorporated
into any statistical model for analysing STR DNA single source samples and mix-
tures. To not do so is to lose important information that could lead to biases or
incorrect inferences. This paper presents a framework in which such information
can readily be incorporated.

An early model for the whole process from sample to EPG was given by Gill
et al. (2005). Their model was used only to simulate EPG peaks, in order to relate
some of the parameters of their model to the procedures in their laboratory and
observed values from PCR runs. The model was not concerned interpreting given
EPGs. An R package (R Core Team, 2016) called forensim (Haned, 2013),
implements the simulation model. Recently, another model for simulating EPGs
has been proposed (Duffy et al., 2016).

The framework presented in this book can be thought of as an extensive elabo-
ration of the simulation model of Gill et al. (2005). We say framework rather than
model as many models may be derived from the framework; in addition the frame-
work may be extended to cover other aspects of the processing not covered in this
paper. One key elaboration, described in more detail below, is that the Gill et al.
(2005) model starts the branching process simulation using amplicons; it ignores
the fact that the PCR processing of real DNA samples starts with genomic strands.
A second elaboration is that it does not take account of the tagging of amplicons
with dyes so that they can be observed for the EPG. We incorporate explicitly
such the tagging in our framework. We also extend the Gill et al. (2005) model
to include forward and double backward stutters. Higher order stutters could also
be included if desired, but because of their smallness relative to other peaks in the
EPG they are not considered important (as they would be indistinguishable from
noise).

However, not only can our framework be used to make simulated EPGs, but
it can also be used for statistical interpretation. A key part of this is the use of
multivariate probability generating functions to model the steps in the laboratory
process leading to the EPGs. This provides a compact and elegant probability
model, or rather set of models based on approximations that are assumed. Us-
ing standard techniques, means and variances of peak height distributions may
be found from these generating functions, and these may be used to model peak
height distributions using standard distributions, such as normal, lognormal or
gamma distributions via moment matching. Such distributions have been used
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in fully continuous models as simple and convenient distributions: in part this
has been because there is no analytic form the for full distribution of amplicons
arising in the PCR branching process. However, this paper shows that such full
branching process distributions may be obtained efficiently from the probability
generating functions; there is therefore no need for probabilistic genotyping soft-
ware to assume simple standard distributions for peak height distributions. We
show in examples that they do not capture the intricate multi-modal distributional
behaviour of the full branching process that can occur for LTDNA samples.

This paper consists of three main parts. The first introduces background in-
formation to the objectives and problems of interpreting forensic DNA samples.
The second part introduces elements of the mathematical approach used in the pa-
per, and shows how full distributions can be efficiently computed for the branch-
ing processes by combining a specification in terms of probability generating
functions with their evaluation using discrete Fourier transforms. The third part
presents a detailed comprehensive framework for modelling forensic DNA prob-
lems, from which specific models may be formed by specialisation and approxi-
mations. It describes a particular model specialisation based on the general frame-
work. The efficacy of the model is exhibited with simulated and real data.
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Part I

Background
In this part of the paper we introduce background information to the problems we
are addressing with the framework developed here.

1 DNA background
In this section some background information on DNA is introduced, sufficient for
the remainder of the paper; readers unfamiliar with this background are recom-
mended to consult (Butler, 2011, 2014) for more details.

1.1 Short Tandem Repeat (STR) markers
Forensic scientists encode an individual’s genetic profile using the composition
of DNA at various positions on the chromosomes. A specific position on a chro-
mosome is called a locus, or marker. Human DNA has twenty three pairs of
chromosomes: twenty two autosomal chromosome pairs and a sex-linked pair,
the X and Y chromosomes.

The information at each (autosomal) locus consists of an unordered pair of al-
leles1 which forms the genotype at that locus; a pair because chromosomes come
in pairs, one inherited from the father and one from the mother, and unordered be-
cause it is not recorded from which chromosome of the pair each allele originates.

The loci used for forensic identification have been chosen for various reasons.
Among these, we point out the two.

The first is that at each locus there is a wide variability between individuals
in the alleles that may be observed. This variability can therefore be exploited to
differentiate people.

The second reason is that, at least until recently, each (autosomal) locus is
either on a distinct chromosome, or if a pair of loci are on the same chromosome
then they are widely separated. When this occurs, the alleles at the various loci
may be treated as mutually independent, thus simplifying the statistical analysis.

1This is also true for the Amelogenin locus which occurs on both X and Y chromosomes.
However for other sex-linked loci the alleles might also possibly occur singly or not at all. For
example a female does not have a Y chromosome, and so will not have an allele in any Y-linked
locus.
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However in recent years the numbers of loci used has increased, so that there are
now some pairs loci that are close together on the same chromosome. We return
to this issue of genetic linkage later.

The alleles of a marker are sequences of the four amino acid nucleotides ade-
nine, cytosine, guanine and thymine, which we represent by the letters A, C, G
and T. Each amino acid is also called a base, and because the DNA molecule has
a double helix structure, each amino acid on one strand is linked to a complemen-
tary amino acid on the other strand; a complementary pair of amino acids is called
a base pair.

An allele is typically named by its repeat number, usually an integer. For
example, consider the allele with repeat number 5 (commonly also referred to
as allele 5 for brevity) of the marker TH01. This allele includes the sequence
of four nucleotides AATG repeated consecutively five times. It can be desig-
nated by the formula [AATG]5. Likewise allele 8 of TH01 has eight consecu-
tive repetitions of the AATG sequence, which may be denoted by [AATG]8. Re-
peat numbers are not always integers. For example, allele 8.3 of TH01 has the
chemical sequence [AATG]5ATG[AATG]3, in which ‘8’ refers to the eight com-
plete four-word bases [AATG] and the ‘.3’ refers to the three base-long word
sequence ATG in the middle. Repeat numbers with decimal ‘.1’ and ‘.2’ endings
are also possible, indicating the presence of a word of one or two bases. Note
that the integer part of the repeat number counts how many complete words of
four bases make up the allele sequence but the words need not be all identical and
may vary even within loci. For example, allele 11 of the marker vWA has the
base sequence TCT A[TCTG]3[TCT A]7. Also, some markers are based on tri-
or pentanucleotide motifs rather than tetranucleotides as above. The base-letter
sequences for many alleles may be found in Butler (2005).

When the repeat numbers of the two alleles of an individual at a marker are
the same, then the genotype for that marker is said to be homozygous; when the
repeat numbers differ, the genotype for that marker is said to be heterozygous.

The repetitive structure in the alleles gives rise to the term short tandem re-
peat (STR) marker to describe these loci; they also go by the name of microsatel-
lites. Note that for other purposes of genetic analysis it is common to use single-
nucleotide polymorphisms (SNPs) which are defined as DNA sequence variations
that occur when a single nucleotide (A, T, C, or G) in the genome sequence is
altered.

Forensic identification using STRs is based upon the size of the allele. How-
ever, for some loci, different people might not have the same nucleotide sequence
for one or more alleles of a specific repeat number. This information is not used
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by the framework developed in this paper, but is the basis of finer genetic dis-
crimination available to the next-generation sequencing methods currently being
developed that were mentioned in the introduction.

Within a population the various alleles of STR markers do not occur equally
often, some can be quite common and some quite rare. When carrying out proba-
bility calculations based on DNA, forensic scientists use estimates of probabilities
based on allele frequencies in profiles of a sample of individuals. The sample sizes
typically range from a few hundred to thousands of individuals. For example,
Butler et al. (2003) presents tables of US-population STR-allele frequencies for
Caucasians, African-Americans, and Hispanics based on sample sizes of 302, 258
and 140 individuals. These are used to estimate the genetic profile probabilities of
an individual: for the autosomal loci and the locus Amelogenin, independence of
loci expressed through the lack of genetic linkage means that they may be found
by multiplying probabilities across the loci. Although the PCR process described
below applies to other sex-linked loci, the linkage of loci on the sex-linked loci
presents special problems in estimating genetic profile probabilities. This issue
will be addressed in another paper, although some of the discussion below will
not be specific to autosomal loci.

1.2 The PCR process
The DNA collected from a crime scene for forensic analysis consists of a number
of human cells from one or more individuals. Note that each cell of an individual
will contain two alleles (diploid cells) for each autosomal marker, whereas sperm
cells have only one allele (haploid cells). This means that in a mixture, a particu-
lar individual will contribute the same number of alleles for each marker. In order
to identify the alleles that are present, a DNA sample is first subjected to chem-
ical reagents that break down the cell walls so that the individual chromosomes
are released into a solution. A small amount of this solution is used to quantify
the concentration of DNA; the typical unit of measurement is picograms per mi-
crolitre, the DNA in a single human cell having a mass of between six and seven
picograms. Having determined the density of DNA in the sample, a volume is
extracted that is estimated to contain a certain quantity of DNA, typically around
0.5 nanograms, equivalent to around 75 human cells. The DNA in the extract is
then amplified using the polymerase chain reaction (PCR) process. This involves
adding primers and other biochemicals to the extract, and then subjecting it to a
number of rapid heating and cooling cycles. Heating the extract has the effect of
splitting apart the two complementary strands of DNA, the cooling phase then al-
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lows free floating primers and amino acids to bind with these individual strands in
such a way that the DNA is copied. By the action of repeated heating and cooling
cycles, typically around 28 altogether, an initially small amount of DNA is am-
plified to an amount large enough for quantification. Mathematically, the ampli-
fication process may be modelled as a branching process (Sun, 1995; Stolovitzky
and Cecchi, 1996a). The amplification process is not 100% efficient, that is, not
every allele gets copied in each cycle. This means that if two distinct alleles in a
marker are present in the extract in the same amount prior to amplification, they
will typically occur in different amounts at the end of the PCR process.

Note that after breaking down the cell walls to release the genomes, there
could be sufficient DNA in the sample to carry out several independent PCR am-
plifications with sub-extracts. When this is done it is called a replicate run.

To understand the quantification stage of the post PCR amplified DNA, it is
important to know that the amplification process does not copy only the repeated
DNA word segment of a marker, it also copies DNA at either end. These are called
flanking regions, and their presence is important in performing the PCR process.
Regions at either end of the flanking region, called primer binding regions, are
where the primers bind to the DNA to initiate copying. These regions are labelled
as 5’ and 3’; there is one for each of the two strands making up the double helix
of the DNA. During the heating cycle the double helix separates into two strands,
which for reasons that will become apparent later we denote by the two genomic
strands by g and gd. During the cooling phase one of the strands primers will bind
at the 5’ end, and on the other at the 3’ end. After the primers have attached the
Taq polymerase adds individual bases to complete the copying. This leads to two
strands that we call h and hd, (with h for half-strand).

The process is illustrated in the following sequence of figures. In the first
figure we have a fragment of DNA consisting of two complimentary joined strands
g and gd which are long enough to contain the repeat structure of an allele of
interest and primer binding regions on either side of the allele. The ‘teeth’ in the
figure indicates the individual bases making up each strand.

g

gd

Heating breaks the bonds of the base-pairs of the DNA molecule, so separating
the strands. During cooling primers,indicated by the smaller sets of teeth. bind to
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each of the 5’ ends of the strands. Note that the sequences of bases in the primers
attaching to the two ends are in general different, because of the differences in the
base sequence in the primer-binding regions of the two strands.

5' 3'

3'

3'

3' 5'

g

gd

After the primer binds at one end the Taq polymerase extends to copy to be-
yond the primer region at the other end. The g strand generates the hd strand for
its copy, and the gd strand the h strand for its copy.

5' 3'

3'

3'

3' 5'

g

gd

hd

h

During the next heating cycle the g/hd strand pair separate, and the gd/h pair
separate. The g and gd strands repeat the process as above. During the cooling
phase, primers bind to the 5’ ends of the h and hd strands,

3' 5'

5'

3'

3' 5'

hd

h
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and the Taq polymerase adds bases to the ends, thus making with the h strand
a complementary ad strand, and with the hd strand, a complementary a strand.

3' 5'

5'

3'

3' 5'

hd

h

ad

3' a

During the next heating cycle the h/ad strand pair separate, as does the hd/a
strand pair. The h and hd strands behave as above (as the g and gd strands continue
to do so as well). Primers bind at the 5’ ends of the a and ad strands,

3'

3'5'

3'

3' 5'

ad

a

and the Taq polymerase completes the copy, so that the a strand makes a compli-
mentary ad strand, and the ad strand makes a complimentary a strand.

3'

3'5'

5'

3'

3' 5'

5'

ad

a

ad

a

Thus an amplified allele will consist of the allele word repeat sequence re-
gion and two flanking regions, and will have a length associated with it which is
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measured in the total number of base pairs included in the word sequence and the
flanking regions. This is called an amplicon.

3'

3'5'

5'

ad

a

Repeat region

Further heating cycles lead to an exponential growth in the number of a and
ad strands with the number of cycles. After around 28 or 29 cycles there is a
sufficient number of amplicons to measure their amount.

For each marker, the DNA sequence (hence the size) forming each of the two
flanking regions is constant, but different across markers. Thus quantifying a
certain allele is equivalent to measuring how much DNA is present of a certain
size. This is carried out by the process of electrophoresis, as follows.

During the binding of primers a fluorescent dye is also attached. We said
earlier that the primers for the two ends of the strand are different. Typically
dyes are attached to only of the two types or primers: we can now reveal that
the d subscript used in the description indicates the presence of a dye tag, thus
ad represents the strand in the complementary pair of strands making up the dye-
tagged amplicon, and a other strand that is not tagged with a dye. (Note that
hd represents a dye-tagged half-strand, but that gd strands are not dye tagged.
However it simplifies notation to treat the gd as if they are, rather than introduce
another symbol to distinguish the g strand from its compliment.) For brevity in
the remainder of the paper, we shall refer to ad as a dye-tagged amplicon, and a
and an untagged amplicon.

Hence we wish to measure the number of dye-tagged amplicons, ad. The de-
scription above has assumed 100% efficiency in the amplification process. How-
ever, not every strand will get a primer attached in each cycle, and the PCR pro-
cess will operate at less than 100% efficiency. Typical amplification efficiencies
are in the range 0.8-0.9.

Several colours of fluorescent dyes are used to distinguish similarly sized al-
leles from different markers. The amplified DNA is drawn up electro-statically
through a fine capillary to pass through a light detector, which illuminates the
DNA with a laser and measures the amount of fluorescence generated. The latter
is then an indication of the number of alleles tagged with the fluorescent marker.
The longer alleles are drawn up more slowly than the shorter alleles, however al-
leles of the same length are drawn up together. This means that the intensity of the
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detected fluorescence will sharply peak as a group of alleles of the same length
passes the light detector, and the value of the intensity will be a measure of the
number of alleles that pass. The detecting apparatus thus measures a time series of
fluorescent intensity, but it converts the time variable into an equivalent base pair
length variable. The data may be presented to a forensic scientist as an electro-
pherogram (EPG) as illustrated by the simulated EPG shown in Figure 1. Each
panel in the EPG corresponding to a different dye. The horizontal axes indicate
the base pair length, and the vertical axis the intensity.
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Figure 1: Schematic of an electropherogram plot for a simulated 3-person mixture,
for the Identifiler PlusTM STR kit of the Amelogenin locus and 15 autosomal loci.
Each of the four panels represents a dye. On the left-hand side of each panel
the scale of RFU is indicated. The horizontal scale (not shown) is in units of
base-pairs, with a range of between 50 to 450 for the plots. Each vertical spike
represents an allele.

In the absence of artefacts, a peak in the EPG indicates presence of an allele in
the sample before amplification. The peak height is a measure of the amount of the
allele in the amplified sample expressed in relative fluorescence units (RFU). The
area of the peak is another measure of the amount, but this is highly correlated
with the height (Tvedebrink et al., 2010). Both peak height and peak area are
determined by software in the detecting apparatus.
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We shall call the peak size information extracted from the EPG the profile of
the DNA sample, or more briefly, the DNA profile. Commonly, DNA profile also
refers to the combined genotype of a person across all markers.

In measuring the peak heights, low level noise give rise to small spurious
peaks. A peak amplitude threshold, called the analytic threshold, may be set by
the forensic analyst whereby peaks below the analytic threshold level are ignored.
Thus an allele present in the DNA sample will not be recorded as observed if the
peak it generates is below the analytic threshold; when this happens a dropout of
the allele is said to have occurred. A dropout of an allele can also occur if no
genomic strands containing the allele are selected for amplification. Dropout is an
artefact that can make the analysis of DNA samples difficult. Another common
artefact is stutter, whereby an allele that is present in the sample is mis-copied at
some stage in the PCR amplification process, and (for a tetraneucleotide marker)
a four base pair word segment is omitted. This damaged copy itself takes part
in the amplification process, and so yields a peak located four base pairs2 below
the allele from which it arose. More rarely, two repeats are omitted during a
PCR cycle, which is called double stutter, or an extra repeat is inserted, which
is called forward stutter; once formed these artefacts can themselves replicate in
subsequent cycles.

Another artefact is known as dropin, referring to the occurrence of small unex-
pected peaks in the EPG. This can for example be due to sporadic contamination
of a sample either at source or in the forensic laboratory.

Finally, a mutation in the flanking region can result in the allele not being
picked up at all by the PCR process, in which case we say that the allele is silent.
An allele can also be undetectable and thus de facto silent because its length is
off-scale and the peak does therefore not appear in the EPG. Note that an allele
might be silent for a kit made by one manufacturer but not another; this is because
different manufacturers of kits for performing PCR use different primer binding
regions.

2 From sample to EPG
In this section we give a description of the process of going from a DNA sample,
recovered for example from a crime scene, to the electropherogram (EPG) that is
used to make inferences about the constitution of the DNA in the sample. For a

2For tetrameric loci.
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much more detailed account of the laboratory processes please see (Butler, 2011).
We start with a descriptive summary, and follow this with a more detailed

mathematical specification.

2.1 Steps in the process
The following is a summary of the sequence of steps taken to obtain an EPG from
a DNA sample, recovered for example at a crime scene; Figure 2 illustrates the
sequence of steps involved.

1. Collect sample of DNA. The sample might be a single source trace, that is,
it contains DNA from a single individual, or it could be a mixture, that is a
trace with DNA originating from two or more people.

2. Take a sub-sample of the sample and using bi-chemical reagents extract
nuclear DNA to create an aliquot (solution of extracted DNA- check this
is the correct meaning). Typically this will be in a mini-tube of a volume
of between 50µL to 100µL, depending on laboratory standard operating
procedures.

3. Take a small extract of the aliquot, typically around 2µL, to determine the
concentration of DNA in the aliquot. Usually this will be carried out using
qPCR (Butler, 2011), so that (if possible) an optimal amount DNA can be
used for the PCR step.

4. Based upon the estimated density of DNA in the aliquot, take enough of
the aliquot for PCR amplification so that there is an optimal amount of
genomic DNA in the mini-tube for the PCR amplification is to be carried.
For LTDNA samples, obtaining a sufficient amount might not be possible.
Typically a maximum volume of 20µL is taken from the aliquot, so that
there is sufficient volume left in the PCR mini-tubes for the PCR primers.
In some cases the aliquot is split into several parts called replicates and each
is separately amplified via PCR.

5. Carry out the PCR amplification of each replicate using some kit and pro-
tocol. Usually, but not always, the same manufacturer kit is used for all of
the replicates when more than one replicate is made.

6. An EPG is then produced from each replicate by capillary electrophoresis.
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Figure 2: Overview of the sequence of steps to produce an electropherogram from
a DNA sample. 14



3 The objectives of an EPG analysis
In the previous sections we have given a brief qualitative description of how we
obtain an EPG from a DNA sample. In this section we describe the information
a forensic scientist wishes to obtain from an EPG. In later sections we develop a
mathematical framework to help realise those aims.

A forensic scientist may wish to use the information in an EPG to calculate
the weight of evidence for two competing hypotheses regarding the contributors
to the DNA sample; another objective is to try and identify the likely genotypes
of contributors (Perlin and Szabady, 2001; Wang et al., 2006; Tvedebrink et al.,
2012b), a process known as deconvolution.

We consider each of these objectives in turn.

Weight of evidence In an adversarial court setting, we have two competing hy-
potheses, one argued for by the prosecution, called the prosecution hypothesisHp,
the other called the defence hypothesis Hd. Note that the defence is not obliged
to propose an alternative to the prosecution hypothesis Hp; usually the defence
hypothesis is proposed by the prosecution for comparative purposes. The avail-
able evidence E in the case consists of the peak heights as observed in the EPG as
well as the set of genotypes of some known individuals; denote the known geno-
type information by G. The prosecution and defence hypotheses differ in their
assumptions as to whose DNA is in the sample that produced the EPG. In most
cases where a suspect S is on trial, the prosecution case would be that S con-
tributed to the sample and the defence case that S did not. However this is not
always the case. For example, a DNA sample might be recovered from a swab of
an area of skin of the suspect where physical contact is alleged to have been made
during an assault on a victim V . Under this scenario, the presence of S ’s DNA in
the sample is not disputed, it is the presence of the victim’s DNA offered by the
prosecution as proof of the assault that is disputed.

The strength of the evidence (Good, 1950; Lindley, 1977; Balding, 2005) is
normally represented by the likelihood ratio:

LR =
L(Hp)
L(Hd)

=
Pr(E | Hp)
Pr(E | Hd)

.

This may be expressed on a base-10 log scale of units called the ban, intro-
duced by Alan Turing (Good, 1979) so that one ban represents a factor 10 on the
likelihood ratio. Then the weight of evidence is WoE = log10 LR in bans (Balding,
2013).
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The numerator and denominator in the likelihood ratio are calculated based on
models having the form

Pr(E | H ,G) =
∑

g

Pr(E | g) Pr(g | H ,G), (1)

so that the model for the conditional distribution Pr(E | g) of the evidence given
the genotypes g of all contributors is the same for both hypotheses, whereas the
hypotheses differ concerning the distribution Pr(g | H ,G) of genotypes of the con-
tributors. Note that the genotypes g that are summed over may include those of
one or more unknown contributors, that is, individuals whose genetic profiles are
not known (not included in G).

Note that Pr(E | g) has a dependence, not shown, on the amount of DNA from
each contributor in the sample, and other factors such as sample degradation: this
implies a similar implicit dependence for the left hand side.

Deconvolution of DNA mixtures In the deconvolution of a DNA sample, typ-
ically a mixture, we assume that there are one or more genetically untyped con-
tributors to the DNA sample. We then wish to find the genotypes of these untyped
individuals. Typically how this is done is that for each individual separately a
ranked list of genetic profiles ordered by their likelihood is produced. The po-
tential profiles having high likelihood could, for example, be checked against an
offender database for a match. However, sometimes a ranking of the joint geno-
types of two or more individuals may also be of interest.
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Part II

Mathematical formulation
In this part of the paper we give the mathematical notation underpinning the
framework of this paper. From the right hand side of (1) we see that there are
two components of the framework that require specification. One part is specify-
ing the (conditional) probability for the EPG data, Pr(E | g), the other specifying
the genetic profile probabilities, Pr(g | H ,G). As the latter is relatively uncon-
troversial, and is common to all models for the Pr(E | g) distribution, we discuss
that first. We then discuss the simulation model of Gill et al. (2005), and show
how the full distribution may be obtained without simulation. We then extend
the analysis to finding the distribution for the more realistic model in which we
start with genomic strands and we find the distribution of dye-tagged amplicons.
We then elaborate this in stages leading to the general framework that includes
background noise, drop-in, forward and double-reverse stutters, degradation and
inhibition, for possibly multiple replicates analysed with possibly multiple kits
from possibly multiple independent samples.

4 Specifying genetic profile probabilities
Given the genotypes of contributors, the framework formulated in this paper for
specifying peak-height likelihoods is applicable to any type of STR locus, that is
for evaluating Pr(E | g). However, if there are untyped contributors, evaluation of
Pr(g | H ,G) can be problematic for sex-linked loci. In this paper we shall assume
that the set of loci are all autosomal loci plus, optionally, Amelogenin. We shall
also assume that all contributors are unrelated. With these assumptions (1) sim-
plifies to a product over the loci L, with gl denoting a genotype in the set Gl of
genotypes on the locus l ∈ L:

Pr(E | H ,G) =
∏
l∈L

∑
gl

Pr(E | g) Pr(gl | H ,Gl)

 , (2)

We assume that the population from which each contributor comes from is
known, and that allele frequency estimates are available. We do not assume that
the contributors all come from the same population. It is assumed that populations
substructure correction parameters are known for each population. Optionally, the
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finite size database correction of (Cowell, 2016) may be applied. We do not have
to be concerned with linkage between autosomal loci because of the assumption
that contributors are unrelated. Relatedness amongst contributors could be incor-
porated, but at the cost of complicating the presentation presented here, especially
if there are linked loci. For a detailed discussion of these issues relating to popula-
tions and genotype probability estimation, as they relate to forensic applications,
see (Evett and Weir, 1998; Balding and Steele, 2015; Egeland et al., 2015). A
companion paper by the author is planned that proposes solutions to the twin
problems of Y-STR haplotype probability estimation and the resolution of Y-STR
mixtures.

5 The simulation model of Gill et al. (2005): the am-
plicon model

In this section we summarise the simulation model of Gill et al. (2005), for further
details please see the original paper. We shall refer to this model as the amplicon
model.

The model presented in Gill et al. (2005) has variants for diploid cells and
haploid cells. As mentioned earlier, their model fails to take account of the fact
that the process starts with genomic material rather than amplicons, and it also
ignores the dye-tagging of the amplicons during the PCR process. Despite these
short-comings, the model provides a convenient starting point for the more realis-
tic models presented later. We start off with the case of no stutters;

5.1 Simulating the process without stutters
The model of Gill et al. (2005) is a simulation model. It assumes that initially
we have a number nc of cells in our small subsample of Figure 2. We concentrate
on just one allele from one locus. If the cell is diploid, and the individual is
homozygous, then there will be 2nc such amplicons within the cells to start with;
otherwise if the individual is heterozygous on the locus, or the cell is haploid, then
there will be nc such amplicons in the cells to start with. For whichever case holds,
denote by N the total number of amplicons initially.

In the first stage the amplicons are extracted from the cells. This process is
not 100% efficient, more typically only between 10-30% are extracted intact (Gill
et al., 2005). Following Gill et al. (2005), let πe f f denote the extraction probability
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that an individual amplicon is released intact into the aliquot. Assuming indepen-
dence of the release of the distinct amplicons, the total number of intact amplicons
in the aliquot is therefore binomially distributed with distribution Binom(N, πe f f ).

A fraction of the aliquot πaliquot is then taken for PCR. If we let φ = πe f fπaliquot,
then the total number of amplicons intact and selected for amplification will be
Binomially distributed as Binom(N, πe f fπaliquot) ≡ Binom(N, φ).

These are now subject to PCR amplification, where it is assume that in each
cycle, each amplicon makes a copy of itself with probability πpcr If we assume
that there are K cycles, then the total number of amplicons can be simulated using
the following algorithm, starting with N amplicons:

Algorithm 5.1 [Simple amplicon PCR simulation]

• Randomly sample n from Binom(N, φ).

• For K times do:

– Sample m from Binom(n, πpcr)

– Update n := n + m
�

This algorithm is very simple to implement. If it is run many times, a his-
togram, or kernel density estimate, plot may be made of the distribution of the
number of amplicons.

Python code presented in Appendix E.1.1 produced the kernel density plot
shown in Figure 3, based on a million simulations. The parameter values used
were πe f f = 0.6, πaliquot = 20/66, πPCR = 0.8 and K = 28 cycles (values taken
from the Gill et al. (2005) paper), for a single starting amplicon, N = 1. Note
that for each simulation there is a probability φ = 0.6 × 20/66 = 2/11 that the
amplicon is selected for amplification , so that we have a total dropout probability
of 9/11. As this will dwarf the rest of the plot, these zeros have been removed
before the kernel density has been estimated.

5.2 Generating the full distribution (without stutters)
We now show how the simulation model can be represented by using probability
generating functions, following the approach of (Good, 1949) based on Galton-
Watson cascade processes. Consider an initial single amplicon. In the first PCR
cycle it can either amplify with probability πPCR, or fail to amplify with probability
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Figure 3: Kernel density estimate, based on 1 million simulations, of the final
number of amplicons, starting with a single amplicon selected with probability
φ = 2/11 for PCR, and amplified for 28 cycles with amplification probability of
0.8 per cycle if selected. The estimated total drop-out probability is 0.81842, com-
pared to the theoretical value of 9/11 = 0.81818 · · · . Note that the zero amplicon
values have been removed prior to the kernel density estimate, hence the kernel
density estimate is for the conditional probability of the number of amplicons after
the 28 amplification cycles, given that one is selected for amplification.

1 − πPCR. The probability distribution of the number of alleles after one cycle can
therefore be represented by the probability generating function (PGF):

F1(t) = f (t) = (1 − πPCR)t + πPCRt2.

After two PCR cycles the number of alleles has the PGF

F2(t) = f ( f (t)),

and after 3 cycles it has the PGF

F3(t) = f ( f ( f (t))).

More generally, we have

Theorem 5.1 The PGF for the number of molecules after r PCR cycles, given
that there is exactly one prior to any amplification cycle, is

Fr(t) = f ( f ( f (. . . f (t) . . .))) (3)
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where
F1(t) = f (t), Fs+1(t) = f (Fs(t)), (s = 1, 2, 3, . . .). (4)

This is Theorem 1 of Good Good (1949) (but here specialised to F(t) given above).
The above gives the PGF for a single starting amplicon: if there are K cycles

the PGF will be a polynomial in t of degree 2K . However, for the simulation
model we start not with a amplicon, but with N initial amplicons, that are each
sampled independently for amplification with probability φ. The PGF taking into
account the initial number and the pre-PCR sampling is (Cowell, 2009)

(1 − φ + φFK(t))M

a polynomial of degree M × 2K . This is simply the functional composition of the
Binomial PGF (1 − φ + φt)N for the pre-PCR sampling of the amplicons with
the PGF of the number of amplicons arising from a single amplicon in the PCR
branching process.

Let us rewrite the recursion in (4) on substituting f (t); for later convenience
we also replace πPCR by pt, thus the recurrence relation becomes:

Fs+1(t) = (1 − pt)Fs(t) + ptFs(t)2.

with initial value F0(t) = t. It is in principle possible to find the polynomial
FK(t) quite simply by iteration using a computer algebra package, however the
growth in the numbers of terms in the polynomials means that there is a relatively
small limit to the number of iterations that can be carried out before computer
memory is exhausted of the order of K = 10 or so, even if numerical values for pt

are used. In addition in the later stages, the brute force evaluation of the quadratic
term Fs(t)2 grows quadratically in complexity, thus making the later stages of
iterations slower and slower.

There is however another way to evaluate the PGF numerically, by noting
that the quadratic expression Fs(t)2 is simply the PGF of the convolution of two
(identical) probability distributions. The convolution can be carried out using a
Discrete Fourier Transform (DFT), which may be done efficiently using a Fast
Fourier Transform (FFT). Moreover, as we shall show, the binomial sampling
composition can also be carried out using the FFT. Before given the details, the
reader may care to look at Figure 4, which shows the exact distribution for a single
starting amplicon evaluated using the FFT.
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Figure 4: Exact probability distribution for the total number of amplicons, starting
with a single amplicon selected with probability φ = 2/11 for PCR, and amplified
for 28 cycles with amplification probability of 0.8 per cycle if selected. The com-
plete drop-out probability value of 9/11 at 0 is off the scale of the plot. Unlike
Figure 3, the plot shown here is not conditional on selection, which is why the
vertical scales of the two plots differ.
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The discrete Fourier transform

Before presenting the algorithm for generating the full distribution using the FFT,
we first give a brief review of the DFT. Suppose that a sequence of (real) numbers
(x0, x1, x2, . . . , xn−1) is given, and an integer N ≥ n. Then the sequence of numbers
defined by

Xk =

N−1∑
j=0

x je−2πi jk/N ,

where i =
√
−1, is the discrete Fourier transform of the sequence (x0, x1, x2, . . . , xn−1).

There is an inversion formula:

xk =
1
N

N−1∑
j=0

X je2πi jk/N

The key result that we use is that multiplication of two large polynomials
may be done efficiently using the DFT, which may be calculated efficiently us-
ing the FFT. Suppose that x(t) is a polynomial of degree n in t with coefficients
(x0, x1, x2, . . . , xn), and that y(t) is a polynomial of degree m in t with coefficients
(y0, y1, y2, . . . , ym). Let z(t) = x(t)y(t); this is a polynomial of degree m + n with
coefficients (z0, z1, . . . zn+m) where

zk =

k∑
j=0

x jyk− j,

(defining x j = 0 for j > n and yk− j = 0 for k − j > m). Let N be an integer
such that N ≥ n + m + 1. if we extend the sequence (x0, x1, x2, . . . , xn) with zeros
to create a new sequence (x0, x1, x2, . . . , xN−1), and similarly extend the sequence
(y0, y1, y2, . . . , ym) with zeros to create a new sequence (y0, y1, y2, . . . , yN), then we
may form the DFT of these extended sequences:

Xk =

N−1∑
j=0

x je−2πi jk/N

Yk =

N−1∑
j=0

y je−2πi jk/N
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If the sequence (z0, z1, . . . zn+m), extended with zeros if required to make the se-
quence (z0, z1, . . . zN−1), then the DFT of this sequence is

Zk =

N−1∑
j=0

z je−2πi jk/N

and we have that
Zk = XkYk for all k ∈ {0,N − 1}.

so that

zk =
1
N

N−1∑
j=0

X jY je2πi jk/N

Hence to multiple the polynomials x(t) and y(t), we choose N sufficiently large,
take the DFTs of the coefficients of x(t) and of y(t), multiply the two DFTs term-
wise, and then take the inverse DFT. The computation of the forward and back-
ward DFT may be carried out efficiently using the FFT algorithm, an algorithm
by Gauss that dates back to 1805 (see (Heideman et al., 1984) for an interest-
ing history of the FFT, and (Rao et al., 2011) for a recent monograph on FFT
algorithms.).

We can now present an algorithm for generating the full distribution using the
DFT. It is given in Algorithm 5.2 for the case of a single starting amplicon and no
binomial presampling. Let F[] be a vector with indices starting from zero, such
that F[n] denotes the coefficient of tn in the PGF. With K cycles, the number of
amplicons will range up to 2K , hence F[] must be a vector of size at least 2K + 1.

Algorithm 5.2 [Single amplicon distribution using the DFT]

• Initialise F[] to be a vector of size at least 2K + 1, with all entries 0 except
F[1] = 1.

• Let F [] denote the DFT of F[] .

• For K times do:

– for each element F [ f ] of F [] update F [ f ] := (1− pt)F [ f ] + ptF [ f ]2

• Set F[] equal to the inverse DFT of F [].
�
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Note that taking the DFT is a linear operator; denote it by L and its inverse by
L−1. Hence we may write (with × denoting element wise multiplication)

Fs+1(t) = (1 − pt)Fs(t) + ptFs(t)2

= (1 − pt)Fs(t) + ptL−1(L(Fs(t)) × L(Fs(t)))
= (1 − pt)L−1(L(Fs(t)) + ptL−1(L(Fs(t)) × L(Fs(t)))
= L−1 ((1 − pt)L(Fs(t)) + ptL(Fs(t)) × L(Fs(t))) ,

thus justifying Algorithm 5.2.
Taking account of starting with M amplicons, and binomially sampling them

with probability φ is almost trivial. We have, using the linearity of L and its
inverse:

(1 − φ + φFK(t))M = L−1L
(
(1 − φ + φFK(t))M)

)
= L−1

(
(L(1 − φ) + φL(FK(t))×M

)
where the superscript ×M denotes taking the M-th power of each element in the
transform. Hence to take this into account we modify Algorithm 5.2 thus, (ex-
tending the initial size of F[] for the higher number of amplicons that could re-
sult):

Algorithm 5.3 [Amplicon distribution with binomial pre-sampling using theDFT]

• Initialize F[] to be a vector of size at least M(2K + 1), with all entries 0
except F[1] = 1.

• Let F [] denote the DFT of F[] .

• For K times do:

– for each element F [ f ] of F [] update F [ f ] := (1− pt)F [ f ] + ptF [ f ]2

• for each element F [ f ] of F [] update F [ f ] := (1 − φ + φF [ f ])M.

• Set F[] equal to the inverse DFT of F [].
�
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Now the extreme right-hand tail of the amplicon distribution has very low
probabilities, and for all practical intents and purposes can be taken to be zero.
Hence we may take the F[] vector to have size M2K which makes finding the
DFT using the FFT much more computationally efficient, especially if M itself
is a power of 2. Using this approximation, Algorithm 5.3 is readily implemented.
Appendix E.2.1 presents the seven(!) lines of code R code for this, repeated here.

N = M*2**K

F = rep(0,N)

F[2] = 1 # F[] now corresponds to F(t) = t

F = fft(F,inverse=FALSE)

for (k in 1:K) F = (1 - p)*F + p*F*F # K amplifications cycles

F = (1-phi + phi*F)**M # binomial sampling

F = Re(fft(F,inverse=TRUE)) /N # real part of inverse
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Figure 5: A marginal target distribution computed with the R implementation of
Algorithm 5.3 given in Appendix E.2.1 .
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Figure 5 shows the amplicon distribution obtained using the code given above
for a low template amount, in which multimodality is clearly present, and would
be missed by current probabilistic genotyping software based assuming a uni-
modal probability distribution (such as lognormal or gamma) for peaks heights.3

It is also worth emphasising that the model naturally includes dropout, and
that the full distribution calculated using Algorithm 5.3 enables the means to as-
sess dropout probabilities –there is no need to posit a separate additional model
for allelic dropout, such as the logistic regression model (or variants thereof) of
Tvedebrink et al. (2009). Indeed, in a follow-up paper, (Tvedebrink et al., 2012a)
refine their logistic regression approach with a probit model based on and com-
pared with the amplicon model of Gill et al. (2005).

To illustrate this, we consider an amplification probability of p = 0.85. To
keep computations manageable we take the number of cycles to be K = 15, take
φ = 0.1, and set the analytic threshold to be 40000 amplicons. Figure 6 shows
the dropout probabilities P(D) as a function of the number of starting cells - note
that the horizontal axis is on a log-scale for comparison with Figure 1 of Tvede-
brink et al. (2012a). The plot shows two curves, with the red corresponding to a
homozygous individual, and the black to a heterozygous individual. (R code to
generate this plot is given in Appendix E.2.2.)

3Equivalent Python code, used for generating Figure 4 is given in Appendix E.1.2. Running the
Python code for the full 28 cycles took around 3 minutes on a laptop with an Intel i7TM processor,
and used around 30Gb of ram.
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Figure 6: Dropout probabilities for homozygous (red) and heterozygous (black)
individuals, using K = 15 amplification cycles, pre-amplification sampling prob-
ability of φ = 0.1, an amplification probability of p = 0.85 on each cycle, and a
threshold of 40000 amplicons.
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5.3 Alternative derivation of the distribution probabilities
There is another way to extract the probabilities from the probability generating
function (1 − φ + φFK(t))M. Note that this is a finite degree polynomial in t.
The coefficient of tn gives the probability F[n] of exactly n amplicons. Instead
of generating the full distribution using the DFT-based algorithms above, we can
extract this single value by using Cauchy’s residue theorem with a contour in the
complex plane that contains the origin,

F[n] =
1

2πi

∮
(1 − φ + φFK(t))M

tn+1 dt.

If we take the contour to be the unit circle in the complex plane centred at the
origin, we may make a change of variable, t = exp(−2πiθ), so that θ ranges over
[0, 1], and the contour integral becomes

F[n] =

∫ 1

0

(
1 − φ + φFK(exp(−2πiθ))

)M exp(2πnθ)dθ

We may evaluate this numerically by splitting the range up into a large number N
of equal sized intervals (with size dθ = 1/N) and using the trapezoidal approxi-
mation. Note that the beginning and the end point values are identical because we
are evaluating the closed circular contour, so that as the approximation we have

F[n] ≈
1
N

N−1∑
j=0

(1 − φ + φFK
(
exp(−2πi j/N)

)M exp(2πn j/N)

This is fully equivalent to using the DFT above if the same value of N is
used, and hence is exact if N is sufficiently large.

The advantage of this formulation is that if only a single value from the dis-
tribution is required, it may be found without the large overhead in computer
memory that using the FFT incurs in storing the arrays F[] and F [].

There is another use for this approach. When evaluating a likelihood for a
peak height of an allele, it may be that no peak is observed at the allele position
in the EPG, or one is observed but is not above the analytic threshold. In such
cases we need to find the cumulative probability to the threshold. Suppose that
the threshold corresponds to n amplicons. Then the cumulative probability is
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n∑
m=0

F[n] =

n∑
m=0

1
2πi

∮
(1 − φ + φFK(t))M

tm+1 dt

=
1

2πi

∮
(1 − φ + φFK(t))M

 n∑
m=0

1
tm+1

 dt

=
1

2πi

∮
(1 − φ + φFK(t))M 1 − t−n−1

t − 1
dt

Again, the trapezoidal rule may be used to evaluate this with line integral on
the unit circle in the complex plane.

5.4 Simulating the process with stutters
The paper of Gill et al. (2005) also included a model for stutters. There is a slight
error in their paper that was pointed out in (Cowell, 2009). Their corrected model
is as follows. During an amplification an amplicon may make a copy of itself, with
probability pt, or make a stutter copy with probability ps. Thus neither a stutter
nor an exact copy is made with probability 1 − pt − ps. It is assumed that when a
stutter amplicon is made it will make a copy of itself in each subsequent cycle with
probability pt. Let nk denote the number of amplicons and mk the number of stutter
amplicons after k cycles. Assuming N0 starting amplicons sampled binomially
with probability φ for amplification, a simulation for the number of amplicons
and stutters may be expressed as in Algorithm 5.4. In this, the draw of J simulates
the total number of new amplicons and stutters produced in the k-th cycle by the
existing amplicons. The Jt draw then samples from these new products to simulate
how many are copies of the target amplicon, with the remainder being stutters.
The Js draw simulates how many new stutter amplicons are produced by currently
existing stutter products.

Algorithm 5.4 [Simple amplicon PCR simulation with stutters]

• Sample n0 from Binom(N0, φ), and set m0 = 0.

• for k in 1 to K do

– Sample J from Binom(nk−1, ps + pt)

– Sample Jt from Binom(J, pt/(ps + pt))
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– Sample Js from Binom(mk−1, ps + pt)
– Set nk = nk−1 + Jt

– Set mk = mk−1 + (J − Jt) + Js �

In (Gill et al., 2005) a value of ps = 0.002 was estimated from experimental
data. However, after correcting their error (which was to use Binom(nk−1, pt) for
the number of copies of amplicons generated, and Binom(nk−1, ps) for the number
of stutter products generated from amplicons, hence allowing the possibility for
an amplicon to generate both a copy of itself and also a stutter in a single cycle) it
appears that a value of around 0.004 would be more appropriate.

Figure 7 shows a scatterplot of 10000 simulated (nK ,mK) values for K cycles
starting from a single amplicon, n0 = 1 (so no pre-sampling) using pt = 0.8 and
ps = 0.004. The plot indicates some correlation between the two values — for the
data in the plot the correlation coefficient is around 0.22, a theoretical value will
be given later. Weusten and Herbergs (2012) also found such correlations in their
analysis.
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Figure 7: Scatterplot of main and stutter amplicon numbers for simple amplicon
mode, for a simulation of size 10000.

From the simulated data we may also estimate the marginal distribution for
stutter amplicons, a density estimate is shown in Figure 8.
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Figure 8: Kernel density estimate of the marginal distribution of the number of
stutter amplicons from the simulation data plotted in Figure 7.
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We may also find the fraction of the number of amplicons generated that are
stutters, that is the ratio of the number of stutter amplicons to the total number
of amplicon and stutter amplicons, and generate a kernel density estimate. (The
values of this ratio are therefore between 0 and 1, unlike the stutter proportion
which is the ratio of stutter amplicons to amplicons, which can grow very large.)
A kernel density estimate is shown in Figure 9.
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Figure 9: Kernel density estimate of the stutter fraction in the simulation data
plotted in Figure 7.
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5.5 Generating the full joint distribution
We now show how to find the full joint- distribution of amplicon copies and stut-
ter amplicons, at least theoretically. To do this we combine a 2-dimensional FFT
analysis with bivariate probability generating functions. A bivariate PGF is ap-
propriate here, as we have both main amplicons and stutter amplicons, that is in
the amplification cycles we have a multi-type branching process of the sort that
was formulated by Good (1955) in terms of vectorial generating functions.

We shall refer to the main, or initial, type of amplicon as a target amplicon,
and use the symbol t in the bivariate PGF to represent their number. We shall
use the symbol s to represent the stutter amplicon number. As for the simple
(no-stutter) model, we may express the PGF by functional iteration. However,
because we have two types of amplicons, we need to use coupled equations to
express the amplifications of single target and single stutter amplicons:

t → (1 − p)t + p(1 − ξ)t2 + pξts

s→ (1 − p)s + ps2

Here we let p denote the probability that an amplicon (of either type) makes a
product in a cycle; ξ is the conditional probability that a target amplicon produces
a stutter given either a target or stutter is produced. In terms of the previous
notation we have ps = pξ and pt = p(1 − ξ). Let F0(s, t) = t and G0(s) = s.
Let Fn(t, s) denote the bivariate PGF of the joint distribution for the number of
target and stutter amplicons after n amplification cycles, arising from a single
initial target amplicon, and let Gn(s) denote the number of stutter amplicons that
(would) arise from an initial single stutter amplicon.

Then for n > 0 we have the iteration scheme:

Fn(t, s) = (1 − p)Fn−1(t, s) + p(1 − ξ)F2
n−1(t, s) + pξFn−1(t, s)Gn−1(s) (5)

Gn(s) = (1 − p)Gn−1(s) + pG2
n−1(s). (6)

To see this is the case we argue as follows (the reader may find it helpful to
draw a probability tree). Initially we have one target allele with PGF F0(s, t) = t.
In the first cycle there are three possible outcomes.

In the first outcome, with probability (1 − p) we still have just the one target
amplicon. Hence with a further n − 1 cycles the bivariate PGF for the number
target and stutter amplicons conditional on this outcome is Fn−1(t, s).
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The second possible outcome from the first cycle is that the original target
makes a target copy. This happens with probability p(1 − ξ), and the PGF condi-
tional on this outcome is t2 representing the two targets. Now in the subsequent
(n − 1) cycles each of these targets will independently give rise to set of target
and stutter amplicons. The PGF for the descendants from each target will each be
Fn−1(t, s). Because the amplifications arising from each of the two targets are in-
dependent, the PGF representing the total number of target and stutter amplicons
from these two targets will be the product of each of their PGFs, that is F2

n−1(t, s).
The third outcome is that the initial target produces a stutter. This happens

with probability pξ, and we have the joint PGF conditional on this outcome is st.
In the subsequent n − 1 amplifications the number of target and stutter amplicons
generated by the target will have PGF Fn−1(t, s). Independently the stutter ampli-
con will generate further stutter amplicons with PGF Gn−1(s). The bivariate PGF
for the total number of target and stutter amplicons generated from the single tar-
get and amplicon is, because of the independence of amplification, the product of
their PGFs, that is Fn−1(t, s)Gn−1(s).

Adding these three possibilities together with their probability weights yields
the coupled PGF of (5): note that the recurrence relation for Gn(s) is that presented
in Theorem 5.1 for the non-stutter amplification process.

Now Fn(t, s) given above is for a single starting amplicon. If we start with
M amplicons that are pre-sampled binomially with probability φ, then the final
distribution is given by

(1 − φ + φFn(t, s))M (7)

5.6 FFT implementation of target and stutter distribution
We now show how the recurrence relations (5) and (6) may be evaluated numer-
ically using FFTs, at least in principle. (In practice the memory requirements to
carry this out will be excessive for the number of cycles used in forensic PCR
analyses.) The extension is to use a 2-dimensional DFT. Algorithm 5.5 gives the
details (a Python implementation is given in Appendix E.1.3).

Algorithm 5.5 [Joint distribution for target and stutter amplicons DFT]

• Set N = M2K

• Initialize F[, ] to be a two dimensional N×N array, (with lowest index [0, 0])
initialized such that all entries are zero except F[1, 0] = 1.
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• Initialize G[] to be an N dimensional array such that all entries are zero
except G[1] = 1.

• Set F [, ] equal to the 2-dimensional DFT of F[, ] .

• Set G[] denote the one-dimensional DFT of G[] .

• For K times do:

– for each element F [ f , g] of F [ f , g]

∗ update F [ f , g] := (1 − p)F [ f , g] + p(1 − ξ)F [ f , g]2 + pξF [ f , g].

– for each element G[g] of G[] update G[g] := (1 − p)G[g] + pG[g]2.

• for each element ( f , g) of F [] update F [ f , g] := (1 − φ + φF [ f , g])M

• Set F[, ] equal to the inverse DFT of F [].
�

Although the use of the Algorithm 5.5 is not practical for large K and or M, it
can be used for small K and M values. Figure 10 shows a contour plot of the joint
distribution for a single amplicon with subject to K = 13 amplification cycles,
with p = 0.85 and ξ = 0.005 on each cycle, and Figure 11 a surface plot. From
the figures we can see quite clearly the correlation between the number of target
and stutter amplicons. Multi-modality of the distribution is also clearly evident.
The reader may care to compare these figures to Figure 7.
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Figure 10: Contour plot of the joint distribution of the number of target and stutter
amplicons, arising from an single amplicon amplified for K = 13 amplification
cycles, with p = 0.85 and ξ = 0.005 on each cycle. Note that the numerical
probabilities shown on the contours are the true values multiplied by a factor of
10000.
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Figure 11: Surface plot of the joint distribution of the number of stutter and target
amplicons, using the same values used for Figure 10.
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5.7 Stutter marginal distribution
From the joint PGF F(t, s) of target and stutter amplicons, we may obtain the
marginal distribution of the target amplicon simply by substituting s = 1. Simi-
larly we may obtain the PGF of the marginal distribution of the number of stutter
amplicons by substituting t = 1. It is the latter we are interested in here. Recall
that the iterative equations finding the joint PGF are

Fn(t, s) = (1 − p)Fn−1(t, s) + p(1 − ξ)F2
n−1(t, s) + pξFn−1(t, s)Gn−1(s)

Gn(s) = (1 − p)Gn−1(s) + pG2
n−1(s).

with initial values F0(t, s) = t and G0(s) = s. Rather than iterate to find Fn(t, s)
and then substituting t = 1 to find the stutter marginal, we may instead first make
the substitution and then iterate: the equations then simplify to

Fn(s) = (1 − p)Fn−1(s) + p(1 − ξ)F2
n−1(s) + pξFn−1(s)Gn−1(s)

Gn(s) = (1 − p)Gn−1(s) + pG2
n−1(s).

with initial values F0(s) = F0(1, s) = 1 and G0(s) = s.
These can be evaluated numerically using a pair of 1-dimensional FFTs, the

algorithm is almost identical to Algorithm 5.5, (a Python implementation is given
in Appendix E.1.4).

Algorithm 5.6 [Joint distribution for target and stutter amplicons DFT]

• Set N = M2K

• Initialize F[] to be an N dimensional array such that all entries are zero
except F[0] = 1.

• Initialize G[] to be an N dimensional array such that all entries are zero
except G[1] = 1.

• Set F [, ] equal to the DFT of F[, ] .

• Set G[] equal to the DFT of G[] .

• for each index g of F []
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– For K times do:

∗ update F [g] := (1 − p)F [g] + p(1 − ξ)F [g]2 + pξF [g]G[g]
∗ update G[g] := (1 − p)G[g] + pG[g]2.

update F [g] := (1 − φ + φF [g])M

• Set F[] equal to the inverse DFT of F [].
�

Figure 12 shows the marginal distribution of the number of stutter amplicons
arising from a single initial target amplicon, and amplified for K = 22 cycles with
p = 0.8 and ξ = 0.004 on each cycle. The long right-hand tail of the distribution
is evident.
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Figure 12: Marginal distribution of the number of stutter amplicons arising from a
single target amplicon amplified for K = 22 cycles, with p = 0.80 and ξ = 0.004
on each cycle.

Figure 13 shows the marginal distribution of the number of stutter amplicons
arising from an initial set of 83 target amplicons, sampled binomially with selec-
tion probability φ = 2/11 , and amplified for K = 18 cycles with p = 0.8 and
ξ = 0.004 on each cycle.
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Figure 13: Marginal distribution of the number of stutter amplicons arising from
M = 83 amplicons pre-sampled with probability φ = 1/11 prior to amplification,
and amplified for K = 18 cycles, with p = 0.8 and ξ = 0.004 on each cycle.
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5.8 Moment analysis
The previous sections have shown how the full joint distribution of target and
stutter amplicons may be found numerically by evaluating the PGFs the DFT.
Up to now, probabilistic genotyping software packages, lacking this evaluative
ability, assume some simple distributional assumption— the most common distri-
butions used are the normal, lognormal of gamma. However, it is straightforward
to derive, from the PGF, expressions for the means and variances of the full distri-
bution. These moments may be used for finding a ‘best fitting’ simple distribution
based on moment matching.

Let T denote the number of target amplicons, and S the number of stutter
amplicons, arising from the amplification of a single target amplicon. We have
that

�T | n =
∂Fn(t, s)

∂t
|t=1,s=1

�T (T − 1) | n =
∂2Fn(t, s)

∂t2 |t=1,s=1

�S | n =
∂Fn(t, s)
∂s

|t=1,s=1

�S (S − 1) | n =
∂2Fn(t, s)
∂s2 |t=1,s=1

�TS | n =
∂2Fn(t, s)
∂s∂t

|t=1,s=1

from which the variances �T and �T and the correlation Cor(N,M) may be
found. (Derivations of algebraic solutions are given in Appendix A using different
notation.) We have (variance formulae are given in the appendix)

�T | n = (1 + p(1 − ξ))n

�S | n = (1 + p)n − (1 + p(1 − ξ))n

�TS | n = (1 + p ∗ (1 − x))n−1 ([1 − (1 + p)n]x + 2 ∗ [(1 + p)n − (1 + p ∗ (1 − x))n])
Cov(T, S | n) = (�TS | n) − (�T | n)(�S | n)

= (1 + p(1 − ξ))n−1 [
(1 − p(1 − ξ))[(1 + p)n − (1 + p(1 − ξ))n] − ξ((1 + p)n − 1)

]
As an alternative to using the analytic formula, instead one could fix numerical

values for p, ξ and K and solve the recurrence relations numerically and very
simply. It is interesting to examine how the correlation varies with p and ξ and
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the number of cycles. In Figure 14 we show the dependence for 28 and 34 cycles,
in the form of contour plots. For forensic applications we expect that p will be in
the range 0.75− 0.95, with ξ in the range 0.004− 0.01. Thus we see that there can
be quite high correlation between the number of amplicons (which is proportional
to the peak heights in the EPG) of stutter and target alleles. This is apparently at
variance with the experimental results of (Bright et al., 2013)— we shall return to
this point later.
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The moment formulae above assume a single initial amplicon, but they are
readily extended to take account of binomial pre-sampling. There are two ways to
proceed. One way is to write down the PGF to include the sampling; this is given
by

(1 − φ + φFn(t, s))M.

This can then be differentiated to find the moments.
Another, simpler way, is to use conditional expectation:

EY = E[EY | X]
VY = E[VY | X] + V[EY | X]
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for the means and variances of T and S , where in our case X ∼ Binom(M, φ)
having mean Mφ and variance Mφ(1 − φ). Let T denote the total number of
amplicons arising from pre-sampling M target amplicons and then amplifying the
sample, and let S denote the number of stutter amplicon products.

With this we obtain

�T = Mφ�[T | n]

�T = Mφ(�[T | n] + (1 − φ)E[T | n]2)
�S = Mφ�[S | n]

�S = Mφ(�[S | n] + (1 − φ)E[S | n]2)

and for the covariance we have

Cov(T ,S) = Mφ (Cov(T, S | n) + (1 − φ)�[T | n]�[S | n])

from which we deduce that the correlation between T and S does not depend
on the initial number of target amplicons, but does depend on the sampling prob-
ability φ:

Cor(T ,S)
Cov(T, S | n) + (1 − φ)(�T | n)(�S | n))√

(�[T | n] + (1 − φ)(�[T | n])2
√

(�[S | n] + (1 − φ)(�[S | n])2
(8)

In many forensic laboratory experiments DNA samples are prepared by high
dilution of large template DNA. For such scenarios a Poisson distribution would
appear to be more appropriate. Let us assume that the total number of target
amplicons selected for PCR has a Poisson distribution with rate λ with λ > 0. If
X ∼ Poisson(λ), then the PGF of X has the form

exp(λ(t − 1))

To obtain the PGF for the total number of amplicons we simply substitute
Fn(t, s) for t in this Poisson PGF

exp(λ(Fn(t, s) − 1))

and take derivatives as appropriate, Alternatively, we may use conditional expec-
tation noting the mean and variance of a Poisson(λ) random variable is λ. Either
way we obtain
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Cor(T ,S) =
�[TS | n]√

(�[T | n]2)(�[S | n]2)
(9)

Surprisingly, the correlation Cor(T ,S) does not depend on λ (see Appendix A).
Note also that (8) reduces to (9) with φ = 0, which corresponds to the double limit
M → ∞, φ→ 0 with Mφ = λ fixed.

The correlations can get very high, for example with p = 0.8, ξ = 0.005 and
k = 28 cycles, the correlation is approximately 0.74.

6 Amplifying genomic strands: a genomic model
The previous section examined the simple amplicon model of (Gill et al., 2005),
and showed how by using PGFs and the FFT is it possible to extract, in a very
simple manner, the full probability distributions for the number of target and stut-
ter amplicons. Two simplifications in the model are that it starts from amplicons,
and not genomic strands, and it does not take into account the dye-tagging of the
amplicons. We shall now remove these limitations; we shall also add in the arte-
facts of forward and double stutter, drop-in and baseline noise, and show how they
may all be expressed in a unified manner using PGFs, and evaluated using DFTs.
We being by considering the genomic strand model without stutters.

6.1 The basic model described
The basic difference between the model developed here and the simplified model
of Gill et al. (2005) is that the latter assumed that we start the branching process
with amplicons; in reality we start the branching process with samples of genomic
strands. As pointed out by Butler (2011), this means that amplicons are not formed
until at least the end of the second thermal amplification cycle as we show in
Section 6.2.

Consider starting from a single genomic strand, and let us assume that ampli-
fication is 100% efficient in all stages. We are interested in a particular locus.

• In the first thermal cycle, the genomic strand is melted, and primers attach to
the flanking regions, one on each of the two strands of the melted genome.
The TAQ polymerase lays down dNTRs along each strand from the primer
to past the complimentary flanking region. Call these generated sequences
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half-genomes. Then on cooling we have two separate strands, each con-
sisting of one of the complementary strands making up the genomic strand
bound to a half-genome.

• In the second thermal cycle these two hybrid genomes melt, and we have the
two parts of the genome and also the two half-genome strands in solution.
In this cycle the genomic strands behave as in the first thermal cycle, but
the half-genome strands, which were not there then, attach primers to their
complimentary flanking regions, and then the TAQ lays down dNTRs along
it all the way to the (far) end of original flanking region, where the process
stops because that is the end of the molecule. Each half-genome strand now
has a complementary amplicon strand attached to it.

• In the third thermal cycle the two complementary amplicon strands separate
from the half-genomes and make complementary copies of themselves, and
so the exponential growth in the number of amplicons with further thermal
cycles begins.

The above description is not quite complete, again as described by Butler
(2011), in that in addition to making the amplicons, the amplicons have attached
to them a fluorescent dye at one of the flanking regions, say the 5’ region (so that
it can be seen in the capillary electrophoresis (CE) equipment). When measuring
the amplicons in the CE equipment, the amplicons are heated to separate them out
into individual complementary strands, only one each of each complement has a
dye attached.

Weusten and Herbergs (2012) included initial genomic strands and amplicons
in their analysis of PCR, but did not include the intermediate half-strands. They
also did not consider direct double stutter or forward stutter, or the tagging of
amplicons with fluorescent dyes.

6.2 Initial mathematical formulation : no stutters
We may denote the original double-helix genomic strand by the pair g and gd The
half-genomic strands may be denoted by h and hd, and the amplicons by a and ad.
The d subscript denotes a florescence dye attached. (The original genomic DNA
does not have a dye attached to it, but we use gd to avoid introducing a special
notation; the half-genomes and amplicons do have such dyes attached.)
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The branching process is then summarized by the following processes on the
various components:

g→ g, hd

gd → gd, h
h→ h, ad

hd → hd, a
a→ a, ad

ad → ad, a

and we are interested in the final number of tagged amplicons, ad after the n cycles.
It is also simpler to break the process up into two independent branching pro-

cess, one that result in products from the g strand, and one from the g strand:

g→ g, hd

hd → hd, a
a→ a, ad

ad → ad, a

and from the gd strand:

gd → gd, h
h→ h, ad

ad → ad, a
a→ a, ad

The following two tables show how the numbers of each type increase in each
cycle for these two processes treated independently, assuming 100% efficiency in
each cycle. The second table follows the pattern of the first.
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cycle g hd a ad

0 1 0 0 0
1 1 1 0 0
2 1 2 1 0
3 1 3 3 1
4 1 4 7 4
5 1 5 15 11
6 1 6 31 26
7 1 7 63 57
8 1 8 127 120
9 1 9 255 247

10 1 10 511 502

cycle gd h ad a
0 1 0 0 0
1 1 1 0 0
2 1 2 1 0
3 1 3 3 1
4 1 4 7 4
5 1 5 15 11
6 1 6 31 26
7 1 7 63 57
8 1 8 127 120
9 1 9 255 247
10 1 10 511 502

Of interest is the number of tagged amplicons, which is obtained from adding
up the row entries for ad in each of the two tables above:
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cycle n ad

0 0
1 0
2 1
3 4
4 11
5 26
6 57
7 120
8 247
9 502

10 1013

It is readily verified numerically that these totals are the numbers 2n−n−1 for
each number of cycles n. (They form the sequence A000225, called the Eulerian
numbers, in the The On-Line Encyclopedia of Integer Sequences.) We can verify
this algebraically by induction as follows. Let us consider the g sequence. It clear
that after k cycles the number of hd is equal to k, as the g has had k opportunities to
make and hd. We see that the values in the third column are (for k > 0) the integers
2k−1 − 1, and those in the fourth column are the Eulerian numbers k reduced by 1,
that is 2k−1 − k. We can see this is true for all values given in the table, we take
this as a starting position on an inductive proof for general k > 10.

Thus at the k-th cycle, assume that there are nhd:k = k copies of hd, na:k = 2k−1
copies of a and nad:k = 2k−1 − k copies of ad. Then in the next cycle:

• The number of hd half-strands increases by 1, as the g makes a new copy
and the previous copies are not destroyed, hence

nhd:k+1 = nhd:k + 1 = k + 1.

• The number of a amplicons increases by the number of hd and ad products
that were present on the previous cycle:

na:k+1 = na:k + nhd:k + nad:k = 2k−1 − 1 + k + 2k−1 − k = 2k − 1

• The number of ad amplicons increases by the number of a amplicons that
were present on the previous cycle:

nad:k+1 = nad:k + nad:k = 2k−1 − k + 2k−1 − 1 = 2k − (k + 1)
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Hence the inductive hypothesis is proved. Similar calculations go through for
the second table. From this we see that after k + 1 cycles the number of tagged
amplicons is

2k − 1 + 2k − (k + 1) = 2k+1 − (k + 1) − 1,

which are the Eulerian numbers. Note also that the simple amplicon model
would give 2k+1. The above formulae correct the values in Table 4.1 of Butler
(2011), who ignored the persistent presence of the original genomic strands and
the half strands in the remaining cycles, assuming their contribution in subsequent
cycles would be negligible and concluding that after n > 2 cycles there would be
approximately 2n−2 amplicons.

6.3 The basic model: PGF formulation
The basic model can be formulated as a multivariate PGF, derived using vectorial
generating functions. For this we can consider the PGFs of the two types of initial
genomic strands separately.

We start with the g strand, which has the set of amplification sequences:

g→ g, hd

hd → hd, a
a→ a, ad

ad → ad, a

We introduce symbols tg, thd ta and tad to be used in the multivariate PGF for the
number each type of strand. For a single strand of each type, each amplifies in a
single cycle according to the PGFs

tg → (1 − pg)tg + pgtgthd

thd → (1 − phd )thd + phd thd ta

ta → (1 − pa)ta + patatad

tad → (1 − pad )tad + pad tad ta

where pg, phd , pa, pad are branching process probabilities for each of the types of
strands.

Let Gn(tg, thd , ta, tad ) denote the joint PGF arising from amplifying a single g
strand for n cycles.
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Let Hd;n(thd , ta, tad ) denote the joint PGF arising from amplifying a single hd

strand for n cycles.
Let An(ta, tad )) denote the joint PGF arising from amplifying a single a strand

for n cycles.
Let Ad;n(ta, tad ) denote the joint PGF arising from amplifying a single ad strand

for n cycles.
Then these PGFs obey the following recurrence relations, which follow the

pattern of the single strand formulae above:

Gn+1(tg, thd , ta, tad ) = (1 − pg)Gn(tg, thd , ta, tad ) + pgGn(tg, thd , ta, tad )Hd;n(thd , ta, tad ),
Hd;n+1(thd , ta, tad ) = (1 − phd )Hd;n(thd , ta, tad ) + phd Hd;n(thd , ta, tad )An(ta, tad ),

An+1(ta, tad ) = (1 − pa)An(ta, tad )) + paAn(ta, tad )Ad;n(ta, tad ),
Ad;n+1(ta, tad ) = (1 − pad )Ad;n(ta, tad ) + pad Ad;n(ta, tad )An(ta, tad ),

with initial conditions

G0(tg, thd , ta, tad ) = tg

Hd,0(thd , ta, tad ) = thd

Ad(ta, tad ) = ta

Ad,0(ta, tad ) = tad

It is the last two that give rise to the exponential growth of amplicons in the PCR
process. Similar equations arise when starting from a genomic strand gd, specifi-
cally:

Gd;n+1(tgd , th, ta, tad ) = (1 − pgd )Gd;n(tgd , th, ta, tad ) + pgdGd;n(tgd , th, ta, tad )Hn(th, ta, tad ),
Hn+1(th, (ta, tad ) = (1 − ph)Hn(th, ta, tad ) + phHn(th, ta, tad )Bd;n(ta, tad ),

Bd;n+1(ta, tad ) = (1 − pad )Bd;n(ta, tad ) + pad Bn(ta, tad )Bd;n(ta, tad ),
Bn+1(ta, tad ) = (1 − pa)Bn(ta, tad ) + paBd;n(ta, tad )Bn(ta, tad ),

with initial conditions

Gd;0(tgd , th, ta, tad ) = tgd

H0(th, ta, tad ) = th

B0(ta, tad ) = ta

Bd,0(ta, tad ) = tad
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where we introduce functions B and Bd in place of A and Ad as these are to be
considered as iterating (amplifying) independently. The justification of the recur-
rence relations is similar to that given in Section 5.5 for the joint distribution of
target and stutter amplicons in the amplicon model, and is omitted.

In general, this is a multivariate polynomial in six t-parameters, as well as
depending on six branching probabilities. However, because the genomic strand
itself does not duplicate, we see that G and Gd are proportional to tg and tgd respec-
tively, which is a simplification that effectively reduces the number of t parameters
to four.

We are particularly interested in the final number of dye-tagged amplicons.
This is the sum of their number arising from the g and gd strands, and therefore
(because of independence of the branching process amplifications) is the coeffi-
cient of tad in the product of the PGFs of each strand:

Fn(tg, tgd , th, thd , ta, tad ) = Gn(tg, thd , ta, tad )Gd;n(tgd , th, ta, tad ) (10)

in which we may set all of the t’s except tad to unity to obtain the marginal PGF
for the tagged amplicons, that is:

Fn(1, 1, 1, 1, tad ) = Gn(1, 1, 1, tad )Gd;n(1, 1, 1, tad )

6.4 Moment analysis
Of interest also are the various moments, in particular the mean and variance,
which may be found from the marginal PGF by differentiation with respect to
tad and then setting this to 1. Algebraic derivations maybe found in Appendix B,
where it is shown, for example, that the mean number of tagged amplicons is given
by

pg phd

pa pad

(√
pa

pad

(1 +
√

pa pad )n − (1 − √pa pad )n

2
− npa

)
+

pgd ph

pa pad

(
(1 +

√
pa pad )n + (1 − √pa pad )n

2
− 1

)
If pa = pad = p, this simplifies to:

pg phd

p2

(
(1 + p)n − (1 − p)n

2
− np

)
+

pgd ph

p2

(
(1 + p)n + (1 − p)n

2
− 1

)
and if in addition pg = pgd = ph = phd = p this reduces to

(1 + p)n − np − 1.
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When p = 1 this yields 2n − n − 1, the Eulerian numbers given earlier.
There are far too many parameters to explore the behaviour of the variance

in detail here, however one special case could be of interest, that in which all the
amplification parameters take the same value. We can compare the behaviour for
the mean and variance to that of the amplicon model. We see the mean values
will be close, viz (1 + p)n − np − 1 compared to (1 + p)n. Somewhat surprisingly,
the variance of the genomic amplification model turns out to be almost exactly
half that of the Gill amplification model for sufficient number of cycles (the ratio
is 0.49997 with N=20 and p=0.7, and 0.50000 if we increase to n=24 cycles)
and appears to asymptote to almost 0.5 as the number of cycles increases. Thus,
although the exact formula for the variance is quite lengthy, for n ≥ 24 cycles
taking the variance formula from the simplified amplicon model, and dividing the
result by 2, appears to give an excellent approximation to it.

6.5 Full distribution from vectorial PGF
The numerical derivation of the full distribution follows a similar pattern to the
derivation for amplicon model with stutter. Using a 6-dimensional DFT one
could, in principle, derive the full joint distribution for the six types of strand.
However the number of g and gd strands does not change in each cycle, thus a
4-dimensional DFT suffices (for amplification of a single genome). The number
of each of the h and hd strands increases by at most 1 in each cycle, with at most
n−1 of each after n cycles. The numbers of a and ad strands will have a maximum
of 2n − n− 1, hence the size of the DFT required is approximately n222n, too large
for forensic applications with n between 27 and 34 cycles.

For M genomic strands pre-sampled binomially with probability φ, the joint
PGF is given by

(1 − φ + φFn(tg, tgd , th, thd , ta, tad ))M (11)

However, obtaining the marginal distribution of tagged amplicons can be found
by setting tg = tgd = th = thd = ta = 1, and using 1-dimensional DFTs of size at
most 2n. The algorithm is given in Algorithm 6.1, with an R implementation in
Appendix E.2.3.

Algorithm 6.1 [Marginal target amplicon distribution for the genomic model]

• Set N = M2K
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• Initialize G[] ,GD[] ,H[] , HD[] and A[] to be an N dimensional arrays a such
that all entries are zero except the first, eg, G[0] = 1.

• Initialize AD[] to be an N dimensional array such that all entries are zero
except the second, AD[1] = 1.

• Find the DFT of all the arrays, for example, G[].

• Initialize F [] to be an N dimensional array.

• for each index g of G[]

– For K times do:

∗ update G[g] := (1 − pg)G[g] + pgG[g]HD[g]
∗ update GD[g] := (1 − pgd )GD[g] + pgdGD[g]H[g]
∗ updateH[g] := (1 − ph)H[g] + phH[g]AD[g]
∗ updateHD[g] := (1 − phd )HD[g] + phdHD[g]A[g]
∗ set a = A[g] and ad = AD[g]
∗ updateA[g] := (1 − pa)a + paaad

∗ updateAD[g] := (1 − pad )ad + pad aad

update F [g] := (1 − φ + φG[g]GD[g])M

• Set F[] equal to the inverse DFT of F []. �

Figure 15 shows the tagged amplicon distribution for the genomic strand model,
with all amplification probabilities equal to p = 0.9, for K = 14 cycles (M = 1
and φ = 1); in red is shown the corresponding amplicon model distribution We see
that the genomic plot is somewhat smoother than the amplicon model, and more
peaked as well, confirming visually the lower variance discussed above. The plot
on the right shows the results on lowering p → 0.8. The additional green curve
shows a normal distribution with mean and variance matching the genomic model
- we see the fit is appears to be quite good. However it is the vertical distances
at each x value that are important for evaluating likelihoods) and in this regard
the ratios of values are quite different from 1 in places. For example in the range
[1000,5000] the ratio of the normal approximation to full distribution value ranges
from 0.777 to 1.07. Multiplying many such ratios together for many observed
peaks could lead cumulatively to a gross over-estimation or under-estimation of
the likelihood, if there is a systematic bias.
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Figure 15:
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6.6 Including single step backward stutter
We now include stutter into the genomic model. For simplicity we do not consider
either forward stutter or double stutter, nor allow a stutter to stutter, at this stage.
The iterative equations for amplifying a g-strand without stutter is:

tg → tg(1 − pg) + pgtgthd

thd → thd (1 − phd ) + phd thd ta

ta → ta(1 − pa) + patatad

tad → tad (1 − pad ) + pad tad ta

To include stutter we allow there to be stutter variants of hd, a and ad strands,
which we denote with an extra s suffix. We need extra t’s to corresponding to
each of these variants, and also additional amplification probabilities for the new
amplification possibilities. We could introduce many stutter probabilities as well,
but will keep for simplicity to a single conditional stutter probability. Our non-
stutter equations become extended to:
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tg → tg(1 − pg) + pg(1 − ξ)tgthd + pgξtgthsd

thd → thd (1 − phd ) + phd (1 − ξ)thd ta + phdξthd tas

thsd → thsd (1 − phsd ) + phsd thsd tas

ta → ta(1 − pa) + pa(1 − ξ)tatad + paξtatasd

tad → tad (1 − pad ) + pad (1 − ξ)tad ta + padξtad tas

tas → tas(1 − pas) + pastastasd

tasd → tasd (1 − pasd ) + pasd tasd tas

For the initial gd strand we have to introduce the additional stutter variant hs

and symbols tgd and ths . The gd equations are thus:

tgd → tgd (1 − pgd ) + pgd (1 − ξ)tgd th + pgdξtgd ths

th → th(1 − ph) + ph(1 − ξ)thtad + phξthtasd

ths → ths(1 − phs) + phsthstas

ta → ta(1 − pa) + pa(1 − ξ)tatad + paξtatasd

tad → tad (1 − pad ) + pad (1 − ξ)tad ta + padξtad tas

tas → tas(1 − pas) + pastastasd

tasd → tasd (1 − pasd ) + pasd tasd tas

Hence we need to keep track of 10 t’s corresponding to the 2 genomic strands,
the 4 half strands and 4 amplicon strands. For the marginal stutter distribution we
are interested in the tagged stutter amplicons, tasd .

These single-strand equations can be ‘lifted’ to iterative equations for the
PGFs, giving generalizations of Algorithm 6.1 that are omitted, for obtaining
the marginal distributions of target and stutter amplicons. Figure 16 shows the
marginal distribution of stutter amplicons for the genomic model, with the red
curve showing the marginal from the amplicon model. We see that the genomic
stutter distribution is narrower and more peaked, thus having a lower variance than
the amplicon model. For the parameters in the plot, the means and variances are
shown in Table 1. The means are approximately equal, whereas the variances are
about a factor of 2 different. The derivation of moments is deferred to Appendix C.
Figure 17 shows an example of a marginal stutter distribution with binomial pre-
sampling of strands.
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Figure 16: Marginal stutter distributions for the genomic (black) and amplicon
model (red), with all amplifications probabilities equal to 0.85, and conditional
stutter probability equal to 0.03, for a single strand pair amplified for 16 cycles.

Table 1: Means and variances of the amplicon and genomic model curves shown
in Figure 16.

mean variance
Amplicon model 3749.002 5330275
Genomic model 3748.594 2664897

57



0 10000 20000 30000 40000 50000

0e
+

00
2e

−
05

4e
−

05
6e

−
05

8e
−

05

K= 16 M=30 phi = 0.06 p= 0.9 xi= 0.04

amplicon number n

P
(n

)

Figure 17: Marginal stutter distribution for the genomic model, with all amplifi-
cations probabilities p = 0.9, conditional stutter probability ξ = 0.04, M = 30
genome strands selected with probability φ = 0.06 and amplified for K = 16 cy-
cles. The complete dropout probability value 0.9430 = 0.1562556 at n = 0 is not
shown.
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6.7 Extension to forward stutter and double stutter
The extension to include forward stutter and double back-stutter is straightfor-
ward, and follows the path of stutter. We need two extra h variables for the for-
ward stutter and double stutter products, and 4 extra a variables, two for forward
stutter and two for the double stutter. Thus we have 16 variables altogether.

Let the subscript f denotes forward stutter, and r double reverse stutter. Let
ξr denote the conditional probability of double stutter in a cycle, and ξ f that for
forward stutter. Then the individual branching equations are given by:

tg → tg(1 − pg) + pg(1 − ξr − ξs − ξ f )tgthd + pgξrtgthrd + pgξstgthsd + pgξ f tgth f d

tgd → tgd (1 − pgd ) + pgd (1 − ξr − ξs − ξ f )tgd th + pgdξrtgd thr + pgdξstgd ths + pgdξ f tgd th f

th → th(1 − ph) + ph(1 − ξr − ξs − ξ f )thtad + phξrthtard + phξsthtasd + phξ f thta f d

thr → thr (1 − phr ) + phr (1 − ξ f )thr tard + phrξ f thr tasd

ths → ths(1 − phs) + phs(1 − ξs − ξ f )thstasd + phsξsthstard + phsξ f thstad

th f → th f (1 − ph f ) + ph f (1 − ξs)th f ta f d + ph f ξsth f tad

thd → thd (1 − phd ) + phd (1 − ξr − ξs − ξ f )thd ta + phdξrthd tar + phdξsthd tas + phdξ f thd ta f

thrd → thrd (1 − phrd ) + phrd (1 − ξ f )thrd tar + phrdξ f thrd tas

thsd → thsd (1 − phsd ) + phsd (1 − ξ f )thsd tas + phsdξ f thsd ta

th f d → th f d (1 − ph f d ) + ph f d (1 − ξs)th f d ta f + ph f dξsth f d ta

ta → ta(1 − pa) + pa(1 − ξs − ξ f )tatad + paξstatasd + paξ f tata f d

tad → tad (1 − pad ) + pad (1 − ξs − ξ f )tad ta + padξtad tas + padξ f tad ta f

tas → tas(1 − pas) + pas(1 − ξs − ξ f )tastasd + pasξstastard + pasξ f tastad

tasd → tasd (1 − pasd ) + pasd (1 − ξs − ξ f )tasd tas + pasdξstasd tar + pasdξ f tasd ta

tar → tar (1 − par ) + par (1 − ξ f )tar tard + parξrtar tasd

tard → tard (1 − pard ) + pard (1 − ξ f )tard tar + pardξ f tard tas

ta f → ta f (1 − pa f ) + pa f (1 − ξs)ta f ta f d + pa f ξsta f tad

ta f d → ta f d (1 − pa f d ) + pa f d (1 − ξs)ta f d ta f + pa f dξsta f d ta

The corresponding recurrence relations for the multivariate PGF in these 18
variables is left to the reader.

With the introduction of forward and double stutter we have the possibility
that over several cycles a stutter product may amplify by forward stuttering to
make target amplicon, or could itself stutter to make a double stutter. Similarly
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a forward stutter product from a target could amplify and stutter thus producing
a target, or could double stutter and product a stutter. Likewise a double stutter
product could amplify by forward stuttering and create a stutter product. This
means that there is a cyclic dependency in the equations above, so care is required
in their computer implementation.

Note that the above equations do not describe the possibility that a double-
stutter strand could itself stutter or double stutter when amplified, or a forward
stutter strand could itself forward stutter. These more general possibilities are ac-
counted in Part III, in which we give a general modelling framework, and also
include the additional artefacts of drop-in and background noise, and DNA degra-
dation, that we have not dealt with so far. But first we look at some other mathe-
matical computational aspects of the branching process.

7 Further Mathematical and computational aspects
In this section, further mathematical properties of the branching process as re-
vealed by the probability generating functions are explored. Readers interested in
forensic applications may wish to skip this part and go onto Part III.

7.1 Finding marginal distributions without a full DFT
We consider again the simple amplicon model, in which we start with a single
amplicon with PGF recurrence relation

Fk+1(t) = (1 − p)Fk(t) + pFk(t)2 (12)

and initial condition F0(t) = t. If we let N = 2K , then we can find the full
distribution using the DFT, or alternatively, for a particular value n we can find
the probability of exactly n amplicons via Cauchy’s residue theorem

F[n] =
1

2πi

∮
FK(t)
tn+1 dt

=
1
N

N−1∑
j=0

FK(e−i2π j/N)ei2π jn/N (13)

To evaluate this sum, we have to evaluate each term AK(e−i2π j/N) for points located
on the unit circle in the complex plane. This can be done the recurrence equation
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(12). If one views (12) as a nonlinear discrete dynamical system, the we see that
it has fixed points at t = 0 and t = 1. The fixed point at t = 0 is stable, whilst
the fixed point at t = 1 is unstable: for real values of t ∈ [0, 1), iterates of (12)
converges to zero, whilst for real t > 1 iterates diverge to infinity. It turns out that,
apart from the j = 0 term which corresponds to the stable point t = 1, the iteration
scheme t → (1 − p)t + p ∗ t2 on the unit circle forms a contraction mapping so
that the Fk(e−i2π j/N) iterates converge to the origin as k → ∞. This is illustrated in
Figure 18. (See also Stolovitzky and Cecchi (1996b).)
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Figure 18: Convergence of iterates to 0 in the complex plane for the simple
amplicon model, of Fk(e−i2π j/N) : k = 0, 1, . . .K, for j = 201 in (13), for
p = 0.85 and up to K = 28 iterations. The initial value is F0(e−i2π j/N) =

0.9999999999890425− i4.681337853637813× 10−6, and the the final iterate is at
F28(e−i2π j/N) = −2.084 × 10−5 − i2.223 × 10−5 in the complex plane.

Not only do the Fk(e−i2π j/N) converge to the origin, they do so rapidly with
increasing j. Hence, we may approximate (13) by a truncated series with a point
symmetrically located around j = 0 (ensuring the sum total is real valued), thus:

F[n] ≈
1
N

L∑
j=−L

FK(e−i2π j/N)ei2π jn/N (14)
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Figure 19 overlays the exact distribution obtained from a full FFT analysis,
and the distribution for the truncated approximation of (14). The curves are visu-
ally indistinguishable.
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Figure 19: Distribution of the number of amplicons for the simple amplicon
model, starting with a single amplicon, amplified for 28 cycles with amplifica-
tion probability 0.85 per cycle. The figure shows plots of 1000 evenly spaced n
values, generated using the Julia code in Appendix E.3.1 for the exact distribu-
tion calculated using the a FFT analysis, and using the truncation approximation
of (14) with L = 1024. The exact FFT took several minutes to evaluate, and
required approximately 10Gb of ram. In contrast, evaluating all 1000 points us-
ing the truncated approximation took around 0.25 seconds with minimal memory
overhead. The two curves are visually indistinguishable.
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Taking account of binomial pre-sampling with truncation requires a little care.
The full series expansion, for M starting amplicons, is

1
N

N−1∑
j=0

(1 − φ + φFK(e−i2π j/N))Mei2π jn/N

To carry out the truncation, we set FK(e−i2π j/N)) = 0 on the j terms on the
circle further than ±L from the j = 0 term, to obtain

1
N

L∑
j=−L

(1 − φ + φFK(e−i2π j/N))Mei2π jn/N +
1
N

L∗∑
j=−L∗

(1 − φ)Mei2π jn/N

where the second summation is over terms complementary to the first summation.
We now use that ei2πn/N is an N-th root of unity, for which

∑N−1
j=0 ei2π jn/N = 0, to

obtain
L∗∑

j=−L∗

(1 − φ)Mei2π jn/N = −

L∑
j=−L

(1 − φ)M ei2π jn/N

so that

P[n] ≈
1
N

L∑
j=−L

(
(1 − φ + φFK(e−i2π j/N)M − (1 − φ)M

)
ei2π jn/N (15)

Drop-in can be handled in a similar manner, as can finding stutter marginal
distribution values. Obtaining good convergence typically requires more terms
than for (14). Details are left to the interested reader to investigate (or assign to
a research student if available). Note that if the series is truncated prematurely it
could lead to poor, and even negative, probabilities.

Bivariate distributions may also be found using similar truncated series. As
pointed out in Appendix E.1.3, to do a full FFT analysis to obtain the bivariate
distribution of a target and stutter amplicons numbers would require an impos-
sible amount of computer memory and time. However, by writing the 2-DFFT
function out as a double series and truncating to a smaller set of terms near the
origin, efficient and accurate evaluation of individual bivariate probabilities may
be carried out. Accuracy can be gauged by seeing how the values change with
using an increasing number of terms in the double series. The details are left to
the reader to fill in: Figure 20 shows two views of the bivariate distribution for
a single starting amplicon, of the number of target and stutter amplicons, using
summation limits of L = ±1012 for each evaluated point (thus around 226 ≈67
million terms altogether).
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Figure 20: Bivariate distribution for target and stutter amplicons, starting from a
single amplicon, for K = 28, p = 0.85 and ξ = 0.004. Note that the vertical scale
(i.e., the probability values) have been scaled upwards by a factor of 598684 ∗
15822 = 9472378248 so that the legend for the contour levels show non-zero
values. The projected contour plot is similar to the plot in Figure 11. (The values
598684 and 15822 are the intervals in the target and stutter amplicon numbers for
the grid of points used to generate the data-points in the plot. In each direction 96
values were used, thus 9126 evaluations in total.)
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Part III

New Framework in detail
The previous sections have given some indication of the possible models that can
be formulated, and how they may be analyzed using the mathematical tools of
multivariate PGFs combined with DFTs. In this part in Section 8 we present
a general framework of the process leading to an EPG, or set of EPGs in the
case of replicate analyses. Specialization of this framework to a specific model is
then presented in Section 9, and its performance is illustrated using simulated in
Section 10 and publicly available real data in Section 11.

8 Modelling the EPG generation process

8.1 Contributor DNA
We assume that we have a sample of C DNA cells in a volume V . The DNA is
assumed to come from I individuals, with the i-th individual denoted by Ki, who
is a contributor of ci cells to the sample. Thus C =

∑I
i=1 ci. Let L denote the set

of STR loci under investigation, and let Al denote the set of alleles for a given
locus l ∈ L. The total number of genomic strands of type al ∈ Al within the cells
contributed by Ki depends on the genotype of the individual. Let nial denote the
number of alleles of type al ∈ Al of individual Ki. The values that nial can take
depends on the locus l. With a few exceptions, the possibilities are as follows.

• If l is autosomal, then nial ∈ {0, 1, 2}.

• if l is Amelogenin, then niX ∈ {1, 2} and niY ∈ {0, 1}. If Ki is male then
niX = niY = 1; otherwise Ki is female with niX = 2 and niY = 0.

• If l is a Y-linked locus, then either nial ∈ {0, 1, 2} or nial ∈ {0, 1}, depending
on the precise locus.

• if If l is an X-linked locus, then nial ∈ {0, 1} if Ki is male, and nial ∈ {0, 1, 2}
if Ki is female.

Let gal and gal:d denote the two complimentary strands for the genome of type
al ∈ AL. We use tgal

and tgal :d
for symbols in their generating functions. It is
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not until the PCR process begins that the gal and gal:d strands become separated.
Prior to PCR they are combined, hence the PGF of the number of both of these
genomic strands in the DNA sample of allele type al from Ki is (tgal

tgal :d
)nial ci , and

the multivariate PGF of all alleles in Al from person Ki is∏
al∈Al

(tgal
tgal :d

)nial ci . (16)

If, for example, l is autosomal and Ki is homozygous with genotype (al, al) then
the PGF is (tgal

tgal :d
)2ci .

Using enzymes, DNA is extracted from the cells in the volume V . Let πe:i,al

denote the extraction efficiency, that is, the probability that a genome segment
containing the allele al ∈ Al from Ki is extracted in a state suitable for amplifica-
tion. The efficiency πe:i,al will depend on the process of the DNA extraction, and
also the allele via its length. The extraction process, as well as removing genomes
from cells, breaks them up into small pieces. The location of the breakage points
along a genome can be considered a Poisson process, so that the distance be-
tween breaks has an exponential distribution. If a break occurs in or between the
flanking regions of a genomic strand pair, then it cannot be amplified, hence the
dependence of πe:i,al on the allele.4 The PGF for extraction of the (single) pair is
thus

Ex(tgal
, tgal :d

) = 1 − πe:i,al + πe:i,al tgal
tgal :d

.

However, prior to extraction the DNA may be degraded by age, environmental
or other factors. Such degradation could also be person specific (for example,
depending on the cell type of the DNA from the person).

One form of degradation leads to a break in the genome-pair strand in or be-
tween the flanking regions. If we let λ denote the probability of there not being
such a break, then the PGF for extraction, of amplify-able (single) genome pair,
becomes

Ex(tgal
, tgal :d

) = 1 − πe:i,alλ + πe:i,alλtgal
tgal :d

.

Alternatively degradation could lead to one of the complimentary strand pairs
having a break and the other not, as illustrated in Figure 21. If we assume such
breaks occur independently for each if the complimentary strands, then the joint
PGF for extraction of the (single) genome pair strands becomes

Ex(tgal
, tgal :d

) = 1− πe:i,al(1− (1− λ)(1− λd)) + πe:i,al(1− λ+ λtgal
)(1− λd + λdtgal :d

).

4With the Poisson process just described, i πe:i,al will decay exponentially at a rate proportional
to the total base-pair size of the between and including the flanking regions. This is one possible
mechanism of preferential amplification (Walsh et al., 1992).
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where we allow for the possibility of different breakage probabilities, λ and λd,
for the two strands (arising from their different, but complimentary, chemical base
composition).

(i)

(ii)

(iii)

(iv)

Figure 21: Genomic strand breakage possibilities for a degradation model. (i) An
intact strand pair; (ii) a simultaneous breakage in both strands at a common point;
(iii) breakage in one strand; (iv) breakage in the complementary strand.

A fraction π f of the volume V is taken for amplification. Hence the joint PGF
for successful extraction and selection of the genome strands from a single pair is

1 − π f + π f Ex(tgal
, tgal :d

)

The total number of such strands from person Ki extracted and selected for
amplification and are amplify-able therefore has the PGF(

1 − π f + π f Ex(tgal
, tgal :d

)
)nial ci

. (17a)

where Ex(tgal
, tgal :d

) depends on the breakage model chosen.
The full multivariate PGF for the contributors’ strands from all loci under

consideration ready for amplification is therefore∏
l∈L

∏
a∈Al

∏
i∈I

(
1 − π f + π f Ex(tgal

, tgal :d
)
)nial ci

. (18)

8.2 Including Drop-in
In addition to the extracted alleles, there is a possibility that spurious drop-in
alleles may get into the minitube in which the aliquot is ready for the PCR process.
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We follow Puch-Solis (2014) and assume that such drop-in events occur by a
Poisson process. Denote the drop-in rate for allele al ∈ Al by λal . Then the PGF
for the total number of genome strand pairs that drop-in is given by

Dr( tgal
, tgal :d

) = exp
(
λal(tgal

tgal :d
− 1)

)
(19)

Drop-ins occur independently for each locus, and independently of the geno-
types of the I individuals. Hence the PGF for the genomic strands from drop-in
and contributors prior to amplification is∏

l∈L

∏
a∈Al

∏
i∈I

(1 − π f + π f Ex(tgal
, tgal :d

))nial ci Dr( tgal
, tgal :d

) (20)

Within the genomic strand framework presented here, there is an alterna-
tive model for drop-in, in which amplicon-pair strands, rather than genomic-pair
strands, fall into the minitube that the PCR is carried out in. One reason ampli-
cons could drop-in is that there is a build-up over time of contaminating amplicons
from the previous PCR analyses carried out in the forensic laboratory. This pos-
sibility is supported by the observation that there are lower levels of drop-in in
samples amplified after a laboratory has been deep-cleaned, compared to just be-
fore a deep-cleaning has been carried out, and that as time goes on dropin-rates
increase until the laboratory is cleaned again5

To model this alternative, we use a Poisson drop-in model for the number of
amplicons that drop-in, given by the PGF

Dr( taal
, taal :d

) = exp
(
λal(taal

taal :d
− 1)

)
, (21)

instead of the genomic strand drop-in model (19). Hence the PGF for the genomic
strands and amplicons prior to amplification is now∏

l∈L

∏
a∈Al

∏
i∈I

(1 − π f + π f Ex(tgal
, tgal :d

))nial ci Dr( taal
, taal :d

). (22)

One could even consider both Poisson processes occurring simultaneously so
that we allow drop-in of both genomic strands and amplicon strands, leading to

∏
l∈L

∏
a∈Al

∏
i∈I

(1 − π f + π f Ex(tgal
, tgal :d

))nial ci Dr( tgal
, tgal :d

)Dr( taal
, taal :d

). (23)

in which we can allow a different drop-in rate λal for the two processes.
5Sue Pope, personal communication.
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8.3 PCR amplification
During the PCR process we may generate strands of type gal , gald, hal , hald, aal and
aald. For any of these strands to make a successful copy (or copy of some stutter
type) a primer has to bind at the primer binding site. The probability of this
happening will depend on various factors in how the PCR is carried out (e.g., the
kit, temperature etc.). It could also depend on the type of strand considered. For
example the g strands could be quite long and coil up to create a barrier preventing
a primer from binding. It also depends on the binding energy of the primer to
the strand, and each end of the flanking region generally has different base-pair
composition, so we should expect the binding energies to be different. We thus
introduce primer binding probabilities specific to each complementary-strand

pl,g, pl,gd, pl,h, pl,hd, pl,a and pl,ad.

Binding a primer is a pre-requisite for a successful copy. However during the
remainder of the duplication process a copying error could occur, leading to a
stutter variant. The probability that this happens, and the resulting stutter artefact,
will depend on the initial allele al and the resulting allele bl. We thus introduce
ξbl | al to denote the conditional probability that a strand of allele type al creates
strand of allele type bl given that some product is produced We have that for all
al ∈ Al, ∑

bl∈Al

ξbl | al = 1

Note that we have the conditional probability for copying without stuttering,
given some sort of copy if made, is

ξal | al = 1 −
∑

bl∈Al:bl,al

ξbl | al .

We shall assume that these probabilities remain constant throughout all of the
cycles of the PCR process, though this assumption could be relaxed.
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The set of PGFs for single-strand single-cycle duplication is then given by

gal : (1 − pl,g)tgal
+ pl,g

∑
bl∈Al

ξbl | al tgal
thald

(24a)

gald : (1 − pl,gd)tgal
+ pl,gd

∑
bl∈Al

ξbl | al tgald
thal

(24b)

hal : (1 − pl,h)thal
+ pl,h

∑
bl∈Al

ξbl | al thal
taald

(24c)

hald : (1 − pl,hd)thald
+ pl,hd

∑
bl∈Al

ξbl | al thald
taal

(24d)

aal : (1 − pl,a)taal
+ pl,a

∑
bl∈Al

ξbl | al taal
taald

(24e)

aald : (1 − pl,ad)taald
+ pl,ad

∑
bl∈Al

ξbl | al taald
taal

(24f)

These single strand PGFs are ‘lifted’ to the full vectorial PGF of the PCR process,
as follows. Let Fn(tl | s) denote the multivariate PGF for all the possible types of
strands that are generated from a single strand of types

s ∈ {gal , gald, hal , hald, aal , aald : al ∈ Al}.

The tl represents all the possible symbols for all the possible alleles and their
strand types (there will be 6 | Al | such symbols). Then the recurrence relations for
the PCR branching process have the form:

Fn+1(tl | gal) = (1 − pl,g)Fn(tl | gal) + pl,g

∑
bl∈Al

ξbl | al Fn(tl | gal)Fn(tl | hald) (25a)

Fn+1(tl | gald) = (1 − pl,gd)Fn(tl | gald) + pl,gd

∑
bl∈Al

ξbl | al Fn(tl | gald)Fn(t l | hal) (25b)

Fn+1(tl | hal) = (1 − pl,h)Fn(tl | hal) + pl,h

∑
bl∈Al

ξbl | al Fn(tl | hal)Fn(tl | aald) (25c)

Fn+1(tl | hald) = (1 − pl,hd)Fn(tl | hald) + pl,hd

∑
bl∈Al

ξbl | al Fn(tl | hald)Fn(tl | hal) (25d)

Fn+1(tl | aal) = (1 − pl,a)Fn(tl | aal) + pl,a

∑
bl∈Al

ξbl | al Fn(tl | aal)Fn(tl | aald) (25e)

Fn+1(tl | aald) = (1 − pl,ad)Fn(tl | aald) + pl,ad

∑
bl∈Al

ξbl | al Fn(tl | aald)Fn(tl | aal) (25f)
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with initial conditions

F0(tl | gal) = tgal
(26a)

F0(tl | gald) = tgald
(26b)

F0(tl | hal) = thal
(26c)

F0(tl | hald) = thald
(26d)

F0(tl | aal) = taal
(26e)

F0(tl | aald) = taald
(26f)

The joint PGF of all types of strand products after n cycles generated from a
single initial pair strand (gal , gald) is

Fn(tl | gal)Fn(tl | gald) (27)

8.4 The joint PGF after PCR
If using the genomic drop-in model (19), one now substitutes tgal

→ Fn(tl | gal) and
tgald
→ Fn(tl | gald) into (20) to obtain the joint PGF of all types of PCR product:

∏
l∈L

∏
a∈Al

∏
i∈I

(1 − π f + π f Ex(Fn(tl | gal), Fn(tl | gald)))nial ci Dr(Fn(tl | gal)Fn(tl | gald))

(28)
Alternatively, if using the amplicon drop-in model (21), one substitutes tgal

→

Fn(tl | gal) and tgald
→ Fn(tl | gald) into (22) together with the additional substitu-

tions of taal
→ Fn(tl | aal) and taald

→ Fn(tl | aald) :

∏
l∈L

∏
a∈Al

∏
i∈I

(1 − π f + π f Ex(Fn(tl | gal), Fn(tl | gald)))nial ci Dr(Fn(tl | aal)Fn(tl | aald))

(29)
Depending on the drop-in model chosen, either (28) or (29) is the multivari-

ate PGF for all the possible PCR products. For the capillary electrophoresis we
require only the multivariate PGF for the tagged amplicons. This is obtained
by setting all of the tl components to 1 except for the symbols representing the
tagged amplicons, that is, the set {taald

: l ∈ L, al ∈ Al}. Let tld denote tl with this
substitution made. Then (28) with this substitution becomes∏

l∈L

∏
a∈Al

∏
i∈I

(1 − π f + π f Ex(Fn(tl | gal), Fn(tld | gald)))nial ci Dr(Fn(tld | gal)Fn(tl | gald))

(30)
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with a similar equation for substitution into (29). Hence, taking into account the
two variations of Ex(·, ·) given earlier, we have four modelling possibilities.

8.5 RFU scaling and baseline noise
During the capillary electrophoresis phase, a thin tube is dipped into the amplified
product and a high voltage is applied. This forces a fraction of the product into the
tube where it is carried along by a voltage differential. At a specific point along
the capillary tube a lasers excite the dyes on the tagged amplicons, and the amount
that fluoresces is recorded as the RFU reading. The RFU value is proportional to
the number of tagged amplicons.

There is, therefore, some scale factor which we denote by ρ, that relates the
final number of tagged amplicons of each type to the RFU reading. The factor will
depend upon the machinery, but may also be expected to be dye dependent with
all the other factors constant. Thus if we consider a single locus l, a given peak
height RFU value ral > 0 will correspond to the range [ρ(ral − 1/2), ρ(ral + 1/2)]
of tagged amplicons of that allele, and conversely.

However this does not take account the baseline noise that is usually present.
If we denote the discrete probability distribution of the baseline noise distribution
by ηl for the range [0,w], say, then we may form the PGF of the distribution as

w∑
j=0

ηl[ j]z j

Given the locus, the noise distribution will be independent of the allele type (it
may depend on the dye lane that the locus is in). Thus for each al ∈ Al we may
form a“tagged-amplicon equivalent” noise distribution given by

ηl,al :=
w∑

j=0

ηl[ j]t jρ
aald

These PGFs may then be multiplied into (30) and the resulting multivariate PGF
used for assessing peak height likelihoods for observed data.

Alternatively one could derive peak height distributions from (28) and convo-
lute them with the baseline noise distributions, and use the convolved distribution
to evaluate peak height likelihoods.
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8.6 Multiple replicates from a sample
Sometimes more than one PCR amplification is carried out on a sample from
which DNA has been extracted, each amplified sub-sample is called a replicate.
This maybe modelled using a multinomial PGF as follows. Let there be R repli-
cates, with π fr the fraction of the sample used for replicate r.

If we ignore breakage through degradation, then for a single genomic pair
strand galgald in the sample, the multivariate PGF for the number of strands (0 or
1) of the pair being in each replicate is

1 −
R∑

r=1

π fr +

R∑
r=1

π fr tgal :r
tgald:r

where we introduce new symbols to represent the specific replicate the pair get
selected for, indicated by the additional ‘: r’ subscripts. New symbols for half-
strand and amplicons are also required to specify the replicate they belong to.

To take into account the extraction efficiency, we multiply each π fr by πe:i,al :1 − πe:i,al

R∑
r=1

π fr

 + πe:i,al

R∑
r=1

π fr tgal :r
tdald:r . (31)

To take account of degradation breakage, replace tgal :r
thald:r by Ex(tgal :r

, tgald:r)
in (31): 1 − πe:i,al

R∑
r=1

π fr

 + πe:i,al

R∑
r=1

π fr Ex(tgal :r
, tgald:r) . (32)

so that for person Ki,1 − πe:i,al

R∑
r=1

π fr

 + πe:i,al

R∑
r=1

π fr Ex(tgal :r
, tgald:r)

nial ci

. (33)

8.7 Untyped contributors
Equation (16) assumes that the genotypes of all contributors are known. For a
contributor U j whose genotype is not known, we replace (16), for autosomal loci,
by the PGF ∑

al∈Al

pal (tgal
tgal :d

)c j


2

(34)
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where pal is the allele frequency of allele al in the locus l for the population that
U j comes from. For a set of J unrelated untyped individuals we have

J∏
j=1

∑
al∈Al

pal (tgal
tgal :d

)c j


2

. (35)

This represents intact genomic pair strands in the sample prior to extraction
and without degradation or splitting a fraction into r ≥ 1 replicates. To take all
these into consideration we replace the tgal

tgal :d
product pairs thus:

J∏
j=1

∑
al∈Al

pal

1 − πe:i,al

R∑
r=1

π fr

 + πe:i,al

R∑
r=1

π fr Ex(tgal :r
, tgald:r)

c j
2

. (36)

8.8 Another variation of the framework
Grisedale and van Daal (2014) proposed a method for improving the detection of
alleles as described in the Method Summary of their paper:

DNA template is first divided into two aliquots. One aliquot is used
as template for a PCR using a primer mix containing all forward
primers for loci targeted in the PowerPlex ESI 16 kit (Promega), while
the other aliquot is amplified with all reverse primers. Amplification
products are then pooled for use as template in a standard PCR with
the STR kit primer mix. The forward and reverse primer reactions
result in a linear amplification of the target sequences to boost the
amount of template available for PCR, thus reducing the stochastic
effects commonly seen with low template DNA analysis.

The framework presented so far does not apply to their experimental set-up;
however it is readily adapted to it as follows. Assume that the DNA template
is split into two equal aliquot parts for the first κ pre-cycles, and then put back
together for n amplifications cycles. Consider a single genome-pair (g, gd) (drop-
ping the al indexing from earlier notation for simplicity) in the aliquot prior to
splitting the sample. Let S and S d denote the two split samples. If the sample is
split into two equal volumes, then the (g, gd) pair will be in S with probability 0.5,
and S d with probability 0.5. Suppose that the sample S has primers that bind to
the g strand; then the number of hd strand generated by the κ pre-cycles will be
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binomially distributed as Bin(κ, pg) if the stand pair is in S This is because the g
strand produces at most one hd strand per cycle. Similarly the number of h strands
generated in S d in the κ pre-cycles will be binomially distributed as Bin(κ, pgd ) if
the strand pair is in S d.

Hence when the two samples are re-combined for the main n PCR cycles that
generate the amplicons, the PGF for the starting number of g, gd, h and hd strands
will be

tgtgd

(1 + th)κ + (1 + thd )κ

2
One then replaces tg → Fn(t | tg), and so on for the joint PGF after the n cycles

of PCR. Other factors such as an unequal splitting of the DNA template, extrac-
tion efficiency, degradation, multiple replicates, number of cells and genotypes of
contributors, and modification to the drop-in model, can be taken into account in
a straightforward manner. For example, for the genomic drop-in model we make
an adjustment from

Dr( tg, tgd ) = exp
(
λ(tgtgd − 1)

)
to

Dr( tg, tgd ) = exp
(
λ

(
tgtgd

(1 + th)κ + (1 + thd )κ

2
− 1

))
.

9 A particular model realisation
In this section we present a model that specialises the framework given earlier, and
which introduces approximations that make the model computationally tractable.
A satisfying feature of this approach is that the mathematical nature of the model
approximations are clearly specified, and they can be judged on their merits. The
author has implemented the model in a computationally efficient and accurate
system, and this implementation is used in the performance analysis of the model
applied to real and simulated data presented below.

9.1 Model assumptions and approximations
In the model presented we shall assume that we have a single DNA sample from
which a single replicate has been produced. First the sample is described, then
the assumptions regarding the PCR process are given, and how the tagged am-
plicon number is interpreted as measurement in terms of RFU units. We shall
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assume that the kit being used has autosomal loci, and perhaps also Amelogenin
but no other sex-linked loci are among the loci of the kit. We also assume that all
contributors are unrelated.

9.1.1 The sample

We shall assume that we have a mini-tube of volume Vs, that contains the extracted
DNA of I contributors, in which the ith contributor has contributed ci cells. The
DNA has been extracted with an efficiency ψ ∈ [0, 1], and may have degradation
characterised by a parameter δwhich has units of inverse length (measured in base
pairs). The values of the cell amounts ci and the degradation parameter are taken
as unknown, and to be estimated from the EPG. The extraction efficiency is taken
as known.

A very small amount of the sample in Vs is taken to quantify the concentration
of DNA in Vs, and based on this a fraction fraction π f of the volume Vs is taken is
put into a mini-tube of volume V , to which is added primers etc.. PCR is carried
out with this aliquot.

Note that quantification of DNA is usually carried out using qPCR, so that the
amount of DNA estimated to be in V is the amplify-able amount of DNA. If the
estimated amount of DNA in V is γ, then an estimate of the amount of DNA in
the sample volume Vs is given by γs = γ/(ψπ f ), if we ignore degradation.

We shall assume that degradation has the effect of breaking a pair strand in
two or more pieces, according to a Poisson process. For a given locus l ∈ L, the
total number of genomic pair strands of an allele al ∈ AL, having total size in
base-pairs between and including flanking regions denoted by bl, that are in the
aliquot volume V and are amplify-able is given by the binomial distribution, taken
to be

Binom

 I∑
i=1

nialci, ψπ f exp(−δbl)

 .
We shall assume the genomic drop-in model, with a Poisson model for the

number of drop-in genome strands with drop-rates for every allele assumed known.
We ignore stutter products that may be generated during the PCR process by drop-
in strands.

9.1.2 The PCR

We shall use the genomic model described earlier. We assume that all amplifi-
cation probabilities, conditional and unconditional, are known for all allele and
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loci.
We shall assume that in an amplification cycle, forward stutter, no-stutter, sin-

gle reverse stutter and double reverse stutter products may be directly produced
from a strand of type of the allele al. Note that we allow triple stutters arising
indirectly via two amplification cycles. Some alleles might not form one or more
of these stutter products, for example because they are at the low or high end of
the allelic range of Al; additionally Amelogenin is assumed not to form stutters.

We only allow stuttering for multiples of the base-pair repeat size of each
locus. Thus while we include a stutter of 9.3 → 8.3, for TH01, we exclude the
stutter possibility 9.3→ 9; this is purely for computational efficiency, to make the
likelihood evaluation tractable.

9.1.3 Converting amplicon numbers to peak height RFUs

At the conclusion of the PCR, the volume V will have a large number of tagged
amplicons for the various alleles in the amplification kit. A small number of these
are drawn up electrostatically into the capillary-electrophoresis machine. We shall
assume that the number of tagged amplicons of a specific allelic type drawn up is
proportional to their number (the proportionality depends on other factors such as
the voltage applied; see Butler (2011) pp.144-145), and that the RFU peak height
is proportional to the number drawn up, and that the proportionality constant may
depend upon the particular dye. Hence we introduce dye-lane proportionality
factors so that the RFU peak height generated by the tagged amplicons is propor-
tional to the total number in the volume V .

To this must be added a random value arising from the baseline noise. It is
assumed that the prior baseline noise distribution is known, and may be dye-lane
dependent.

9.1.4 Likelihood evaluation

In order to evaluate the likelihood function requires evaluation of the PGFs Fn(tld | gal)
and Fn(tld | gald ), based on the assumed known amplification probabilities and bi-
nomial sampling rates and genome counts, for all the alleles. Let us write this
as ∏

al∈AL

Fn(tld | gal) =
∏
al∈AL

∏
bl∈AL

(1 − φbl + φblG(tb,ald ))kbl , (37)

where G(tb,ald ) is the PGF of the joint distribution of all allelic products arising
from a single genomic strand of type bl, φbl is the binomial sampling probability
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for such alleles, of which there are kbl in the sample.
This is computationally intractable for two reasons. The first is in evaluating

the individual PGFs G(tb,ald ). We therefore make the approximation in which each
G(tald ) factorizes as

G(tald ) = G−2(tald )G−1(tald )G0(tald )G+1(tald ) =

1∏
j=−2

G j(tald ) (38)

in which G−2(tald ) is the PGF of the number of tagged amplicons in double-
stutter position, G−1(tald ) in stutter position, G0(tald ) copies of the target allele,
and G−1(tald ) forward stutter.

Even with this approximation, the computations are still intractable, we there-
for make the following further approximation:1 − φbl + φbl

1∏
j=−2

G j(tald )


kbl

→

1∏
j=−2

(
1 − φbl + φblG j(tald )

)kbl . (39)

Under these two approximations, the total likelihood, given the genotypes of con-
tributors, will factorise into a product of functions, each of which depend on a
single allele type. For a particular allele a , there will be up to four factors arising
from alleles 2 repeats higher (which double stutter to make a, one repeat higher
(which stutter to form a) , alleles of the same type a, and alleles one repeat lower
(which forward stutter to produce a product).

This needs to be multiplied by PGFs from each allele drop-in PGF, and com-
bined with baseline noise distribution on each allele, to get the marginal peak-
height distributions for each allele. Hence for each allele we have a product of
univariate PGFs that can be convoluted using the FFT to find the marginal distri-
bution on each allele, which can then be used directly to find the likelihoods on
each allele given the peak height.

The peak height likelihood from all peaks is then found from these individual
allele likelihoods by multiplication—given the genotypes of the contributors—
and such products averaged using population genotype probabilities over the pos-
sible genotypes of the untyped contributors.

10 Model performance with simulated data
One of the useful features of the framework developed in this paper is that, be-
cause the model is an idealisation of the DNA extraction and amplification pro-
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cess, not only can realistic simulated single source and mixtures EPGs be pro-
duced, the simulated data can be analysed by the model using the same param-
eters as used in simulating the data. The performance of the model can then be
compared to the ‘gold standard’ simulated values. Additionally, one can tweak the
parameters of the model so that they differ from those used to simulate the data,
so that robustness of the model can be gauged. It is also possible to use unrealis-
tic model parameters to isolate and analyse specific effects, for use with software
validation and regression tests. All these can be used to judge the limitations of
the model. Here we present a set of simulations of increasing complexity, begin-
ning with unrealistic single contributor sample simulations. All the simulations
use population Caucasian data from Butler et al. (2003). All allele frequencies in
a locus were increased so that the minimum allele count of any was 5. (The total
allele count was also increased to yield population probabilities that add to 1, so
this is not quite the same as the 5/2N adjustment of (Bodner et al., 2016) which
does not adjust the normalisation). An Fst value of 0.02 was used in all analy-
ses. Following (Puch-Solis, 2014) we use a locus-wide drop-in rate of 0.021, with
allele specific rates equal to this multiplied by the relative allele frequency in the
unadjusted population counts. Contributor genotypes were taken from those in the
dataset of contributors from the PROVEDIt Initiative (Alfonse et al., 2016, 2018),
which we shall return to in Section 11 when we examine the model performance
on experimental data.

All simulations are based on the IdentifilerTM kit, in which we assume that all
strand amplification probabilities are pg = pgd = ph = phd = pa = pad = 0.85 for
all loci.

10.1 Single contributor simulations
10.1.1 Simulations with no stutter and no noise

In this set of simulations we take all the conditional stutter probabilities ξ to
be zero on all alleles and loci. With this assumption, we will have G−2(tald ) =

G−1(tald ) = G+1(tald ) = 1, and (39) is no longer an approximation, with only the
j = 0 terms surviving on both sides of the equation to give an equality. We are
thus, in these simulations, testing the performance of the model under the approx-
imation of (38).

We shall simulate data the genotype data of subject RD14-0003-01 taken from
the PROVEDit dataset, and assume that the profile is known when estimating cell
counts. We take as further idealisations that there is no drop-in (the drop-in rate
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is zero), and that there is no baseline noise. We use a factor of 800,000 to scale
post-PCR tagged-amplicon numbers to RFU values, and 28 cycles for the PCR
amplification.

We use maximum likelihood to estimate the cell counts of the contributor,
a value known at the time of simulation. We can thus examine the predictive
accuracy and variability of the cell count estimates.

In the first set of simulations, we shall take the degradation parameter to be
zero, and shall assume this value when estimating the cell counts. We compare
the predictions made using the model based on the FFT analysis and normal,
lognormal and gamma distribution models based on matching the means and vari-
ances of the marginal distribution. We take the binomial sampling probability φ to
be the same for all loci and alleles, and see how the models behave as we vary the
number of cells, and the values of φ. We include in the simulations the unrealistic
value φ = 1, so that (38) is exact, and we can compare the (now exact) FFT model
to the moment approximation models.

The following table shows maximized log-likelihoods and estimated cells counts
from 10 simulations, with 500 cells, φ = 1, and an analytic threshold of 1 RFU
in all simulations; we see that the estimates are very close to the true value of 500
cells used to generate the simulations. We also see that the log-likelihood maxima
are all of a similar value.

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-171.356 499 -171.341 499 -171.345 499 -171.367 499
-168.651 499 -168.658 499 -168.655 499 -168.648 499
-170.734 500 -170.757 500 -170.749 500 -170.719 500
-169.804 499 -169.802 499 -169.802 499 -169.806 499
-171.148 500 -171.176 500 -171.166 500 -171.129 500
-173.965 500 -174.017 500 -173.999 500 -173.931 500
-173.689 498 -173.770 498 -173.743 498 -173.635 498
-170.764 499 -170.665 499 -170.697 499 -170.830 499
-172.017 500 -172.036 500 -172.029 500 -172.008 500
-172.890 499 -172.851 499 -172.863 499 -172.919 499

Reducing the initial number of cells to 10 , we obtain the following table from
10 simulations, in which every model estimated the actual number of cells used.
Again the log-likelihood values are very similar in each simulation across the
models.
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-110.371 10 -110.321 10 -110.322 10 -110.468 10
-106.731 10 -106.708 10 -106.716 10 -106.746 10
-116.895 10 -116.288 10 -116.455 10 -117.502 10
-105.7 10 -105.645 10 -105.663 10 -105.767 10

-107.805 10 -107.955 10 -107.896 10 -107.753 10
-111.267 10 -111.747 10 -111.564 10 -111.012 10
-112.118 10 -113.147 10 -112.767 10 -111.622 10
-110.533 10 -111.237 10 -110.984 10 -110.134 10
-106.879 10 -106.954 10 -106.926 10 -106.842 10
-119.358 10 -120.664 10 -120.166 10 -118.811 10

We now reduce the φ value to 0.7. For 500 cells, we obtain the following
estimates:

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-200.822 495 -200.725 495 -200.749 495 -200.853 495
-193.161 502 -193.307 502 -193.256 502 -193.13 502
-203.948 500 -204.114 500 -204.047 500 -203.927 500
-192.587 504 -192.632 504 -192.616 504 -192.576 504
-191.827 498 -192.032 498 -191.962 498 -191.773 497
-194.707 500 -195.243 500 -195.057 500 -194.598 499
-195.202 498 -195.243 498 -195.227 498 -195.194 498
-195.921 496 -195.927 496 -195.921 496 -195.924 496
-195.392 498 -195.356 498 -195.365 498 -195.4 498
-192.545 498 -192.6 498 -192.58 498 -192.532 498

and for 10 cells
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-139.783 11 -147.468 10 -143.755 11 -139.270 11
-137.910 10 -142.610 10 -140.283 10 -137.284 10
-142.794 10 -146.055 9 -144.733 9 -142.067 10
-133.883 9 -134.231 10 -134.058 10 -133.530 9
-140.499 10 -142.933 10 -141.646 10 -140.285 10
-130.732 10 -129.973 10 -130.279 10 -131.016 10
-133.887 10 -133.595 10 -133.623 10 -134.086 10
-135.397 9 -133.938 9 -134.267 9 -136.617 9
-139.761 10 -141.720 10 -140.478 10 -140.018 10
-142.768 10 -147.142 9 -145.116 9 -142.328 10

Again the estimates are good for all models, and similar log-likelihoods are ob-
tained. Reducing φ to 0.07, we obtain for 500 cells

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-177.336 495 -177.035 495 -177.027 495 -177.141 495
-175.239 477 -174.969 479 -175.003 479 -175.107 478
-176.421 497 -176.359 498 -176.295 498 -176.324 497
-171.300 460 -171.109 466 -171.179 464 -171.251 462
-176.719 537 -178.073 538 -177.447 538 -176.984 538
-184.978 501 -187.879 489 -186.498 494 -185.504 498
-177.330 523 -178.051 524 -177.673 524 -177.434 523
-183.672 510 -185.782 501 -184.699 504 -183.973 507
-171.51 523 -171.445 532 -171.511 529 -171.532 526
-176.99 516 -175.459 518 -175.868 517 -176.388 516

and for 10 cells
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-90.0015 12 -112.940 4 -96.5969 6 -74.8928 10
-90.1253 13 -112.852 4 -96.6292 7 -77.1458 11
-78.6269 8 -96.6019 4 -83.227 5 -63.8753 8
-88.6604 12 -108.518 4 -93.0871 7 -73.4382 10
-80.5898 11 -93.9211 3 -80.5046 4 -66.668 9
-86.3204 9 -107.53 5 -93.3741 7 -81.5557 9
-69.2068 8 -80.6773 2 -68.6397 3 -52.4727 7
-77.0180 9 -92.9245 3 -79.659 5 -61.3999 8
-81.5496 8 -108.38 4 -92.4763 6 -74.1947 9
-91.0582 11 -106.786 4 -92.8809 6 -78.1598 10

We see that variability in the cell estimates is increasing, and that for the 500-
cell simulations the log-likelihoods are close amongst the four models in each
simulation. However for the 10-cell simulations we see that the FFT based model
has higher maximized likelihoods in all the simulations, indicating a better overall
fit to the simulated peak heights. We can also see that the lognormal and gamma
models appear to be underestimating the true cell-count value, whilst the normal
and FFT models are less biased in their estimates, but the normal model having a
greater variability. The following boxplot of cell counts estimated for 10 cells, and
φ = 0.07, is based on 200 simulations, and confirms the small sample behaviour
in the table above:
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10.1.2 Simulations with stutter but no noise

We now include stutter products in the simulations. For all simulations we set
the conditional probability of stutter on each allele to be 0.004, and for forward
and double stutter conditional probabilities are all set to 0.001. We do not include
background noise, but we set the analytic threshold to be 30 RFU.

For φ = 1 and 500 cells, we obtain the following estimates from 10 simula-
tions. We see that all models give similar cell count estimates and log likelihoods.
However we see that there is much more variation amongst the maximized likeli-
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hoods between the four models in each simulation.

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-398.925 500 -397.548 500 -397.95 500 -400.347 501
-401.835 500 -400.62 500 -400.966 500 -400.65 500
-390.493 501 -389.57 501 -389.845 501 -396.683 502
-401.541 500 -401.002 500 -401.14 500 -403.778 500
-399.756 500 -399.765 500 -399.731 500 -401.508 500
-390.409 499 -390.135 499 -390.196 499 -397.262 500
-403.813 500 -402.911 500 -403.161 500 -400.463 501
-394.292 499 -393.968 499 -394.046 499 -399.208 500
-393.24 498 -392.758 498 -392.896 498 -396.412 499

-392.309 500 -392.337 500 -392.311 500 -401.011 500

Reducing the number of cells to 200 we obtain the following table. We see
that all models are making accurate estimates of the numbers of cells, but we also
see that the FFT model likelihoods are, with one simulation exception, lower than
the moment based models.

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-344.81 200 -343.656 200 -344.009 200 -354.253 200
-349.42 199 -346.64 199 -347.456 199 -353.245 200

-350.053 199 -348.586 199 -348.993 199 -354.592 199
-365.401 200 -364.874 200 -364.998 200 -372.019 200
-343.929 200 -342.793 200 -343.114 200 -351.199 200
-369.769 200 -366.598 200 -367.482 200 -366.688 200
-342.514 200 -341.61 200 -341.877 200 -350.469 200
-335.855 201 -335.204 201 -335.411 201 -347.73 201
-344.183 200 -343.186 200 -343.482 200 -349.88 200
-358.427 199 -357.657 199 -357.856 199 -363.16 200

Reducing the number of cells down to 100 we obtain the following table. Cell
estimates are again good for all models, but we see that divergence between the
FFT log-likelihood values and the moment models is becoming more pronounced.
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-233.411 100 -233.38 100 -233.384 100 -240.193 100
-236.636 101 -235.228 101 -235.645 101 -235.647 101
-237.502 100 -236.287 100 -236.657 100 -240.525 100
-234.364 99 -234.535 99 -234.442 99 -236.879 99
-223.076 100 -223.137 100 -223.106 100 -229.342 100
-228.312 101 -227.795 101 -227.945 101 -231.916 101
-230.257 99 -229.443 99 -229.69 99 -232.93 99
-228.276 100 -227.977 100 -228.071 100 -234.852 100
-224.315 100 -223.785 100 -223.957 100 -231.222 100
-221.219 100 -221.08 100 -221.128 100 -229.573 100

Reducing the number of cells down to 10 we obtain the following table, in
which all models correctly estimate the number of cells in each simulations, but
the divergence between the FFT log-likelihood values and the moment models is
still apparent.

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-108.134 10 -108.002 10 -108.038 10 -115.534 10
-111.576 10 -111.361 10 -111.413 10 -119.017 10
-110.092 10 -110.252 10 -110.185 10 -117.129 10
-111.932 10 -111.352 10 -111.528 10 -119.666 10
-110.431 10 -111.194 10 -110.915 10 -117.359 10
-107.527 10 -108.362 10 -108.054 10 -114.481 10
-106.965 10 -106.724 10 -106.799 10 -114.368 10
-113.55 10 -113.298 10 -113.352 10 -121.412 10

-109.083 10 -108.913 10 -108.956 10 -116.539 10
-116.432 10 -117.402 10 -117.013 10 -123.514 10

We now set φ = 0.2. For 500 cells, we obtain the following table, in which
we are now seeing the effects of the pre-sampling variability in the wider range of
cell estimates in all models, which are giving similar estimates.
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-279.819 496 -280.204 497 -280.053 497 -284.162 498
-313.331 497 -307.348 493 -308.797 494 -302.683 495
-279.83 496 -279.6 498 -279.678 497 -283.113 498

-279.828 504 -279.664 506 -279.717 505 -283.564 506
-288.832 496 -288.937 496 -288.811 496 -290.632 497
-302.379 497 -298.563 495 -299.36 495 -297.065 496
-286.874 504 -287.079 504 -286.944 504 -289.078 505
-286.703 507 -286.583 507 -286.567 507 -289.549 509
-301.076 502 -301.912 500 -301.295 500 -299.415 500
-292.959 500 -293.018 499 -292.885 500 -294.815 501

Reducing the number of cells to 200, and keeping φ = 0.2 we obtain

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-227.224 199 -228.354 199 -227.737 199 -228.009 198
-237.356 196 -233.14 195 -234.183 195 -233.538 195
-229.561 205 -231.812 206 -230.937 206 -232.314 207
-233.089 196 -237.701 193 -235.661 194 -234.839 195
-223.573 197 -222.67 199 -222.915 198 -224.836 198
-233.505 205 -233.881 205 -233.493 205 -234.295 205
-232.002 198 -230.505 197 -230.724 197 -231.164 196
-225.549 195 -225.824 196 -225.692 195 -227.969 196
-216.563 192 -218.336 194 -217.713 193 -219.421 193
-220.548 199 -221.047 200 -220.84 199 -222.54 200

Reducing the number of cells to 100, and keeping φ = 0.2 we obtain similar
behaviour,
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-161.866 91 -163.224 92 -162.538 92 -162.197 91
-174.273 102 -174.564 99 -174.032 100 -173.428 100
-164.162 99 -163.554 100 -163.703 100 -164.374 99
-166.503 100 -168.923 100 -167.691 101 -167.244 100
-165.579 96 -165.367 96 -165.226 96 -165.526 96
-161.76 99 -161.274 101 -161.398 100 -161.841 100

-169.946 106 -171.175 105 -170.44 105 -170.32 106
-164.081 98 -164.207 99 -164.096 99 -164.48 98
-165.631 98 -167.698 97 -166.658 98 -166.109 98
-174.81 103 -173.074 101 -173.319 102 -174.481 102

However as we go below 40 cells the behaviours of the FFT and moment
based models start to change. For 40 cells we obtain the following table, in which
all the models are in broad agreement:

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-147.227 38 -151.059 38 -149.056 39 -147.405 39
-149.565 44 -149.253 44 -149.071 44 -148.65 46
-144.248 39 -145.536 40 -145.022 40 -144.202 41
-149.696 40 -159.711 38 -154.874 39 -150.288 41
-148.827 41 -148.863 41 -148.599 41 -148.133 42
-149.489 41 -149.389 41 -149.102 41 -148.598 42
-151.896 41 -153.712 40 -152.28 40 -150.926 41
-142.965 33 -143.202 35 -142.985 35 -143.77 37
-145.254 36 -149.028 36 -146.878 36 -145.521 37
-153.346 37 -149.71 35 -150 36 -151.28 37

However the further reduction to 35 cells produces the following table in
which we start to see the FFT model overestimating the number of cells in a
biased manner, although the likelihoods of the four models are in broad agree-
ment.
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-144.129 36 -148.72 36 -146.337 37 -144.584 37
-146.785 36 -149.664 36 -147.998 37 -146.792 37
-150.221 33 -151.583 32 -149.991 33 -151.201 37
-142.658 34 -143.072 36 -142.915 36 -143.154 37
-152.339 33 -153.707 30 -152.106 31 -153.466 35
-147.424 37 -144.977 38 -145.683 38 -146.49 39
-152.856 36 -156.567 34 -154.021 35 -152.478 37
-152.798 33 -154.999 28 -152.755 30 -155.032 35
-146.274 34 -150.299 34 -148.062 34 -147.571 37
-144.768 36 -145.235 37 -144.882 37 -144.767 37

Reducing the number of cells to 30 yields divergence in the likelihood estimates
too, as in the following table:

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-140.094 28 -142.829 29 -141.302 29 -145.536 34
-140.487 29 -143.953 29 -142.178 29 -146.174 34
-137.771 27 -138.535 29 -138.321 28 -145.971 33
-142.205 30 -145.612 28 -143.452 29 -146.512 34
-141.715 30 -146.407 29 -143.991 30 -146.539 34
-147.524 30 -146.787 29 -146.315 29 -151.487 34
-145.765 30 -146.033 30 -145.324 30 -149.674 34
-139.777 30 -143.263 30 -141.447 30 -144.618 34
-146.34 32 -153.725 28 -149.89 29 -150.328 35

-148.841 31 -147.083 30 -146.882 31 -150.594 35

Reducing the number of cells to 10 we obtain a stark difference between the
FFT and moment based models, as shown in the following table:
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Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-73.3783 10 -76.5299 10 -75.1702 10 -138.845 23
-69.2668 10 -69.0933 10 -68.4735 10 -129.504 23
-66.276 10 -63.7138 10 -64.0525 10 -130.571 23

-83.0595 11 -84.5144 13 -84.3105 12 -138.676 24
-67.5142 9 -68.668 10 -68.2279 9 -137.273 3
-81.0544 12 -81.9969 12 -81.2933 12 -132.806 24
-80.4326 11 -79.8365 11 -79.5108 11 -137.78 23
-66.6831 9 -67.4642 11 -67.4318 10 -130.458 23
-76.19 11 -78.2126 11 -77.0102 11 -135.338 23

-65.9317 9 -65.3378 10 -65.1538 10 -130.649 23

It appears that the moment based models are giving close to unbiased estimates
for the number of cells, whereas the FFT model is giving quite biased estimates.
The problem with the FFT model can be traced to factorisation approximation of
(39). Recall that this is a double approximation here: one in which the joint PGF
is replaced with a factorised product, given in (38), and the second factorisation
approximation made in going to (39). Now consider an allele having k genomes.
The probability that it completely drops out will be (1 − φ)k. However, if the
allele completely drops out then it cannot produce any stutter products, hence the
joint probability of dropout for that allele and its stutter products will be (1 − φ)k.
However the factorisation approximation (39) means that the factor (1 − φ)k is
counted for the allele and each of it stutter product, hence will give a total joint
probability of dropout of (1 − φ)4k. For large φ and k, both (1 − φ)k and (1 − φ)4k

will be very close to zero, and so the factorisation approximation will be good,
but if k and/or φ are small, then the terms will have a large effect on the likelihood
calculations, and their differences will also grow. It appears from the results in
the tables above that the transition point where the approximation starts becoming
bad is when the number of cells is around 35-40: with φ = 0.2 this corresponds to
around 7-8 amplify-able cells, approximately 45-50pg by weight, of DNA subject
to PCR.

It is curious that the moment models appear to give approximately unbiased
estimates for the number of cells. If we compare to the 10-cell, φ = 1 table on
page 83, in which the lognormal and gamma models gave underestimates for the
number of cells, it appears that the factorisation approximation has had a correct-
ing effect on these models. The normal model appears to have less variability in
its log-likelihood values when compared to to the lognormal and gamma models.
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Now φ = 0.2 is a high value for forensic samples. Recall that φ is the prod-
uct of the extraction efficiency and the fraction of extracted DNA that is taken for
PCR amplification. A more typical extraction efficiency value would be around
0.2, and similarly the fraction of aliquot taken for amplification would also be
around 0.2, so that φ values of around φ = 0.04 would be more realistic for foren-
sic casework Gill et al. (2005). Hence, if the transition for the FFT model hap-
pens when expected number of amplify-able cells is around 7-8, this corresponds
to around 200 cells in the sample.

The following table shows estimated cell counts and log-likelihoods for 200
cells and φ = 0.04, corresponding to around 8 cells of DNA. We see that all the
models are quite comparable in their estimates of cell counts and their likelihoods
values.

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-153.806 218 -158.376 212 -155.638 217 -154.016 222
-158.168 213 -160.208 199 -158.317 206 -157.783 208
-156.432 212 -158.452 204 -156.755 208 -156.127 208
-154.188 195 -155.784 189 -154.183 193 -153.931 195
-153.257 201 -152.824 199 -152.443 201 -152.747 202
-145.644 177 -143.678 190 -144.625 187 -146.097 190
-157.511 206 -157.945 190 -156.17 196 -155.666 202
-149.454 197 -149.449 203 -149.159 202 -148.911 202
-146.514 183 -152.516 182 -149.646 185 -148.237 192
-156.928 227 -157.76 220 -156.721 224 -155.927 224

The following boxplots for estimated cell counts and log-likelihoods, based
on 200 simulations confirms this:
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However, reducing the number of cells to 150 we obtain the following table

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-144.025 136 -142.352 143 -142.807 142 -151.579 170
-137.712 141 -144.199 131 -140.921 136 -146.336 170
-140.71 141 -142.032 147 -141.36 147 -147.833 173

-150.072 171 -151.597 164 -150.225 167 -151.937 188
-145.085 138 -142.67 143 -143.295 143 -151.939 171
-140.398 135 -142.12 134 -140.728 136 -148.936 168
-144.896 146 -146.134 145 -144.956 147 -151.04 175
-142.788 140 -145.464 127 -143.368 133 -151.46 169
-137.54 131 -141.125 134 -139.346 135 -147.239 167
-148.65 156 -146.808 158 -147.003 158 -151.945 181

and these corresponding plots based on 200 simulations:
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Reducing the number of cells to just 30, (so giving an average of just 1.2 cells
worth of DNA for PCR) we obtain the following:

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-26.6781 26 -26.6658 27 -26.226 24 -51.4625 4
-31.7871 30 -31.8301 32 -31.5047 29 -64.4055 6
-29.1594 27 -29.4184 33 -29.4628 29 -61.8782 5
-35.5867 28 -37.4363 39 -37.6121 34 -72.5157 6
-25.1085 25 -24.6105 28 -24.5907 24 -51.6145 4
-20.4599 24 -20.3479 25 -20.191 22 -44.142 4
-27.5168 25 -28.6467 30 -28.5487 26 -53.8391 4
-35.9236 31 -36.4142 35 -36.2378 32 -74.6161 7
-17.6097 21 -17.9368 25 -18.0696 21 -38.5006 3
-38.5072 33 -37.1138 34 -36.9363 31 -75.1298 7

and these corresponding plots:
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However, if we look at the simulated data for these latter simulations, we find
that they have complete drop-out on most of the markers, and just one peak on
each of the other markers. For such samples it is not necessary to include double
and forward stutters in the model. If we remove these model components, so that
we include only the target and single back-stutter allele distributions, we obtain
the following fits for the models (using the same simulated data).

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-15.3989 21 -14.676 18 -14.4406 16 -20.3993 11
-26.7267 26 -26.7212 27 -26.2684 24 -32.4348 25
-31.7885 30 -31.8266 32 -31.4997 29 -37.5075 31
-29.1259 28 -29.3837 33 -29.4362 29 -35.7485 31
-35.5782 28 -37.4145 39 -37.5979 34 -42.0806 33
-25.0822 25 -24.588 28 -24.5746 24 -31.628 26
-20.4623 24 -20.3585 25 -20.1993 22 -27.3342 23
-27.4902 25 -28.6197 30 -28.5286 26 -33.9025 25
-35.9469 31 -36.4683 35 -36.2816 32 -41.3409 35
-17.6271 21 -17.9428 25 -18.0737 21 -24.178 19

We see that the FFT estimate are now much better. The lower log-likelihoods
are explained by the inclusion of modelling stutters. However the few observed
peaks heights in the simulations are within the range 30-100, so that any stutter
peaks would not be observed with the threshold 30. So, if we also remove the
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modelling of stutter, then we obtain the following fits, in which we see that the
log-likelihoods of all four models are now comparable.

Normal Logormal Gamma FFT
L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells

-15.366 21 -14.6613 18 -14.4301 16 -14.3498 15
-26.6653 27 -26.6806 27 -26.2362 24 -26.1813 22
-31.7059 30 -31.7632 32 -31.4469 29 -31.785 27
-29.2184 28 -29.4225 33 -29.4644 29 -30.134 27
-35.5742 29 -37.4283 39 -37.6174 34 -36.6476 29
-25.388 26 -24.8448 28 -24.7658 24 -25.9578 23

-20.4145 24 -20.3252 25 -20.1738 22 -21.0171 21
-27.437 25 -28.5662 30 -28.4889 26 -27.6955 23
-35.856 32 -36.3818 36 -36.2137 32 -36.0407 31

-17.5942 21 -17.9095 25 -18.0512 21 -17.7821 19

10.1.3 Simulations with degradation, but no baseline noise

In the simulations above, we have simulated samples with a degradation param-
eter equal to zero, and have used that value in estimating the cell counts. We
now consider simulations in which the degradation parameter is non zero, and is
estimated from the data along with the cell counts.

Our first simulation set will have φ = 0.04, and degradation parameter δ =

0.01. This means that for an allele of size l in base-pairs, that its binomial selec-
tion probability if φ exp(−δl). So an an allele of size 100 will have a selection
probability of around 0.0147, whilst a longer allele of length 400 will have a se-
lection probability of around 0.0007.

We take the initial number of cells to be 1000. Including all possible forms of
stutter in fitting the model we obtain the following estimates from 10 simulations
(the degradation for only the FFT model is shown);
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Normal Logormal Gamma FFT δ̂FFT

L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells
-119.379 1055 -120.355 1003 -119.455 1029 -147.95 1172 0.00995539
-110.236 1002 -111.833 1038 -111.143 1030 -140.249 1146 0.0100925
-118.145 1218 -116.529 1127 -115.724 1154 -147.429 1320 0.0111535
-123.923 1033 -123.257 1113 -123.683 1092 -149.485 1172 0.00954747
-113.382 1020 -111.865 1012 -111.872 1017 -142.634 1147 0.0101153
-128.499 1108 -127.712 1028 -126.872 1059 -153.195 1204 0.00958187
-133.743 1002 -133.587 954 -132.82 965 -161.607 1098 0.00973301
-116.822 1038 -117.803 1036 -116.58 1037 -146.971 1165 0.0103188
-124.35 1025 -122.464 1058 -122.859 1049 -149.219 1145 0.0093805

-117.821 1082 -114.408 1066 -114.787 1066 -148.147 1207 0.0108218

Give the quite high level of degradation we would not expect to see double or
forward stutters, even amongst the smaller alleles. So removing these from the
model, but retaining the stutter model, we obtain (for the same simulated data)
much better concordance between the FFT model and the moment-based models.

Normal Logormal Gamma FFT δ̂FFT

L̂Lmax cells L̂Lmax cells L̂Lmax cells L̂Lmax cells
-119.262 1057 -120.176 1007 -119.301 1033 -120.526 1058 0.00995539
-110.268 1004 -111.917 1040 -111.211 1032 -111.825 1027 0.0100925
-118.006 1220 -116.363 1132 -115.572 1159 -117.445 1190 0.0111535
-123.927 1035 -123.266 1116 -123.691 1095 -124.538 1070 0.00954747
-113.252 1023 -111.715 1016 -111.741 1021 -113.954 1027 0.0101153
-128.584 1111 -127.824 1030 -126.974 1061 -128.595 1094 0.00958187
-133.737 1005 -133.594 957 -132.831 968 -133.919 984 0.00973301
-116.784 1040 -117.731 1039 -116.525 1040 -117.751 1046 0.0103188
-124.403 1028 -122.545 1060 -122.924 1052 -124.78 1043 0.0093805
-117.763 1084 -114.387 1069 -114.757 1070 -117.423 1076 0.0108218

The following plot shows the peak height data used in the last simulation of the
previous table. We see that there is complete allelic drop-out on the loci CSF1PO
and D18S51.
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The following plot shows the peak height probability distribution obtained
from the FFT model, for allele 25 of the locus FGA, in which the distribution
is conditional on the values all of the other peak heights and the profile of the
contributor. The smaller vertical line at (30, 0) locates the analytic threshold, the
larger vertical line locates the observed peak. The complete dropout probability
value point at (0, 0.0569), is off the scale of the plot. The plot suggests that,
most likely, either 3 or 4 intact genomic strands were randomly selected for the
simulated PCR amplification.
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Summary for single contributor simulations

For moderate to large numbers of cells, all three moment models and the FFT
based model yield comparable estimates for estimated cell counts and maximized
log-likelihood values. However when the expected number of cells drops below 8
or so, the FFT model exhibits bias in overestimating the number of cells, and pro-
duces more extreme (lower) likelihoods. Overall the lognormal and gamma mod-
els appear to give the better estimates. However, for such low amounts it seems
sensible to simplify the model by omitting the forward and double backward stut-
ter model components; doing so it appears that the FFT model is concordant with
the moment based models.

10.2 Two person simulations
We now look at a few two-person simulations, concentrating on low-template
scenarios with various relative initial amounts of DNA.

10.2.1 Two person mixtures

In the first simulation we have no degradation, that is δ = 0, set φ = 0.04, and we
simulate from contributors RD14-0003-01 (C1 = 200 cells) and RD14-0003-2
(C2 = 200 cells). With φ = 0.04 this corresponds to an average of 16 amplify-able
cells worth of DNA, around 150pg. Using all four stutter distributions, we obtain
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this set of simulated fits, assuming that both contributor profiles are known. All
models are giving similar maximized likelihood and cell estimates.

Normal Logormal Gamma FFT
L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2

-242.429 193 194 -241.955 200 201 -242.155 198 200 -242.31 200 200
-244.799 202 196 -241.404 210 198 -242.383 208 198 -243.576 208 200
-248.631 184 181 -248.005 182 180 -247.48 184 181 -249.832 201 196
-246.318 175 207 -244.447 187 206 -244.682 182 206 -246.326 194 206
-249.793 207 224 -247.785 207 226 -247.889 208 226 -248.492 208 224
-240.07 180 214 -239.761 185 225 -239.775 185 222 -240.727 190 222

-253.473 204 212 -251.879 200 209 -251.465 203 210 -251.749 204 213
-252.464 197 207 -251.199 192 206 -250.913 194 208 -251.412 195 208
-246.45 198 214 -252.804 210 197 -249.38 206 205 -247.265 205 206

-245.234 191 209 -243.718 200 209 -243.995 198 210 -244.59 200 212

Repeating the simulation but with C1 = 50 and C2 = 200 cells, (a 1:4 mix-
ture), we see that the three moment models are in broad agreement, but that the
FFT model is diverging in both the cell estimates for RD14-0003-01 and the max-
imized likelihoods, which are much lower than the moment models in comparison.

Normal Logormal Gamma FFT
L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2

-181.783 41 239 -180.183 40 237 -179.908 39 238 -215.229 9 251
-193.674 50 193 -192.84 47 193 -191.837 46 195 -239.032 16 204
-186.171 42 209 -190.008 51 212 -188.724 47 213 -232.002 13 224
-193.501 50 199 -190.686 54 200 -191.185 52 200 -234.826 111 189
-188.659 48 200 -191.771 46 204 -189.964 47 204 -235.36 15 204
-201.354 56 202 -200.354 60 196 -199.818 57 200 -240.015 115 192
-172.509 34 201 -173.196 41 215 -173.62 38 212 -205.595 9 208
-177.388 41 189 -176.959 42 196 -176.441 40 195 -213.534 11 204
-190.686 44 201 -194.281 48 188 -191.67 45 195 -233.393 13 204
-194.286 52 196 -200.514 54 192 -197.259 53 195 -237.177 112 187

However if we take out the double and forward stutter models, we see that
balance is restored:
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Normal Logormal Gamma FFT
L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2

-181.742 42 240 -180.308 42 238 -179.996 41 239 -183.262 45 237
-193.528 51 194 -192.87 49 193 -191.85 47 195 -195.064 52 193
-186.354 43 209 -190.206 52 213 -188.941 49 213 -191.354 50 212
-193.559 51 199 -190.807 55 201 -191.313 53 201 -194.136 55 200
-188.622 49 201 -191.907 48 204 -190.039 48 204 -191.171 53 201
-201.419 57 203 -200.684 61 196 -200.109 59 200 -202.325 60 202
-172.836 35 202 -173.856 43 215 -174.24 40 212 -176.951 39 207
-177.56 42 189 -177.187 44 196 -176.674 41 196 -179.332 44 192

-190.541 44 202 -194.199 49 189 -191.58 46 196 -192.827 49 199
-194.748 53 196 -200.858 56 192 -197.676 55 195 -197.303 57 196

We now look at the data from the final simulation. We refit the set of models
under three more scenarios, making the following four scenarios, in which the
K1K2 scenario is that use in the previous table.

K1K2 scenario RD14-0003-01 genotype is treated as known, and RD14-0003-02 geno-
type is treated as known

U1K2 scenario RD14-0003-01 genotype is treated as unknown, and RD14-0003-02 geno-
type is treated as known

K1U2 scenario RD14-0003-01 genotype is treated as known, and RD14-0003-02 geno-
type is treated as unknown

U1U2 scenario RD14-0003-01 genotype is treated as unknown, and RD14-0003-02 geno-
type is treated as unknown

The genotypes of the individuals, and the observed peaks using the analytic
threshold of 30 RFUs, are shown in Table 2, and the simulated EPG is plotted in
Figure 22. From Table 2 we can see that a number of alleles have dropped out,
and that for some loci there is complete drop-out of the low-donor contributor.

The results of fitting each of the models to each of the four scenarios is shown
in Table 3. We see that for each, the models give similar results, even with the
considerable allelic drop-out that is taking place. Note also that the table may be
used to find for prosecution to defence likelihood ratios. Suppose that the pros-
ecution case is that RD14-0003-01 is a contributor, and the defence hypothesis
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Table 2: Genotypes and peaks heights in a two person simulation, with
RD14-0003-01 having 50 cells, and RD14-0003-02 200 cells.

Locus RD14-0003-01 RD14-0003-02 Allele/height Allele/height Allele/height Allele/height
Amelogenin X / X X / Y X 199 Y 88
CSF1PO 11 / 12 7 / 8 7 147 8 148 11 55
D13S317 8 / 12 11 / 11 8 53 11 160 12 46
D16S539 12 / 13 11 / 13 11 123 12 34 13 114
D18S51 13 / 15 17 / 17 15 31 17 251
D19S433 14 / 15 13 / 14 13 77 14 154 15 54
D21S11 29 / 31 29 / 31 29 118 31 96
D2S1338 20 / 22 21 / 21 20 61 21 219 22 66
D3S1358 14 / 18 15 / 16 15 161 16 149
D5S818 11 / 12 11 / 12 11 89 12 240
D7S820 9 / 9 8 / 10 8 145 9 33 10 93
D8S1179 12 / 15 13 / 13 13 198
FGA 20 / 25 24 / 28 20 33 24 163 25 60 28 103
TH01 6 / 9.3 6 / 9 6 188 9 125
TPOX 8 / 11 9 / 9 9 178
vWA 17 / 19 15 / 17 17 185
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Figure 22: Simulated EPG for the 1:4 mixture of two persons of Table 2.
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Table 3: Fitting each of the four scenarios to each of the four models.

Scenario Normal Logormal Gamma FFT
L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2

K1K2 -194.748 53 196 -200.858 56 192 -197.676 55 195 -197.303 57 196
U1K2 -209.557 57 189 -215.185 67 185 -212.8 62 189 -212.005 63 191
K1U2 -237.658 55 193 –239.057 55 200 -238.359 54 199 -239.642 58 198
U1U2 -250.112 54 192 -250.986 58 195 -250.658 55 196 -251.555 59 195

Table 4: Various log-likelihood ratios for possible prosecution vs defence hypoth-
esis concerning the presence of one of the individuals, for each of the four models:
values given are log-likelihood ratios expressed in Bans.

Hypotheses Normal Lognormal Gamma FFT
K1K2 vs U1K2 6.43 6.22 6.57 6.38
K1U2 vs U1U2 5.41 5.18 5.34 5.17
K1K2 vs K1U2 18.64 16.59 17.67 18.39
U1K2 vs U1U2 17.61 15.55 16.44 17.18

that RD14-0003-01 is not. Then the log-likelihood ratio in favour of the prosecu-
tion hypothesis will be (−194.748 − (−209.557))/ log(10) = 6.43 Bans. Table 4
shows various combinations of log-likelihood ratios. Notice that the values are
higher for the last two rows, which are hypotheses concerning the presence of the
major contributor, than equivalents hypothesis comparisons in the first two rows
concerning the presence of the minor contributor. This is to anticipated. What
is perhaps surprising are the quite high values in the first two rows, concerning
the presence of the minor contributor, given the very low template DNA from the
minor contributor.

11 Application to sample data
This section describes the performance of the model above to the publicly avail-
able DNA dataset from the PROVEDIt Initiative (Alfonse et al., 2016, 2018). This
is a very large dataset of laboratory controlled single source and mixed DNA sam-
ples, with amplifications carried out for the Identifiler PlusTM, PowerPlex16HTM

and GlobalfilerTM kits. From it we shall use the sets of samples for the Identifiler
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PlusTM kit that were amplified for 28 cycles. We shall use the processed data in the
EXCEL files available from the PROVEDIt Initiative website, rather than the raw
fsa files that are also available. The EXCEL files contain allele calls (including
O/L designations) in Genemapper output format, in which an analytic threshold
has been set to 1 RFU. Although these files contain artefacts such as split-peaks
and dye-blobs, and the PROVEDIt Initiative provides an EXCEL spreadsheet to
help remove these, they have been left in so that the data can be processed in batch
automatically. Hence our analyses presented here are using quite noisy data.

11.1 Calibration of model parameters to the data
The samples from the PROVEDIt Initiative were prepared from the dilution of
high-density extracted DNA. Hence a Poisson model for the amount of DNA
would be appropriate. However, we use a binomial model as presented so far, as
this is more appropriate for real life samples.6 We assume an extraction efficiency
of ψ = 0.3, a sample volume of 25µL of which 10µL is used in the amplification,
hence π f = 0.06. We also used a drop-in rate per locus of 0.021.

To estimate the noise distribution, the peak heights of all off-ladder (O/L)
designated alleles in the high DNA single source samples were extracted and
treated as empirical distributions for each lane - each lane distribution is based
on over 40,000 values. A cut-off of 100 RFUs was used for the noise distribution.
Figure 23 shows the noise distributions for each of the four dyes, omitting the long
tail up to 100 RFUs.

To form the EPG data files, we retained for each sample all of the alleles that
were called, that is, those that were given an allele designation that was not given
as O/L.

Amplification probabilities were assigned as follows. It is assumed that all
strand probabilities in any given locus are the same, that is pg = pgd = ph =

phd = pa = pad = p. From the high-template DNA single source, non-degraded,
samples, in each sample the peak heights of called alleles were added together.
These total peak height values were scaled by the estimated amount of initial
DNA in each sample (this information is provided in the name of each sample).
The mean peak heights of every locus in the kit was then found. It was found
that TPOX had the largest mean value. This locus was - somewhat arbitrarily -
assigned an amplification probability of 0.85 for all types of strand. Using the

6Essentially we are approximating Poisson distributions by binomial distributions, usually the
approximation is the other way around.
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Figure 23: Empirical noise distributions for each dye lane for analyzing the
PROVEDIt Initiative data for the Identifiler-PlusTM kit. The long tails going out
to 100 RFUs is omitted.
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fact that the number of cycles was 28, and that the mean number of amplicons
from a single strand is approximately (1 + p)28, amplification probabilities for the
other loci were found so that their mean values scaled correctly according to their
empirical mean when compared to the mean peak height of TPOX.

Conditional stutter probabilities were either assigned values of 0.001 for for-
ward and double stutter and 0.004 for single stutter, except for the loci in the
allelic ladder of the kit where mean stutter ratios were available from the man-
ufacturer’s literature, (Scientific, 2012) in which case somewhat crude estimates
were obtained from the plots of stutter ratio versus allele lengths to obtain stutter
probabilities that matched in mean; forward and double stutter probabilities for
the alleles were obtained from these by division by 4.

A scale factor of two million was used for all lanes to convert the number of
tagged amplicons to an RFU equivalent value.

We shall focus on the samples that were amplified for 5 seconds, and for these
use an analytic threshold of 15 RFUs.

With all of these parameters set, and using the laboratory estimated amount in
each sample, maximum likelihood estimation was used to estimate the degrada-
tion and initial cell counts of each hypothesised contributor.

11.2 Analysis of a two person sample
From the two-person data the author extracted the profiles of 189 samples. These
two person mixtures were treated as 3 person mixtures in analysis. The profiles are
discussed here, and in later sections use the naming convention of the PROVEDIt
Initiative datasets.
Sample E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec

This two sample mixture was prepared in 1 ratio of 1:9, and subject to 10
seconds of sonification to simulate degradation. The target amount of DNA was
0.15ng. With our use of φ = 0.06, this corresponds to approximately 150/0.06 =

2500pg of DNA initially, that is around 378 cells in total, with around 22 cells
worth in the amplified sample. This is a highly degraded very low template sam-
ple, we therefore omit the double and forward stutter components when fitting the
models: the EPG plot is shown in Figure 24;

We first analyse this sample under the hypothesis that both of the actual con-
tributors are contributors, and an additional untyped contributor is assumed to be
present as well. Maximized likelihoods and estimated cell amounts are shown in
Table 5. The degradation is estimated on a discretized scale, and in this case all
four models have estimated the same degradation value.
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Figure 24: Schematic EPG plot for the
E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec sample.
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Table 5: Maximum likelihood estimates for the
E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec sample.

Model L̂Lmax Ĉ1 Ĉ2 Ĉ3 δ̂

Normal -236.85 72 343 0 0.00504874
Lognormal -240.971 64 337 0 0.00504874
Gamma -237.857 67 343 0 0.00504874
FFT -235.605 71 347 0 0.00504874

Of particular note is that all models have estimated the cell amount for the
extra untyped contributor to be 0 - which is in agreement with the manner of the
preparation of the two-person mixture. The forensic science literature contain
much discussion concerning how to estimate the number of contributors to a mix-
ture(see for example (Haned et al., 2011; Lauritzen and Mortera, 2002; Egeland
et al., 2003; Swaminathan et al., 2015)). In the models presented here the max-
imum likelihood estimates can return 0 for cell counts, because the cell amounts
beign estimated are discrete integers. This is in marked contrast to other contin-
uous peak height models that model contributor amounts or relative amounts by
continuous variables, for which the nesting of models by adding extra hypothe-
sised contributors will lead to increasing maximized likelihoods. (Cowell et al.,
2015)

(Graversen and Lauritzen, 2015; Cowell et al., 2015) introduced various statis-
tically based diagnostics to check how well a model fits the profile data. One such
diagnostic is a QQ-plot in which for each allelic peak ha in the set H of peaks
observed above the threshold T the quantities P(H < ha |H > T, hb ∈ H , b , a)
are calculated. If the models is ‘true’, then these values should follow a uniform
distribution, so that a plot of these sorted values should follow a straight line when
plotted against the quantiles of the uniform distribution. Figure 25 shows the QQ-
plot for the FFT model, which is the model with the highest likelihood in Table 5:
we see that the fit is very good.

As an example of the predictive distribution of a peak, we take the allele 13 of
locus D13S317. For that locus, three peaks were observed above the threshold of
15 RFUs: allele 11 with a peak height of 117, allele 12 with a height of 177 and
allele 13 with a height of 27. Contributor RD14-0003-42 has genotype (12/13) on
locus D13S317, and RD14-0003-43 has genotype (11/12). Thus the 13 peak can
arise from the minor contributor RD14-0003-42 (recall that we are not including
forward stutter in this analysis) or drop-in. From the FFT estimates in Table 5,
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Figure 25: QQ-plot for the FFT model for the
E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec sample.
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Table 6: Maximum likelihood estimates for the
E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec sample as-
suming 3 untyped contributors.

Model L̂Lmax Ĉ1 Ĉ2 Ĉ3 δ̂

Normal -297.752 90 370 9 0.00567983
Lognormal -297.842 79 388 0 0.00567983
Gamma -297.56 78 391 0 0.00567983
FFT -298.815 71 347 0 0.00567983

there are an estimated 71 initial genomic strands of this allele type, sampled intact
with probability 0.06 for amplification, hence an estimated mean of around 4.26
amplify-able strands . Figure 26 shows the predictive distribution for this allele
conditional on the observed peak heights and estimated cell amounts. The first
peak on the left is the baseline-noise distribution for VIC lane (compare it to
Figure 23). The plot is giving a clear signal that just one amply-able strand of this
allele was in the aliquot minitube when the PCR was carried out. For comparison,
the distribution obtained from using the Gamma model is also shown in Figure 26.

Table 6 shows estimates for each model analyzed under the assumption that
the mixture is of three untyped persons. The gamma model has the highest like-
lihood, and now the normal model is giving a non-zero cell count estimate for
all three persons. Distribution plots for allele 13 of locus D13S317 are given in
Figure 27.
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Figure 26: Predictive distributions for allele 13 of locus D13S317, for the
E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec sample assum-
ing the genotypes of the true contributors and a third untyped contributor. Top
plot, the FFT model, bottom plot the (moment matching) Gamma model. The
first vertical line at 15 RFUs is the location of the analytic threshold, the second
at 27 RFUs is the observed peak height.
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Figure 27: Predictive distributions for allele 13 of locus D13S317, for the
E02 RD14-0003-42 43-1 9-M2S10-0.15IP-Q1.0 001.5sec sample assum-
ing three contributors of unknown genotype. Top plot, the FFT model, bottom
plot the (moment matching) Gamma model.
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11.3 Analysis of a three person sample
The sample A06 RD14-0003-47 48 49-1 9 9-M2c-0.589IP-Q1.1 001.5sec
has contributor amounts in the proportions of 1:9:9, with a medium level of degra-
dation cause by rDNase I enzyme added to the extract. Analyzing as a four person
mixture, assuming as knowns the genotypes of the three contributors and one ex-
tra untyped individual, and ignoring forward and double stutter, we obtain the
estimates in Table 7. The FFT model correctly estimate zero cells for the untyped
contributor, and the FFT model gives the highest likelihood. The estimated mix-
ture proportions are in line with the experimentally prepared ratios for all four
models. The QQ-plot for the FFT model is shown in Figure 28.

Table 7: Maximum likelihood estimates for the
A06 RD14-0003-47 48 49-1 9 9-M2c-0.589IP-Q1.1 001.5sec sample
assuming the genotypes of the three contributors, plus a fourth of unknown
genotype.

Model L̂Lmax Ĉ1 Ĉ2 Ĉ3 Ĉ4 δ̂

Normal -384.74148962 73 687 718 2 0.00490963394042
Lognormal -386.801221118 67 693 682 2 0.00490963394042
Gamma -384.573053649 68 693 695 2 0.00490963394042
FFT -382.407751392 62 622 639 0 0.00490963394042
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Figure 28: QQ-plot for the FFT model for the
A06 RD14-0003-47 48 49-1 9 9-M2c-0.589IP-Q1.1 001.5sec sample,
with stutter but no double or forward stutter.
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Table 8: Maximum likelihood estimates for the
A06 RD14-0003-47 48 49-1 9 9-M2c-0.589IP-Q1.1 001.5sec sample
assuming the genotypes of the three contributors, plus a fourth of unknown
genotype, with estimation include stutter, double stutter and forward stutter
distributions.

Model L̂Lmax Ĉ1 Ĉ2 Ĉ3 Ĉ4 δ̂

Normal -395.225614561 59 591 615 0 0.00436411905815
Lognormal -401.337705571 45 587 584 4 0.00436411905815
Gamma -394.142509492 53 595 604 3 0.00436411905815
FFT -411.894302982 17 599 625 0 0.00436411905815

If we include forward and double stutter in the models, we obtain the estimates
obtained in Table 8. We see that the FFT model has become out-of-line with the
other models in having a much lower likelihood, and much lower estimates for
the number of cells from the minor contributor. The normal model is now the
one having the highest likelihood: QQ-plots for the Normal and FFT model are
shown in Figure 29.
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Figure 29: QQ-plots theA06 RD14-0003-47 48 49-1 9 9-M2c-0.589IP-Q1.1 001.5sec
sample, when forward and double stutter are included. The Normal model (left),
and the FFT model ((right).
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12 A modification of the FFT model to correct for
correlations

We have seen that in some cases we can improve the FFT model by removing
the forward and double back-stutters; however this will not be appropriate for all
cases. Here we introduce an adjustment to the FFT model that puts back some of
the correlation that was discarded in the factorization approximations of (38) and
(39); we denote the new model by mFFT.

Recall that the point of making those approximations was purely to make the
computations tractable, by enabling the peak height likelihood to factorize into a
product of convolutions of univariate probability distributions of individual alle-
les. However, as pointed out earlier, a side effect of this approximation is that the
complete dropout probability for an allele is included as a factor multiple times in
the likelihood. The modification here aims to reduce such multiple factors.

For any given allele a, there will up to 6 distributions to convolve in finding
its peak height likelihood contribution:

1. The base-line noise distribution

2. The drop-in distribution

3. The peak height distribution arising from genomes of type a

4. The peak height distribution arising from stutter from genomes of type one
repeat larger than a

5. The peak height distribution arising from double stutter from genomes of
type two repeats larger than a

6. The peak height distribution arising from forward stutter from genomes of
type one repeat smaller than a

In the new approximation we always retain the first three distributions. Now
consider the contribution from say stutter from one repeat higher. Suppose that no
peak above threshold is observed at the one-repeat higher position. This means
that any genomic material of allelic type one-repeat higher than a has dropped out.
In this case, we can therefore omit the marginal stutter peak height distribution in
the convolution as it is extremely likely that any stutter product would be too
low to be observed. However, given that stutter peaks are typically around 5-
15% of the target peak producing the stutter, this means that even if a peak is
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observed at one-repeat higher than a, but is below a small multiple of the analytic
threshold then we can assume that any stutter contribution it makes to the allele
a will not be seen. A similar argument applies also to the double stutter and
forward stutter distributions—more so as these tend to have smaller stutter ratios
than single stutter peaks.

Hence the modification is as follows. In evaluating the peak height likelihood
for an allele a, when forming the marginal peak height distribution:

• Always include the base-line noise distribution.

• Always include the drop-in distribution.

• Always include the peak height distribution arising from genomes of type
a.

• Only include the peak height distribution arising from stutter from genomes
of type one repeat larger than a if there is a peak above three times the
threshold at that position.

• Only include the peak height distribution arising from double stutter from
genomes of type two repeats larger than a if there is a peak above three
times the threshold at that position.

• Only include the peak height distribution arising from forward stutter from
genomes of type one repeat smaller than a if there is a peak above three
times the threshold at that position.

• Convolve all of the included distributions to obtain the marginal peak height
distribution to use for finding the likelihood for the peak of the allele a.

A factor different to three for the multiple of the analytic threshold could be
used—further research is required to find the best factor to use.

12.1 Revisiting the two person simulation of Section 10.2.1
The following table shows the model fits obtained using the mFFT model for the
simulation with C1 = 50 cells and C2 = 200, which should be compared to the
second table in Section 10.2.1: we see that the mFFT model is now much more
in line with the other models both in its maximum likelihood values and the cell
estimates of the two contributors.
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Normal Logormal Gamma mFFT
L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2

-181.783 41 239 -180.183 40 237 -179.908 39 238 -180.334 38 237
-193.674 50 193 -192.84 47 193 -191.837 46 195 -191.74 47 199
-186.171 42 209 -190.008 51 212 -188.724 47 213 -188.69 44 215
-193.501 50 199 -190.686 54 200 -191.185 52 200 -193.364 52 202
-188.659 48 200 -191.771 46 204 -189.964 47 204 -188.564 47 204
-201.354 56 202 -200.354 60 196 -199.818 57 200 -205.226 61 202
-172.509 34 201 -173.196 41 215 -173.62 38 212 -172.733 34 210
-177.388 41 189 -176.959 42 196 -176.441 40 195 -176.003 39 195
-190.686 44 201 -194.281 48 188 -191.67 45 195 -190.566 44 200
-194.286 52 196 -200.514 54 192 -197.259 53 195 -195.177 51 199

12.2 Revisiting the three person mixture of Section 11.3 from
the PROVEDit Initiative

Re-analyzing A06 RD14-0003-47 48 49-1 9 9-M2c-0.589IP-Q1.1 001.5sec,
with both forward and double stutter included using the mFFT model, we ob-
tain a maximized log-likelihood of -405.944809925, and estimated cell counts of
Ĉ1 = 31, Ĉ2 = 596, Ĉ3 = 617 and Ĉ4 = 0, less extreme than the estimates
in Table 8. The corresponding QQ-plot is little changed from Figure 29 and is
omitted.

12.3 Another 2-person mixture from the PROVEDit datatset
In all the examples seen so far, we have seen broad agreement between the various
models. We now look at an example from PROVEDit datatset in which the models
give quite different model fits. The dataset we shall look at is
C04 RD14-0003-42 43-1 9-M1U105-0.54IP-Q0.6 003.5sec. This is a two-
person mixture of 540pg total DNA template in the ratio of 1:9 from the two
contributors. The U105 indicates that the sample was subject to 105 minutes
exposure to ultra-violet radiation (to degrade the sample) before PCR. Table 9
shows the peak heights of the sample, above the analytic threshold of 15 RFUs,
and the profiles of the two contributors. A plot of the EPG is shown in Figure 30.

We shall analyse this mixture under the assumption of two contributors. If we
assume the true genotypes of the contributors, and include forward and double
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Figure 30: EPG plot for the C04 RD14-0003-42 43-1 9-M1U105-0.54IP-Q0.6 003.5sec
sample.
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Table 10: Fitting each of the four scenarios to each of the four models.

Scenario Normal Logormal Gamma mFFT
L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2 L̂Lmax Ĉ1 Ĉ2

42-43 -651.92 154 1267 -528.83 162 1108 -543.31 161 1158 -502.20 158 1158
U1-43 -599.47 138 1233 -549.52 142 1094 -553.55 136 1145 -534.37 140 1161
42-U2 -700.63 154 1267 -577.53 162 1108 -592.01 161 1158 -550.90 158 1158
U1-U2 -648.809 138 1223 -598.54 143 1094 -602.67 136 1145 -583.39 141 1161

stutter, then obtain a maximized log-likelihood of -756.241357805 using the nor-
mal model. Omitting the forward and double stutter, the maximized log-likelihood
increases significantly to -651.9280003. Hence in all analyses we shall include
only stutter, and omit both forward and double stutter model components.

Table 10 shows the results of fitting models to four possible two-contributor
scenarios. The first line of the table is the scenario in which we assume as known
the profiles of the (true) contributors RD14-0003-42 and RD14-0003-43. In the
second line we replace RD14-0003-42 with an untyped contributor labelled U1.
In the third line we replace RD14-0003-43 with an untyped contributor labelled
U2. In the last line we treat both contributors as having unknown genotypes.

We see that cell estimates are broadly in line for all models except the nor-
mal model, which has higher major contributor estimates, and in agreement with
the 1:9 preparation ratio of the sample. There is quite a lot of variation between
the models in their log-likelihood estimates for each scenario, with the mFFT
model outperforming the moment based models, by a considerable margin. The
log-likelihood estimates are also out of line with the other models, in that for the
second and fourth scenarios in which the RD14-0003-42 has been replaced by an
unknown person, the likelihoods are lower than the scenario in which both con-
tributor genotype are assumed known, indicating evidence against RD14-0003-42
being a contributor.

Table 11 shows various log-likelihood ratios (expressed in bans) obtained by
comparing pairs of scenarios from Table 10. We see that all models are giving
similar log-likelihood ratios in favour of the major contributor, compared to the
maximum of 24.71 Bans (the inverse log profile probability of RD14-0003-43),
and the mFFT model gives much larger values in favour of the minor contribu-
tor compared to the other models, with the normal model suggesting very strong
evidence against RD14-0003-42 being a contributor (the inverse log profile prob-
ability of RD14-0003-42 is 20.22 Bans).
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Table 11: Various scenario log-likelihood ratios expressed in Bans.

Hypotheses Normal Lognormal Gamma mFFT
42-43 vs U1-43 -22.78 8.99 4.45 13.97
42-U2 vs U1-U2 -22.51 9.12 4.63 14.11
42-43 vs 42-U2 21.15 21.15 21.15 21.15
U1-43 vs U1-U2 21.43 21.29 21.33 21.29

Figure 31 shows the QQ-plots for each of the models under the scenario in
which both contributors are known.
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Figure 31: Top-left: normal model; top-right: lognormal model; bottom left:
Gamma model; bottom right: mFFT model.

If we add a third un-profiled contributor, then all the models give similar re-
sults. Here are the values under the scenario of the two known contributors and a
third untyped contributor.

Model L̂Lmax Ĉ1 Ĉ2 Ĉ3

Normal -489.24 153 1204 16
Lognormal -500.16 153 1081 26
Gamma -496.16 153 1121 27
mFFT -491.83 152 1140 17

If we add another untyped contributor, so that we analyse the sample assuming
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the profiles of the two (true) contributors and two untyped contributors, we obtain
the following estimates in which the mFFT model gives an estimate of no cells to
the second untyped contributor, unlike the moment based models:

Model L̂Lmax Ĉ1 Ĉ2 Ĉ3 Ĉ4

Normal -487.71 150 1202 14 8
Lognormal -500.04 151 1085 17 13
Gamma -495.48 150 1126 15 15
mFFT -491.83 152 1140 17 0
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13 Summary and outlook
In this paper, a framework for modelling single source and multiple donor foren-
sic DNA samples has been elaborated for STR loci, based on an idealisation of the
steps for forming an EPG from an initial DNA sample. It was shown that mul-
tivariate probability generating functions provide a succinct and efficient mathe-
matical representation of the steps in the process, and that their evaluation can be
carried out efficiently using FFT. Factorization approximations to make the math-
ematical models tractable were shown to introduce some biases for low template
samples, but these biases can be largely removed by a modification, the mFFT
model, which reintroduces, in a principled manner, some of the correlation lost by
factorization approximations without affecting computational efficiency.

The examples treated in this paper have assumed that contributors are unre-
lated individuals. The framework may be extended to include relatedness of in-
dividuals, which might require that linkage between some loci would need to be
taken into account.

An issue not explored in this paper is the robustness of the performance of the
models to mis-specifications of model parameters. This could be readily explored
via simulations in which, for example, data is simulated using one set of ampli-
fication, stutter and selection probabilities, and the simulated data is then fitted
assuming different probabilities. Given the reaonably good performance of the
model on the experimental data from the PROVEDit initiative, for which reason-
able values were assumed for the parameters but without any detailed knowledge
of what the true experimental values were, one could anticipate that the model
will prove to be reasonably robust to such parameter mis-specifications.

The current paper has focussed on EPGs obtained by capillary electrophore-
sis, however it may not limited to this. Recently, Bleka et al. (2017) showed that
by substituting read coverages for peak heights, autosomal SNP mixtures ana-
lyzed using massively parallel sequencing can be interpreted by the open source
software Euroformix (Bleka et al., 2016), originally developed for STRs. By
making the same substitution, that is, by replacing the RFU scale factors by ‘read
factors’, the framework developed in this paper is also applicable to such SNP
mixtures. Moreover, because SNPs are biallelic and do not stutter, the factoriza-
tion approximations are no longer required.

Finally, other branching processes outside of the forensic applications fo-
cussed on in this paper can be treated by the methods introduced in this paper.
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Appendices
A Derivation of moments for amplicon model
Let N denote the number of target amplicons, and M the number of stutter ampli-
cons, arising from the amplification of a single target amplicon. We have that

�N | n =
∂Fn(t, s)

∂t
|t=1,s=1

�N(N − 1) | n =
∂2Fn(t, s)

∂t2 |t=1,s=1

�M | n =
∂Fn(t, s)
∂s

|t=1,s=1

�N(N − 1) | n =
∂2Fn(t, s)
∂s2 |t=1,s=1

�NM | n =
∂2Fn(t, s)
∂s∂t

|t=1,s=1

from which the variance �N and �M may be found, and hence the correlation
Cor(N,M). We take each in turn.

�N | n:

Using the chain rule for differentiating, we have

∂Fn(t, s)
∂t

= (1−p)
∂Fn−1(t, s)

∂t
+2p(1−ξ)Fn−1(t, s)

∂Fn−1(t, s)
∂t

+pξ
∂Fn−1(t, s)

∂t
Gn−1(s)

We now substitute t = 1 and s = 1, use the property that Fn(1, 1) = 1 for all n, to
obtain a linear difference equation that can be solved:

�N | n = (1 − p)(�N | n − 1) + 2p(1 − ξ)(�N | n − 1) + pξ(�N | n − 1)
= (1 + p(1 − ξ))(�N | n − 1)
= (1 + p(1 − ξ))n(�N | 0)
= (1 + p(1 − ξ))n
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This could have been anticipated: a main peak allele is amplified with proba-
bility p(1− ξ), hence starting with one allele and doing n amplifications, the mean
number is as shown, (1 + p(1 − ξ))n.

�N(N − 1) | n and �N | n:

These could also be written down directly based on the previous result, however
we go through the formal steps.

�N(N − 1) | n =
∂2Fn(t, s)

∂t2 |t=1,s=1

∂2Fn(t, s)
∂t2 = (1 − p)

∂2Fn−1(t, s)
∂t2 + 2p(1 − ξ)Fn−1(t, s)

∂2Fn−1(t, s)
∂t2 +

2p(1 − ξ)
(
∂Fn−1(t, s)

∂t

)2

+ pξ
∂2Fn−1(t, s)

∂t2 Gn−1(s)

�N(N − 1) | n = (1 + p(1 − ξ))(�N(N − 1) | n − 1) + 2p(1 − ξ) (�N | n − 1)2

�N2 | n = (1 + p(1 − ξ))(�N2 | n − 1) + 2p(1 − ξ) (�N | n − 1)2

= (1 + p(1 − ξ))(�N2 | n − 1) + 2(p(1 − ξ))(1 + p(1 − ξ))2n−2

= (1 + p(1 − ξ))n(�N2 | 0) + 2(p(1 − ξ))
n∑

j=1

(1 + p(1 − ξ))2 j−2(1 + p(1 − ξ))n− j

= (1 + p(1 − ξ))n + 2(p(1 − ξ))
n−1∑
j=0

(1 + p(1 − ξ))2 j(1 + p(1 − ξ))n−1− j

= (1 + p(1 − ξ))n + 2(p(1 − ξ))(1 + p(1 − ξ))n−1
n−1∑
j=0

(1 + p(1 − ξ)) j

= (1 + p(1 − ξ))n + 2(p(1 − ξ))(1 + p(1 − ξ))n−1 (1 + p(1 − ξ))n − 1
(1 + p(1 − ξ)) − 1

= (1 + p(1 − ξ))n

[
1 + 2

(1 + p(1 − ξ))n − 1
1 + p(1 − ξ)

]
= (1 + p(1 − ξ))n−1 [

2(1 + p(1 − ξ))n + p(1 − ξ) − 1
]
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Hence the variance is

�N | n = (�N2 | n) − (�N | n)2

= (1 + p(1 − ξ))n

[
1 + 2

(1 + p(1 − ξ))n − 1
1 + p(1 − ξ)

]
− (1 + p(1 − ξ))2n

= (1 + p(1 − ξ))n

[
1 + 2

(1 + p(1 − ξ))n − 1
1 + p(1 − ξ)

− (1 + p(1 − ξ))n

]
=

1 − p(1 − ξ)
1 + p(1 − ξ)

(1 + p(1 − ξ))n [
(1 + p(1 − ξ))n − 1

]

We also have

�N(N − 1) | n = (�N | n) + (�N | n)2 − (�N | n)

=
1 − p(1 − ξ)
1 + p(1 − ξ)

(1 + p(1 − ξ))n [
(1 + p(1 − ξ))n − 1

]
+ (1 + p(1 − ξ))2n − (1 + p(1 − ξ))n

= 2(1 + p(1 − ξ))n−1((1 + p(1 − ξ))n − 1)

�M | n:

This follows a similar pattern to the above for N:

�M | n =
∂Fn(t, s)
∂s

|t=1,s=1

∂Fn(t, s)
∂s

= (1 − p)
∂Fn−1(t, s)

∂s
+ 2p(1 − ξ)Fn−1(t, s)

∂Fn−1(t, s)
∂s

+ pξ
∂Fn−1(t, s)

∂s
Gn−1(s) + pξFn−1(t, s)

∂Gn−1(s)
∂s

Hence

�M | n = (1 + p(1 − ξ))(�M | n − 1) + pξ
∂Gn−1(s)

∂s
|s=1

Now
Gn(s) = (1 − p)Gn−1(s) + pG2

n−1(s),
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which is the recursion relation for the generating function of a single allele
amplifying with probability p in the branching process, hence

�M | n = (1 + p(1 − ξ))(�M | n − 1) + pξ(1 + p)n−1

Now we start with no stutter amplicons, hence �M | 0 = 0. Thus

�M | n = (1 + p(1 − ξ))(�M | n − 1) + pξ(1 + p)n−1

= (1 + p(1 − ξ))2(�M | n − 2) + (1 + p(1 − ξ))pξ(1 + p)n−2 + pξ(1 + p)n−1

=
...

= (1 + p(1 − ξ))n(�M | 0) + pξ
n−1∑
j=0

(1 + p(1 − ξ)) j(1 + p)n− j−1

We now use �M | 0 = 0, 1 + p − (1 + p(1 − ξ) = pξ, and the relation

an−1 + an−2b + an−3b2 + · · · abn−2 + bn−1 =
an − bn

a − b

to deduce that

�M | n = pξ
(1 + p)n − (1 + p(1 − ξ))n

(1 + p) − (1 + p(1 − ξ)
= (1 + p)n − (1 + p(1 − ξ))n

When ξ = 0 this vanishes as it should. Note also that �[N + M | n] = (1 + p)n

which is also as expected– it is as if the stutter and the main target cannot be
distinguished apart. We also have

�M | n
�N + M | n

= 1 −
(
1 −

pξ
1 + p

)n

which→ 1 and n→ ∞ for ξ > 0. Hence ultimately the stutter allele peak will
dominate the original allele peak with enough cycles, a result found by Weusten
and Herbergs (2012).
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�M(M − 1) | n and �M | n

Denote Fn;s(t, s) = ∂Fn(t, s)/∂s, and Fn;ss the second derivative.
Hence

�M(M − 1) | n = Fn;ss|t=1,s=1

Fn;ss = (1 − p)Fn−1;ss + 2p(1 − ξ)Fn−1Fn−1;ss + 2p(1 − ξ)F2
n−1;s

+ pξFn−1;ssGn−1 + 2pξFn−1;sGn−1;s + pξFn−1Gn−1;ss

�M(M − 1) | n = (1 + p(1 − ξ))(�M(M − 1) | n − 1)+(
2p(1 − ξ)F2

n−1;s + 2pξFn−1;sGn−1;s + pξFn−1Gn−1;ss

) ∣∣∣∣∣
s=t=1

= (1 + p(1 − ξ))(�M(M − 1) | n − 1)+

2p(1 − ξ)
(
(1 + p)n−1 − (1 + p(1 − ξ))n−1

)2
+

2pξ
(
(1 + p)n−1 − (1 + p(1 − ξ))n−1

)
(1 + p)n−1+

2pξ(1 + p)n−2[(1 + p)n−1 − 1]

But we have that �M | n = (1 + p(1 − ξ))(�M | n − 1) + pξ(1 + p)n−1, hence
adding this to both sides we obtain

�M2 | n = (1 + p(1 − ξ))(�M | n − 1)

+ 2p(1 − ξ)
(
(1 + p)n−1 − (1 + p(1 − ξ))n−1

)2
+

2pξ
(
(1 + p)n−1 − (1 + p(1 − ξ))n−1

)
(1 + p)n−1+

pξ(1 + p)n−2[2(1 + p)n−1 + p − 1]

Expanding this out we have

�M2 | n = (1 + p(1 − ξ))(�M2 | n − 1)

+ 2p(1 − ξ)
(
(1 + p)2(n−1) − 2(1 + p)n−1(1 + p(1 − ξ))n−1 + (1 + p(1 − ξ))2(n−1)

)
+ 2pξ

(
(1 + p)2(n−1) − (1 + p)n−1(1 + p(1 − ξ))n−1

)
+

pξ
1 + p

(
2(1 + p)2(n−1) − (1 − p)(1 + p)n−1

)
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Collecting together similar terms, this reduces to

�M2 | n = (1 + p(1 − ξ))(�M2 | n − 1)

+

(
2p +

2pξ
1 + p

)
(1 + p)2(n−1)

− (4p(1 − ξ) + 2pξ)) (1 + p)n−1(1 + p(1 − ξ))n−1

+ 2p(1 − ξ)(1 + p(1 − ξ))2(n−1)

−
p(1 − p)ξ

1 + p
(1 + p)n−1

We may now solve this linear difference equation, noting that the terms on the
right are each of the form an−1 or a2(n−1), making the particular solution terms of
the form (an−bn)/(a−b) or (a2n−bn)/(a2−b), where in each case b = 1+ p(1−ξ).
We also use that (�M2 | 0) = 0. We obtain

�M2 | n =

(
2p +

2pξ
1 + p

)
(1 + p)2n − (1 + p(1 − ξ))n

(1 + p)2 − (1 + p(1 − ξ))

− (4p(1 − ξ) + 2pξ)) (1 + p(1 − ξ))n−1 (1 + p)n − 1
1 + p − 1

+ 2p(1 − ξ)(1 + p(1 − ξ))n−1 (1 + p(1 − ξ))n − 1
(1 + p(1 − ξ)) − 1

−
p(1 − p)ξ

1 + p
(1 + p)n − (1 + p(1 − ξ))n

(1 + p) − (1 + p(1 − ξ))

Now

(1 + p) − 1 = p
(1 + p(1 − ξ)) − 1 = p(1 − ξ)

(1 + p) − (1 + p(1 − ξ) = pξ

(1 + p)2 − (1 + p(1 − ξ) = 1 + 2p + p2 − 1 − p + pξ = p(1 + p + ξ)
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Hence simplifying further we obtain

�M2 | n = 2
(1 + p)2n − (1 + p(1 − ξ))n

1 + p
− (4 − 2ξ)(1 + p(1 − ξ))n−1((1 + p)n − 1)

+ 2(1 + p(1 − ξ))n−1((1 + p(1 − ξ))n − 1)

−
(1 − p)
1 + p

((1 + p)n − (1 + p(1 − ξ))n)

Now we had previously that

�M | n = (1 + p)n − (1 + p(1 − ξ))n

Squaring this and subtracting from EM2 | n gives the desired variance �M | n.
However there does not appear to be a nice simple reduction in the result, so this
is omitted.

For large n we may drop the terms in (1 + p(1 − ξ))n and lower, and we have
approximately

�M2 | ≈ 2n(1 + p)2n−1 − (4 − 2ξ)(1 + p(1 − ξ))n−1(1 + p)n−1 + 2(1 + p(1 − ξ))2(n−1)
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�NM | n:

�NM | n =
∂2Fn(t, s)
∂s∂t

|t=1,s=1

∂2Fn(t, s)
∂s∂t

= (1 − p)
∂2Fn−1(t, s)

∂s∂t
+ 2p(1 − ξ)Fn−1(t, s)

∂2Fn−1(t, s)
∂s∂t

+ pξ
∂2Fn−1(t, s)

∂s∂t
Gn−1(s)

+ 2p(1 − ξ)
∂Fn−1(t, s)

∂s
∂Fn−1(t, s)

∂t

+ pξ
∂Fn−1(t, s)

∂t
∂Gn−1(s)

∂s
�NM | n = (1 + p(1 − ξ))(�NM | n − 1) + 2p(1 − ξ)(�N | n − 1)(�M | n − 1) + pξ(�N | n − 1)(1 + p)n−1

= (1 + p(1 − ξ))(�NM | n − 1) + 2p(1 − ξ)(1 + p(1 − ξ))n−1[(1 + p)n−1 − (1 + p(1 − ξ))n−1]

+ pξ(1 + p(1 − ξ))n−1(1 + p)n−1

=(1 + p(1 − ξ))(�NM | n − 1) + p(2 − ξ)(1 + p(1 − ξ))n−1(1 + p)n−1

− 2p(1 − ξ)(1 + p(1 − ξ))n−1(1 + p(1 − ξ))n−1

Using �NM | 0 = 0, the solution may be written as

�NM | n = (2 − ξ)p(1 + p(1 − ξ))n−1((1 + p)n − 1)/(1 + p − 1)

− 2p(1 − ξ)(1 + p(1 − ξ))n−1 (1 + p(1 − ξ))n − 1
(1 + p(1 − ξ) − 1

= (2 − ξ)(1 + p(1 − ξ))n−1((1 + p)n − 1) − 2(1 + p(1 − ξ))n−1((1 + p(1 − ξ))n − 1)

= (1 + p(1 − ξ))n−1((2 − ξ)(1 + p)n − 1) − 2((1 + p(1 − ξ))n − 1)

= (1 + p(1 − ξ))n−1(ξ(1 − (1 + p)n) + 2((1 + p)n − (1 + p(1 − ξ))n)

Cov(M,N)

The covariance Cov(M,N) is given by

Cov(M,N) = �NM | n − (�N | n)(�M | n)

= (1 + p(1 − ξ))n−1(ξ(1 − (1 + p)n) + 2((1 + p)n − (1 + p(1 − ξ))n)
− ((1 + p)n − (1 + p(1 − ξ))n))(1 + p(1 − ξ))n

= (1 + p(1 − ξ))n−1 ((1 − p(1 − ξ))((1 + p)n − (1 + p(1 − ξ))n) − ξ((1 + p)n − 1))
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from which the correlation may be found, by an appropriate scaling using the
variances given earlier.

Binomial sampling

The generating function for Binomial sampling with n trials and success probabil-
ity q is

(1 − q + qt)n

Let F(t, s) denote the joint PGF for main T and stutter S peaks for k cycles
based on an initial single allele. Let �N denote the mean number of main alleles
�S the mean number of stutter allele, and similarly for the variance�N and�S .
Then for an initial set of n alleles sampled with probability p the joint PGF is
given by

Q(t, s) = (1 − q + qF(t, s))n

With abuse of notation, let �t denote the mean number of main alleles for this
PGF, etc., so that �t = ∂Q/∂t|t=s=1, etc.

Thus

∂Q(t, s)
∂t

= nq(1 − q + qF(t, s))n−1∂F(t, s)
∂t

from which it follows that
�t = nq�N

Similarly

∂Q(t, s)
∂s

= nq(1 − q + qF(t, s))n−1∂F(t, s)
∂s

from which it follows that
�s = nq�S

Taking the second derivatives, we have
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∂2Q(t, s)
∂t2 = n(n − 1)q2(1 − q + qF(t, s))n−2

(
∂F(t, s)
∂t

)2

+ nq(1 − q + qF(t, s))n−1∂
2F(t, s)
∂t2

�t(t − 1) = n(n − 1)q2(�N)2 + nq(�N(N − 1)

�t = n(n − 1)q2(�N)2 + nq(�N(N − 1) + (nq�N) − (nq�N)2

= nq(�N + (1 − q)(�N)2

and similarly
�s = nq(�S + (1 − q)(�S )2)

Finally

∂2Q(t, s)
∂t∂s

= nq(1 − q + qF(t, s))n−1∂F(t, s)
∂t

∂F(t, s)
∂s

+ n(n − 1)q2(1 − q + qF(t, s))n−2∂
2F(t, s)
∂t∂s

�ts = n(n − 1)q2(�N�S ) + nq(�NS )

Cov(t, s) = n(n − 1)q2(�N�S ) + nq(�NS ) − (nq�N)(nq�S )
= nq(�NS − q(�N)(�S ))
= nq(Cov(N, S ) + (1 − q)(�N)(�S ))

Hence

Cor(t, s) =
nq(Cov(N, S ) + (1 − q)(�N)(�S ))√

nq(�N + (1 − q)(�N)2
√

nq(�S + (1 − q)(�S )2

=
Cov(N, S ) + (1 − q)(�N)(�S ))√

(�N + (1 − q)(�N)2
√

(�S + (1 − q)(�S )2

Poisson sampling

Suppose that the number of alleles to be sampled has a Poison distribution of mean
λ. The using the PGF for a Poisson distribution, exp(λ(t − 1)), we proceed in a
similar manner as for the Binomial sampling, using the joint PGF

Q(t, s) = exp(λ(F(t, s) − 1))
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∂Q(t, s)
∂t

= λ
∂F(t, s)
∂t

Q(t, s)

�t = λ�N
∂Q(t, s)
∂s

= λ
∂F(t, s)
∂s

Q(t, s)

�s = λ�S

∂2Q(t, s)
∂t2 = λ2

(
∂F(t, s)
∂t

)2

Q(t, s) + λ
∂2F(t, s)
∂t2 Q(t, s)

Et(t − 1) = λ2(�N)2 + λ(�N(N − 1))

∂2Q(t, s)
∂s2 = λ2

(
∂F(t, s)
∂s

)2

Q(t, s) + λ
∂2F(t, s)
∂s2 Q(t, s)

Es(s − 1) = λ2(�S )2 + λ(�S (S − 1))
∂2Q(t, s)
∂t∂s

= λ2∂F(t, s)
∂t

∂F(t, s)
∂s

Q(t, s) + λ
∂2F(t, s)
∂t∂s

Q(t, s)

�ts = λ(�NS ) + λ2(�N)(�S )

from which it follows that

Cov(t, s) = λ(�NS ) + λ2(�N)(�S ) − λ2(�N)(�S )
= λ(�NS )

�t = λ2(�N)2 + λ(�N(N − 1)) + λ(�N) − (λ�N)2

= λ(�N2)

�s = λ(�S 2) similarly,

Cor(t, s) =
λ(�NS )√

λ(�N2)
√
λ(�S 2)

=
�NS√

(�N2)(�S 2)

which does not depend on λ. In fact this result is the limiting result of taking
q→ 0 in the earlier Binomial sampling.
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B Derivation of moments for genomic model, no stut-
ters

B.1 Moments of tagged amplicons
For convenience let t = tad , and let D denote the derivative with respect to t. The
marginal PGF for the tagged amplicons is given by the sum of such amplicons
arising from the g and gd strand: we obtain this by multiplying the PGFs.

F(t) = Gn(1, 1, 1, t)Gd;n(1, 1, t, 1),

from which

DF(t) = [DGn(1, 1, 1, t)]Gd;n(1, 1, t, 1) + Gn(1, 1, 1, t)[DGd;n(1, 1, t, 1)]

hence the mean number of tagged amplicons is given by the sum of two terms:

ENad = [DGn(1, 1, 1, t)]t=1 + [DGd;n(1, 1, t, 1)]t=1

where we use G(1, 1, 1, ) = Gd(1, 1, 1, 1) = 1. We may find each term on the right
hand side separately. Using the recurrence relation for the joint PGFs of each
genomic type, we may derive recurrence relations for each of these two terms,
which turn out to be coupled linear equations that can be solved either by hand or
computer algebra. We consider each separately:

B.1.1 DG

We may substitute 1 for every component, except tad which we set to t, in the joint
PGF recurrence relations. Assume this is done. Then differentiating with respect
to t and substituting t = 1 we obtain the following recurrence relations:

DGn+1 = (1 − pg)DGn + pg(DGn + DHd;n)
= DGn + pgDHd;n

DHd;n+1 = (1 − phd )DHd;n + phd (DHd;n + DAn)
= DHd;n + phd DAn

DAn+1 = (1 − pa)DAn + pa(DAn + DAd;n)
= DAn + paDAd;n

DAd;n+1 = (1 − pad )DAd;n + pad (DAd;n + DAn)
= DAd;n + pad DAn
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with initial conditions DG0 = DHd;0 = DA0 = 0 and DAd;0 = 1.
Now consider the last two coupled equations:

DAn+1 = DAn + paDAd;n

DAd;n+1 = DAd;n + pad DAn

We may write this in matrix form

(
DAn+1

DAd;n+1

)
=

(
1 pa

pad 1

) (
DAn

DAd;n

)
from which we clearly obtain

(
DAn

DAd;n

)
=

(
1 pa

pad 1

)n (
0
1

)
and hence

DAn =
(
1 0

) ( 1 pa

pad 1

)n (
0
1

)
.

Let us denote the square matrix (not raised to the power n) by P:

P =

(
1 pa

pad 1

)
.

Then

DAn =
(
1 0

)
Pn

(
0
1

)
and from the earlier recurrence for DHd;

DHd;n+1 = DHd;n + phd DAn

we obtain

DHd;n = phd

n−1∑
j=0

(
1 0

)
P j

(
0
1

)
= phd

(
1 0

) Pn − I
P − I

(
0
1

)
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From the earlier recurrence for DG;

DGn+1 = DGn + pgDHd;n

we therefore obtain

DGn = pg phd

n−1∑
j=0

(
1 0

) P j − I
P − I

(
0
1

)
= pg phd

(
1 0

) Pn − I − n(P − I)
(P − I)2

(
0
1

)
which is our final result for the expected number of amplicons arising from the g
genomic strand.

Note that if all the amplification probabilities are equal to 1, we obtain:

Pn =

(
1 1
1 1

)n

=

(
2n−1 2n−1

2n−1 2n−1

)
which leads to DGn = 2n−1 − n obtained earlier.

We now need to do a similar calculation for the gd strand.

B.1.2 DGd

We may substitute 1 for every component, except tad which we set to t, in the joint
PGF recurrence relations. Assume this is done. Then differentiating with respect
to t and substituting t = 1 we obtain the following recurrence relations:

DGd;n+1 = (1 − pgd )DGd;n + pgd (DGd;n + DHn)
= DGd;n + pgd DHn

DHn+1 = (1 − ph)DHn + ph(DHn + DAd;n)
= DHn + phDAd;n

DAn+1 = (1 − pa)DAn + pa(DAn + DAd;n)
= DAn + paDAd;n

DAd;n+1 = (1 − pad )DAd;n + pad (DAd;n + DAn)
= DAd;n + pad DAn

with initial conditions DG0 = DHd;0 = DA0 = 0 and DAd;0 = 1. Note that the
last two coupled equations are as before for DG, and so have the same solution as
given above:
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(
DAn

DAd;n

)
=

(
1 pa

pad 1

)n (
0
1

)
= Pn

(
0
1

)
The equation for H reads:

Hn+1 = DHn + phDAd;n

but

DAd;n =
(
0 1

)
Pn

(
0
1

)
Hence

DHn = ph

n−1∑
j=0

(
0 1

)
P j

(
0
1

)
= ph

(
0 1

) Pn − I
P − I

(
0
1

)
Finally from the recurrence for DGd:

DGd;n+1 = DGd;n + pgd DHn

we obtain

DGd;n = pgd ph

n−1∑
j=0

(
0 1

) P j − I
P − I

(
0
1

)
= pgd ph

(
0 1

) Pn − I − n(P − I)
(P − I)2

(
0
1

)
which is our final result for the expected number of amplicons arising from the gd

genomic strand.
Note that is all amplification efficiencies are equal to 1, then we obtain DGd;n =

2n−1 − 1 obtained earlier.

B.1.3 DG and DGd combined

The mean number of tagged amplicons is given by the sum of the two results
obtained above, which may be written in the form:

(
pg phd , pgd ph

) Pn − I − n(P − I)
(P − I)2

(
0
1

)
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If pg phd = pgd ph, which will happen if pg = pgd and phd = ph, this simplifies
to:

pg ph

(
1 1

) Pn − I − n(P − I)
(P − I)2

(
0
1

)
with

P =

(
1 pa

pad 1

)
If pa = pad = p then

P =

(
1 p
p 1

)
then

Pn =
1
2

(
(1 + p)n + (1 − p)n (1 + p)n − (1 − p)n

(1 + p)n − (1 − p)n (1 + p)n + (1 − p)n

)
and

(P − I)−2 =

(
p−2 0
0 p−2

)
=

1
p2 I

After a little matrix algebra we obtain that the mean number of tagged ampli-
cons is given by

EAd =
pg ph

p2 ((1 + p)n − np − 1)

Note that if pg = ph = p = 1 this reduces to 2n − n − 1 obtained earlier for the
Eulerian numbers. If we have instead pg = ph = p we obtain

EAd = (1 + p)n − np − 1,

which can be compared to the value (1 + p)n of the simple PCR model that starts
with a single amplicon.

Note that, if starting with m amplicons these mean values are simply multiplied
by m.

Returning to the more general result:

(
pg phd , pgd ph

) Pn − I − n(P − I)
(P − I)2

(
0
1

)
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with

P =

(
1 pa

pad 1

)
The eigenvalues of P are 1 +

√
pa pad and 1 − √pa pad , and it can be shown that:

Pn =
1
2

 (1 +
√

pa pad )n + (1 − √pa pad )n ,
√

pa
pad

((1 +
√

pa pad )n − (1 − √pa pad )n)√
pad
pa

((1 +
√

pa pad )n − (1 − √pa pad )n) , (1 +
√

pa pad )n + (1 − √pa pad )n


and

(P − I)−2 =
1

pa pad

I

More matrix algebra shows that

(Pn − I − n(P − I))
(
0
1

)
=


√

pa
pad

[(1 +
√

pa pad )n − (1 − √pa pad )n])/2 − npa

[(1 +
√

pa pad )n + (1 − √pa pad )n]/2 − 1


Hence the mean number of amplicons for the general case is given by the row

and column matrix inner product:

( pg phd
pa pad

,
pgd ph

pa pad

) 
√

pa
pad

[(1 +
√

pa pad )n − (1 − √pa pad )n]/2 − npa

[(1 +
√

pa pad )n + (1 − √pa pad )n]/2 − 1


that is:

pg phd

pa pad

(√
pa

pad

(1 +
√

pa pad )n − (1 − √pa pad )n

2
− npa

)
+

pgd ph

pa pad

(
(1 +

√
pa pad )n + (1 − √pa pad )n

2
− 1

)
If pa = pad = p, this simplifies to:

pg phd

p2

(
(1 + p)n − (1 − p)n

2
− np

)
+

pgd ph

p2

(
(1 + p)n + (1 − p)n

2
− 1

)
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B.1.4 Variance of the number of amplicons

Recall that if F(t) is a PGF for a random variable X then

�X =
dF(t)

dt
|t=1 = F′(1)

�X(X − 1) =
dF(t)

dt
|t=1 = F′′(1)

�X = F′′(1) + F′(1) − (F′(1))2

We can apply this to

F(t) = Gn(1, 1, 1, t)Gd;n(1, 1, t, 1),

however is is simpler to consider the variances of the number of tagged amplicons
arising separately from the individual g and gd strands and add them: because
they amplify independently their variances will add to give the total variance of
interest. This we now do.

Recall that our basic vectorial PGF has the form

Gn+1 → Gn(1 − pg) + pgGnHd;n

Hd;n+1 → Hd;n(1 − phd ) + phd Hd;nAn

An+1 → An(1 − pa) + paAnAd;n

Ad;n+1 → Ad;n(1 − pad ) + pad Ad;nAn

with

G0 = tg

Hd,0 = thd

Ad = ta

Ad,0 = tad

Differentiating each twice with respect to tad and setting all the t’s equal to 1
gives this set of linear recurrence relations

D2Gn+1 = D2Gn + 2pgDGnDHd;n + pgD2Hd;n

D2Hd;n+1 = D2Hd;n + 2phd DHd;nDAn + phd D2An

D2An+1 = D2An + 2paDAnDAd;n + paD2Ad;n

D2Ad;n+1 = D2Ad;n + 2pad DAd;nDAn + pad D2An
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As before, we consider the last two coupled set of equations. These may be
written in matrix form as follows:

(
D2An+1

D2Ad;n+1

)
=

(
1 pa

pad 1

) (
D2An

D2Ad;n

)
+ 2

(
paDAnDAd;n

pad DAd;nDAn

)
(40)

Previously we had the first order solution(
DAn

DAd;n

)
=

(
1 pa

pad 1

)n (
0
1

)
= Pn

(
0
1

)
where

Pn =
1
2

 (1 +
√

pa pad )n + (1 − √pa pad )n ,
√

pa
pad

((1 +
√

pa pad )n − (1 − √pa pad )n)√
pad
pa

((1 +
√

pa pad )n − (1 − √pa pad )n) , (1 +
√

pa pad )n + (1 − √pa pad )n


hence (

DAn

DAd;n

)
=

1
2


√

pa
pad

((1 +
√

pa pad )n − (1 − √pa pad )n)

(1 +
√

pa pad )n + (1 − √pa pad )n


and it follows that

DAnDAd;n =
1
2

√
pad

pa

(
(1 +

√
pa pad )2n − (1 −

√
pa pad )2n

)
This could be substituted into (40) and the resulting in-homogeneous difference
equation may be solved (initial conditions are that the second derivatives D2A0 =

D2Ad;0 = 0). It gets a bit complicated, so it is simpler to work from the following
scalar equation and the substitute matrices for scalar.

So consider the recurrence relation

yn+1 = pyn + c(an − bn)
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where y0 = 0. Iteration gives the solution sequence:

y1 = 0
y2 = (a − b)c

y3 = p(a − b)c + (a2 − b2)c

y4 = p2(a − b)c + p(a2 − b2)c + (a3 − b3)c
...

yn =

n−2∑
i=0

pn−i(ai+1 − bi+1)c

=

(
a

pn−1 − an−1

p − a
− b

pn−1 − bn−1

p − b

)
c

Referring back , we may substitute c =
√

pad/pa

(
pa
pad

)
, a = (1 +

√
pad pa)2I,

b = (1 − √pad pa)2I, where I is the 2 × 2 identity matrix, and p = P, to recover a
matrix formula for the solution of yn ≡

(
D2An

D2Ad;n

)
.

The result is a fairly complex matrix expression that has to be picked apart
to substitute various terms into the equations to solve for the h and hd, which
themselves in turn have to be substituted into equations to solve for g and gd.
This could possibly be done using a computer algebra system, the results can be
expected to be messy - even more so when we introduce stutter - so we stop the
algebraic analysis here.

It seems appropriate therefore to generate matrix expressions at the outset
which would be more amenable to numerical evaluation. We now follow this
more direct approach. We could proceed by considering the matrix formulation
for g and gd separately, or by using a combined approach. We do the latter, they
lead to the same results.

B.2 Moments from matrix analysis
B.2.1 First moment: Mean as matrix expression

The recurrence relation for the mean may be expressed as
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DGn+1

DGd;n+1

DHn+1

DHd;n+1

DAn+1

DAd;n+1


=



1 0 0 pg 0 0
0 1 pgd 0 0 0
0 0 1 0 0 ph

0 0 0 1 phd 0
0 0 0 0 1 pa

0 0 0 0 pad 1





DGn

DGd;n

DHn

DHd;n

DAn

DAd;n


= P



DGn

DGd;n

DHn

DHd;n

DAn

DAd;n


where P is now the 6 × 6 matrix. If we denote the column matrix on the right

by Yn, then we have
Yn+1 = PYn → Yn = PnY0

where Y0 is the transpose of the row vector (0, 0, 0, 0, 0, 1), and the mean number
of tagged amplicons is given by the sum of the elements in the first two rows of
Yn.

Numerically this is straightforward to extract given the values of the various
amplification probabilities.

B.2.2 Second moment: as matrix expression

The matrix equation for the second moment follows the pattern of the first order
moment matrix equation. Let Zn denote the column vector of second derivatives,
that is

Zn =



D2Gn

D2Gd;n

D2Hn

D2Hd;n

D2An

D2Ad;n


Then the recurrence equations for the second moments may be written as

Zn+1 = PZn + 2



pgDGnDHd;n

pgd DGd;nDHn

phDHnDAd;n

phd DHd;nDAn

paDAnDAd;n

pad DAd;nDAn


= PZn + 2



pgYn(1)Yn(4)
pgd Yn(2)Yn(3)
phYn(3)Yn(6)
phd Yn(4)Yn(5)
paYn(5)Yn(6)
pad Yn(6)Yn(5)
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where Yn(i) is the element in the ith row of the column vector Yn. We have the
initial condition Z0 = (0, 0, 0, 0, 0, 0)T .

Thus we can iterate to solve sequentially for the pairs of column vectors Y1,Z1;
Y2,Z2; . . . ; Yn,Zn.

Now Yn(1) will denote the mean number of tagged amplicons arising from the
g strand, and Zn(1) will denote the corresponding expectation EM(M − 1) for the
number of tagged amplicons arising for the g strand. Hence the variance of tagged
amplicons arising form the g strand will be

Zn(1) + Yn(1) − Y2
n (1)

Similarly the variance of tagged amplicons from the gd strand will be

Zn(2) + Yn(2) − Y2
n (2)

Hence the total variance of tagged amplicons will be

Zn(1) + Yn(1) − Y2
n (1) + Zn(2) + Yn(2) − Y2

n (2)

If there are m genomic strands to begin with, we simply multiply this variance
expression by m to get the required total variance.

C Derivation of moments for genomic model, single
stutters

C.1 Moments
The combined set of iterative equations of the branching process is:
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tg → tg(1 − pg) + pg(1 − ξ)tgthd + pgξtgthsd

tgd → tgd (1 − pgd ) + pgd (1 − ξ)tgd th + pgdξtgd ths

thd → thd (1 − phd ) + phd (1 − ξ)thd ta + phdξthd tas

thsd → thsd (1 − phsd ) + phsd thsd tas

th → th(1 − ph) + ph(1 − ξ)thtad + phξthtasd

ths → ths(1 − phs) + phsthstas

ta → ta(1 − pa) + pa(1 − ξ)tatad + paξtatasd

tad → tad (1 − pad ) + pad (1 − ξ)tad ta + padξtad tas

tas → tas(1 − pas) + pastastasd

tasd → tasd (1 − pasd ) + pasd tasd tas

which lead directly to the coupled set of equations for the vectorial generating
function:

Gn+1 = Gn[(1 − pg) + pg(1 − ξ)Hn;d + pgξHn;sd]
Gn+1;d = Gn;d[(1 − pgd ) + pgd (1 − ξ)Hn + pgdξHn;s]

Hn+1 = Hn[(1 − ph) + ph(1 − ξ)An;d + phξAn;sd]
Hn+1;d = Hn;d[(1 − phd ) + phd (1 − ξ)An + phdξAn;s]
Hn+1;s = Hn+1;s[(1 − phs) + phs An;sd]

Hn+1;sd = Hn;sd[(1 − phsd ) + phsd An;s]
An+1 = An[(1 − pa) + pa(1 − ξ)An;d + paξAn;sd]

An+1;d = An;d[(1 − pad ) + pad (1 − ξ)An + padξAn;s]
An+1;s = An;s[(1 − pas) + pas An;sd]

An+1;sd = An;sd[(1 − pasd ) + pasd An;s]
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Differentiating once for the mean, we obtain the matrix equation

DGn+1

DGn+1;d

DHn+1

DHn+1;d

DHn+1;s

DHn+1;sd

DAn+1

DAn+1;d

DAn+1;s

DAn+1;sd



=



1 0 0 pg(1 − ξ) 0 pgξ 0 0 0 0
0 1 pgd (1 − ξ) 0 pgdξ 0 0 0 0 0
0 0 1 0 0 0 0 ph(1 − ξ) 0 phξ
0 0 0 1 0 0 phd (1 − ξ) 0 phdξ 0
0 0 0 0 1 0 0 0 0 phs

0 0 0 0 0 1 0 0 phsd 0
0 0 0 0 0 0 1 pa(1 − ξ) 0 paξ
0 0 0 0 0 0 pad (1 − ξ) 1 padξ 0
0 0 0 0 0 0 0 0 1 pas

0 0 0 0 0 0 0 0 pasd 1





DGn

DGn;d

DHn

DHn;d

DHn;s

DHn;sd

DAn

DAn;d

DAn;s

DAn;sd


Denoting the 10 × 10 square matrix by P, and the column matrix on the right

by Yn, then we have
Yn+1 = PYn → Yn = PnY0

where Y0 is the transpose of the row vector (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), and the mean
number of tagged amplicons is given by the sum of the elements in the first two
rows of Yn. This will be equal to Pn[1, 10] + Pn[2, 10].

Let Z denote the column of second derivatives, then we have the following
in-homogeneous matrix recurrence relation that is readily solved numerically by
iteration:

Zn+1 = PZn + 2



pgDGn[(1 − ξ)DHn:d + ξDHn;sd]
pgd DGn;d[(1 − ξ)DHn + ξDHn;s]
phDHn[(1 − ξ)DAn;d + ξDAn;sd]
phd DHn;d[(1 − ξ)DAn + ξDAn;s]

phs DHn;sDAn;sd

phsd DHn;sdDAn;s

paDAn[(1 − ξ)DAn;d + ξDAn;sd]
pad DAn;d[(1 − ξ)DAn + ξDAn;s]

pas DAn;sDAn;sd

pasd DAn;sdDAn;s


and similarly to before, the total variance of tagged amplicons in stutter posi-

tion is given by

Zn(1) + Yn(1) − Y2
n (1) + Zn(2) + Yn(2) − Y2

n (2)
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C.2 Covariance with main peak
The vectorial generating function may be used to find the mean and variance of the
main peak, and also the covariance between main peak and stutter peak. For the
main peak, the mean height is given by multiplying Pn into the column matrix that
has zero everywhere except for a 1 on the seventh row, and then adding the values
in the first two rows of the resulting column matrix. The variance is similarly
found.

The second derivatives obey the following recurrence relation.

DDsGn+1
DDsGn+1;d
DDsHn+1

DDsHn+1;d
DDsHn+1;s
DDsHn+1;sd

DDsAn+1
DDsAn+1;d
DDsAn+1;s
DDsAn+1;sd



= P



DDsGn

DDsGn;d
DDsHn

DDsHn;d
DDsHn;s
DDsHn;sd

DDsAn

DDsAn;d
DDsAn;s
DDsAn;sd



+



pgDGn[(1 − ξ)DsHn:d + ξDsHn;sd]
pgd DGn;d[(1 − ξ)DsHn + ξDsHn;s]
phDHn[(1 − ξ)DsAn;d + ξDsAn;sd]
phd DHn;d[(1 − ξ)DsAn + ξDsAn;s]

phs DHn;sDsAn;sd

phsd DHn;sdDsAn;s
paDAn[(1 − ξ)DsAn;d + ξDsAn;sd]
pad DAn;d[(1 − ξ)DsAn + ξDsAn;s]

pas DAn;sDsAn;sd

pasd DAn;sdDsAn;s



+



pgDsGn[(1 − ξ)DHn:d + ξDHn;sd]
pgd DsGn;d[(1 − ξ)DHn + ξDHn;s]
phDsHn[(1 − ξ)DAn;d + ξDAn;sd]
phd DsHn;d[(1 − ξ)DAn + ξDAn;s]

phs DsHn;sDAn;sd

phsd DsHn;sdDAn;s
paDsAn[(1 − ξ)DAn;d + ξDAn;sd]
pad DsAn;d[(1 − ξ)DAn + ξDAn;s]

pas DsAn;sDAn;sd

pasd DsAn;sdDAn;s



D A further look at target and stutter peak height
correlations

In Bright et al. (2013) the authors looked at developing a model for the stutter
ratio, defined as the ratio of the stutter peak to main peak, such that the mean
stutter ratio is linearly dependent on the longest uninterrupted sequence (LUS)
of repeats. They used controlled experimental single-source samples, 289 in all,
with a target of 1ng of DNA and amplified with a 25 RFU detection limit. After
discarding loci which had heterozygous loci one repeat apart, 2323 heterozygous
loci were left for analysis.

It is important to note that they define stutter ratio as the ratio of the stutter
peak height to the main peak height:

S Ra =
Oa−1

Oa

They define the total allelic product to be

Ta = Oa−1 + Oa
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They propose a lognormal distribution for the ratio of observed to expected
peak height for main and stutter peaks (they comment that a gamma model is not
suitable because of the heavy tails). From their data they conclude that there is
little evidence of correlation between the main and stutter peaks given the target
amount of DNA. They write: “Unexpectedly the scatter plots in Fig. 8a and b
indicate that there is no detectable correlation between stutter and allele in this
biological model”. They found a low correlation of around 0.11.

Now clearly having little to no correlation is quite at variance with the branch-
ing PCR model. We suggest that this is an artefact of grouping the data together
within and across loci. First we recast their results. In their Appendix 2 they give
the following table for the linear regression of their stutter ratio model (using the
NGM SELect system), in which the stutter ratio of an allele i, having LUS Li,
from a locus is equal to S Ri = a + b × Li:

Locus Intercept a Slope b
1 D10S1248 -0.0576 0.0089
2 D12S391 -0.0571 0.0107
3 D16S539 -0.0502 0.0088
4 D18S51 -0.0297 0.0066
5 D19S433 -0.0302 0.0074
6 D1S1656 -0.0699 0.0106
7 D21S11 -0.0079 0.0059
8 D22S1045 -0.0881 0.0139
9 D2S1338 -0.0073 0.0062

10 D2S441 0.0004 0.0031
11 D3S1358 -0.0455 0.0092
12 D8S1179 -0.0148 0.0062
13 FGA -0.0344 0.0066
14 SE33 0.0129 0.0041
15 TH01 -0.0208 0.0052
16 vWA -0.0354 0.0078

Now from the simple amplicon model, with amplification probability p and
conditional stutter probability ξ, the expected number of amplicons heights for
main and stutter peaks given k cycles and starting from n0 amplicons, are given by
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ET = n0(1 + p(1 − ξ))k

ES = n0[(1 + p)k − (1 + p(1 − ξ))k]

Thus we can approximate, with ξ dependent on L:

S R = a + bL ≈
ES
ET

=

(
1 + p

(1 + p(1 − ξ))

)k

− 1 ≈
kp

1 + p
ξ +

k(k − 1)p2

2(1 + p)2 ξ
2 + 0(ξ3)

From this we obtain to a good approximation, by taking the linear term only,
the incremental change in mean stutter ratio by a unit increase in LUS:

∆ξ = b
1 + p

kp

For p ∈ [0.8, 1], (1 + p)/p varies between 2 and 2.25, hence to a good approx-
imation ∆ξ = 2b/k.

So now we can collect results. Given the nature of the experimental setup, with
a target DNA amount of 1ng, (corresponding to around 152 cells) we may take
the number of alleles from a heterozygous marker to be Pois(152). In addition the
LUS in their plots varies from 10-15 for most markers, some having a larger range,
some smaller. So for simplicity we shall simulate LUS values from the same range
for each of the 16 markers, (also corresponding therefore to a uniform distribution
of alleles). The following table collects individual marker correlations, based on
around 2000 simulations on each marker, under various scenarios, but using the ξ
values for each marker using the SR formula above; we take k = 28 and p = 0.85
in all simulations.
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Locus LUS=12 LUS=12 LUS∼Unif[8,15] LUS∼Unif[8,15]
n0 = 152 n0 ∼ Pois(152) n0 = 152 n0 ∼ Pois(152)

D10S1248 0.2005406 0.7255809 -0.5541554 -0.07269729
D12S391 0.2290437 0.773266 -0.6050955 -0.04926867
D16S539 0.2054748 0.7379974 -0.5366395 -0.03364616
D18S51 0.1665038 0.7108246 -0.4260814 0.06089547
D19S433 0.248041 0.7182632 -0.4844209 0.06972643
D1S1656 0.1848627 0.7401926 -0.6481533 -0.0976838
D21S11 0.1952987 0.7507546 -0.3596321 0.2097556
D22S1045 0.217241 0.7738013 -0.7170921 -0.1489542
D2S1338 0.2145392 0.7708068 -0.3787377 0.1656755
D2S441 0.1509088 0.6713596 -0.1463518 0.2585785
D3S1358 0.2333797 0.7477239 -0.5480802 -0.03041745
D8S1179 0.2451524 0.731677 -0.3884186 0.1381175
FGA 0.1308529 0.6779035 -0.4587745 0.06434562
SE33 0.1765904 0.6558634 -0.2304545 0.1803573
TH01 0.1666116 0.6661396 -0.3677087 0.1420518
vWA 0.1850046 0.7455873 -0.5083684 0.0339069

We see that keeping LUS and n0 fixed we get moderate correlations as in
earlier chapter. Making the starting number of alleles Poisson distributed and
keeping LUS fixed leads to high correlation between the stutter and peak amplicon
numbers, also as found earlier. Now making LUS random (to simulate a range
of genotypes) but keeping n0 fixed the correlations are negative. Combining the
randomization of LUS and making n0 ∼ Pois(132) yields the correlations in the
final column, which are largely quite small with some positive and some negative.

Finally we do a simulation in which we aggregate the various loci simulations:
here are 16 runs of such a simulation which mirrors the experimental data of
Bright et al. (2013). We see that all the correlations are negative, but very close to
zero.

-0.003916072 -0.02691701 -0.0257117 -0.03113958
-0.02115133 -0.02109356 -0.02308784 -0.05802165
-0.02720094 -0.0288306 -0.0345473 -0.07301637
-0.01966967 -0.031646 -0.0649325 -0.02202189

The following scatterplot was obtained from one simulation, in which we plot
the log of the sumulated number of amplicons divided by their expected number
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(itself estimated from simulation) for the target and stutter alleles, so that it cor-
responds to the quantities plotted in Figure 8b of Bright et al. (2013). The plot
below has a smaller range than their Figure 8b, which could be because we have
simulated from the amplicon model rather than the genomic model. The sample
correlation of the points in the plot is 0.157, close to the figure of 0.11 they found
from their experimental data.
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Hence, on the basis of this simulation, we deduce that the bivariate PCR
branching process model showing high main allele and stutter-peak correlations
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on individual alleles is compatible with the experimental results of Bright et al.
(2013) which aggregates observations of alleles within and between loci.

Support for this may be found in a dataset of experimental single source and
mixed profiles released by Boston University in 20127 These were samples pre-
pared from extracted DNA from 4 anonymous individuals (labelled A,B,C and D)
diluted to prepare controlled DNA amounts, and amplified for four kits. In the
single source samples there many independent amplifications of each individual’s
DNA, allowing the target-stutter peak height data to be found for individual alleles
for a given amount of initial DNA, making sure that neither are ”contaminated”
by neighbouring alleles. Looking at the genotypes , we see that for person A allele
25 on the locus D2D1338 is a possible target allele. Taking all the single source
samples on 1ng and 10 seconds injection time for person A amplified with the
IdentifilerTMkit (chosen here because it yields the most number of data points),
the author extracted target (25) and stutter (24) peak height values to produce the
following scatterplot , having a sample correlation of 0.929.
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Bearing in mind the way the samples were prepared, we should expect Poisson
sampling for the initial number of amplicons prior to PCR, and hence expect a
high correlation to result as found. Looking at the stutter proportions (stutter/total)
which average around 0.08 for the 11 data points, we see that the results are very
consistent with PCR branching modelling approach for stutter.

In conclusion, we suggest that the combined effects of aggregating across loci
and alleles might be giving a misleading impression that there is no significant cor-
relation. Dedicated experiments concentrating on specific alleles and their stutter
product, that do not aggregate data over different alleles either within or between
loci, could be carried out to confirm or refute this.

7see http://www.bu.edu/dnamixtures/pages/help/introduction/
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E Sample code for generating distributions and plots

E.1 Python scripts
E.1.1 code for Figure 3.

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats.kde import gaussian_kde

K = 28

M=1

phi = 2.0/9

p = 0.8

N = np.ones(100000).astype(int)

N = N*M

n = np.random.binomial(N,phi)

for k in range(K):

m = np.random.binomial(n, p)

n = n+m

# find total dropout probability,

pdrop = float(len(n[n==0]))/len(n)

# remove zeros for the kernel density estimate

n = n[n != 0]

# find the kernel density estimate

pcr_dist = gaussian_kde(n)

# plot it out

x = np.linspace(1,3.0e7,1000)

fig = plt.figure()

plt.plot(x, pcr_dist(x),’r’)
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E.1.2 code for Figure 4

import numpy as np

import matplotlib.pyplot as plt

def singleAmpliconPCR(p,K, M, phi):

N = M*2**K

a = np.zeros(N)

a[1] = 1.0

afft = np.fft.fft(a)

for k in xrange(K):

afft = (1-p)*afft + p*afft*afft

afft = (1-phi + phi*afft)**M

pn = np.fft.ifft(afft)

pn = pn.real

return pn

pn = singleAmpliconPCR(p=0.8,K=28,M=1, phi=2.0/11)

n = range(len(pn))

pdrop = pn[0]

pn[0] = 0

plt.plot(n,pn,’-’)

E.1.3 code for Algorithm 5.5

Algorithm E.1 [Joint distribution for target and stutter amplicons: Python
code]

import numpy as np

from scipy.fftpack import fftn, ifftn

def ampliconStutterPCR(p, xi, K, M, phi):

N = M*2**K

NT = N

NS = N

F = np.zeros((NT,NS))

F[1,0] = 1

F = fftn(F)
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G = np.zeros(NS)

G[1] = 1

G = fftn(G)

for k in xrange(K):

for g in xrange(NS):

for f in xrange(NT) :

F[f,g] = F[f,g]*(1-p + p*(1-xi)*F[f,g]+ p*xi*G[g])

G[g] = G[g]*(1-p + p*G[g])

F[f,g] = (1-phi + phi*F[f,g])**M

F = ifftn(F)

F = F.real

return F
�

Note that even for M = 1 and with a typical K = 28 cycles in PCR, the size
of the 2-dimensional array F to hold the joint distribution will be N = 256 ≈

7.2× 1016, which is far in excess of the memory of any computer. To fill the array
with double precision values would require approximation 4.2 billion Gigabytes
of Ram. Filling the array would also take an excessive amount of time. Hence this
should be used only for small K and M values.

E.1.4 code for Algorithm 5.6

Algorithm E.2 [Marginal distribution for stutter amplicons: Python code]

import numpy as np

from scipy.fftpack import fftn, ifftn

def ampliconStutterMarginalPCR(p, xi, K, M, phi):

N = M*2**K

F = np.zeros(N)

F[0] = 1

F = fftn(F)

G = np.zeros(N)

G[1] = 1

G = fftn(G)

for k in xrange(K):

F *= 1-p + p*(1-xi)*F+ p*xi*G

G *= 1-p + p*G
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F = (1-phi + phi*F)**M

F = ifftn(F)

F = F.real

return F
�
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E.2 R scripts
E.2.1 code for generating target marginal distribution, no stutters

R code for the distribution of the total number of amplicons arising from K am-
plification cycles, amplification probability p on each cycle, starting with M am-
plicons binomially sampled prior to amplification with probability φ. Note that R
vector indices start at 1 instead of 0, hence on line 3 we set F[2] = 1 (rather than
F[1] = 1).

Algorithm E.3 [Amplicon probability distribution using R]

N = M*2**K

F = rep(0,N)

F[2] = 1

F = fft(F,inverse=FALSE)

for (k in 1:K) F = (1 - p)*F + p*F*F # K amplifications cycles

F = (1-phi + phi*F)**M # binomial sampling

F = Re(fft(F,inverse=TRUE)) /N # real part of inverse

�

E.2.2 code to generate Figure 6

K=15

Th= 40000

M = 200

phi = 0.1

p = 0.85

N = M*2**K

F = rep(0,N)

F[2] = 1

F = fft(F,inverse=FALSE)

for (k in 1:K) F = (1 - p)*F + p*F*F # K amplifications cycles

Fphi = 1-phi + phi*F

pdhet = NULL

pdhom = NULL

for (m in 5:M){

# heterozygous
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G = Fphi**m # binomial sampling

G = Re(fft(G,inverse=TRUE)) /N # real part of inverse

G = cumsum(G)

pdhet = c(pdhet, G[Th])

# use double m for homozygous

G = Fphi**(2*m)

G = Re(fft(G,inverse=TRUE)) /N

G = cumsum(G)

pdhom = c(pdhom, sum(G[Th]))

cat ("m = ", m, "\n")

}

m = 5:M

plot(pdhet˜m,log="x", ylim = c(0,1), typ="l", xlab = "Number of cells",

ylab = "Dropout probability P(D)")

par(new=T)

plot(pdhom˜m, col="red", log="x", ylim=c(0,1), typ="l",

xlab = "Number of cells", ylab = "Dropout probability P(D)")

E.2.3 code for generating marginal distributions for the genomic model, im-
plementing Algorithm 6.1

N = M*2ˆK

g = rep(0,N)

g[1]=1

g = FFT(g)

gd = h = hd = hs = hsd = a = ad = as = g

asd = rep(0,N)

asd[2]=1 # note use of index 2.

asd = FFT(asd)

for (k in 1:K){

g = g*(1-q + q*hd)

gd = gd*(1-q + q*h)

hd = hd*(1-p + p*a)

h = h*(1-p + p*ad)

at = a # temporary copy to break the cyclic dependency of a and ad

atd = ad # temporary copy to break the cyclic dependency of a and ad
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ad = atd*(1-p + p*at)

a = at*(1-p + p*atd)

}

# the final probability distribution of interest.

pn = Re(IFFT( (1 -phi + phi*g*gd)ˆM ))
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E.3 Julia scripts
E.3.1 code for generating Figure 19

Julia, like R, uses arrays with indices starting from 1. You will need to install the
PyPlot package to run this script, and will require approximately 10Gb of free ram
to do the full FFT evaluation with K = 28.

using PyPlot

# function for full fft analysis

function maindist(p::Float64, K::Int64)

N = 2ˆK

y= zeros(N)

y[2] = 1

y=fft(y)

for i in 1:N

for k in 1:K

y[i] = y[i]*(1-p+p*y[i])

end

end

y=ifft(y)

return y

end

# truncated analysis

function maintrunc1(p::Float64, K::Int64, npos::Int64, L::Int64)

N = 2ˆK

pn = 1.0

for j in 2:L

x = exp(-2pi*im*(j-1)/N)

for k in 1:K

x = x*(1-p + p*x)

end

x = x*exp(2pi*im*(npos-1)*(j-1)/N)

pn = pn + 2*real(x)

end

return pn /N

end
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p = 0.85

K = 28

cy = maindist(p, 28)

# pick a subset of points for the plot, to speed up the plotting

step = 60000

xv = [ i*step for i in 1:1000]

pnfull = [real(cy[i*step]) for i in 1:1000]

# generate the truncated values

pntruncated = [maintrunc1(p, K, i*step,1024) for i in 1:1000]

xlabel("Number of amplicons, n")

ylabel("P(n)")

fig, ax = subplots()

ax[:plot](xv,pnfull, label = "FFT")

ax[:plot](xv,pntruncated , label = "truncated")

ax[:legend]()

title("p = 0.85, K = 28")

163



References
L. E. Alfonse, A. D. Garrett, H. Swaminathan, K. C. Peters, G. Wellner,

X. Yearwood-Garcia, L. M. Taranow, S. Lun, K. R. Duffy, M. Médard, et al.
The development and release of a collection of computational tools and a large-
scale empirical data set for validation: The PROVEDIt initiative. In Interna-
tional Symposium on Human Identification, 2016.

L. E. Alfonse, A. D. Garrett, D. S. Lun, K. R. Duffy, and C. M. Grgicak. A large-
scale dataset of single and mixed-source short tandem repeat profiles to inform
human identification strategies: PROVEDIt. Forensic Science International:
Genetics, 32:62–70, 2018.

D. Balding. Evaluation of mixed-source, low-template DNA profiles in forensic
science. Proceedings of the National Academy of Sciences of the United States
of America, 110(30):12241–12246, 2013.

D. J. Balding. Weight-of-evidence for Forensic DNA Profiles. Statistics in Practice.
Wiley, Chichester, UK, 2005.

D. J. Balding and C. D. Steele. Weight-of-evidence for Forensic DNA Profiles.
John Wiley & Sons, 2015.

Ø. Bleka, G. Storvik, and P. Gill. Euroformix: an open source software based on
a continuous model to evaluate str dna profiles from a mixture of contributors
with artefacts. Forensic Science International: Genetics, 21:35–44, 2016.

Ø. Bleka, M. Eduardoff, C. Santos, C. Phillips, W. Parson, and P. Gill. Open
source software euroformix can be used to analyse complex SNP mixtures.
Forensic Science International: Genetics, 31:105–110, 2017.

M. Bodner, I. Bastisch, J. M. Butler, R. Fimmers, P. Gill, L. Gusmão, N. Morling,
C. Phillips, M. Prinz, P. M. Schneider, et al. Recommendations of the dna
commission of the international society for forensic genetics (isfg) on quality
control of autosomal short tandem repeat allele frequency databasing (strider).
Forensic Science International: Genetics, 24:97–102, 2016.

J.-A. Bright, D. Taylor, J. M. Curran, and J. S. Buckleton. Developing allelic
and stutter peak height models for a continuous method of DNA interpretation.
Forensic Science International: Genetics, 7(2):296–304, 2013.

164



J. M. Butler. Forensic DNA Typing: Biology, Technology, and Genetics of STR
Markers, Second Edition. Elsevier Academic Press, 2005. ISBN 0121479528.

J. M. Butler. Advanced topics in forensic DNA typing: methodology. Academic
Press, 2011.

J. M. Butler. Advanced topics in forensic DNA typing: interpretation. Academic
Press, 2014.

J. M. Butler, R. Schoske, P. M. Vallone, J. W. Redman, and M. C. Kline. Al-
lele frequencies for 15 autosomal loci on U.S. Caucasian, African American,
and Hispanic populations. Journal of Forensic Science, 48(4):908–911, 2003.
Available online at www.astm.org.

R. Cowell. Combining allele frequency uncertainty and population substructure
corrections in forensic dna calculations. Forensic Science International: Ge-
netics, 23:210–216, 2016.

R. Cowell, T. Graversen, S. Lauritzen, and J. Mortera. Analysis of forensic DNA
mixtures with artefacts. Journal of the Royal Statistical Society: Series C (Ap-
plied Statistics), 64(1):1–48, 2015.

R. G. Cowell. Validation of an STR peak area model. Forensic Science Interna-
tional: Genetics, 3(3):193–199, 2009. ISSN 1872-4973. doi: 10.1016/j.fsigen.
2009.01.006. URL http://www.sciencedirect.com/science/article/
pii/S1872497309000088.

K. Duffy, N. Gurram, K. C Peters, G. Wellner, and C. Grgicak. Exploring str
signal in the single- and multi-copy number regimes: Deductions from an in
silico model of the entire dna laboratory process. Electrophoresis, 38, 12 2016.

T. Egeland, I. Dalen, and P. F. Mostad. Estimating the number of contributors to
a DNA profile. International journal of legal medicine, 117(5):271–275, 2003.

T. Egeland, D. Kling, and P. Mostad. Relationship inference with familias and R:
statistical methods in forensic genetics. Academic Press, 2015.

I. W. Evett and B. S. Weir. Interpreting DNA evidence: statistical genetics for
forensic science. Sunderland, Massachusetts, 1998.

I. Findlay, R. Frazier, A. Taylor, and A. Urquhart. Single cell DNA fingerprinting
for forensic applications. Nature, 389:555–556, 1997.

165

http://www.sciencedirect.com/science/article/pii/S1872497309000088
http://www.sciencedirect.com/science/article/pii/S1872497309000088


P. Gill, J. Curran, and K. Elliot. A graphical simulation model of the entire DNA
process associated with the analysis of short tandem repeat loci. Nucleic Acids
Research, 33(2):632–643, 2005.

I. Good. The joint distribution for the sizes of the generations in a cascade pro-
cess. In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 51, pages 240–242. Cambridge University Press, 1955.

I. J. Good. The number of individuals in a cascade process. Proceedings of the
Cambridge Philosophical Society, 45:360–363, 1949.

I. J. Good. Probability and the Weighing of Evidence. C. Griffin London, 1950.

I. J. Good. Studies in the History of Probability and Statistics. XXXVII A. M.
Turing’s statistical work in World War II. Biometrika, 66(2):393–396, 1979.

T. Graversen and S. Lauritzen. Computational aspects of DNA mixture analysis.
Statistics and Computing, 25(3):527–541, 2015.

K. Grisedale and A. van Daal. Method summary. Biotechniques, 56(3):145–147,
2014.

H. Haned. forensim: Statistical tools for the interpretation of forensic DNA mix-
tures, 2013. URL https://CRAN.R-project.org/package=forensim. R
package version 4.3.

H. Haned, L. Pene, J. R. Lobry, A. B. Dufour, and D. Pontier. Estimating the
number of contributors to forensic DNA mixtures: does maximum likelihood
perform better than maximum allele count? Journal of forensic sciences, 56
(1):23–28, 2011.

M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast fourier
transform. IEEE ASSP Magazine, 1(4):14–21, 1984.

A. J. Jeffreys, A. J. Wilson, and S. L. Thein. Individual specific ‘fingerprints’ of
human DNA. Nature, 316:76–79, 1985.

S. L. Lauritzen and J. Mortera. Bounding the number of contributors to mixed
DNA stains. Forensic science international, 130(2):125–126, 2002.

D. V. Lindley. A problem in forensic science. Biometrika, 64(2):207–213, 1977.

166

https://CRAN.R-project.org/package=forensim


M. Perlin and B. Szabady. Linear mixture analysis: a mathematical approach to
resolving mixed DNA samples. Journal of Forensic Science, 46:1372–1378,
2001.

R. Puch-Solis. A dropin peak height model. Forensic Science International:
Genetics, 11:80–84, 2014.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2016. URL https:
//www.R-project.org/.

K. R. Rao, D. N. Kim, and J. J. Hwang. Fast Fourier Transform-Algorithms and
Applications. Springer Science & Business Media, 2011.

T. F. Scientific. Ampflstr R© identifiler R© plus pcr amplification kit user’s guide.
Waltham, MA, USA: Thermo Fisher Scientific, 2012.

G. Stolovitzky and G. Cecchi. Efficiency of DNA replication in the polymerase
chain reaction. Proceedings of the National Academy of Sciences, 93:12947–
12952, 1996a.

G. Stolovitzky and G. Cecchi. Efficiency of DNA replication in the polymerase
chain reaction. Proceedings of the National Academy of Sciences, 93(23):
12947–12952, 1996b.

F. Sun. The polymerase chain reaction and branching processes. Journal of Com-
putational Biology, 2(1):63–86, 1995.

H. Swaminathan, C. M. Grgicak, M. Medard, and D. S. Lun. Nocit: A computa-
tional method to infer the number of contributors to DNA samples analyzed by
STR genotyping. Forensic Science International: Genetics, 16:172–180, 2015.

T. Tvedebrink, P. S. Eriksen, H. S. Mogensen, and N. Morling. Estimating the
probability of allelic drop-out of STR alleles in forensic genetics. Forensic
Science International: Genetics, 3(4):222–226, 2009.

T. Tvedebrink, P. S. Eriksen, H. S. Mogensen, and N. Morling. Evaluating the
weight of evidence by using quantitative short tandem repeat data in DNA mix-
tures. Applied Statistics, 59(5):855 – 874, 2010.

167

https://www.R-project.org/
https://www.R-project.org/


T. Tvedebrink, P. S. Eriksen, M. Asplund, H. S. Mogensen, and N. Morling. Al-
lelic drop-out probabilities estimated by logistic regression—further consider-
ations and practical implementation. Forensic Science International: Genetics,
6(2):263–267, 2012a.

T. Tvedebrink, P. S. Eriksen, H. S. Mogensen, and N. Morling. Identifying
contributors of DNA mixtures by means of quantitative information of STR
typing. Journal of Computational Biology, 19(7):887–902, 2012b. doi:
10.1089/cmb.2010.0055.

P. S. Walsh, H. A. Erlich, and R. Higuchi. Preferential pcr amplification of alleles:
mechanisms and solutions. Genome Research, 1(4):241–250, 1992.

T. Wang, N. Xue, and J. D. Birdwell. Least-square deconvolution: A framework
for interpreting short tandem repeat mixtures. Journal of Forensic Sciences, 51
(6):1284–1297, 2006.

J. Weusten and J. Herbergs. A stochastic model of the processes in PCR based
amplification of STR DNA in forensic applications. Forensic Science Inter-
national: Genetics, 6(1):17–25, 2012. URL doi:10.1016/j.fsigen.2011.
01.003.

168

doi:10.1016/j.fsigen.2011.01.003
doi:10.1016/j.fsigen.2011.01.003

	I Background
	1 DNA background
	1.1 Short Tandem Repeat (STR) markers
	1.2 The PCR process

	2 From sample to EPG
	2.1 Steps in the process

	3 The objectives of an EPG analysis

	II Mathematical formulation
	4 Specifying genetic profile probabilities
	5 The simulation model of gill:etal:2005: the amplicon model
	5.1 Simulating the process without stutters
	5.2 Generating the full distribution (without stutters)
	5.3 Alternative derivation of the distribution probabilities
	5.4 Simulating the process with stutters
	5.5 Generating the full joint distribution
	5.6 FFT implementation of target and stutter distribution
	5.7 Stutter marginal distribution
	5.8 Moment analysis

	6 Amplifying genomic strands: a genomic model
	6.1 The basic model described
	6.2 Initial mathematical formulation : no stutters
	6.3 The basic model: PGF formulation
	6.4 Moment analysis
	6.5 Full distribution from vectorial PGF
	6.6 Including single step backward stutter
	6.7 Extension to forward stutter and double stutter

	7 Further Mathematical and computational aspects
	7.1 Finding marginal distributions without a full DFT


	III New Framework in detail
	8 Modelling the EPG generation process
	8.1 Contributor DNA
	8.2 Including Drop-in
	8.3 PCR amplification
	8.4 The joint PGF after PCR
	8.5 RFU scaling and baseline noise
	8.6 Multiple replicates from a sample
	8.7 Untyped contributors
	8.8 Another variation of the framework

	9 A particular model realisation
	9.1 Model assumptions and approximations
	9.1.1 The sample
	9.1.2 The PCR
	9.1.3 Converting amplicon numbers to peak height RFUs
	9.1.4 Likelihood evaluation


	10 Model performance with simulated data
	10.1 Single contributor simulations
	10.1.1 Simulations with no stutter and no noise 
	10.1.2 Simulations with stutter but no noise 
	10.1.3 Simulations with degradation, but no baseline noise

	10.2 Two person simulations
	10.2.1  Two person mixtures


	11 Application to sample data
	11.1 Calibration of model parameters to the data
	11.2 Analysis of a two person sample
	11.3 Analysis of a three person sample

	12 A modification of the FFT model to correct for correlations
	12.1 Revisiting the two person simulation of Section 10.2.1
	12.2 Revisiting the three person mixture of Section 11.3 from the PROVEDit Initiative
	12.3 Another 2-person mixture from the PROVEDit datatset

	13 Summary and outlook
	A Derivation of moments for amplicon model
	B Derivation of moments for genomic model, no stutters
	B.1 Moments of tagged amplicons
	B.1.1 DG
	B.1.2 DGd
	B.1.3 DG and DGd combined
	B.1.4 Variance of the number of amplicons

	B.2 Moments from matrix analysis
	B.2.1 First moment: Mean as matrix expression
	B.2.2 Second moment: as matrix expression


	C Derivation of moments for genomic model, single stutters
	C.1 Moments
	C.2 Covariance with main peak

	D A further look at target and stutter peak height correlations
	E Sample code for generating distributions and plots
	E.1 Python scripts
	E.1.1 code for Figure 3.
	E.1.2 code for Figure 4
	E.1.3 code for Algorithm 5.5
	E.1.4 code for Algorithm 5.6

	E.2 R scripts
	E.2.1 code for generating target marginal distribution, no stutters
	E.2.2 code to generate Figure 6
	E.2.3 code for generating marginal distributions for the genomic model, implementing Algorithm 6.1 

	E.3 Julia scripts
	E.3.1 code for generating Figure 19


	Bibliography


