
Beyond series-parallel concurrent systems: the case of arch

processes∗

Olivier Bodini†, Matthieu Dien‡, Antoine Genitrini§ and Alfredo Viola¶

March 5, 2018

Abstract

In this paper we focus on concurrent processes built on synchronization by means of futures.
This concept is an abstraction for processes based on a main execution thread but allowing
to delay some computations. The structure of a general concurrent process with futures is
more or less a directed acyclic graph. Since the quantitative study of such increasingly labeled
graphs (directly related to processes) seems out of reach, we restrict ourselves to the study of
arch processes, a simplistic model of processes with futures. They are based on two parameters
related to their sizes and their numbers of arches. The increasingly labeled structures seems
not to be specifiable in the sense of Analytic Combinatorics, but we manage to derive a
recurrence equation for the enumeration.
For this model we first exhibit an exact and an asymptotic formula for the number of runs of
a given process. The second main contribution is composed of an uniform random sampler
algorithm and an unranking one that allow efficient generation and exhaustive enumeration
of the runs of a given arch process.

Keywords: Concurrency Theory; Future; Uniform Random Sampling; Unranking; Analytic Com-
binatorics.

1 Introduction

Our study consists in the increasing labeling of combinatorial structures, which tightly relates
to the notion of behaviors of concurrent processes. We conduct this study by using tools of
Analytic Combinatorics. This work is a part of a long time project to understand the so-called
combinatorial explosion phenomenon about the number of runs (or executions) of concurrent
processes. In previous works the authors studied tree-like processes [BGP16], tree-like processes
with non-deterministic choice [BGP13] and Series-Parallel processes [BDF+16, BDGP17b].

The main common idea consists in modeling a concurrent process as a partial order over the
atomic actions of the process. Thus some precedence relations describe the process. In this way
the runs of the process correspond to linear extensions of the poset. Then, we reinterpret this
modelization in term of combinatorial structures (trees, Series-Parallel graphs, directed acyclic
graph, . . .) where increasing labelings are in one-to-one correspondence with the runs of the
process. Until the present work all the structures were decomposable, in the sense of [FS09], by
recursive specifications. For each of these families the objectives have always been the same:
understanding the growth of the number of runs for large concurrent processes, which means
understanding the combinatorial explosion phenomenon; and tuning efficient algorithm for the

∗This research was partially supported by the ANR MetACOnc project ANR-15-CE40-0014.
†Laboratoire d’Informatique de Paris-Nord, CNRS UMR 7030 - Institut Galilée - Université Paris-Nord, 99,

avenue Jean-Baptiste Clément, 93430 Villetaneuse, France. Olivier.Bodini@lipn.univ-paris13.fr
‡Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan. dien@stat.sinica.edu.tw
§Laboratoire d’Informatique de Paris 6, CNRS UMR 7606 and Sorbonne Univiersité, 4 place Jussieu, 75005

Paris, France. Antoine.Genitrini@lip6.fr
¶Universidad de la República, Uruguay. viola@fing.edu.uy.

1

ar
X

iv
:1

80
3.

00
84

3v
1

 [
cs

.D
M

]
 2

 M
ar

 2
01

8

uniform random generation of increasing labelings which is a practical way to circumvent the
combinatorial explosion phenomenon (see for example [GS05]).

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •

c2 •

c3•
ck
•

b1•b2•
b3 •

bk •

Figure 1: The (n, k)-arch pro-
cess

In the present work we focus on processes built on synchro-
nization by means of futures (or promises). This concept is an
abstraction for processes based on a main execution thread but
allowing to delay some computations. These computations are
run asynchronously and are represented by an object that can
be queried in two ways: finish? to know if the computation
has terminated and get to retrieve the result of the computation
(and properly proceed the synchronization).

The structure of a general concurrent process with futures
is more or less a directed acyclic graph. Since the quantitative
study of such increasingly labeled graphs seems out of reach,
we restrict ourselves to the study of arch processes, a simplistic
model of processes with futures. An arch process is composed of a
main trunk from which start several arches (modelizing futures).
The general shape of such a process is given in Fig. 1. The
arch processes are based on two parameters related to their sizes
and their numbers of arches. To our knowledge the increasingly
labeled structures are not specifiable in the sense of [FS09].

For this limited model we exhibit an exact and an asymptotic formula for the number of
increasing labelings. The second main contribution of this paper is composed of two algorithms.
The first one is an uniform random sampler for runs of a given arch process and the second one is
an unranking algorithm which allows to obtain an exhaustive builder of runs.

The paper is organized as follows. The next section is devoted to the formal description of
(n, k)-arch processes and gives the solution of the recurrence equation driving their numbers of
runs. In Section 3 we prove the algebraicity of the bivariate generating function, we give a closed
form formula for it and, we give the asymptotic behaviors of the diagonal coefficients of the
functions. Section 4 carefully describes both algorithms.

2 The arch processes and their runs

Definition 1. Let n and k be two positive integers with k ≤ n + 1. The (n, k)-arch process,
denoted by An,k, is built in the following way:

• the trunk of the process: a sequence of n+k actions a1, a2, . . . , ak, x1, x2, . . . , xn−k, c1, c2, . . . , ck
represented in Fig. 1 on a semicircle;

• for all i ∈ {1, . . . , k}, the actions ai and ci are directly linked by an arch containing a single
action bi.

We remark the value k corresponds to the number of arches in the process, and n is the length
(in the trunk) between both extremities of each arch. There are two extreme cases: when k = n,
it corresponds to the arch processes that do not contain any node xi in the trunk, and the case
k = n + 1 that corresponds to the case where both the nodes ak and c1 are merged into a single
node (and thus there is no node xi).

In Fig. 1 representing the (n, k)-arch process, the precedence constraints are encoded with the
directed edges such that a→ b means that the action a precedes b. We remark that the (n, k)-arch
process contains exactly n+ 2k actions.

Due to the intertwining of the arches, we immediately observe when k is larger than 1 then
the arch processes are not Series-Parallel processes. Hence the results we exhibited in our pa-
pers [BDGP17a, BDGP17b] cannot be applied in this context.

Definition 2. For a concurrent process a run is a total order of the actions that is compatible
with the precedence constraints describing the process.

2

Definition 3. An increasing labeling for a concurrent process containing ` actions is a bijection
between the integers {1, . . . , `} and the actions of the process, satisfying the following constraint:
if an action a precedes an action b then the label associated to a is smaller than the one related to
b.

1 •3 •
4•

6•

7•

9 •
11 •

12•
13•

2 •10 •
5 •

8 •

Figure 2: A run of
the (5, 4)-arch pro-
cess

In Fig. 2 we have represented an increasing labeling of the
(5, 4)-arch processA5,4 corresponding to the run 〈a1, b1, a2, a3, b3, a4, x1, b4, c1, b2, c2, c3, c4〉.
As one can see, every directed path (induced by the precedence relation)
is increasingly labeled. Our quantitative goal is to calculate the number of
runs for a given arch process.

Proposition 4. The number of runs of a concurrent process is the number
of increasing labelings of the actions of the process.

While there is the classical hook-length formula for tree-processes [Knu98,
BGP16] and its generalization for Series-Parallel processes [BDGP17a], to
the best of our knowledge, no closed form formula is known for more gen-
eral classes of processes. In the rest of the paper, for a given process A, we
denote by σ(A) its number of runs.

First, let us easily exhibit a lower bound and an upper bound (in the
case k < n+1) in order to obtain a first idea for the growth of the numbers
of runs for the arch processes. Remark that a similar approach could be
used for the case when k = n + 1. We first enumerate the runs where all the nodes bi’s are
preceded by ak, and all of them precede the node c1. This imposes new precedence constraints for
the process, and thus its number of runs is a lower bound for the total number of runs. In this
case the bi’s permute without any constraint, i.e. k! possibilities and then each permutation of
the bi’s shuffles with the sequence x1, . . . , xn−k. Thus we get the following lower bounds for the
number of runs of An,k:

σ(An,k) ≥ k!

(
k + n− k

k

)
=

n!

(n− k)!
.

We now focus on an upper bound for the number of runs of An,k. Here again we suppose that all
the permutations of the bi’s are possible, but we allow each bi to appear everywhere between a1
and ck. This constraint is satisfied by all the runs, but some possibilities are not valid runs: thus
we are computing an upper bound. Once the permutation of the bi’s is calculated, we shuffle it
into the trunk (containing n+ k nodes):

σ(An,k) ≤ k!

(
k + n+ k − 1

n+ k − 1

)
=

(n+ 2k − 1)!

(n+ k − 1)!
.

A refinement of these ideas for the bounds computation allows to exhibit a recurrence formula for
the value σ(An,k).

Theorem 5. Let n and k be two integers such that 0 ≤ k ≤ n+ 1. The number σ(An,k) of runs
of the process An,k is equal to tn,k with:

tn,k =
n+ 2k − 1

2
tn,k−1 +

n− k
2

tn+1,k−1 and tn,0 = 1. (1)

In order to provide the proof, we first introduce the four processes in Fig.3. Notice that they
are not arch processes. From the left handside to right handside, the first process, denoted by
Dn,k, is almost the process An,k. In fact, the single difference is that Dn,k contains exactly one
more action, denoted by c′1, that is preceded by all the other actions. The second process Dn,k

is related to Dn,k in the following way: the precedence relation starting at b1 is replaced, instead

of having b1 → c1, it is b1 → c′1. Finally, for the two last processes D
1

n,k and D
2

n,k, it is also the
relations a1 → b1 → c1 which are modified.

3

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •
c2 •

c3•
ck•

•c′1

b1•b2•
b3 •

bk •

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •
c2 •

c3•
ck•

•c′1

b1•b2•
b3 •

bk •

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •
c2 •

c3•
ck•

•c′1

• b1

b2•
b3 •

bk •

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •
c2 •

c3•
ck•

•c′1

• b1

b2•
b3 •

bk •

Figure 3: From left to right, the processes denoted Dn,k, Dn,k, D
1

n,k and D
2

n,k

Proof. The extreme case An,0 corresponds to a process without any arch: just a trunk. Obviously
it admits a single increasingly labeling: it has a single run.

Suppose first that k < n + 1. The number σ(An,k) is equal to the number of runs σ(Dn,k)
because for all runs, the integer associated to c′1 is inevitably the largest one: 2k + n + 1. Then
we compute with some inclusion/exclusion rule the number σ(Dn,k):

σ(Dn,k) = σ(Dn,k)−
(
σ(D

1

n,k)− σ(D
2

n,k)
)
. (2)

In fact we are focusing on the action preceded by b1. In Dn,k it corresponds to c1. By modifying
it by c′1 in Dn,k we allow runs where b1 appears after c1, thus that are not valid for Dn,k. We

remove this number of non-valid runs with σ(D
1

n,k) − σ(D
2

n,k), by playing with both actions x1
and c1. To compute σ(Dn,k), first omit the action b1 (and its incoming and outgoing edges) ; the
remaining process is a (n, k−1)-arch process, up to renaming, with added top and bottom actions
(a1 and c′1) which do not modify the number of runs of An,k−1. It remains to insert b1 in this
“almost” An,k−1, somewhere between a1 and c′1: there is (2 · (k − 1) + n − 1) + 2 = 2k + n − 1
possibilities. The term (2 · (k − 1) + n − 1) are the cases where b1 is put between a2 and ck and

the term 2 corresponds to the cases where b1 is either before a2 or after ck. The process D
1

n,k is

similar to the arch process An,k, there is only an action a1 that precedes it, so σ(D
1

n,k) = tn,k.

Lastly, for the process σ(D
2

n,k), forgetting b1 we recognize An+1,k−1 up to renaming, so b1 can be
inserted between x1 and c1: there are n− k possibilities. Finally we obtain the following equation

σ(An,k) = (n+ 2k − 1) · σ(An,k−1)− σ(An,k) + (n− k) · σ(An+1,k−1).

Induction principle let us conclude that equation (1) is proved.
Suppose now that k = n + 1. Here there is no action xi and both the nodes ak and c1 are

merged into a single node. We can adapt equation (2) and obtain the same recurrence, but via a
small difference in the computation:

σ(Ak−1,k) = 3k · σ(Ak−1,k−1)− σ(Ak−1,k)− σ(Ak,k−1).

But since k = n+ 1, this recurrence is equal to equation (1) too.

Notice when k > n + 1, for our model, it consists to merge the last actions an−i’s with the
first actions ci’s. But the recursive formula (1) does not apply to such models: once k > n+ 1 the
recurrence looses its combinatorial meaning.
The next result exhibits a closed form formula for the number of runs of the arch processes.

Theorem 6. Let n and k be integers such that 0 < k ≤ n + 1. The number1 of runs of the
(n, k)-arch process is

σ(An,k) =
(2k + n− 1)!!

2k−1

k−1∑
s=0

(n+ s) par(n, s)

(n+ s+ 1)!!

∑
1≤i1<i2<···<is≤k

s∏
j=1

(ij + j + n− k − 1)
Γ
(

2k+n−2ij+j

2
+ 1
)

Γ
(

2k+n−2ij+j+1

2
+ 1
) ,

1In Theorem 6 we use the convention that the sum over the sequence of ij ’s is equal to 1 when s = 0.

4

with the following function

par(n, s) =

1

2s/2
if s is even

√
π

2(s+1)/2 if s is odd and n is even
1

2(s−1)/2
√
π

if s is odd and n is odd.

Let us recall the double factorial notation: for n ∈ N, n!! = n · (n − 2)!! with 0!! = 1!! = 1.
We remark that the ratio of the two Γ-function is related to the central binomial coefficient. The
asymptotic behavior of the sequence does not seem immediate to obtain using this formula.

key-ideas. The formula for σ(An,k) is obtained by resolving the recurrence stated in equation (1).
First remark that the calculation of σ(An,k) requires the values of σ(Ai,j) in the triangle such
that n ≤ i ≤ n + k and 0 ≤ j ≤ k − (i − n). The formula is computed by unrolling k times the
recurrence. In particular, the index s in the formula corresponds to the number of times we have
used the second term of equation (1), to reach the final term σ(An+s,0). The ij ’s values indicate
in which iteration the second terms of equation (1) have been chosen. They describe the path
from (n, k) to (n + s, 0). The brute formula obtained in this way is composed of a product of
truncated double factorials that can be written as ratios of double factorial numbers. Finally, by
coupling the adequate numerators and denominators in the product we exhibit several Wallis’s

ratios [AS64] that are easily simplified by using the Γ function:
(2n− 1)!!

(2n)!!
=

1√
π

Γ
(
n+ 1

2

)
Γ (n+ 1)

.

By using this closed form formula, or the bivariate recurrence (cf. equation (1)), we easily
compute the first diagonals of the recurrence. The values of a given diagonal correspond to the
class of arch processes with the same number of actions xi’s in the trunk.

(σ(Ak−1,k))k∈N\{0,1} = (1, 12, 170, 2940, 60760, 1466640, 40566680, 1266064800, 44030186200, 1688858371200, . . .)

(σ(Ak,k))k∈N∗ = (1, 5, 44, 550, 8890, 176120, 4130000, 111856360, 3435632200, 117991273400, . . .)

(σ(Ak+1,k))k∈N∗ = (2, 11, 100, 1270, 20720, 413000, 9726640, 264279400, 8137329200, 280012733000, . . .)

(σ(Ak+2,k))k∈N∗ = (3, 19, 186, 2474, 41670, 850240, 20386800, 561863960, 17501627640, 608063465800, . . .)

We remark that the first terms of the sequence (σ(Ak+1,k))k∈N∗ coincide with the first terms of the
sequence A220433 (shifted by 2) in OEIS2 . This sequence is related to a specific Alia algebra and
is exhibited in the paper of Khoroshkin and Piontkovski [KP15]. In their paper, the exponential
univariate generating function naturally appears as an algebraic function. This motivates us to
study in detail the bivariate generating function for (tn,k) and in particular its diagonals.

3 Algebraic generating functions

Let us associate to the bivariate sequence (tn,k)n,k the generating function, denoted by A(z, u),
exponential in u and ordinary in z:

A(z, u) =
∑

n≥0,k≥0

tn,k
k!

znuk.

Recall this series enumerates the increasing labelings of the arch processes, when k ≤ n + 1, but
has no combinatorial meaning beyond this bound.

Proposition 7. The bivariate generating function A(z, u) is holonomic and satisfies the following
differential equation.

(2zu− 2z − u)
∂

∂u
A (z, u) + (z − 2)A (z, u) + z (z + 1)

∂

∂z
A (z, u) + C(u) = 0.

The differential equation can be exhibited since the recursive behavior of (tn,k) is not disturbed
beyond the bound k > n+ 1.

2OEIS corresponds to the On-line Encyclopedia of Integer Sequences: http://oeis.org/.

5

http://oeis.org/

key-ideas. The differential equation is directly obtained from the recurrence equation (1). The
function C(u) encodes the initial conditions of the equation. The differential equation satisfied by
A(z, u) ensures its holonomicity (cf. [Sta01, FS09]).

It is important to remark that C(u) is holonomic. In fact we have C(u) = u ∂
∂uA(0, u)+2A(0, u)

and consequently C(u) is holonomic as a specialization of an holonomic bivariate generating func-
tion. A direct computation for C(u) exhibits the following differential equation

4
(
24u2 + 3u+ 1

)
C(u)− 4u

(
84u2 − 3u+ 1

) d

du
C(u)− 2u2

(
216u2 − 151u+ 13

) d2

du2
C(u)

− 2u2
(
58u3 − 75u2 + 33u− 2

) d3

du3
C(u)− u3

(
8u3 − 15u2 + 12u− 4

) d4

du4
C(u)− 8 (3u+ 1) = 0.

Note that we prove also that C(u) is solution of an algebraic equation. This fact is really not
obvious from a combinatorial point of view. But it is deduced through the fact that the function
A(0, u) is algebraic:

(8u3 − 15u2 + 12u− 4)A(0, u)3 + (12u2 − 12u+ 6)A(0, u)− 2u3 = 0. (3)

The equation is obtained by a guess and prove approach. Once it has been guessed it remains to
prove it by using the holonomic equation proven in Proposition 7. Thus we get(

8u3 − 15u2 + 12u− 4
)3
C(u)3 + 48

(
36u6 − 120u5 + 202u4 − 199u3 + 123u2 − 44u+ 8

)
(u− 1)2 C(u)

+32
(
9u2 − 12u+ 8

)
(u− 1)3 = 0.

Theorem 8. The function A(z, u) is an algebraic function in (z and u) whose annihilating poly-
nomial has degree 3:(

8u3 − 15u2 + 12u− 4
) (
z3 + 6zu+ 3z2 − 3z − 1

)
A(z, u)3 + 6z2

(
8u3 − 15u2 + 12u− 4

)
A(z, u)2

+6
(
12zu3 − 18zu2 − 2u2 + 13zu+ 2u− 3z − 1

)
A(z, u) + 2 = 0.

Note that the choice to use a doubly exponential generating function (in u and z) for (tn,k)
would have make sense and would be holonomic too (closure property of Borel transform). But it
would not be algebraic because the inappropriate asymptotic expansion (cf. Theorem 10).

Proof. The fact that the initial conditions and a diagonal of A(z, u) are algebraic suggests that
it could also be algebraic as a function of z and u. Applying a bivariate guessing procedure, we
observe that bivariate function H(z, u) = (u + 1)(z3 + 3z2 + 6zu − 3z − 1)A(z, u) is such that
[zn]H(z, u) = 0 for n > 2. Furthermore [zj]H(z, u) is algebraic for j = {0, 1, 2}. So, let us
calculate these z-extractions. First recall that [z0]A(z, u) satisfies the algebraic equation (3). In
the same vein, [z1]A(z, u) verifies the algebraic equation(

8u3 − 15u2 + 12u− 4
)
f(u)3 + 3

(
8u3 − 15u2 + 12u− 4

)
f(u)2

+3
(
8u3 − 15u2 + 10u− 2

)
f(u) + 8u3 − 15u2 + 6u = 0,

and finally [z2]A(z, u) verifies the algebraic equation(
8u3 − 15u2 + 12u− 4

)
f(u)3 +

(
−24u3 + 45u2 − 36u+ 12

)
f(u)2

+
(
−72u3 + 135u2 − 84u+ 18

)
f(u)− 40u3 + 75u2 − 36u = 0.

Thus we obtain

[z0]H(z, u) = −(1 + u)A(0, u)

[z1]H(z, u) = −1 + (u+ 1)
(
(6u− 3)A(0, u)− [z1]A(z, u)

)
[z2]H(z, u) = (u+ 1)

(
(6u− 3)[z1]A(z, u)− [z2]A(z, u) + 3A(0, u) + (6u− 4)

)
.

Finally we get

A(z, u) =
[z≤2]H(z, u)

(u+ 1) (z3 + 3z2 + 6uz − 3z − 1)
.

By using the elimination theory, we finally get a closed form algebraic equation for A(z, u) of
degree 27, that obviously cannot fit in the conference paper format. Nevertheless, this equation is

6

not minimal. By simplifying it, we finally get a minimal polynomial of degree 3 which annihilates
A(z, u):(

8u3 − 15u2 + 12u− 4
) (
z3 + 3z2 + 6zu− 3z − 1

)
A(z, u)3 + 6z2

(
8u3 − 15u2 + 12u− 4

)
A(z, u)2

+6
(
12zu3 − 18zu2 − 2u2 + 13zu+ 2u− 3z − 1

)
A(z, u) + 2 = 0.

A direct proof by recurrence confirms the validity of this equation.

We remark in the previous section that the diagonals of the function A(z, u) are of particular
interest because they define subclasses of arch processes with a fixed number of actions xi’s covered
by all the arches. In order to extract the generating functions of these subclass, we could use the
Cauchy formula to compute [u0]A(z/u, u) and so on; we would keep the holomicity property of
the sequences but not their algebraicity. So, we prefer to define the generating function B(z, u) =
A(z/u, u). A similar proof that for the case A(z, u) can be done to prove the algebraicity of
B(z, u). In particular, it exhibits the following algebraic equation satisfied by B(z, u)(

9u2 + 12u− 4
) (
z3 + 3z2 + 6u− 3z − 1

)
B(z, u)3 + 6z2

(
9u2 + 12u− 4

)
B(z, u)2

+6
(
18u2z − 18u2 + 6uz + 9u− 3z − 1

)
B(z, u) + 2 (6u− 1)2 = 0.

In particular, B(0, u) is associated to the sequence (tk,k)k, [z1]B(z, u) corresponds to the sequence
(tk−1,k)k and so on. By specializing z = 0 in the latter algebraic equation then by resolving
it through the Viète-Descartes approach for the resolution of cubic equation –detailed in the
paper [Nic06]–, we obtain the following closed form formula corresponding to the branch that is
analytic in 0:

B(0, u) =
√

2

√
1− 3u

1− 3u− 9
4u

2
cos

1

3
arccos

 6u− 1√
2(1− 3u)

√
1− 3u− 9

4u
2

1− 3u

 .

Although the way we have represented B(0, u) could suggest a singularity when the argument of
the arccos function is equal to 1, the function admits an analytic continuation up to its dominant

singularity ρ, solution of 1− 3u− 9
4u

2 = 0, thus corresponding to ρ =
2

3

(√
2− 1

)
. Furthermore,

by studying the global generating function B(z, u), we obtain its singular expansion.

Lemma 9. Near the singularity when u tends to ρ, the function B(z, u) satisfies

B(z, u) =
u→ρ

a(z) +
b(z)√
ρ− u

+ o
(

(ρ− u)−1/2
)
,

with a(z) and b(z) two functions independent from u.

By using this result we deduce the asymptotic behaviors of the diagonal coefficients of A(z, u).

Theorem 10. Let i be a given integer, and k tend to infinity:

tk+i,k ∼
k→∞

γi
ρ−k√
k
k! with γ0 =

1

2

√
3√
2π

(√
2− 1

)
and ∀i ≥ −1, γi =

(
1√

2− 1

)i
γ0.

This theorem is a direct consequence of Lemma 9. The (γi)i can be deduced by asymptotic
matching.

Finally, by computing [z1]B(z, u) with the algebraic function it satisfies, we prove that its
second derivative is solution of the algebraic function exhibited in OEIS A220433.

4 Uniform random generation of runs

We now introduce an algorithm to uniformly sample runs of a given arch process An,k. Our
approach is based on the recursive equations (1) and (2) for the sequence (tn,k). Here we deal
with the cases k ≤ n and avoid the limit case k = n + 1. Although the latter limit case satisfies

7

this equation too, its proof is based on an other combinatorial approach, and so the construction
of a run cannot be directly deduced form the combinatorial approach proposed for the cases k ≤ n.
Of course, a simple adaptation of the algorithm presented below would allow to sample in Ak−1,k,
but the lack of space avoid us to present it here.

Our algorithm is a recursive generation algorithm. But since the objects are not specified in
a classical Analytic Combinatorics’s way, we can not use the results of [FZVC94]. As usual for
recursive generation, the first step consists in the computation and the memorization of the value
tn,k and all the intermediate values (ti,j) needed for the calculation of tn,k.

Proposition 11. In order to compute the value tn,k, we need to calculate the values in the bi-
dimensional set {ti,j | n ≤ i ≤ n+ k and 0 ≤ j ≤ k − (i− n)}. This computation is done with
O
(
k2
)

arithmetic operations.

Recall that the coefficient computations are done only once for a given pair (n, k), and then
many runs can be drawn uniformly for An,k by using the recursive generation algorithm.

Let us present the way we exploit the recurrence equation (2) to design the sampling method.
The main problem that we encounter is the presence of a minus sign in the recurrence equation.

Let us rewrite it in a slightly different way: σ(Dn,k) + σ(D
1

n,k) = σ(Dn,k) + σ(D
2

n,k).
Recall that the structures under consideration are depicted in Fig. 3. We introduce the

classes of increasingly labeled structures from Dn,k, D
1

n,k, Dn,k and D
2

n,k, respectively denoted

by In,k, I
1

n,k, In,k and I
2

n,k. Remark that the number of runs of An,k is equal to |In,k|, where the
function | · | corresponds to the cardinality of the considered class. Obviously the equation on the

cardinalities can be written directly on the classes In,k∪I
1

n,k = In,k∪I
2

n,k (since their intersections

are empty: In,k and I
1

n,k are distinct even if they are isomorphic). Thus, we consider the problem

of sampling the class In,k ∪ I
1

n,k where we bijectively replace the runs belonging to I
1

n,k by ones of
In,k (which can be performed recursively during the sampling procedure). The Algorithm Sam-
pling(n, k) is based on the correspondence depicted in the Fig. 3 and its adaptation presented

above on the classes In,k ∪ I
1

n,k. In each case the algorithm completes a recursively drawn run
and apply some renaming on the actions of that run. Then, it inserts the action b1 according to

the cases In,k\I
1

n,k, I
1

n,k or I
2

n,k. In the specific case I
1

n,k, instead of b1, it is the action bk that is

inserted and the renaming occurs in a similar fashion to obtain a run of In,k from the one of I
1

n,k.

Theorem 12. The Algorithm Sampling(n, k) builds uniformly at random a run of An,k in k
recursive calls, once the coefficients computations and memorizations have been done.

Since each object of In,k is sampled in two distinct ways, the uniform sampling in In,k ∪ I
1

n,k

induces the uniform sampling of In,k.
Focus on the run of A5,4 depicted in Fig. 2: 〈a1, b1, a2, a3, b3, a4, x1, b4, c1, b2, c2, c3, c4〉. It is

either obtained from a (renamed) run of Ī15,4: 〈a1, b1, a2, a3, b3, x1, x2, c1, b2, c2, c3〉 with pb = 8

(Line 8 of the algorithm). Or it is built from 〈a1, a2, b2, a3, x1, b3, x2, b1, c1, c2, c3〉 of Ī5,4\Ī15,4, with

pb = 1 (Line 11). But it cannot be built from a run of I
2

5,4.

Figure 4: The terms ti,j needed
for the sampling of 1000 runs of
A1000,1000

In Fig. 4, we have uniformly sampled 1000 runs for
A1000,1000 and we have represented in blue points every pair
(k, n) corresponding to an increasing sub-structure from
An,k that has been built during the algorithm (k for abscissa
and n for ordinate). Only around 4.78 · 104 sub-structures
have been built among the 50 ·104 inside the red lines which
are calculated for the value t1000,1000. At the beginning
n ≈ k and the if branch on Line 5 is preferred (instead
of the else one on Line 15) because the number of actions
xi’s is too small. After some recursive calls, the number
of xi’s actions has increased and then both branches of the
algorithm are taken with probabilities of the same order.

8

Algorithm 1 Uniform random sample for In,k

1: function Sampling(n, k)
2: if k = 0 then
3: return 〈x1, x2, . . . , xn〉
4: r := rand int(0, 2 · tn,k − 1) . an uniform integer between 0 and 2 · tn,k − 1 in r

5: if r < |In,k| then . generation in In,k

6: U := Sampling(n, k − 1)
7: pb := 1 + r//tn,k−1 . The position of the new b to insert
8: if pb > px1 then . generation in Ī1n,k

9: Rename x1 by ak ; and each xi with i > 1 by xi−1

10: Insert bk at position pb ; and ck at the end of U
11: else . generation in In,k\Ī1n,k

12: In U , rename each ai (resp. ci and bi) by ai+1 (resp. ci+1 and bi+1)
13: Rename xn−k+1 by c1
14: Insert b1 at position pb ; and a1 at the head of U

15: else . generation in I
2
n,k

16: U := Sampling(n+ 1, k − 1)
17: pb := 2 + (r − (n+ 2k − 1) · tn,k−1)//tn+1,k−1

18: Rename xpb by b1 and xn−k+2 by c1 ; and each xi with i > pb by xi−1

19: Insert a1 at the head of U

20: return U

Line 4 and 17 : the binary operator // denotes the Euclidean division.

The position of an action in a run is its arrival number (from 1 to the number of actions).

Recall that the constants γi’s (cf. Theorem 10) are evolv-
ing with an exponential growth. Finally, we observe that
only a small number of diagonals are necessary for the samplings. Since the diagonals (tni,ki) for
increasing sequences (ni)i and (ki)i follow P-recurrences (cf. [Lip88]), a lazy calculations of the
terms of the necessary diagonals that envelop the blue points (but that are much narrow to the
blue points than both red lines) would allow to minimize the pre-computations of Proposition 13.

We close this section with the presentation of an unranking algorithm for the construction
of the runs of a given arch process An,k. This type of algorithm has been developed during the
70’s by Nijenhuis and Wilf [NW75] and introduced in the context of Analytic Combinatorics by
Mart́ınez and Molinero [MM03]. Our algorithm is based on a bijection between the set of integers
{0, . . . , tn,k − 1} and the set of runs of An,k. Here again we restrict ourselves to the values k ≤ n.
As usual for unranking algorithms, the first step consists in the computation and the memorization
of the values of a sequence. But compared to the uniform random sampling, here we need more
information than the one given by the sequence (tn,k).

To be able to reconstruct the run associated to a given rank, we need to know the position
of the action x1 in the recusively drawn run in order to decide if the action b1 appears before or
after it. First suppose k < n and let tn,k,` be the number of runs in An,k whose action x1 appears
at position `. Let us denote by In,k,` the associated combinatorial class. We obtain directly a
constructive recurrence for the sequence.

tn,k,` = (`− 2) tn,k−1,`−2 + (n− k) tn+1,k−1,`−1 and tn,0,1 = 1; tn,0,`>1 = 0.

Proposition 13. The computation of tn,k,` is done with O
(
k2
)

arithmetic operations.

The Unranking algorithm computes a run given its rank in the following total order:

α �n,k β iff.

α ∈ In,k,i0 and β ∈ In,k,i1 ∧ i0 < i1, or

α, β ∈ In,k,i ∧ α is built recursively from In,k−1,i−2 and
β is built recursively from In+1,k−1,i−1

or

α, β ∈ In,k,i ∧ α, β ∈ In,k−1,i−2 (resp. In+1,k−1,i−1) and
α0, β0 inducing α, β satisfy α0 �n,k−1 β0.

The run example of Fig. 2 has rank 479 among the 1270 runs of A5,4. Note that in the case
k = n (at the end there is no x1) the algorithm is easily extended by considering the position of
b1 as the one of x1.

9

Algorithm 2 Unranking for In,k

1: function Unranking(n, k, r)
2: ` := k + 1
3: while r ≥ 0 do
4: r := r − tn,k,l

5: ` := `+ 1

6: return Cons(n, k, `, r)

7: function Cons(n, k, `, r)
8: if k = 0 then
9: return 〈x1, x2, . . . , xn〉

10: if r < (`− 2) · tn,k−1,`−2 then . generation in In,k−1,`−2

11: rr := r % tn,k−1,`−2

12: U := Cons(n, k − 1, `− 2, rr)
13: pb := 1 + r//tn,k−1,`−2 . The position of the new b to insert
14: In U , rename each ai (resp. ci and bi) by ai+1 (resp. ci+1 and bi+1)
15: Rename xn−k+1 by c1
16: Insert b1 at position pb ; and a1 at the head of U
17: else . generation in In+1,k−1,`−1

18: r′ := r − (`− 2) · tn,k−1,`−2

19: rr := r′ % tn+1,k−1,`−1

20: U := Cons(n+ 1, k − 1, `− 1, rr)
21: pb := 2 + r′//tn+1,k−1,`−1

22: Rename xpb by b1 and xn−k+2 by c1 ; and each xi with i > pb by xi−1

23: Insert a1 at the head of U

24: return U

Line 11 and 19 : the binary operator % denotes the Euclidean division remainder.

Theorem 14. The Algorithm Unranking(n, k, r) builds the r-th run of An,k in k recursive calls,
once the coefficient memorizations tn,k,`, for all ` such that k+ 1 ≤ ` ≤ 2k+ 1 (and the necessary
n and k), have been done.

Note that the implementation of both algorithms can be much more efficient than the pseu-
docode exhibited above. Actually, only the absolute positions of the bi’s are important in a run,
because all other actions have their positions determined by bi’s positions. However, such im-
plementations are much more cryptic to read, and so we preferred to present here easy-to-read
algorithms.

10

References

[AS64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth
gpo printing edition, 1964.

[BDF+16] O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H.-K. Hwang. Increasing dia-
monds. In Latin American Symposium on Theoretical Informatics, pages 207–219.
Springer, Berlin, Heidelberg, 2016.

[BDGP17a] O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. Entropic uniform sampling of
linear extensions in series-parallel posets. In 12th International Computer Science
Symposium in Russia (CSR), pages 71–84, 2017.

[BDGP17b] O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. The Ordered and Colored Prod-
ucts in Analytic Combinatorics: Application to the Quantitative Study of Synchro-
nizations in Concurrent Processes. In 14th SIAM Meeting on Analytic Algorithmics
and Combinatorics (ANALCO), pages 16–30, 2017.

[BGP13] O. Bodini, A. Genitrini, and F. Peschanski. The combinatorics of non-determinism.
In FSTTCS’13, volume 24 of LIPIcs, pages 425–436. Schloss Dagstuhl, 2013.

[BGP16] O. Bodini, A. Genitrini, and F. Peschanski. A Quantitative Study of Pure Parallel
Processes. Electronic Journal of Combinatorics, 23(1):P1.11, 39 pages, (electronic),
2016.

[FS09] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

[FZVC94] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random genera-
tion of labelled combinatorial structures. Theoretical Computer Science, 132(1-2):1–
35, 1994.

[GS05] R. Grosu and S. A. Smolka. Monte carlo model checking. In TACAS’05, volume 3440
of LNCS, pages 271–286. Springer, 2005.

[Knu98] D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and
searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1998.

[KP15] A. Khoroshkin and D. Piontkovski. On generating series of finitely presented operads.
Journal of Algebra, 426:377 – 429, 2015.

[Lip88] L. Lipshitz. The diagonal of a d-finite power series is d-finite. Journal of Algebra,
113(2):373 – 378, 1988.

[MM03] C. Mart́ınez and X. Molinero. Generic algorithms for the generation of combinatorial
objects. In MFCS’03, pages 572–581. Springer Berlin Heidelberg, 2003.

[Nic06] R.W.D. Nickalls. Viète, descartes and the cubic equation. The Mathematical Gazette,
90(518):203–208, 2006.

[NW75] A. Nijenhuis and H.S. Wilf. Combinatorial algorithms. Computer science and applied
mathematics. Academic Press, New York, NY, 1975.

[Sta01] R.P. Stanley. Enumerative Combinatorics:. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2001.

11

	1 Introduction
	2 The arch processes and their runs
	3 Algebraic generating functions
	4 Uniform random generation of runs

