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Unlimited parity alternating partitions

Shane Chern

Abstract. We introduce a new type of partitions that consists of partitions whose different
parts alternate in parity (e.g., 3 + 2 + 2 + 1 + 1). Various properties of this partition func-
tion are studied. In particular, we obtain its asymptotic behavior by employing Ingham’s
Tauberian theorem.
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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence of positive integers
whose sum is n. Let p(n) count the number of partitions of n. It is well known that

1 +
∑

n≥1

p(n)qn =
1

(q; q)∞
.

Here and in the sequel, we adopt the standard q-series notations:

(a; q)n :=

n−1∏

k=0

(1− aqk),

(a; q)∞ :=

∞∏

k=0

(1− aqk),

(a1, a2, · · · , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, · · · , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

In recent years, many authors also studied partitions with further restrictions.
One example is the parity alternating partitions introduced by Andrews [1]. Here
a parity alternating partition is a partition in which the parts alternate in parity.
If we further require the smallest part of parity alternating partitions to be odd,
then Andrews showed that this type of partitions has generating function

∑

n≥0

qn(n+1)/2

(q2; q2)n
.

Jang [5] later studied the asymptotic behavior of the number of parity alternating
partitions of n with the smallest part odd (in her paper, this type of partitions is
called odd-even partitions), and proved that the number is asymptotic to

1

2
√
5n

3
4

eπ
√

n

5

for sufficiently large n.
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It is easy to observe that parity alternating partitions are distinct partitions
(i.e. all parts are distinct). Naturally, we may study an unlimited version of parity
alternating partitions. Here an unlimited parity alternating partition is a partition
whose different parts alternate in parity. In other words, we allow partitions like
3+2+2+1+1. For example, 6 has the following eight unlimited parity alternating
partitions:

6, 4 + 1 + 1, 3 + 3, 3 + 2 + 1, 2 + 2 + 2,

2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.

Let PA be the set of unlimited parity alternating partitions. For a given positive
integer n, we use PA(n) to denote the set of partitions of n in PA. We further
write pa(n) = |PA(n)|, the number of unlimited parity alternating partitions of n.
We remark that pa(n) is sequence A242110 in OEIS [7].

The goal of this paper is to study various properties of pa(n). In particular, our
core result is the following asymptotic formula:

Theorem 1.1. We have, as n → ∞,

pa(n) ∼
√
A

2πn
e2

√
An, (1.1)

where

A =
π2

12
+ 2

(

log
1 +

√
5

2

)2

.

2. Monotonicity

We start by listing the first 15 values of pa(n), which are shown in Table 1.

Table 1. The first 15 values of pa(n)

n pa(n) n pa(n) n pa(n)
1 1 6 8 11 33
2 2 7 11 12 39
3 3 8 13 13 54
4 4 9 21 14 63
5 6 10 23 15 88

From these values, one may expect that {pa(n)}n≥1 is a strictly increasing se-
quence. In fact, this observation is correct.

Theorem 2.1. {pa(n)}n≥1 is a strictly increasing sequence.

Proof. We may assume that n > 12. For the remaining cases, one may check
directly through Table 1.

The main idea of our proof is to find a injective map φn : PA(n) → PA(n+ 1)
for each n such that φn(PA(n)) is a proper subset of PA(n+ 1). Let λ ∈ PA(n).
We define the map φn as follows:

• If λ = (λ1, . . . , λℓ) with λℓ even, then

φn(λ) = (λ1, . . . , λℓ, 1).

Notice that φn(λ) ends with one 1.
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• If λ = (λ1, . . . , λℓ) with λℓ = 1, then

φn(λ) = (λ1, . . . , λℓ, 1).

Notice that φn(λ) ends with at least two 1’s.
• If λ = (λ1, . . . , λℓ) with λℓ−1 = λℓ ≥ 5 odd, then

φn(λ) = (λ1, . . . , λℓ−1, 2, . . . , 2
︸ ︷︷ ︸

(λℓ+1)/2

).

Notice that φn(λ) ends with an odd integer λℓ−1 ≥ 5 and at least three 2’s.
• If λ = (λ1, . . . , λℓ) with λℓ−1 6= λℓ and λℓ ≥ 5 odd, then we study it into three
cases:
(1) If λℓ ≡ −1 (mod 3), then

φn(λ) = (λ1, . . . , λℓ−1, 3, . . . , 3
︸ ︷︷ ︸

(λℓ+1)/3

).

Notice that φn(λ) ends with an even integer λℓ−1 ≥ 6 and at least two 3’s.
(In this case, if λ = (λ1) has only one part, then φn(λ) has merely 3 as its
parts and there are at least two 3’s.)

(2) If λℓ ≡ 0 (mod 3), then

φn(λ) = (λ1, . . . , λℓ−1, 3, . . . , 3
︸ ︷︷ ︸

(λℓ−3)/3

, 2, 2).

Notice that φn(λ) ends with two 2’s and at least two 3’s.
(3) If λℓ ≡ 1 (mod 3), then

φn(λ) = (λ1, . . . , λℓ−1, 3, . . . , 3
︸ ︷︷ ︸

(λℓ−1)/3

, 2).

Notice that φn(λ) ends with one 2 and at least two 3’s.
• If λ = (λ1, . . . , λℓ) with λℓ = 3, then we study it into four cases:

(1) If λ = (λ1, . . . , λℓ−4, 3, 3, 3, 3), then

φn(λ) = (λ1, . . . , λℓ−4, 3, 2, 2, 2, 2, 2).

Notice that φn(λ) ends with five 2’s and at least one 3.
(2) If λ = (λ1, . . . , λℓ−3, 3, 3, 3) with λℓ−3 6= 3, then

φn(λ) =

{

(λ1, . . . , λℓ−3, 5, 5) if 4 is not a part of λ,

(λ1, . . . , λℓ−3, 4, 3, 3) if 4 is a part of λ.

Notice that φn(λ) ends with two 5’s in the first case, and two 3’s and at
least two 4’s in the second case.

(3) If λ = (λ1, . . . , λℓ−2, 3, 3) with λℓ−2 6= 3, then

φn(λ) = (λ1, . . . , λℓ−2, 3, 2, 2).

Notice that φn(λ) ends with two 2’s and one 3.
(4) If λ = (λ1, . . . , λℓ−1, 3) with λℓ−1 6= 3, then

φn(λ) =

{

(λ1 + 1, λ2, . . . , λℓ−1, 3) if λ1 = λ2,

(λ1 + 4, λ2, . . . , λℓ−1) if λ1 6= λ2.

Notice that φn(λ) ends with one 3 in the first case, and an even integer ≥ 4
in the second case.
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One may check that for all n > 12, the map φn is one-to-one. To see pa(n) <
pa(n+ 1), we only need to find a partition in PA(n+ 1) with no pre-image under
φn. This is trivial as the partition (2, 2, . . . , 2) for even n ≥ 14 and the partition
(3, 2, 2, . . . , 2) for odd n ≥ 15 have no pre-image under φn−1.

Hence {pa(n)}n≥1 is a strictly increasing sequence. �

3. Generating function

To study the generating function of pa(n), we first turn to partitions in which all
different parts except for the largest one appear an odd number (or zero) times.
Note that the conjugate of any partition in this partition set is in PA and vice
versa. For example (here λ̄ denotes the conjugate of λ),

λ = (4, 3, 3, 3, 1), λ̄ = (5, 4, 4, 1) ∈ PA;

λ = (4, 4, 3, 1, 1, 1), λ̄ = (6, 3, 3, 2) ∈ PA.

As a consequence, suppose that p∗o(n) counts the number of the aforementioned
partitions of n, then

Theorem 3.1. We have

pa(n) = p∗o(n). (3.1)

At last, we notice that the generating function of p∗o(n) is easy to write. This
leads to

Theorem 3.2. We have

∑

n≥1

pa(n)qn =
∑

n≥1

qn

1− qn

n−1∏

k=1

(

1 +
qk

1− q2k

)

. (3.2)

Proof. This directly comes from

∑

n≥1

pa(n)qn =
∑

n≥1

p∗o(n)q
n =

∑

n≥1

(qn + q2n + · · · )
n−1∏

k=1

(1 + qk + q3k + · · · )

=
∑

n≥1

qn

1− qn

n−1∏

k=1

(

1 +
qk

1− q2k

)

.

�

4. Asymptotic behavior

4.1. More about the generating function. In order to study the asymptotic
behavior of pa(n), we need to rewrite the generating function of pa(n) to make it
easier to use Ingham’s Tauberian theorem.

Theorem 4.1. We have

∑

n≥1

pa(n)qn =
3−

√
5

2




∏

k≥1

1 + qk − q2k

1− q2k







1 +
3 +

√
5

2

∑

n≥1

(√
5−1
2

)n

1 +
√
5+1
2 qn



− 2.

(4.1)

Our proof relies on Heine’s second transformation.
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Lemma 4.2 ([3, Eq. (1.4.5)]). We have, for |z| < 1 and |c| < |b|,
∑

n≥0

(a, b; q)n
(q, c; q)n

zn =
(c/b, bz; q)∞
(c, z; q)∞

∑

n≥0

(abz/c, b; q)n
(q, bz; q)n

(c

b

)n

. (4.2)

Proof of Theorem 4.1. Note that

1 +
qk

1− q2k
=

(

1−
√
5−1
2 qk

)(

1 +
√
5+1
2 qk

)

(1− qk)(1 + qk)

and (

1−
√
5− 1

2

)(

1 +

√
5 + 1

2

)

= 1.

We have

∑

n≥1

pa(n)qn =
∑

n≥1

qn

1− qn

n−1∏

k=1

(

1 +
qk

1− q2k

)

=
∑

n≥1

qn

1− qn

n−1∏

k=1

(

1−
√
5−1
2 qk

)(

1 +
√
5+1
2 qk

)

(1 − qk)(1 + qk)

= 2
∑

n≥1

(√
5−1
2 ,−

√
5+1
2 ; q

)

n

(q,−1; q)n
qn

= 2
∑

n≥0

(√
5−1
2 ,−

√
5+1
2 ; q

)

n

(q,−1; q)n
qn − 2

= 2

(√
5−1
2 ,−

√
5+1
2 q; q

)

∞
(−1, q; q)∞

∑

n≥0

(

−
√
5+1
2 ; q

)

n(

−
√
5+1
2 q; q

)

n

(√
5− 1

2

)n

− 2

(by Heine’s Second Tranformation)

=
3−

√
5

2




∏

k≥1

1 + qk − q2k

1− q2k







1 +
3 +

√
5

2

∑

n≥1

(√
5−1
2

)n

1 +
√
5+1
2 qn



− 2.

�

4.2. Ingham’s Tauberian theorem. Ingham’s Tauberian theorem is a powerful
tool to determine asymptotic behaviors of certain weakly increasing nonnegative
sequences. It states as follows

Theorem 4.3 (Ingham [4]). Let f(q) =
∑

n≥0 a(n)q
n be a power series with weakly

increasing nonnegative coefficients and radius of convergence equal to 1. If there

are constants A > 0 and λ, α ∈ R such that

f
(
e−ǫ
)
∼ λǫαe

A

ǫ

as ǫ → 0+, then

a(n) ∼ λ

2
√
π

A
α

2
+ 1

4

n
α

2
+ 3

4

e2
√
An

as n → ∞.
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4.3. Proof of Theorem 1.1. We first notice from Theorem 2.1 that {pa(n)}n≥1

is a strictly increasing positive sequence.
Let PA(q) :=

∑

n≥1 pa(n)q
n. It remains to estimate PA(e−ǫ) as ǫ → 0+. We

recall two known results.
The first result tells us the asymptotic behavior of (e−2ǫ; e−2ǫ)∞. The modular

inversion formula for Dedekind’s eta-function (p. 121, Proposition 14 of [6]) implies
that as ǫ → 0+

(e−ǫ; e−ǫ)∞ ∼
√

2π

ǫ
e−

π
2

6ǫ .

On the other hand, Auluck et al. [2] showed that as ǫ → 0+

∏

k≥1

(

1 + e−kǫ − e−2kǫ
)

∼ e
2
ǫ

(

log 1+
√

5

2

)2

.

It is worth pointing out that in the original paper of Auluck et al., they did not use

the number 2
(

log 1+
√
5

2

)2

in the exponent. Instead, they used its decimal value

0.46313 · · · . However, it is clear from their paper that the value is
∫ 1

0

log(1 + x− x2)

x
dx,

which is indeed 2
(

log 1+
√
5

2

)2

.

At last, we have (with q = e−ǫ) as ǫ → 0+

1 +
3 +

√
5

2

∑

n≥1

(√
5−1
2

)n

1 +
√
5+1
2 qn

=
3 +

√
5

2
+O(ǫ).

Here (3 +
√
5)/2 comes from taking q = 1.

Combining all these ingredients together, we conclude that

PA(e−ǫ) ∼
√

ǫ

π
e

1
ǫ

(

π
2

12
+2

(

log 1+
√

5

2

)

2
)

.

In the setting of Ingham’s Tauberian theorem, we have

λ =

√

1

π
, α =

1

2
, A =

π2

12
+ 2

(

log
1 +

√
5

2

)2

.

It therefore follows from Ingham’s Tauberian theorem that

pa(n) ∼
√
A

2πn
e2

√
An

as n → ∞.

4.4. Further remarks. Let pao(n) denote the number of unlimited parity alter-
nating partitions of n with the smallest part odd. We observe that the conjugate of
such partitions are partitions in which all different parts appear an odd number (or
zero) times and vice versa. Hence pao(n) has a more succient generating function.

Theorem 4.4. We have

1 +
∑

n≥1

pao(n)q
n =

∏

k≥1

1 + qk − q2k

1− q2k
. (4.3)
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We know from Auluck et al. [2] that pao(n) is also asymptotic to
√
A

2πn
e2

√
An (n → ∞),

with A defined in the previous section. This tells us that the partition set PA is
dominated by partitions with the smallest part odd.

Acknowledgements. I would like to thank George E. Andrews and Robert C.
Vaughan for some helpful discussions.
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