
ar
X

iv
:1

80
3.

01
05

5v
1 

 [
m

at
h.

C
O

] 
 2

 M
ar

 2
01

8

On k-11-representable graphs

Gi-Sang Cheon ∗ Jinha Kim † Minki Kim ‡ Sergey Kitaev §

March 6, 2018

Abstract

Distinct letters x and y alternate in a word w if after deleting in w all letters but
the copies of x and y we either obtain a word of the form xyxy · · · (of even or odd
length) or a word of the form yxyx · · · (of even or odd length). A graph G = (V,E)
is word-representable if there exists a word w over the alphabet V such that letters x
and y alternate in w if and only if xy is an edge in E. Thus, edges of G are defined by
avoiding the consecutive pattern 11 in a word representing G, that is, by avoiding xx

and yy.
In 2017, Jeff Remmel has introduced the notion of a k-11-representable graph for

a non-negative integer k, which generalizes the notion of a word-representable graph.
Under this representation, edges of G are defined by containing at most k occurrences
of the consecutive pattern 11 in a word representing G. Thus, word-representable
graphs are precisely 0-11-representable graphs. In this paper, we study properties of
k-11-representable graphs for k ≥ 1, in particular, showing that the class of word-
representable graphs, studied intensively in the literature, is contained strictly in the
class of 1-11-representable graphs. Another particular result that we prove is the fact
that the class of interval graphs is precisely the class of 1-11-representable graphs that
can be represented by uniform words containing two copies of each letter. This result
can be compared with the known fact that the class of circle graphs is precisely the
class of 0-11-representable graphs that can be represented by uniform words containing
two copies of each letter. Also, one of our key results in this paper is the fact that any
graph is k-11-representable for some k ≥ 0.
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1 Introduction

The theory of word-representable graphs is a young but very promising research area. It
was introduced by the forth author in 2004 based on the joint research with Steven Seif [12]
on the celebrated Perkins semigroup, which has played a central role in semigroup theory
since 1960, particularly as a source of examples and counterexamples. However, the first
systematic study of word-representable graphs was not undertaken until the appearance in
2008 of [11], which started the development of the theory.

Up to date, about 20 papers have been written on the subject, and the core of the book
[10] is devoted to the theory of word-representable graphs. It should also be mentioned that
the software packages [5, 17] are often of great help in dealing with word-representation of
graphs. Moreover, a recent paper [8] offers a comprehensive introduction to the theory. Some
motivation points to study these graphs are given in Section 1.1.

A graph G = (V,E) is word-representable if and only if there exists a word w over the
alphabet V such that letters x and y, x 6= y, alternate in w if and only if xy ∈ E. In other
words, xy ∈ E if and only if the subword of w induced by x and y avoids the consecutive
pattern 11 (which is an occurrence of xx or yy). Not all graphs are word-representable, and
the minimum non-word-representable graph is the wheel graph W5 in Figure 1, which is the
only non-word-representable graph on six vertices [10, 11].

In 2017, Jeff Remmel [15] has introduced the notion of a k-11-representable graph for a
non-negative integer k, which generalizes the notion of a word-representable graph. Under
this representation, edges of G are defined by containing at most k occurrences of the con-
secutive pattern 11 in a word representing G. Thus, word-representable graphs are precisely
0-11-representable graphs. The new definition not only allows to represent at least some of
non-word-representable graphs including W5 (see Section 4), and to give a new character-
ization of interval graphs (see Theorem 3.1, which should be compared with Theorem 1.3
characterising circle graphs), but also it provides a way to represent any graph in terms
of alternation of letters in words (see Theorem 2.12). The latter fact could be compared
with the possibility to u-represent any graph, where u ∈ {1, 2}∗ of length at least 3 [9]. We
refer the Reader to [9] for the relevant definitions just mentioning that the case of u = 11
corresponds to word-representable graphs.

The paper is organized as follows. In the rest of the section, we give more detail about
word-representable graphs and semi-transitive orientations characterizing these graphs. In
Section 2, we introduce rigorously the notion of a k-11-representable graph and provide
a number of general results on these graphs. In particular, we show that a (k − 1)-11-
representable graph is necessarily k-11-representable (see Theorem 2.2). In Section 3, we
study the class of 1-11-representable graphs. These studies are extended in Section 4, where
we 1-11-represent all non-word-representable graphs on at most 7 vertices. Any 3-colorable
graph is necessarily 0-11-representable, while there are non-0-11-representable 4-colorable
graphs [7, 10]. In Section 5, we find a place for 4-colorable and 5-colorable graphs in the
hierarchy of k-11-representable graphs. Finally, in Section 6, we state a number of open
problems on k-11-representable graphs.
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1.1 Word-representable graphs

Suppose that w is a word over some alphabet and x and y are two distinct letters in w. We
say that x and y alternate in w if after deleting in w all letters but the copies of x and y

we either obtain a word of the form xyxy · · · (of even or odd length) or a word of the form
yxyx · · · (of even or odd length).

A graph G = (V,E) is word-representable if there exists a word w over the alphabet V
such that letters x and y alternate in w if and only if xy is an edge in E. Such a word w is
called G’s word-representant. In this paper we assume V to be [n] = {1, 2, . . . , n} for some
n ≥ 1. For example, the cycle graph on 4 vertices labeled by 1, 2, 3 and 4 in clockwise
direction can be represented by the word 14213243. Note that a complete graph Kn can
be represented by any permutation of [n], while an edgeless graph (i.e. empty graph) on n

vertices can be represented by 1122 · · ·nn.
The most interesting aspect of word-representable graphs from an algebraic point of view

seems to be the notion of a semi-transitive orientation [7], which generalizes partial orders. It
was shown in [7] that a graph is word-representable if and only if it admits a semi-transitive
orientation.

More motivation points to study word-representable graphs include the fact exposed in
[10] that these graphs generalize several important classes of graphs such as circle graphs [3],
3-colourable graphs and comparability graphs [14]. Relevance of word-representable graphs
to scheduling problems was explained in [7] and it was based on [6]. Furthermore, the
study of word-representable graphs is interesting from an algorithmic point of view as ex-
plained in [10]. For example, the Maximum Clique problem is polynomially solvable on
word-representable graphs [10] while this problem is generally NP-complete [2]. Finally,
word-representable graphs are an important class among other graph classes considered in
the literature that are defined using words. Examples of other such classes of graphs are
polygon-circle graphs [13] and word-digraphs [1].

The following two theorems are useful tools to study word-representable graphs. For
the second theorem, we need the notion of a cyclic shift of a word. Let a word w be the
concatenation uv of two non-empty words u and v. Then, the word vu is a cyclic shift of w.

Theorem 1.1 ([11]). A graph is word-representable if and only if it can be represented
uniformly, i.e. using the same number of copies of each letter.

Theorem 1.2 ([11]). Any cyclic shift of a word having the same number of copies of each
letter represents the same graph.

A circle graph is the intersection graph of a set of chords of a circle, i.e. it is an undirected
graph whose vertices can be associated with chords of a circle such that two vertices are
adjacent if and only if the corresponding chords cross each other. In this paper, we get used
of the following theorem.

Theorem 1.3 ([7]). The class of circle graphs is precisely the class of word-representable
graphs that can be represented by uniform words containing two copies of each letter.
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An orientation of a graph is transitive, if the presence of the edges u → v and v → z

implies the presence of the edge u → z. An oriented graph G is a comparability graph
if G admits a transitive orientation. A graph is permutationally representable if it can
be represented by concatenation of permutations of (all) vertices. Thus, permutationally
representable graphs are a subclass of word-representable graphs. The following theorem
classifies these graphs.

Theorem 1.4 ([12]). A graph is permutationally representable if and only if it is a compa-
rability graph.

1.2 Semi-transitive orientations

A shortcut is an acyclic non-transitively oriented graph obtained from a directed cycle graph
forming a directed cycle on at least four vertices by changing the orientation of one of the
edges, and possibly by adding more directed edges connecting some of the vertices (while
keeping the graph be acyclic and non-transitive). Thus, any shortcut

• is acyclic (that it, there are no directed cycles);

• has at least 4 vertices;

• has exactly one source (the vertex with no edges coming in), exactly one sink (the
vertex with no edges coming out), and a directed path from the source to the sink that
goes through every vertex in the graph;

• has an edge connecting the source to the sink that we refer to as the shortcutting edge;

• is not transitive (that it, there exist vertices u, v and z such that u → v and v → z

are edges, but there is no edge u→ z).

An orientation of a graph is semi-transitive if it is acyclic and shortcut-free. An equiva-
lent definition of a semi-transitive orientation is as follows. An acyclic orientation is semi-
transitive if and only if for any directed path u0 → u1 → · · · → ut, t ≥ 3, either there is
no edge u0 → ut, or there is the edge ui → uj for any 0 ≤ i < j ≤ t. It is easy to see
from definitions that any transitive orientation is necessary semi-transitive. The converse
is not true, as is evident, for example, from the path graph on vertices {u, v, z} oriented as
u→ v → z. Thus, semi-transitive orientations generalize transitive orientations.

As is mentioned above, a key result in the theory of word-representable graphs is the
fact proved in [7] that a graph is word-representable if and only if it is semi-transitively
orientable. Next, we follow [7] to sketch the idea of the proof of this result, to let the Reader
compare the proof with the orientations approach we use in proving Theorem 5.1 below.

Given a word w representing a graph G, and a pair of alternating in w letters x and y,
we direct the edge of G from the vertex x to the vertex y if the first occurrence of x is before
that of y in w. It is not difficult to see that such an orientation is semi-transitive [7].
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For the opposite direction, the basic idea is to represent the non-edges incident with
each vertex v in a semi-transitively oriented graph with n vertices by a word wv in which
each of the n letters occurs exactly twice. Then concatenating all such wv’s gives a word
w representing the given graph with the orientations removed. We conclude this section
with giving the explicit construction of wv. In what follows, for an acyclic directed graph
D = (V,E), we let u v denote the fact that there exists a directed path from u to v in D.
Also, we say that a permutation P of the set V is a topological sort of D if for every distinct
u, v ∈ V such that u v, the letter u precedes v in P . By definition, u u.

Let I(v) = {u : u → v} be the set of all in-neighbors of v, and O(v) = {u : v → u}
be the set of all out-neighbors of v. Also, let A(v) = {u ∈ V : u  v} \ I be the set
of v’s non-neighboring vertices that can reach v, and B(v) = {u ∈ V : v  u} \ O be
the set of v’s non-neighboring vertices that can be reached from v. Finally, let T (v) =
V \ ({v} ∪ I(v) ∪ O(v) ∪ A(v) ∪ B(v)) be the set of remaining vertices. Note that the sets
I(v), O(v), A(v), B(v) and T (v) are pairwise disjoint and some of them can be empty.
Denote by A,B, I, O and T topological sorts of the corresponding digraphs induced by the
sets A(v), B(v), I(v), O(v) and T (v), respectively. Then

wv = A I T A v O I v B T O B.

2 Definitions and general results

A factor in a word w1w2 . . . wn is a word wiwi+1 . . . wj for 1 ≤ i ≤ j ≤ n. For a letter or a
word x, we let xk denote x . . . x

︸ ︷︷ ︸

k times

. For any word w, we let π(w) denote the initial permutation

of w obtained by reading w from left to right and recording the leftmost occurrences of
the letters in w. For example, if w = 2535214421 then π(w) = 25314. Similarly, the final
permutation σ(w) of w is obtained by reading w from right to left and recording the rightmost
occurrences of w. For the w above, σ(w) = 35421. Also, for a word w, we let r(w) denote
the reverse of w, that is, w written in the reverse order. For example, if w = 22431 then
r(w) = 13422. Finally, for a pair of letters x and y in a word w, we let w|{x,y} denote the word
induced by the letters x and y. For example, for the word w = 2535214421, w|{2,5} = 25522.
The last definition can be extended in a straightforward way to defining w|S for a set of
letters S. For example, for the same w, w|{1,2,3} = 232121.

Throughout this paper, we denote by G\v the graph obtained from a graph G by deleting
a vertex v ∈ V (G) and all edges adjacent to it.

Let k ≥ 0. A graph G = (V,E) is k-11-representable if there exists a word w over the
alphabet V such that the word w|{x,y} contains in total at most k occurrences of the factors
in {xx, yy} if and only if xy is an edge in E. Such a word w is called G’s k-representant.
A uniform (resp., k-uniform) representation of a graph G is a word, satisfying the required
properties, in which each letter occurs the same (resp., k) number of times. As is stated
above, in this paper we assume V to be [n] = {1, 2, . . . , n} for some n ≥ 1. Note that
0-11-representable graphs are precisely word-representable graphs, and that 0-representants
are precisely word-representants. We also note that the “11” in “k-11-representable” refers
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to counting occurrences of the consecutive pattern 11 in the word induced by a pair of
letters {x, y}, which is exactly the total number of occurrences of the factors in {xx, yy}.
Throughout the paper, we normally omit the word “consecutive” in “consecutive pattern”
for brevity. Finally, we let G(k) denote the class of k-11-representable graphs.

Lemma 2.1. Let k ≥ 0 and a word w k-11-represent a graph G. Then the word r(π(w))w
(k + 1)-11-represents G. Also, the word wr(σ(w)) (k + 1)-11-represents G. Moreover, if
k = 0 then the word ww 1-11-represents G.

Proof. Suppose x and y are two vertices in G. If xy is an edge in G then w|{x,y} contains at
most k occurrences of the pattern 11, so (r(π(w))w)|{x,y} (resp., (wr(σ(w)))|{x,y}) contains at
most k + 1 occurrences of the pattern 11, and xy will be an edge in the new representation.
On the other hand, if xy is not an edge in G, then w|{x,y} contains at least k+1 occurrences of
the pattern 11, so (r(π(w))w)|{x,y} (resp., (wr(σ(w)))|{x,y}) contains at least k+2 occurrences
of the pattern 11, and xy will not be an edge in the new representation.

Finally, if x and y alternate in w, then ww contains at most one occurrence of xx or yy,
while non-alternation of x and y in w leads to at least two occurrence of the pattern 11 in
ww, which involves x or/and y. These observations prove the last claim.

Theorem 2.2. We have G(k) ⊆ G(k+1) for any k ≥ 0.

Proof. This is an immediate corollary of Lemma 2.1.

Lemma 2.3. Let k ≥ 0, G be a k-11-representable graph, and i and j be vertices in G,
possibly i = j. Then there are infinitely many words w k-representing G such that w = iw′j

for some words w′.

Proof. Let u k-represent G. Then note that any word v of the form π(u) · · ·π(u)uσ(u) · · ·σ(u)
k-represents G. Deleting all letters to the left of the leftmost i in v, and all letters to the right
of the rightmost j in v, we clearly do not change the number of occurrence of the pattern 11
for any pair of letters {x, y}. The obtained word w satisfies the required properties.

There is a number of properties that is shared between word-representable graphs and
k-11-representable graphs for any k ≥ 1. These properties can be summarized as follows:

• The class G(k) is hereditary. Indeed, if a word w k-11-represents a graph G, and v is a
vertex in G, then clearly the word obtained from w by removing v k-11-represents the
graph G\{v}.

• In the study of k-11-representable graphs, we can assume that graphs in question are
connected (see Theorem 2.4).

• In the study of k-11-representable graphs, we can assume that graphs in question have
no vertices of degree 1 (see Theorem 2.5).

• In the study of k-11-representable graphs, we can assume that graphs in question have
no two vertices having the same neighbourhoods up to removing these vertices, if they
are connected (see Theorem 2.6).
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• Glueing two k-11-representable graphs in a vertex gives a k-11-representable graph (see
Theorem 2.7).

• Connecting two k-11-representable graphs by an edge gives a k-11-representable graph
(see Theorem 2.8).

Theorem 2.4. Let k ≥ 0. A graph G is k-11-representable if and only if each connected
component of G is k-11-representable.

Proof. IfG is k-11-representable then each ofG’s connected components is k-11-representable
by the hereditary property of k-11-representable graphs.

Conversely, suppose that Ci’s are the connected components of G for 1 ≤ i ≤ ℓ, and
wi k-11-represents Ci. Adjoining several copies of π(wi) to the left of wi, if necessary, we
can assume that each letter in any wi occurs at least k + 2 times. But then, the word
w = w1w2 · · ·wℓ k-11-represents G, since

• edges/non-edges in each Ci are represented by the wi, and

• for x ∈ Ci and y ∈ Cj , i 6= j, the word w|{x,y} contains at least 2k + 2 occurrences of
the pattern 11 making x and y be disconnected in G,

we are done.

Theorem 2.5. Let k ≥ 0, G be a graph with a vertex x, and Gxy be the graph obtained from
G by adding to it a vertex y connected only to x. Then, G is k-11-representable if and only
if Gxy is k-11-representable.

Proof. The backward direction follows directly from the hereditary nature of k-11-represent-
ability. For the forward direction, suppose that w k-11-represents G. Adjoining several
copies of π(w) to the left of w, if necessary, we can assume that x occurs at least 2k+2 times
in w. Replacing every other occurrence of x in w, starting from the leftmost one, with yxy,
we obtain a word w′ that k-11-represents Gxy. Indeed, clearly, the letters x and y alternate
in w′ so xy is an edge in Gxy no matter what k is. On the other hand, if z 6= x is a vertex
in G, then w′|{z,y} has at least k + 1 occurrences of the pattern 11 (formed by y’s) ensuring
that zy is not an edge in Gxy. Any other alternation of letters in w is the same as that in
w′.

Theorem 2.6. Let k ≥ 0 and G be a graph having two, possibly connected vertices, x and
y, with the same neighbourhoods up to removing x and y. Then, G is k-11-representable if
and only if G \ x is k-11-representable.

Proof. The forward direction follows directly from the hereditary nature of k-11-represent-
ability. For the backward direction, let w k-11-represent G \ x. If x and y are connected in
G, then replacing each y by xy in w clearly gives a k-11-representation of G because x and
y will have the same properties and they will be strictly alternating. On the other hand, if
x and y are not connected in G, then adjoining several copies of π(w) to the left of w, if
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necessary, we can assume that y occurs at least k+2 times in w. We then replace every even
occurrence of y in w (from left to right) by yx, and every odd occurrence by xy. This will
ensure that in the subword induced by x and y, the number of occurrences of the pattern
11 is at least k+ 1 making x and y be not connected in G. On the other hand, still x and y

have the same alternating properties with respect to other letters. Thus, the obtained word
k-11-represents G, as desired.

Theorem 2.7. Let k ≥ 0, G1 and G2 be k-11-representable graphs, and the graph G is
obtained from G1 and G2 by identifying a vertex x in G1 with a vertex y in G2. Then, G is
k-11-representable.

Proof. Let w1 and w2 be k-11-representations of the graphs G1 and G2, respectively. Recall
that if a word w k-11-represents a graph H , then the word w′ = π(w)w obtained from w by
adding the initial permutation π(w) of w in front of w also k-11-represents H . Applying this
observation, we may assume that the number of occurrences of x in the word w1 equals to
that of the letter y in the word w2. In addition, by Lemma 2.3, we may further assume that
w1 starts with the letter x, and w2 starts with the letter y. That is, w1 = xg1xg2 . . . xgm,
where gi’s are words over V (G1) \ {x}, and w2 = yh1yh2 . . . yhm, where hi’s are words over
V (G2) \ {y}. Let π1 (resp., π2) be the initial permutation of the word g1g2 . . . gm (resp.,
h1h2 . . . hm). In other words, π(w1) = xπ1 and π(w2) = yπ2.

Let z be the vertex in G which corresponds to the vertices x and y, i.e. z = x = y in
G. We claim that the word w(G) := (zπ1π2zπ2π1)

k+1zg1h1zg2h2 . . . zgmhm k-11-represents
the graph G. The induced subword of w(G) on V (G1) is precisely π(w1)

2k+2w1 which k-11-
represents the graph G1. Similarly, the induced subword of w(G) on V (G2) k-11-represents
the graph G2. Now, consider v1 6= x in V (G1) and v2 6= y in V (G2). By the definition of
G, the vertices v1 and v2 are not adjacent in G. Thus, it remains to show that the induced
subword w(G)|{v1,v2} has at least k+1 occurrences of the pattern 11, which is easy to see from
(v1v2v2v1)

k+1 being a factor of w(G)|{v1,v2}. Therefore, the word w(G) indeed k-11-represents
the graph G.

Theorem 2.8. Let k ≥ 0, G1 and G2 be k-11-representable graphs, and the graph G is
obtained from G1 and G2 by connecting a vertex x in G1 with a vertex y in G2 by an edge.
Then G is k-11-representable.

Proof. Let w1 and w2 be k-11-representations of G1 and G2, respectively. By the same
argument as in Theorem 2.7, we can assume that the number of occurrences of the letter x
in the word w1 equals that of the letter y in the word w2. By Lemma 2.3, we can assume
that w1 begins with x, and w2 ends with y. In addition, we can assume that the initial
permutation of w2 ends with y. Suppose the initial permutation of w2 does not end with
y, and let AyB be the initial permutation. It is clear that the word w′

2 = BAyBw2 also
k-11-represents G2, so that we can consider w′

2 instead of w2, and the initial permutation of
w′

2 ends with y.
Now we can write w1 = xg1xg2 . . . xgm, where gi’s are words over V (G1) \ {x}, and

w2 = h1yh2y . . . hmy, where hi’s are words over V (G2) \ {y}. Let π1 (resp., π2) be the initial
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permutation of the word g1g2 . . . gm (resp., h1h2 . . . hm). Observe that π(w1) = xπ1 and
π(w2) = π2y. We claim that the word w(G) := (xπ1π2yπ2xyπ1)

k+1xg1h1yxg2h2y . . . xgmhmy

is a k-11-representation of G. As in Theorem 2.7, it is clear that the word w(G) k-11-
represents the graphs G1 and G2, when restricted to V (G1) and V (G2), respectively. Also,
w(G) makes the vertices x and y be adjacent, because w(G)|{x,y} = (xy)2k+m+2. Hence, it
remains to show that for every v1 ∈ V (G1) and v2 ∈ V (G2) such that v1 6= x or v2 6= y, which
must be non-adjacent in G, the induced subword w(G)|{v1,v2} has at least k+1 occurrences of
the pattern 11. This is obviously the case, because w(G)|{v1,v2} contains (v1v2v2v1)

k+1 having
at least 2k + 1 occurrences of the pattern 11. Therefore, the word w(G) k-11-represents the
graph G.

Theorem 2.9. Let G be a graph with a vertex v. If G \ v is k-uniform word-representable
for k ≥ 1, then G is (k − 1)-11-representable.

Proof. Let w be a k-uniform word that represents the graph G \ v. Let N(v) ⊂ V (G) be the
set of all neighbors of v in G, and let N c(v) be the complement of N(v) in V (G) \ {v}, i.e.
N c(v) = V (G) \ (N(v)∪{v}). We will describe how to construct a (k− 1)-11-representation
w(G) of G from the word w. Recall that r(π(w)) is the reverse of the initial permutation
π(w) of the word w.

We start with the word π(w)|N(v)vπ(w)|Nc(v) w, where π(w)|N(v) and π(w)|Nc(v) are the
induced subwords of π(w) on N(v) and N c(v), respectively. In each step, we adjoin the words
r(π(w))v and π(w)v, in turn, from the left side of the word constructed in the previous step.
We stop when the current word, denoted by w(G), has exactly k v’s. For example, the word
w(G), when k = 6, is given by

w(G) = r(π(w))v π(w)v r(π(w))v π(w)v r(π(w))v π(w)|N(v)vπ(w)|Nc(v) w.

Next, we will show that the word w(G) (k − 1)-11-represents G. First, take a vertex x 6= v

in G. If x ∈ N(v), then w(G)|{x,v} = xv . . . xv w|{x} has k − 1 occurrences of the pattern 11
since w|{x} = xk. If x ∈ N c(v), then w(G)|{x,v} = xv . . . xv vx w|{x} has k+1 occurrences of
the pattern 11. Thus w(G) preserves all the (non-)adjacencies of v. Now, take two distinct
vertices, y, z in V (G) \ {v}. Without loss of generality, we can assume that π(v)|{y,z} = yz.
If y and z are adjacent in G \ v, then w|{y,z} = yzyz . . . yz. Hence, the induced subword

w(G)|{y,z} = . . . zy yz zy (π(w)|N(v)vπ(w)|Nc(v))|{y,z} yzyz . . . yz

has k − 1 occurrences of the pattern 11 since the part . . . zy yz zy is of length 2(k − 1),
and (π(w)|N(v)vπ(w)|Nc(v))|{y,z} is either yz or zy. If y and z are not adjacent in G \ v,
then w|{y,z} has at least one occurrence of the pattern 11 and it starts with y. Hence,
w(G)|{y,z} = . . . zy yz zy (π(w)|N(v)vπ(w)|Nc(v))|{y,z} w|{y,z} has at least k occurrences of
the pattern 11 since the only difference from the previous case is w|{y,z}, which now has at
least one occurrence of the pattern 11. This proves that w(G) is a (k− 1)-11-representation
of G.

Theorem 2.10. For any non-negative integers m and k satisfying 2m − k − 1 > 0, the
following holds. Let G be a graph with a vertex v. If G \ v is m-uniform k-11-representable,
then G is (3m− k − 1)-uniform (2m− 2)-11-representable.
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Proof. Let w be an m-uniform k-11-representation of G \ v, N(v) ⊂ V (G) be the set of all
neighbors of v in G, and let N c(v) = V (G)\ (N(v)∪{v}). We will describe how to construct
a (3m−k−1)-uniform (2m−2)-11-representation w(G) of G from the word w. Similarly to
the proof of Theorem 2.9, we start with the word π(w)|N(v)vπ(w)|Nc(v) w, and in each step,
we adjoin r(π(v))v and π(w)v, in turn, from the left side until w(G) has exactly 2m− k− 1
occurrences of v. Then, we adjoin vm from the left side. For example, when k = 3 and
m = 4, the word w(G) is given by

w(G) = vvvv r(π(w))v π(w)v r(π(v))v π(w)|N(v)vπ(w)|Nc(v) w.

It is easy to see that w(G) is (3m − k − 1)-uniform. Indeed, if x ∈ V (G) \ {v}, then w(G)
contains (2m − k − 1) + m = 3m − k − 1 x’s since w is m-uniform; also, w(G) contains
m+(2m− k− 1) = 3m− k− 1 v’s. Next, we will show that w(G) (2m− 2)-11-represents G.

Let x ∈ V (G) \ {v}. If x ∈ N(v), then w(G)|{x,v} = vm xv . . . xv xm. Thus w(G)|{x,v}
has 2m − 2 occurrences of the pattern 11. If x ∈ N c(v), then the only difference from the
previous case in w(G)|{x,v} is that π(w)|N(v)vπ(w)|Nc(v) is vx, not xv. Thus, w(G)|{x,v} has
2m occurrences of the pattern 11. Now take two distinct vertices x, y ∈ V (G)\{v}. Without
loss of generality, we can assume that π(w)|{x,y} = xy. If x, y are adjacent in G \ v, then
w|{x,y} has at most k occurrences of the pattern 11. Hence,

w(G)|{x,y} = . . . yx xy yx (π(w)|N(v)vπ(w)|Nc(v))|{x,y} w|{x,y}.

Since the length of . . . yx xy yx is 4m− 2k − 4 and (π(w)|N(v)vπ(w)|Nc(v))|{x,y} is xy or yx,
w(G)|{x,y} has at most (2m− k − 3) + 1 + k = 2m− 2 occurrences of the pattern 11. If x, y
are not adjacent in G \ v, then w|{x,y} has at least k + 1 occurrences of the pattern 11. In
this case, the only difference from the previous case in w(G) is w|{x,y} and so w(G)|{x,y} has
at least (2m− k − 3) + 1 + k + 1 = 2m− 1 occurrences of the pattern 11. This proves that
w(G) is a (2m− 2)-11-representation of G.

The following corollary to Theorem 2.10 is of fundamental importance since it plays an
important role in Theorem 2.12 below to show that any graph belongs to G(k) for some k ≥ 0.

Corollary 2.11. For any non-negative integers n and k satisfying 2n + k − 7 > 0, if each
graph on n vertices is (k + n − 3)-uniformly k-11-representable, then every graph on n + 1
vertices is (2k + 3n− 10)-uniformly (2k + 2n− 8)-11-representable.

Proof. This is a direct consequence of Theorem 2.10. Suppose every graph on n vertices is
(k+n−3)-uniformly k-11-representable, and G is a graph on n+1 vertices. Clearly, k+n−3
is a positive integer since we have 2n + k − 7 > 0. Then for any vertex v in G, the graph
G \ v obtained from G by removing a vertex v is (k + n− 3)-uniformly k-11-representable.
Since 2(k + n − 3)− k − 1 = 2n + k − 7 > 0, we can apply Theorem 2.10, concluding that
the graph G is (2k + 3n− 10)-uniform (2k + 2n− 8)-11-representable.

In particular, Corollary 2.11 holds for any integers n ≥ 5 and k ≥ 0.
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Theorem 2.12. Let G be a graph on n vertices. Then, G is uniformly k-11-representable,
where 0 ≤ k ≤ 2n−3, and thus every graph on n vertices is uniformly O(2n)-11-representable.

Proof. If n ≤ 4, then G is uniformly 0-11-representable (due to Theorem 1.1 and the fact
that all graphs on at most five vertices are word-representable [11, 10]), so the statement is
obviously true. Hence, we can assume that n ≥ 5. By induction on n, we will show that for
n ≥ 5, every graph on n vertices is (2n−3−n+3)-uniformly (2n−3−2n+6)-11-representable.

Note that every graph on five vertices is a circle graph, which follows from [4], or from
comparison of the sequences A000088 for the number of all graphs and A156809 for the
number of circle graphs for n = 5 in [16]. Thus, the statement is true in the base case of
n = 5, since circle graphs are 2-uniformly 0-11-representatable by Theorem 1.3.

Assume that the statement is true for every graph on n vertices. By Corollary 2.11,
every graph on n+1 vertices is (2n−2−n+2)-uniform (2n−2− 2n+4)-11-representable, and
2(n+1)−3 − (n + 1) + 3 = 2n−2 − n + 2 and 2(n+1)−3 − 2(n + 1) + 6 = 2n−2 − 2n + 4, which
completes the proof.

3 1-11-representable graphs

An interval graph has one vertex for each interval in a family of intervals, and an edge
between every pair of vertices corresponding to intervals that intersect. Not all interval
graphs are word-representable [10]. However, all interval graphs are 1-11-representable using
two copies of each letter, as shown in the following theorem. This shows that the notion
of an interval graph admits a natural generalization in terms of 1-11-representable graphs
(instead of 2-uniform 1-11-representations, one can deal withm-uniform 1-11-representations
for m ≥ 3).

Theorem 3.1. A graph is an interval graph if and only if it is 2-uniformly 1-11-representable.

Proof. Let G be a 1-11-representable graph on n vertices and w = w1w2 . . . w2n be a word that
2-uniformly 1-11-represents G. For any v ∈ V (G) = [n], consider the interval Iv = [v1, v2] on
the real line such that wv1 = wv2 = v. Note that uv is an edge in G if and only if Iu and Iv
overlap. But then, G is the interval graph given by the family of intervals {Iv : v ∈ [n]}.

To see that any interval graph G is necessarily 1-11-representable, we note a well-known
easy to see fact that in the definition of an interval graph, one can assume that overlapping
intervals overlap in more than one point. But then, the endpoints of an interval Iv will give
the positions of the letter v in a word w constructed by recording relative positions of all
the intervals. As above, one can see that such an w 1-11-represents G.

Given a graph G with an edge xy, we let G△
xy be the graph obtained from G by adding

a vertex z connected only to the vertices x and y. Thus, G△
xy is obtained from G by adding

a triangle. If G is word-representable, that is, G ∈ G(0), then G△
xy is not necessarily word-

representable. This can be seeing on the non-word-representable graph D1 in Figure 2.
Indeed, removing, for example, the top vertex in that graph, we obtain a word-representable
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graph, since the only non-word-representable graph on six vertices is the wheel W5 [10, 11].
The following theorem establishes that adding a triangle is a safe operation in the case of
1-11-representable graphs.

Theorem 3.2. Let G ∈ G(1) and xy be an edge in G. Then G△
xy ∈ G

(1).

Proof. Let w be an 1-11-representation of G. Note that, since x and y are adjacent in G, the
letters x and y are either alternating in the word w, or w|{x,y} has exactly one occurrence of
the pattern 11. In each case, we will construct a word w̃ over V (G△

xy), which 1-11-represents
the graph G△

xy.

Case 1. Suppose that x and y are alternating in w. By Lemma 2.3, we can assume that
w starts with x and ends with y, i.e. w = x g1 y g2 . . . x gm y, where gi is a word
on V (G) \ {x, y}. Also, we can assume that m ≥ 3; if not, adjoin the initial
permutation π(w) to the left of w. Now, we claim that the word

w̃ := zxz g1 y g2 x g3 zyz g4 x g5 yz g6 . . . x gm yz

1-11-represents the graph G△
xy, where z ∈ V (G△

xy) \ V (G).

It is clear that w̃ respects the whole structure of G since the restriction of w̃ to
V (G) is w. Since w̃|{x,z} = zxzxzzxz . . . xz and w̃|{y,x} = zzyzyzyz . . . yz, z is
adjacent to x and y. On the other hand, for each v ∈ V (G) \ {x, y}, it is obvious
that the induced subword w̃|{v,z} has at least two occurrences of the pattern 11,
hence z is not adjacent to v. Therefore, w̃ 1-11-represents the graph G△

xy.

Case 2. Suppose w|{x,y} has exactly one occurrence of the pattern 11. Without loss of
generality, we can assume that w|{x,y} contains the occurrence of the factor yy. By
Lemma 2.3, we can also assume that w starts with x and ends with x, i.e.

w = x g1 y g2 . . . x gm−1 y gm y h1 x h2 . . . y hl x

for some positive integers m, l, and words gi, hj on V (G) \ {x, y}. We claim that
the word

w̃ := zxz g1 y g2 xz g3 y g4 . . . xz gm−3 y gm−2 x gm−1 zyz gm y h1 xz h2 . . . y hl xz

1-11-represents the graph G△
xy.

It is clear that w̃ respects the whole structure of G since the restriction of w̃ to
V (G) is w. Since w̃|{x,z} = zxzx . . . zxzzxz . . . xz and w̃|{y,z} = zzyzyz . . . yz, z is
adjacent to x and y. On the other hand, for each v ∈ V (G)\{x, y}, the induced
subword w̃|{v,z} has at least two occurrences of the pattern 11, hence z is not
adjacent to v. Therefore, w̃ 1-11-represents the graph G△

xy.
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For the next theorem, Theorem 3.3, recall the definition of a permutationally repre-
sentable graph in Section 1.1. Note that the proof of Theorem 3.3 is similar to that of
Theorem 2.9, while Theorem 3.3 deals with a stricter assumption. However, the stricter
assumption is compensated by a stronger conclusion, justifying us having Theorem 2.9.

Theorem 3.3. Let G be a graph with a vertex v. If G \ v is permutationally representable
(equivalently, by Theorem 1.4, if G\v is a comparability graph) then G is 1-11-representable.

Proof. Let w be a 0-11-representation ofG\v. SinceG\v is permutationally representable, we
can assume that w is of the form w = π1π2 . . . πk for some positive integer k and permutations
πi of V (G \ v). Let N(v) be the set of neighbours of v in G and let N c(v) := V (G) \ (N(v)∪
{v}). We claim that the word

w(G) := r(π(w)) v π(w)|N(v) v π(w)|Nc(v) π1vπ2v . . . vπk.

1-11-represents the graph G.
For each x ∈ V (G)\{v}, if x ∈ N(v) then the induced subword w(G)|{x,v} = xvxv . . . xvx

is alternating, which should be the case. If x ∈ N c(v), then the induced subword w(G)|{x,v} =
xvvxxvxv . . . xvx has two occurrences of the pattern 11, which, again, should be the case.
Thus, w(G) respects all adjacencies of the vertex v. Now, take y, z ∈ V (G) \ {v}. If
y and z are adjacent in G \ v, then w|{y,z} has alternating y and z. Without loss of
generality, assume that w|{y,z} = yzyz . . . yz. Then, the induced subword w(G)|{y,z} =
zy (π(w)|N(v) π(w)|Nc(v))|{y,z} yzyz . . . yz has at most one occurrence of the pattern 11 as
(π(w)|N(v) π(w)|Nc(v))|{y,z} is either yz or zy. If y and z are not adjacent in G \ v, then
w|{y,z} is not alternating, i.e. it contains either yy or zz. Without loss of generality, assume
that w|{y,z} contains yy. If π(w)|{y,z} = yz, then with the assumption on an occurrence of
yy, at least one occurrence of the factor zz is not avoidable in w, so at least two occurrences
of the pattern 11 in w(G)|{y,z} are guaranteed. Otherwise, w|{y,z} = zy . . . zy yz . . . . Then,
w(G)|{y,z} = yz (π(w)|N(v) π(w)|Nc(v))|{y,z} zy . . . zy yz . . . has two occurrences of the pat-
tern 11, as (π(w)|N(v) π(w)|Nc(v))|{y,z} is either yz or zy. In any case, w(G) preserves the
(non-)adjacency of y and z. Therefore the word w(G) 1-11-represents the graph G.

Theorem 3.4. Let G be a word-representable graph and e be an edge in G. Let G \ e be the
graph obtained from G by removing e. Then, G \ e is 1-11-representable.

Proof. Let e = xy and w be G’s uniform word-representant that exists by Theorem 1.1.
Without loss of generality, we can assume that w|{x,y} = xyxy . . . xy. We claim that the
graph G′ on V (G), which is 1-11-represented by the word w′ := yxwwyx, is precisely the
graph G \ e.

It is clear that x and y are not adjacent in G′ since w′|{x,y} = yxxy . . . xyyx. Since
the word ww is a 1-11-representation of G, it remains to show that for every vertex z ∈
V (G) \ {x, y}, and a vertex i ∈ {x, y}, G′ contains the edge iz whenever iz is an edge in
G. Suppose iz is an edge in G. Then, ww|{i,z} is either iz . . . iz, or zi . . . zi. It follows that
w′|{i,z} is either iiz . . . izi, or izi . . . zii. Thus, iz is an edge in G′. If iz is not an edge in G,
then ww|{i,z} will contain at least two occurrences of the pattern 11, so iz is not an edge in
G′. This shows that G′ = G \ e.
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The following two theorems generalize Theorem 3.4. The reason that we keep The-
orem 3.4 as a separate result is that it is very useful in 1-11-representing 25 non-word-
representable graphs (see Section 4).

Theorem 3.5. Let G be a word-representable graph and K be a vertex subset in G. Let GK

be the graph obtained from G by removing the edges {xy ∈ E(G) : x, y ∈ K}. Then, GK is
1-11-representable.

Proof. Let w be a uniform word-representant of G that exists by Theorem 1.1. Let p be the
reverse of the initial permutation of w|K , and let q be the reverse of the final permutation
of w|K. Note that if K is a clique in G, then p = q. It is straightforward to check that the
word w′ := pwwq 1-11-represents the graph GK .

Theorem 3.6. Let G be a word-representable graph, v be a vertex in G, and N be a set
of some (not necessarily all) neighbors of v in G. Let GN be the graph obtained from G by
removing the edges {uv : u ∈ N}. Then, GN is 1-11-representable.

Proof. Let N = {v1, . . . , vk} and w be a uniform word-representant of G. Since w is uniform,
by Theorem 1.2, we can assume that v is the first letter in w. Without loss of generality,
assume that v1 . . . vk is the initial permutation of w|N . Then, it is easy to check that the
word w′ := vk . . . v1vwwvk . . . v1v 1-11-represents the graph GN .

4 1-11-representing non-word-representable graphs

All graphs on at most five vertices are word-representable, and there is only one non-word-
representable graph, the wheel W5, on six vertices (see Figure 1). Also, there are 25 non-
word-representable graphs on seven vertices, which are shown in Figure 2.

4 3

2

1

5

6

Figure 1: The wheel graph W5

The following theorem shows that the notion of k-11-representability allows us to enlarge
the class of word-representable graphs (G(0)), still by using alternating properties of letters
in words.

Theorem 4.1. We have G(0) ( G(1).

Proof. By Theorem 2.2, we have G(0) ⊆ G(1). To show that the inclusion is strict, we give
a word 1-11-representing the non-word-representable wheel graph W5 in Figure 1. We start
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with 0-11-representing the cycle graph induced by all vertices but the vertex 6 by the 2-
uniform word w = 1521324354. This word, and a generic approach to find it, is found on
page 36 in [10]. Note that the initial permutation π(w) is 15234, and thus, by Lemma 2.1,
the word r(π(w))w = 432511521324354 1-11-represents the cycle graph. Inserting a 6 in w

to obtain u = 4325161521324354 gives a word 1-11-representing W5 (which is easy to see).
Note that the word 6u6 gives a 3-uniform 1-11-representation of W5.

A1 A2

4 3

2
15
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7

A3

4 3
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A4 A5 A6 A7
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x

B2
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x
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y

x

B4

y

x

B5 B6

y

x

B7

y

x

C1

y

x

C2

y

x

C3

y

x

C4 C5 C6

y

x

D1 D2

y

x

D3

y

x

D4 D5

Figure 2: The 25 non-isomorphic non-word-representable graphs on 7 vertices

We do not know whether G(1) coincides with the class of all graphs, but at least we can
show that all 25 graphs in Figure 2 are 1-11-representable, which we do next. We will use
the fact that all graphs on at most six vertices are 1-11-representable, which follows from
the proof of Theorem 4.1, where we 1-11-represent the only non-word-representable graph
on six vertices.

The graphs A1 and A5 are 1-11-representable by Theorem 2.5, since they have a vertex of
degree 1. Theorem 2.6 can be applied to the graphs A4, C4 and C5 since each of these graphs
have a pair of vertices whose neighbourhoods are the same up to removing these vertices.
Further, Theorem 3.2 gives 1-11-representability of the graphs A6, A7, B5, D1, D4 and D5
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since each of these graphs has a triangle with a vertex of degree 2. Explicit easy-to-check
1-11-representations of the graphs A2 and A3 are, respectively, 437257161521324354 and
437251761521324354. For each graph G of the remaining 12 graphs in Figure 2, we provide
vertices x and y connecting which by an edge results in a word-representable graph Gxy, so
that Theorem 3.4 can be applied (removing the edge xy from Gxy) to see that G is 1-11-
representable. The fact that Gxy is word-representable follows from it not being isomorphic
to any of the graphs in Figure 2, where all non-word-representable graphs on seven vertices
are presented. Alternatively, one can use the software packages [5, 17] to see that Gxy is
word-representable (the software can produce an easy to check word representing Gxy).

5 5-colorable graphs

It is known [10] that any 3-colorable graph is word-representable, but there are examples
of 4-colorable non-word-representable graphs (e.g. D1 in Figure 2). We still do not know
whether 4-colorable graphs are i-11-representable for i ∈ {1, 2, 3, 4, 5}, but we can prove that
5-colorable graphs, and thus 4-colorable graphs, are 6-11-representable.

Theorem 5.1. Let G be a 5-colorable graph. Then G ∈ G(6).

Proof. Our proof is based on the approach sketched in Section 1.2, with an appropriate
to our case modifications. Since G is 5-colorable, we can consider a partition V1 ∪ V2 ∪
· · · ∪ V5 = V (G), where each Vi is an independent set. Let Vi = {vi1 , . . . , vimi

}. Also, let
V−1 = V4, V0 = V5, V6 = V1, V7 = V2. We will consider |V (G)| acyclic orientations (not
necessarily distinct) of the graph G. Namely, for every 1 ≤ i ≤ 5, and for every vertex
v ∈ Vi, we assign the acyclic orientation Vi−2 → Vi−1 → Vi → Vi+1 → Vi+2 to G such that for
every pair of indices i− 2 ≤ j < j′ ≤ i+ 2 and a pair of adjacent vertices vj ∈ Vj, vj′ ∈ Vj′,
the edge vjvj′ is oriented as vj → vj′. For example, for a vertex v ∈ V1, we consider the
acyclic orientation V−1 = V4 → V0 = V5 → V1 → V2 → V3, while for a vertex v ∈ V4, such an
orientation is V2 → V3 → V4 → V5 → V6 = V1.

Recall the notation u  v in Section 1.2. Let I(v) = {u : u → v}, O(v) = {u : v → u},
A(v) = {u ∈ V : u  v} \ I, B(v) = {u ∈ V : v  u} \ O, and T (v) = V \ ({v} ∪ I(v) ∪
O(v) ∪ A(v) ∪ B(v)). Note that every directed path that either starts with v, or ends with
v, has length at most 2. Thus, we observe that every edge between u1 ∈ A(v) and u2 ∈ I(v)
is oriented by u1 → u2, and that every edge between u1 ∈ O(v) and u2 ∈ B(v) is oriented
by u1 → u2. In addition, by the definition of A(v) and B(v), the orientation of vertices
between T (v) and the others must be given by A(v) → T (v), I(v) → T (v), T (v) → O(v),
and T (v)→ B(v). Observe that v is not adjacent to any vertex in A(v) ∪B(v) ∪ T (v). See
Figure 3 for an illustration of this situation.

We say that a word w preserves the orientation, if the induced subword of w on {u1, u2}
starts with u1 for each directed edge u1 → u2. For each vertex v ∈ V (G), we will define a word
wv preserving the orientation depicted in Figure 3, so that wv contains a “sufficiently large”
number of occurrences of the pattern 11 between v and the vertices not adjacent to v, while
wv contains “only a few” occurrences of the pattern 11 for any other pair of vertices. Then,
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A(v) I(v)

T (v)

v O(v) B(v)

Figure 3: The orientation of G corresponding to a vertex v

we will concatenate the words wv’s to obtain a 6-11-representation w(G) := W1W2W3W4W5

of G, where Wi := wvi1
. . . wvim

. Let

wv := AvITOB vAITOB AvITOB vAITOB

AITvOB AIvTOB AITvOB AIvTOB

AITOBv AITOvB AITOBv AITOvB,

where A, I, T, O,B are fixed permutations of the corresponding sets that preserve the orien-
tations. Note that wv contains four occurrences of the pattern 11 for each pair (u, v) such
that u ∈ A∪B ∪T . In addition, for each directed edge u1 → u2 with u1, u2 6= v, the induced
subword wv|{u1,u2} is alternating and starts with u1, thus preserving the orientation of G. If
u ∈ I, then wv|{u,v} = vu vu vu vu uv . . . uv, which begins with v and has one occurrence
of the pattern 11. If u ∈ O, then wv|{u,v} = vu . . . vu uv uv uv uv, which begins with v and
has one occurrence of the pattern 11. In either case, the word wv preserves the orientation.

We claim that w(G) 6-11-represents G. Let x and y be two distinct vertices in G. If x, y
are not adjacent in G, then wx|{x,y} and wy|{x,y} each have four occurrences of the pattern 11.
Thus, w(G)|{x,y} has at least eight occurrences of the pattern 11. It remains to consider the
case of adjacent x and y with the edge oriented as x → y. There are ten cases to consider:
x ∈ Vi and y ∈ Vj , where 1 ≤ i < j ≤ 5. Here, we only consider the case of x ∈ V1, y ∈ V2,
but all the other cases can be easily considered in a very similar way.

(i) For v ∈ V1, the word wv deals with the orientation V4 → V5 → V1 → V2 → V3

on G. Then, wv|{x,y} = xy . . . xy if v 6= x and wx|{x,y} = xy . . . xyyx . . . yx. Thus,
W1|{x,y} is either xy . . . xyyx . . . yxxy . . . xy with two occurrences of the pattern 11, or
xy . . . xyyx . . . yx with one occurrence of the pattern 11.

(ii) For v ∈ V2, the word wv deals with the orientation V5 → V1 → V2 → V3 → V4 on G.
Then, wv|{x,y} = xy . . . xy if v 6= y and wy|{x,y} = yx . . . yxxy . . . xy. Thus W2|{x,y} is
xy . . . xyyx . . . yxxy . . . xy with two occurrences of the pattern 11, or yx . . . yxxy . . . xy
with one occurrence of the pattern 11.

(iii) For v ∈ V3, the word wv deals with the orientation V1 → V2 → V3 → V4 → V5 on G.
Then, wv|{x,y} = xy . . . xy, so W3|{x,y} = xy . . . xy, which is alternating.
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(iv) For v ∈ V4, the word wv deals with the orientation V2 → V3 → V4 → V5 → V1 on G.
Then, wv|{x,y} = yx . . . yx, so W4|{x,y} = yx . . . yx, which is alternating.

(v) For v ∈ V5, the word wv deals with the orientation V3 → V4 → V5 → V1 → V2 on G.
Then, wv|{x,y} = xy . . . xy, so W5|{x,y} = xy . . . xy, which is alternating.

Some extra occurrences of the pattern 11 can occur when we concatenate the words Wk|{x,y}
to obtain w(G)|{x,y} = W1|{x,y}W2|{x,y}W3|{x,y}W4|{x,y}W5|{x,y}. However, in any case, it is
clear that w(G)|{x,y} has at most six occurrences of the pattern 11.

We note that the methods to prove Theorem 5.1 do not work for k-colorable graphs for
k ≥ 6, so in general, we do not know how to estimate the value of ℓ such that all k-colorable
graphs belong to G(ℓ).

6 Open problems on k-11-representable graphs

Probably the most intriguing open question in the theory of k-11-representable graphs is the
following.

Problem 1. Is it true that any graph is 1-11-representable?

If the answer to the question in Problem 1 is yes, then some of the problems below will
be automatically solved. However, the remaining problems would still be interesting and
challenging.

Problem 2. Is it true that G(k) ( G(k+1) for any k ≥ 1. Recall that this is true for k = 0 by
Theorem 4.1.

By Theorem 1.1, any word-representable graph can be represented by a uniform word.
Thus, the following question is natural.

Problem 3. Is it true that any k-11-representable graph can be represented by a uniform
word?

Problem 4. Given a graph G, we know by Theorem 2.12 that G is k-11-representable for
some k ≥ 0. Theorem 2.12 also gives an upper bound on such a k. Can this bound be
(significantly) improved if not for a generic graph then for, say, a t-coloarble graph, or a
planar graph, or a non-word-representable graph from another (well known) class of graphs?
In particular, what is the true value of k for 4-colorable graphs? Recall that currently, we
only know that k ≤ 6 for these graphs (see Theorem 5.1).

It is known [7] that if a graph G with n vertices is word-representable, then it can be
represented by a uniform word of length at most 2n(n−κ) where κ is the size of a maximum
clique in G. However, we have no upper bounds for words k-11-representing graphs.

Problem 5. Provide an upper bound for words k-11-representing graphs. In particular, is
there such a bound in the case of k = 1?
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Problem 6. Theorem 3.1 shows that the class of interval graphs is precisely the class of 1-
11-representable graphs that can be represented 2-uniformly. Does the class of m-uniformly
1-11-representable graphs, for m ≥ 3, have any interesting/useful properties? In particular,
is there a description of such graphs in terms of forbidden subgraphs? A good starting point
to answer the last question should be the case of m = 3.

Subdividing an edge uv in a graph is replacing the edge by a path ux1x2 · · ·xtv, t ≥ 1.
It was shown in [11] that the graph obtained by subdividing each edge in any graph into
at least three edges (t ≥ 2) can be 0-11-represented by a 3-uniform word. On the other
hand, it is easy to use the notion of a semi-transitive orientation to show that if each edge
in a graph is subdivided arbitrarily then the resulting graph is always 0-11-representable
(i.e. word-representable). Indeed, orienting subdivisions of the form ux1v as u → x1 ← v,
and any other subdivisions as u → x1 → x2 → · · · → xt−1 → xt ← v, we clearly obtain no
cycles or shortcuts. Thus, by Theorem 4.1, subdividing each edge in a graph we obtain a
1-11-representable graph, so the following problem is well defined.

Problem 7. What is the minimum number of letters we need to (uniformly) 1-11-represent
the graph obtained by a subdivision of each edge in a given graph.

Not all planar graphs are word-representable (e.g. W5, as well as several planar graphs
in Figure 2, are non-word-representable). It would be interesting to answer the following
question.

Problem 8. Are all planar graphs 1-11-representable?

In Section 1.2, we introduced the notion of a semi-transitive orientation characteriz-
ing word-representable graphs. k-11-representable graphs generalize the notion of a word-
representable graph, and thus it is natural to try to find orientations, generalizing semi-
transitive orientations, that characterize k-11-representable graphs. Two possible approaches
in the case of k = 1 might be

• Changing the direction of a shortcutting edge that will result in a cycle. Such a cycle
might correspond to defining an edge using exactly one occurrence of the pattern 11.

• Allowing shortcutting edges, which might correspond to defining an edge using exactly
one occurrence of the pattern 11.

However, we were not able to find such a generalization of a semi-transitive orientation, so
we state the following problem.

Problem 9. Find orientations of graphs characterizing k-11-representable graphs for k ≥ 1.
Even the case k = 1 is of substantial interest here.

We conclude by recalling that certain orientations were used by us in the proof of Theo-
rem 5.1, and they might be useful in solving Problem 9.

19



Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIP) (2016R1A5A1008055) and the Ministry of Education of
Korea (NRF-2016R1A6A3A11930452).

References

[1] E. J. L. Bell. Word-graph theory. PhD thesis, Lancaster University, 2011.

[2] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo. “The maximum clique problem”,
Handbook of Combinatorial Optimization, 4, Kluwer Academic Publishers (1999) 1–74.
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