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Еxponential Riordan arrays and generalized Narayana

polynomials

E. Burlachenko

Abstract

Generalized Euler polynomials αn (x) = (1− x)n+1∑∞

m=0 pn (m)xm, where pn (x)
is the polynomial of degree n, are the numerator polynomials of the generating func-

tions of diagonals of the ordinary Riordan arrays. Generalized Narayana polynomials

ϕn (x) = (1− x)2n+1∑∞

m=0 (m+ 1) ... (m+ n) pn (m) xm are the numerator polyno-

mials of the generating functions of diagonals of the exponential Riordan arrays. In

present paper we consider the constructive relationship between these two types of

numerator polynomials.

1 Introduction

This paper is a continuation of the paper “Riordan arrays and generalized Euler polyno-
mials” [1]. In Section 2 we will briefly retell its content. For the integrity of presentation,
we will change some notation adopted in [1].

Subject of our study is the transformations in space of formal power series and the
corresponding matrices. We associate rows and columns of matrices with the generating
functions of their elements. nth coefficient of the series a (x), nth row, nth descending
diagonal and nth column of the matrix A will be denoted respectively by

[xn] a (x) , [n,→]A, [n,ց]A, Axn.

Matrix (f (x) , g (x)), g0 = 0, nth column of which, n = 0, 1, 2, ... , has the generating
function f (x) gn (x), is called Riordan array [2] – [6]. It is the product of two matrices
that correspond to multiplication and composition of series:

(f (x) , g (x)) = (f (x) , x) (1, g (x)) ,

(f (x) , x) a (x) = f (x) a (x) , (1, g (x)) a (x) = a (g (x)) ,

(f (x) , g (x)) (b (x) , a (x)) = (f (x) b (g (x)) , a (g (x))) .

Matrices
|ex|−1 (f (x) , g (x)) |ex| = (f (x) , g (x))ex ,

where |ex| is the diagonal matrix, |ex|xn = xn/n! , are called exponential Riordan arrays.
Denote

[n,→] (f (x) , g (x))ex = sn (x) , f0 6= 0, g1 6= 0.

Then

(f (x) , g (x))ex(1− ϕx)−1 = |ex|−1 (f (x) , g (x)) eϕx = |ex|−1f (x) exp (ϕg (x)) ,

or
∞
∑

n=0

sn (ϕ)

n!
xn = f (x) exp (ϕg (x)) .
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Sequence of polynomials sn (x) is called Sheffer sequence, and in the case f (x) = 1,
binomial sequence. The properties of the Sheffer sequences are the subject of study of the
umbral calculus [7]. Matrix

P =

(

1

1− x
,

x

1− x

)

= (ex, x)ex =















1 0 0 0 · · ·
1 1 0 0 · · ·
1 2 1 0 · · ·
1 3 3 1 · · ·
...

...
...

...
. . .















is called Pascal matrix. Power of the Pascal matrix is defined by the identity

P ϕ =

(

1

1− ϕx
,

x

1− ϕx

)

= (eϕx, x)ex.

Along with the lower triangular Riordan matrices, we will consider “square” matrices
(b (x) , a (x)), b0 6= 0, a0 = 1. For example,

(

1,
1

1 + x

)

=















1 1 1 1 · · ·
0 −1 −2 −3 · · ·
0 1 3 6 · · ·
0 −1 −4 −10 · · ·
...

...
...

...
. . .















This includes the upper triangular matrix (1, 1 + x), whose transpose is the Pascal matrix
and which coincides with the matrix of shift operator:

(1, 1 + x) = P T = E =















1 1 1 1 · · ·
0 1 2 3 · · ·
0 0 1 3 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .















.

Matrix (b (x) , a (x)) can be multiplied from the right by the matrix with the finite columns
and from the left by the matrix with the finite rows. At first (before Section 4), we restrict
ourselves to the set of matrices of the form (1, a (x)). Since

[n,→] (1, a (x)) = [n,ց] (1, xa (x)) ,

then the matrix (1, a (x)) is a tool for study of the matrix (1, xa (x)). Denote

[n,→] (1, a (x)− 1) = vn (x) =
n
∑

m=1

vmx
m, n > 0.

Since

(1, a (x)− 1) (1, 1 + x) = (1, a (x)) , [n,→] (1, 1 + x) =
xn

(1− x)n+1 ,

then

[n,→] (1, a (x)) =
n
∑

m=1

vmx
m

(1− x)m+1 =
n
∑

m=1

vmx
m(1− x)n−m

(1− x)n+1 =
αn (x)

(1− x)n+1 .
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If a (x) = ex, then αn (x) = An (x)/n! , where An (x) are the Euler polynomials:

An (x)

(1− x)n+1 =

∞
∑

m=0

mnxm, An (1) = n!.

For example,

A1 (x) = x, A2 (x) = x+ x2, A3 (x) = x+ 4x2 + x3,

A4 (x) = x+ 11x2 + 11x3 + x4.

In this connection we will called these polynomials the generalized Euler polynomials
(GEP).

“Square” Riordan arrays (called convolution arrays) and numerator polynomials of the
generating functions of their rows were considered in the series of papers [8] – [12]. In
[13] such matrices are called generalized Riordan arrays. Concept of generalized Euler
polynomials (called pn-associated Eulerian polynomials) in general form is represented in
[14].

Denote

[n,ց] (1, xa (x)) =
αn (x)

(1− x)n+1 , [n,→] (1, log a (x))ex = un (x) ,

[n,→] (1, a (x)− 1) = vn (x) .

If the sequence of polynomials has the form c0 (x) = 1, [x0] cn (x) = 0, we will bear in
mind that the expression (1/x ) cn (x) corresponds to the case n > 0. Denote

1

x
αn (x) = α̃n (x) ,

1

x
An (x) = Ãn (x) ,

1

x
un (x) = ũn (x) ,

1

x
vn (x) = ṽn (x) .

Let the symbols (ϕ)n, [ϕ]n denote respectively the falling and the rising factorial:

(ϕ)n = ϕ (ϕ− 1) ... (ϕ− n + 1) , [ϕ]n = ϕ (ϕ+ 1) ... (ϕ+ n− 1) .

In Section 2 we consider the generalized Euler polynomials and associated transformations.
We introduce the matrices Ũn, Ṽn:

Ũnx
p =

1

n!
(1− x)n−1−pÃp+1 (x) , Ũ−1

n xp = (x− 1)p[x+ 1]n−p−1,

Ṽnx
p = (1 + x)n−p−1xp, Ṽ −1

n xp = (1− x)n−p−1xp, p = 0, 1, . . . , n− 1.

Then
Ũnũn (x) = α̃n (x) , Ṽnα̃n (x) = ṽn (x) .

We consider the series (β)a (x), (0)a (x) = a (x), that are defined as follows:

(β)a
ϕ (x) =

∞
∑

n=0

ϕ

ϕ+ nβ

un (ϕ+ nβ)

n!
xn.

Denote

[n,ց]
(

1, x(β)a (x)
)

=
(β)αn (x)

(1− x)n+1 ,
1

x
(β)αn (x) = (β)α̃n (x) .

We introduce the matrices

Aβ
n = ŨnE

nβŨ−1
n = Ṽ −1

n D̃
(

(1 + x)nβ, x
)T

D̃−1Ṽn, D̃xn = (n + 1)xn.

3



Then
Aβ

nα̃n (x) = (β)α̃n (x) .

We give a general formula for the GEP associated with the generalized binomial series.
Namely, let

(β)a
ϕ (x) =

∞
∑

n=0

ϕ

ϕ+ nβ

(

ϕ+ nβ
n

)

xn,
(β)αn (x)

(1− x)n+1 =
∞
∑

m=0

m

m+ nβ

(

m+ nβ
n

)

xm.

Then

(β)αn (x) =
1

n

n
∑

m=1

(

n (1− β)
m− 1

)(

nβ
n−m

)

xm.

In Section 3 we consider the generalized Narayana polynomials ϕn (x), which are the
numerator polynomials of the matrix (1, xa (x))ex :

[n,ց] (1, xa (x))ex =
ϕn (x)

(1− x)2n+1 =

∞
∑

m=0

[m+ 1]nun (m)

n!
xm,

1

x
ϕn (x) = ϕ̃n (x) .

We introduce the matrices F̃n:

F̃nx
p = (1− x)2n+1

∞
∑

m=1

mp+1

(

m+ n
n

)

xm−1,

F̃−1
n xp =

n!

(2n)!
(x− 1)p[x+ n+ 1]n−p−1, p = 0, 1, . . . , n− 1.

Then
F̃nũn (x) = ϕ̃n (x) .

We introduce the matrices S̃n = F̃nŨ
−1
n . Then

S̃nα̃n (x) = ϕ̃n (x) .

It turns out that

S̃n = Ṽ −1
n C̃nṼn, C̃nx

p =
(n + p+ 1)!

(p+ 1)!
xp.

We give a general formula for the GNP associated with the generalized binomial series.
Namely, let

(β)ϕn (x)

(1− x)2n+1 =
∞
∑

m=0

m

m+ βn

(

m+ βn
n

)

[m+ 1]nx
m.

Then

(β)ϕn (x) =
(n+ 1)!

n

n
∑

m=1

(

n (2− β)
m− 1

)(

nβ
n−m

)

xm.

In Section 4 we consider transformations of the general form. Let gn (x), hn (x) are
the numerator polynomialsof of the matrices (b (x) , xa (x)), (b (x) , xa (x))ex , b0 6= 0, re-
spectively. Denote

[n,→] (b (x) , log a (x))ex = sn (x) .

We introduce the matrices Un, Fn:

Unx
p = (1− x)n+1 1

n!

∞
∑

m=0

mpxm, U−1
n xp = (x)p[x+ 1]n−p;
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Fnx
p = (1− x)2n+1

∞
∑

m=0

mp

(

m+ n
n

)

xm, F−1
n xp =

n!

(2n)!
(x)p[x+ n+ 1]n−p,

p = 0, 1, . . . , n. Then

Unsn (x) = gn (x) , Fnsn (x) = hn (x) .

We introduce the matrices Sn = FnU
−1
n . Then

Sngn (x) = hn (x) .

It turns out that
Sn = V −1

n CnVn,

Vnx
p = (1 + x)n−pxp, V −1

n xp = (1− x)n−pxp, Cnx
p =

(n+ p)!

p!
xp;

Snx
p =

(n+ p)! (n− p)!

n!

n
∑

m=p

(

n
m− p

)(

n
n−m

)

xm,

S−1
n xp =

p! (n− p)!

(2n)!

n
∑

m=p

(

−n
m− p

)(

2n
n−m

)

xm.

In Section 5 we consider the generalized Narayana polynomials of type B, which are
the numerator polynomials of the matrix (a (x) , xa (x))ex , and similar polynomials, which
are the numerator polynomials of the matrix

(

(xa (x))′, xa (x)
)

.
In Section 6 we return to the series (β)a (x) from Section 2 and consider the transfor-

mations

Gβ
n = UnE

nβU−1
n = V −1

n

(

(1 + x)nβ, x
)T

Vn,

Hβ
n = FnE

nβF−1
n = SnG

β
nS

−1
n = V −1

n Cn

(

(1 + x)nβ, x
)T

C−1
n Vn,

T β
n = F̃nE

nβF̃−1
n = S̃nA

β
nS̃

−1
n = Ṽ −1

n C̃nD̃
(

(1 + x)nβ, x
)T

D̃−1C̃−1
n Ṽn.

Let (β)gn (x), (β)hn (x) are the numerator polynomials of the matrices

(

b
(

x(β)a
β (x)

)

(

1 + xβ
(

log (β)a (x)
)

′

)

, x(β)a (x)
)

,

(

b
(

x(β)a
β (x)

)

(

1 + xβ
(

log (β)a (x)
)

′

)

, x(β)a (x)
)

ex
,

respectively, (β)ϕn (x) are the numerator polynomials of the matrix
(

1, x(β)a (x)
)

ex
. Then

Gβ
ngn (x) = (β)gn (x) , Hβ

nhn (x) = (β)hn (x) , T β
n ϕ̃n (x) = (β)ϕ̃n (x) .

Matrices Gβ
n, H

β
n , T β

n are characterized by the fact that, in comparison with them, the
columns and rows of the matirices G−β

n , H−β
n , T−β

n are rearranged in the reverse order.
Columns of the matrix Gβ

n are expressed by the general formula:

Gβ
nx

p =
n
∑

m=0

(

−nβ + p
m

)(

nβ + n− p
n−m

)

xm.
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2 Generalized Euler polynomials

Let

un (x) =
n
∑

p=1

upx
p, n > 0.

Since

am (x) =
∞
∑

n=0

un (m)

n!
xn, u0 (x) = 1,

then

αn (x)

(1− x)n+1 =
∞
∑

m=0

un (m)

n!
xm =

1

n!

∞
∑

m=0

xm
n
∑

p=1

upm
p =

1

n!

n
∑

p=1

∞
∑

m=0

upm
pxm =

=
1

n!

n
∑

p=1

upAp (x)

(1− x)p+1 =

1
n!

n
∑

p=1

up(1− x)n−pAp (x)

(1− x)n+1 .

We introduce the matrices Ũn:

Ũnx
p =

1

n!
(1− x)n−1−pÃp+1 (x) , p = 0, 1, . . . , n− 1.

For example,

Ũ2 =
1

2

(

1 1
−1 1

)

, Ũ3 =
1

3!





1 1 1
−2 0 4
1 −1 1



 , Ũ4 =
1

4!









1 1 1 1
−3 −1 3 11
3 −1 −3 11
−1 1 −1 1









.

Then
Ũnũn (x) = α̃n (x) .

Since

xp+1

(1− x)n+1 =

∞
∑

m=0

(

m+ n− p− 1
n

)

xm =

∞
∑

m=0

[m− p]n
n!

xm, 0 ≤ p < n,

then

Ũ−1
n xp =

1

x

n−1
∏

i=0

(x− p+ i) = (x− 1)p[x+ 1]n−p−1.

For example,

Ũ−1
2 =

(

1 −1
1 1

)

, Ũ−1
3 =





2 −1 2
3 0 −3
1 1 1



 , Ũ−1
4 =









6 −2 2 −6
11 −1 −1 11
6 2 −2 −6
1 1 1 1









.

We introduce the matrices Jn corresponding to the operator rearranging the coefficients
of the polynomial of degree n in the reverse order. For example,

J3 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.
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Denote J̃n = Jn−1.
Theorem 1.

Ũn (1,−x) Ũ−1
n = (−1)n−1J̃n.

Proof.

(1,−x) (x− 1)p[x+ 1]n−p−1 = (−x− 1)p[−x+ 1]n−p−1 = (−1)n−1(x− 1)n−p−1[x+ 1]p,

or
(1,−x) Ũ−1

n xp = (−1)n+1Ũ−1
n xn−p−1, (1,−x) Ũ−1

n = (−1)n+1Ũ−1
n J̃n.

Thus,
(−1)n−1J̃nα̃n (x) = Ũnũn (−x) .

Denote

[n,ց]
(

1, xa−1 (x)
)

=
α
(−1)
n (x)

(1− x)n+1 .

Since
[n,→]

(

1, log a−1 (x)
)

ex
= un (−x) ,

then
α(−1)
n (x) = (−1)nxJnαn (x) .

Theorem 2.

αn (1) = (a1)
n.

Proof. Denote Ũnx
p = Ũp (x). Since

a1 = [x] log a (x) , (a1)
n = [xn] un (x) ; Ũp (1) = 0, p < n− 1; Ũn−1 (1) = 1.

then

αn (1) =

n−1
∑

p=0

up+1Ũp (1) = un = (a1)
n.

The case when a1 = 0, the degree of polynomial un (x) is less than n and matrix
(1, log a (x))ex has no inverse, is possible. This possibility is reflected in the following
theorem.
Theorem 3. If sn−m (x) is a polynomial of degree n−m− 1, then

Ũnsn−m (x) = (1− x)m
(n−m)!

n!
Ũn−msn−m (x) .

Respectively, if cn−m (x) is a polynomial of degree < n−m, then

Ũ−1
n (1− x)mcn−m (x) =

n!

(n−m)!
Ũ−1
n−mcn−m (x) .

Proof. Let In is the identity square matrix of order n+1, corresponding to the operator
annihilating excess columns or rows of matrices. Denote Ĩn = In−1. Then it is obvious
that

(

(1− x)−m, x
)

ŨnĨn−m =
(n−m)!

n!
Ũn−m,

or

ŨnĨn−m = ((1− x)m, x)
(n−m)!

n!
Ũn−m.

Respectively,

Ũ−1
n ((1− x)m, x) Ĩn−m =

n!

(n−m)!
Ũ−1
n−m.

7



We introduce the matrices Ṽn = J̃nEJ̃n = ((1 + x)n, x)P−1Ĩn. For example,

Ṽ4 =









1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









, Ṽ −1
4 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1









.

Then, as we found in the Introduction,

Ṽ −1
n ṽn (x) = α̃n (x) ,

and, hence
Ũ−1
n Ṽ −1

n ṽn (x) = ũn (x) .

By Theorem 3 we find:

Ũ−1
n Ṽ −1

n xp = Ũ−1
n (1− x)n−p−1xp =

n!

(p+ 1)!
(x− 1)p =

=
n!

(p+ 1)!

p+1
∑

m=1

s (p+ 1, m) xm−1,

where s (p+ 1, m) are the Stirling numbers of the first kind. Hence

ṼnŨnx
p =

1

n!

p+1
∑

m=1

m!S (p + 1, m) xm−1,

where S (p+ 1, m) are the Stirling numbers of the second kind. For example,

Ũ−1
4 Ṽ −1

4 = 4!









1 −1 2 −6
0 1 −3 11
0 0 1 −6
0 0 0 1

















1 0 0 0
0 1

2
0 0

0 0 1
3!

0
0 0 0 1

4!









,

Ṽ4Ũ4 =
1

4!









1 0 0 0
0 2 0 0
0 0 3! 0
0 0 0 4!

















1 1 1 1
0 1 3 7
0 0 1 6
0 0 0 1









.

Generalized binomial series,

(β)a
ϕ (x) =

∞
∑

n=0

ϕ

ϕ+ nβ

(

ϕ+ nβ
n

)

xn;

(0)a (x) = 1 + x, (1)a (x) = (1− x)−1, (2)a (x) =
1− (1− 4x)1/2

2x
,

(−1)a (x) =
1 + (1 + 4x)1/2

2
, (1/2 )a (x) =

(

x

2
+

(

1 +
x2

4

)1/2
)2

,

takes important place in our studies. Generalization that underlies it can be extended to
each formal power series a (x), a0 = 1. Each such series is associated by means of the
Lagrange transform

aϕ (x) =

∞
∑

n=0

xn

aβn (x)
[xn]

(

1− xβ(log a (x))′
)

aϕ+βn (x)

8



with the set of series (β)a (x), (0)a (x) = a (x), such that

(β)a
(

xa−β (x)
)

= a (x) , a
(

x(β)a
β (x)

)

= (β)a (x) ,

[xn] (β)a
ϕ (x) = [xn]

(

1− xβ
a′ (x)

a (x)

)

aϕ+βn (x) =
ϕ

ϕ+ βn
[xn] aϕ+βn (x) ,

[xn]

(

1 + xβ
(β)a

′ (x)

(β)a (x)

)

(β)a
ϕ (x) =

ϕ+ βn

ϕ
[xn] (β)a

ϕ (x) = [xn] aϕ+βn (x) ,

(

1, x(β)a
ϕ (x)

)

−1
=
(

1, x(β−ϕ)a
−ϕ (x)

)

,
(

1 + xϕ
(

log (β)a (x)
)

′

, x(β)a
ϕ (x)

)

−1

=
(

1− xϕ
(

log (β−ϕ)a (x)
)

′

, x(β−ϕ)a
−ϕ (x)

)

.

Denote
[n,→]

(

1, log (β)a (x)
)

ex
= (β)un (x) .

Then

(β)a
ϕ (x) =

∞
∑

n=0

ϕ

ϕ+ nβ

un (ϕ+ nβ)

n!
xn,

(β)un (x) = x(x+ nβ)−1un (x+ nβ) .

Let
(1, log a (x))−1 = (1, q (x)) .

Then
(

1, log (β)a (x)
)

−1
=
(

1, q (x) e−βx
)

.

Denote
(

1, q (x) e−βx
)

ex
xn = (β)qn (x) .

Then

(β)qn (x) = (1 + nβx)−1qn

(

x

1 + nβx

)

,

∞
∑

n=0

(β)un (ϕ) (β)qn (x) = (1− ϕx)−1.

Series (β)a (x) for integer β, denoted by Sβ (x), were introduced in [15]. In [16] these
series, called generalized Lagrange series, are considered in connection with the Rior-
dan arrays. Properties of these series intersect with the properties of Sheffer sequences,
therefore the identities associated with them can be found in the umbral calculus.

Denote

1

x
(β)un (x) = (β)ũn (x) , [n,ց]

(

1, x(β)a (x)
)

=
(β)αn (x)

(1− x)n+1 ,
1

x
(β)αn (x) = (β)α̃n (x) .

Then

Enβũn (x) = ũn (x+ nβ) = (β)ũn (x) , UnE
nβU−1

n α̃n (x) = (β)α̃n (x) .

Denote
ŨnE

nβŨ−1
n = Aβ

n.

Since
(1,−x)Enβ (1,−x) = E−nβ, Ũn (1,−x) Ũ−1

n = (−1)n−1J̃n,

then
J̃nA

β
nJ̃n = A−β

n .

9



For example,

A2 =

(

2 1
−1 0

)

, A3 =





5 5/2 1
−6 −2 0
2 1/2 0



 , A4 =









14 7 3 1
−28 −35/3 −10/3 0
20 22/3 5/3 0
−5 −5/3 −1/3 0









;

A−1
2 =

(

0 −1
1 2

)

, A−1
3 =





0 1/2 2
0 −2 −6
1 5/2 5



 , A−1
4 =









0 −1/3 −5/3 −5
0 5/3 22/3 20
0 −10/3 −35/3 −28
1 3 7 14









.

Since [x] (β)a (x) = [x] a (x) = a1, then (β)αn (1) = αn (1) and sum of the elements of each
column of the matrix Aβ

n is 1. From Theorem 3 it follows that

(

(1− x)−m, x
)

Aβ
n ((1− x)m, x) Ĩn−m = A

nβ

n−m

n−m.

We introduce the diagonal matrix D̃, D̃xn = (n+ 1) xn:

D̃ =











1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
...

...
...

. . .











, D̃−1 =











1 0 0 · · ·
0 1

2
0 · · ·

0 0 1
3

· · ·
...

...
...

. . .











.

Theorem 4.

Aβ
n = Ṽ −1

n D̃
(

(1 + x)nβ, x
)T

D̃−1Ṽn.

Proof. Columns of the matrices ṼnŨn, Ũ
−1
n Ṽ −1

n are connected a certain way with the
rows of the matrices (ex, ex − 1)ex ,

(

(1 + x)−1, log (1 + x)
)

ex
:

n! |ex| D̃−1ṼnŨnx
p = [p,→] (ex, ex − 1)ex ,

(1/n! ) Ũ−1
n Ṽ −1

n |ex|−1D̃xp = [p,→]
(

(1 + x)−1, log (1 + x)
)

ex
.

Since
(

(1 + x)−1, log (1 + x)
)

ex

(

enβ, x
)

ex
(ex, ex − 1)ex =

(

(1 + x)nβ, x
)

ex
,

then

ṼnŨnE
nβŨ−1

n Ṽ −1
n = D̃

(

(1 + x)nβ, x
)T

D̃−1Ĩn.

Thus,

A2 =

(

1 0
−1 1

)(

1 0
0 2

)(

1 2
0 1

)(

1 0
0 1

2

)(

1 0
1 1

)

,

A3 =





1 0 0
−2 1 0
1 −1 1









1 0 0
0 2 0
0 0 3









1 3 3
0 1 3
0 0 1









1 0 0
0 1

2
0

0 0 1
3









1 0 0
2 1 0
1 1 1



 ,

A4 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

















1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

















1 4 6 4
0 1 4 6
0 0 1 4
0 0 0 1

















1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4

















1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









.

Denote

[n,→]
(

1, (β)a (x)− 1
)

= (β)vn (x) ,
1

x
(β)vn (x) = (β)ṽn (x) .
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Then

D̃
(

(1 + x)nβ, x
)T

D̃−1ṽn (x) = (β)ṽn (x) .

Let (β)a (x) is the generalized binomial series. Then a (x) = 1 + x,

(β)αn (x)

(1− x)n+1 =
∞
∑

m=0

m

m+ nβ

(

m+ nβ
n

)

xm.

Theorem 5.

(β)αn (x) =
1

n

n
∑

m=1

(

n (1− β)
m− 1

)(

nβ
n−m

)

xm.

Proof. We use the factorial representation of binomial coefficients, i.e. we prove the
theorem for positive integers β. By polynomial argument (binomial coefficients under
consideration are polynomials in β) this is equivalent to the general proof . Since ṽn (x) =
xn−1, then

(β)ṽn (x) = D̃
(

(1 + x)nβ, x
)T

D̃−1xn−1 =
n−1
∑

m=0

m+ 1

n

(

nβ
n−m− 1

)

xm.

Since

[m,→] Ṽ −1
n =

m
∑

i=0

(

m− n
m− i

)

xi =
m
∑

i=0

(−1)m−i

(

n− i− 1
m− i

)

xi,

then
[xm] (β)α̃n (x) = [xm] Ṽ −1

n (β)ṽn (x) =

=
m
∑

i=0

(−1)m−i

(

n− i− 1
m− i

)

(i+ 1)

n

(

nβ
n− i− 1

)

(nβ − n+m+ 1)!

(nβ − n+m+ 1)!
=

=
1

n

(

nβ
n−m− 1

) m
∑

i=0

(−1)m−i (i+ 1)

(

nβ − n+m+ 1
m− i

)

=

=
1

n

(

nβ
n−m− 1

)

(−1)m
(

nβ − n +m− 1
m

)

=
1

n

(

nβ
n−m− 1

)(

n (1− β)
m

)

.

Note that

(0)αn (x) = xn, (1)αn (x) = x, (1/2 )α2n (x) =
1

2
(1 + x) xn;

since

(1−β)a (x) = (β)a
−1 (−x) ,

then

(1−β)αn (x) = xJn(β)αn (x) .

3 Generalized Narayana polynomials

Constructive relationships between the ordinary and the exponential Riordan arrays exist.
Particular manifestations of these relationships resemble the details of construction, the
general plan of which is a secret for us. Following [17] – [19], we will consider some of
such manifestations associated with the numerator polynomials. Since

[n,ց] (1, xa (x)) =

∞
∑

m=0

un (m)

n!
xm,
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then

[n,ց](1, xa (x))ex =
∞
∑

m=0

(m+ n)!

m!

un (m)

n!
xm =

∞
∑

m=0

[m+ 1]nun (m)

n!
xm.

If a1 6= 0, then [x+ 1]nun (x) is the polynomial of degree 2n, so that

∞
∑

m=0

[m+ 1]nun (m)

n!
xm =

ϕn (x)

(1− x)2n+1 ,

where

ϕn (x) = x
(2n)!

n!
Ũ2n[x+ 1]nũn (x) .

Since [x+ 1]nun (x) = 0 when x = 0, −1, . . . , −n, then, in accordance with the
Theorem1,

∞
∑

m=0

[−m+ 1]nun (−m)

n!
xm =

(−1)2nxJ2nϕn (x)

(1− x)2n+1 =
(−1)2nxn+1Jnϕn (x)

(1− x)2n+1 ,

i.e. ϕn (x) is the polynomial of degree ≤ n. Since

[

x2n
]

[x+ 1]nun (x) = (a1)
n,

then, in accordance with the Theorem 2,

ϕn (1) = (a1)
n (2n)!

n!
.

If a (x) = (1− x)−1, then

ϕn (x) = (n + 1)!Nn (x) = (1− x)2n+1
∞
∑

m=0

[m+ 1]n

(

m+ n− 1
n

)

xm,

where

Nn (x) =
1

n

n
∑

m=1

(

n
m− 1

)(

n
n−m

)

xm

is the Narayana polynomials. In this connection we will called polynomials ϕn (x) the
generalized Narayana polynomials (GNP).

Since
ϕn (t)

(n + 1)!(1− t)2n+1 =

∞
∑

m=0

1

n+ 1

(

n+m
m

)

[xn] am (x) tm =

=
1

n+ 1
[xn] (1− ta (x))−n−1 = [xn] b (x) ,

where

b (x) =
1

1− ta (xb (x))
, (1, xb (x)) = (1, x (1− ta (x)))−1,

then
∞
∑

n=0

ϕn (t)
xn

(n+ 1)!
= (1− t) b

(

x(1− t)2
)

.

For example,

a (x) =
1

1− x
, b (x) =

1 + x− t−
√
1− 2x− 2t− 2xt + x2 + t2

2x
,
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∞
∑

n=0

ϕn (t)
xn

(n + 1)!
=

∞
∑

n=0

Nn (t)x
n =

1 + x (1− t)−
√

1− 2x (1 + t) + x2(1− t)2

2x
.

Generating functions of the numerator polynomials of the matrices (1, ex − 1)ex, (e
x, ex − 1)ex

are considered in [20].
We introduce the matrices F̃n:

F̃n =
(2n)!

n!
Ũ2n ([x+ 1]n, x) Ĩn, F̃−1

n =
n!

(2n)!
([x+ 1]n, x)

−1Ũ−1
2n Ĩn;

F̃nx
p =

(2n)!

n!
Ũ2nx

p[x+ 1]n = (1− x)2n+1
∞
∑

m=1

mp+1

(

m+ n
n

)

xm−1,

F̃−1
n xp =

n!

(2n)!
(x− 1)p[x+ n+ 1]n−p−1, p = 0, 1, . . . , n− 1.

For example,

F̃2 = 3

(

1 1
−1 3

)

, F̃3 = 4





1 1 1
−2 3 13
1 −4 16



 , F̃4 = 5









1 1 1 1
−3 3 15 39
3 −9 9 171
−1 5 −25 125









;

F̃−1
2 =

2!

4!

(

3 −1
1 1

)

, F̃−1
3 =

3!

6!





20 −4 2
9 3 −3
1 1 1



 , F̃−1
4 =

4!

8!









210 −30 10 −6
107 19 −13 11
18 10 2 −6
1 1 1 1









.

Denote (1/x )ϕn (x) = ϕ̃n (x). Then

F̃nũn (x) = ϕ̃n (x) .

Let αn (x) |a (x), ϕn (x) |a (x) denotes respectively GEP, GNP associated with the matrices
(1, xa (x)), (1, xa (x))ex . Then

xF̃nx
n−1 = ϕn (x) |ex.

Theorem 6.

F̃nE
n (1,−x) F̃−1

n = (−1)n−1J̃n.

Proof.

En (1,−x) (x− 1)p[x+ n+ 1]n−p−1 = (−x− n− 1)p[−x+ 1]n−p−1 =

= (−1)n−1(x− 1)n−p−1[x+ n + 1]p,

or

En (1,−x) F̃−1
n xp = (−1)n−1F̃−1

n xn−1−p, En (1,−x) F̃−1
n = (−1)n−1F̃−1

n J̃n.

Thus,
(−1)n−1J̃nϕ̃n (x) = F̃nũn (−x− n) .

We denote by using the notation for the series (β)a (x):

(1, xa (x))−1 =
(

1, x(−1)a
−1 (x)

)

.

Then
[n,→]

(

1, log (−1)a
−1 (x)

)

ex
= −xũn (−x− n) .
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Denote

[n,ց] (1, xa (x))−1
ex =

ϕ
[−1]
n (x)

(1− x)2n+1 .

Then
ϕ[−1]
n (x) = (−1)nxJnϕn (x) .

Thus, if the matrix (1, xa (x)) is a pseudo-involution, i.e. (1, xa (x))−1 = (1, xa (−x)),
then ϕn (x) = xJnϕn (x).

We introduce the matrices S̃n:

S̃n = F̃nŨ
−1
n , S̃−1

n = ŨnF̃
−1
n .

For example,

S̃2 = 3!

(

1 0
1 2

)

, S̃3 = 4!





1 0 0
3 5/2 0
1 5/2 5



 , S̃4 = 5!









1 0 0 0
6 3 0 0
6 8 7 0
1 3 7 14









;

S̃−1
2 =

2!

4!

(

2 0
−1 1

)

, S̃−1
3 =

3!

6!





5 0 0
−6 2 0
2 −1 1



 , S̃−1
4 =

4!

8!









14 0 0 0
−28 14/3 0 0
20 −16/3 2 0
−5 5/3 −1 1









.

Then
S̃nα̃n (x) = ϕ̃n (x) .

Theorem 7.

S̃n = Ṽ −1
n C̃nṼn, C̃nx

p =
(n + p+ 1)!

(p+ 1)!
xp.

Proof. We use Theorem 3 and the identities

Ũ−1
n Ṽ −1

n xp =
n!

(p+ 1)!
(x− 1)p, Ũ−1

n+p+1x
p = (x− 1)p[x+ 1]n.

Then

F̃nŨ
−1
n Ṽ −1

n xp =
(2n)!

n!
Ũ2n

n!

(p+ 1)!
(x− 1)p[x+ 1]n =

=
(2n)!

(p+ 1)!
(1− x)n−p−1 (n + p+ 1)!

(2n)!
Ũn+p+1(x− 1)p[x+ 1]n =

=
(n+ p+ 1)!

(p+ 1)!
(1− x)n−p−1xp,

or
S̃nṼ

−1
n = Ṽ −1

n C̃n.

Thus,

S̃2 =

(

1 0
−1 1

)(

3! 0
0 4!/2!

)(

1 0
1 1

)

,

S̃3 =





1 0 0
−2 1 0
1 −1 1









4! 0 0
0 5!/2! 0
0 0 6!/3!









1 0 0
2 1 0
1 1 1



 ,

S̃4 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

















5! 0 0 0
0 6!/2! 0 0
0 0 7!/3! 0
0 0 0 8!/4!

















1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









.
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Note that since αn (x) |(1− x)−1 = x, then

xS̃nx
0 = ϕn (x) |(1− x)−1 = (n + 1)!Nn (x) ;

since

x
(2n)!

n!
F̃−1
n x0 = x (x+ n+ 1) ... (x+ n+ n− 1) = [n,→] (1, logC (x))ex

where C (x) is the Catalan series, then

x
(2n)!

n!
S̃−1
n x0 = αn (x) |C (x) =

1

n

n
∑

m=1

(

−n
m− 1

)(

2n
n−m

)

xm.

Let (β)a (x) is the generalized binomial series. Denote

[n,ց]
(

1, x(β)a (x)
)

ex
=

(β)ϕn (x)

(1− x)2n+1 =
∞
∑

m=0

m

m+ βn

(

m+ βn
n

)

[m+ 1]nx
m.

Theorem 8.

(β)ϕn (x) =
(n+ 1)!

n

n
∑

m=1

(

n (2− β)
m− 1

)(

nβ
n−m

)

xm.

Proof. Taking into account the polynomial argument, we prove the theorem for positive
integers β. Since

Ṽn(β)α̃n (x) = (β)ṽn (x) =
n−1
∑

m=0

m+ 1

n

(

nβ
n−m− 1

)

xm,

[m,→] Ṽ −1
n =

m
∑

i=0

(

m− n
m− i

)

xi =

m
∑

i=0

(−1)m−i

(

n− i− 1
m− i

)

xi,

then
[xm] (β)ϕ̃n (x) = [xm] Ṽ −1

n C̃n(β)ṽn (x) =

=

m
∑

i=0

(−1)m−i

(

n− i− 1
m− i

)

(n+ i+ 1)!

(i+ 1)!

(i+ 1)

n

(

nβ
n− i− 1

)

(nβ − n +m+ 1)!

(nβ − n +m+ 1)!
=

=
(n + 1)!

n

(

nβ
n−m− 1

) m
∑

i=0

(−1)m−i

(

n + i+ 1
i

)(

nβ − n+m+ 1
m− i

)

=

=
(n+ 1)!

n

(

nβ
n−m− 1

)

(−1)m
(

nβ − 2n+m− 1
m

)

=

=
(n+ 1)!

n

(

nβ
n−m− 1

)(

n (2− β)
m

)

.

Note that

(0)ϕn (x) =
(2n)!

n!
xn, (1)ϕn (x) = (n+ 1)!Nn (x) , (2)ϕn (x) =

(2n)!

n!
x;

since
(

1, x(β)a (x)
)

−1
=
(

1, x(β−1)a
−1 (x)

)

, (β−1)a
−1 (−x) =(2−β)a (x) ,

then

(2−β)ϕn (x) = xJn(β)ϕn (x) .
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4 Transformations of general form

We introduce the matrices Un:

Unx
p =

1

n!
(1− x)n−pAp (x) , A0 (x) = 1, p = 0, 1, . . . , n.

Or

Unx
p = (1− x)n+1 1

n!

∞
∑

m=0

mpxm.

For example,

U0 = (1) , U1 =

(

1 0
−1 1

)

, U2 =
1

2!





1 0 0
−2 1 1
1 −1 1



 , U3 =
1

3!









1 0 0 0
−3 1 1 1
3 −2 0 4
−1 1 −1 1









.

Let

[n,→] (b (x) , log a (x)) = cn (x) =

n
∑

m=0

cmx
m, b0 6= 0,

[n,→] (b (x) , log a (x))ex = sn (x) =

n
∑

m=0

smx
m,

[n,→] (b (x) , a (x)) =
gn (x)

(1− x)n+1 .

Since
(b (x) , a (x)) = (b (x) , log a (x)) (1, ex) ,

then

gn (x)

(1− x)n+1 =

n
∑

p=0

cpAp (x)/p!

(1− x)p+1 =
1

n!

n
∑

p=0

spAp (x)

(1− x)p+1 =

1
n!

n
∑

p=0

sp(1− x)n−pAp (x)

(1− x)n+1 .

Thus,

b (x) am (x) =
∞
∑

n=0

sn (m)

n!
xn,

gn (x)

(1− x)n+1 =
∞
∑

m=0

sn (m)

n!
xm, gn (x) = Unsn (x) .

Since
1

(1− x)n+1 =

∞
∑

m=0

[m+ 1]n
n!

xm,

then
U−1
n x0 = [x+ 1]n, U−1

n xp = xŨ−1
n xp−1,

or
U−1
n xp = (x)p[x+ 1]n−p.

For example,

U−1
3 =









6 0 0 0
11 2 −1 2
6 3 0 −3
1 1 1 1









.
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Theorem 9.

UnE (1,−x)U−1
n = (−1)nJn.

Proof.

E (1,−x) (x)p[x+ 1]n−p = (−x− 1)p[−x]n−p = (−1)n(x)n−p[x+ 1]p,

or
E (1,−x)U−1

n = (−1)nU−1
n Jn.

Thus,
(−1)nJngn (x) = Unsn (−x− 1) .

Since
(b (x) , log a (x)) (1,−x) (ex, x) =

(

b (x) a−1 (x) , log a−1 (x)
)

,

then polynomials (−1)nJngn (x) are the numerator polynomials of the matrix

(

b (x) a−1 (x) , xa−1 (x)
)

.

In particular,
(−1)nJnαn (x) = α̃(−1)

n (x) .

Denote
Vn = JnEJn =

(

(1 + x)n+1, x
)

P−1In = Ṽn+1,

[n,→] (b (x) , a (x)− 1) = wn (x) .

Since
(b (x) , a (x)) = (b (x) , a (x)− 1) (1, 1 + x) ,

then
gn (x) = V −1

n wn (x) .

Theorem 10. If sn−m (x) is a polynomial of degree n−m, then

Unsn−m (x) = (1− x)m
(n−m)!

n!
Un−msn−m (x) .

Respectively, if cn−m (x) is a polynomial of degree ≤ n−m, then

U−1
n (1− x)mcn−m (x) =

n!

(n−m)!
U−1
n−mcn−m (x) .

Proof.
(

(1− x)−m, x
)

UnIn−m =
(n−m)!

n!
Un−m,

U−1
n ((1− x)m, x) In−m =

n!

(n−m)!
U−1
n−m.

From this we find:

U−1
n V −1

n xp = U−1
n (1− x)n−pxp =

n!

p!
(x)p =

n!

p!

p
∑

m=0

s (p, m) xm,

VnUnx
p =

1

n!

p
∑

m=0

m!S (p, m) xm.

Remark 1. Matrices Un, U
−1
n are associated with the matrices Ũn, Ũ

−1
n by the identities

Ũn = (x, x)TUn (x, x) , Ũ−1
n = (x, x)TU−1

n (x, x) ,
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and, since
α̃n (x)

(1− x)n+1 =

∞
∑

m=0

un (m+ 1)

n!
xm, α̃n (x) = UnEun (x) ,

then
Ũn = UnE (x, x) In−1, Ũ−1

n = (x, x)TE−1U−1
n In−1.

Denote

[n,ց](b (x) , xa (x))ex =

∞
∑

m=0

[m+ 1]nsn (m)

n!
xm =

hn (x)

(1− x)2n+1 ,

Then

hn (x) =
(2n)!

n!
U2n[x+ 1]nsn (x) .

Polynomials gn (x), hn (x) will be called respectively the ordinary and the exponential
numerator polynomials. Names GEP and GNP we will fix for the polynomials αn (x),
ϕn (x).

We introduce the matrices Fn:

Fn =
(2n)!

n!
U2n ([x+ 1]n, x) In, F−1

n =
n!

(2n)!
([x+ 1]n, x)

−1U−1
2n In;

Since

U2n[x+ 1]n = (1− x)n
n!

(2n)!
Un[x+ 1]n =

n!

(2n)!
(1− x)n,

then
Fnx

0 = (1− x)n, Fnx
p = xF̃nx

p−1,

or

Fnx
p = (1− x)2n+1

∞
∑

m=0

mp

(

m+ n
n

)

xm.

For example,

F2 =





1 0 0
−2 3 3
1 −3 9



 , F3 =









1 0 0 0
−3 4 4 4
3 −8 12 52
−1 4 −16 64









.

Respectively,

F−1
n x0 =

n!

(2n)!
[x+ n + 1]n, F−1

n xp = xF̃−1
n xp−1,

or

F−1
n xp =

n!

(2n)!
(x)p[x+ n+ 1]n−p.

For example,

F−1
2 =

2!

4!





12 0 0
7 3 −1
1 1 1



 , F−1
3 =

3!

6!









120 0 0 0
74 20 −4 2
15 9 3 −3
1 1 1 1









.

Thus,
Fnsn (x) = hn (x) .
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Example 1. We explain the identity

Fn[x+ n+ 1]n =
(2n)!

n!
.

Analog of the identity for ordinary Riordan arrays

[n,ց] (a (x) , xa (x)) =
α̃n (x)

(1− x)n+1

is the identity for exponential Riordan arrays

[n,ց]
(

(xa (x))′, xa (x)
)

ex
=

ϕ̃n (x)

(1− x)2n+1 .

Since
[n,→]

(

1 + x(log a (x))′, log a (x)
)

ex
= (x+ n) ũn (x) ,

(

(xa (x))′, log a (x)
)

=
(

1 + x(log a (x))′, log a (x)
)

(ex, x) ,

then
[n,→]

(

(xa (x))′, log a (x)
)

ex
= (x+ n+ 1) ũn (x+ 1) .

If a (x) = C (x), then

ϕ̃n (x) =
(2n)!

n!
, ũn (x) = [x+ n + 1]n−1, (x+ n+ 1) ũn (x+ 1) = [x+ n+ 1]n.

Theorem 11.

FnE
n+1 (1,−x)F−1

n = (−1)nJn.

Proof.

En+1 (1,−x) (x)p[x+ n+ 1]n−p = (−x− n− 1)p[−x]n−p = (−1)n(x)n−p[x+ n+ 1]p,

or
En+1 (1,−x)F−1

n = (−1)nF−1
n Jn.

Thus,
(−1)nJnhn (x) = FnEsn (−x− n) .

Since (see Remark 2)

sn (−x− n) = [n,→]
(

b
(

x(−1)a
−1 (x)

)

(

1 + x
(

log (−1)a
−1 (x)

)

′

)

, log (−1)a
−1 (x)

)

ex
,

where

(

1, x(−1)a
−1 (x)

)

= (1, xa (x))−1, (−1)a
ϕ (x) =

∞
∑

m=0

ϕ

(ϕ− n)

un (ϕ− n)

n!
xm,

then polynomials (−1)nJnhn (x) are the numerator polynomials of the matrix

(

b
(

x(−1)a
−1 (x)

) (

x(−1)a
−1 (x)

)

′

, x(−1)a
−1 (x)

)

ex
.

In particular,
(−1)nJnϕn (x) = ϕ̃[−1]

n (x) .
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Remark 2. We represent the matrix (b (x) , a−1 (x))
T

in the form

(

b (x) , a−1 (x)
)T

=















s0 (0) s1 (0) s2 (0) s3 (0) · · ·
s0 (−1) s1 (−1) s2 (−1) s3 (−1) · · ·
s0 (−2) s1 (−2) s2 (−2) s3 (−2) · · ·
s0 (−3) s1 (−3) s2 (−3) s3 (−3) · · ·

...
...

...
...

. . .















|ex| ,

where s0 (x) = b0. From the Lagrange inversion theorem it follows that

[n,ց]
(

b (x) , a−1 (x)
)T

= b
(

x(−1)a
−1 (x)

)

(

1 + x
(

log (−1)a
−1 (x)

)

′

)

(−1)a
−n (x) .

We introduce the matrices Sn:

Sn = FnU
−1
n , S−1

n = UnF
−1
n .

For example,

S2 = 2!





1 0 0
4 3 0
1 3 6



 , S3 = 3!









1 0 0 0
9 4 0 0
9 12 10 0
1 4 10 20









, S4 = 4!













1 0 0 0 0
16 5 0 0 0
36 30 15 0 0
16 30 40 35 0
1 5 15 35 70













;

S−1
2 =

2!

4!





6 0 0
−8 2 0
3 −1 1



 , S−1
3 =

3!

6!









20 0 0 0
−45 5 0 0
36 −6 2 0
−10 2 −1 1









,

S−1
4 =

4!

8!













70 0 0 0 0
−224 14 0 0 0
280 −28 14/3 0 0
−160 20 −16/3 2 0
35 −5 5/3 −1 1













.

Then
Sngn (x) = hn (x) .

Theorem 12.

Sn = V −1
n CnVn, Cnx

p =
(n+ p)!

p!
xp.

Proof. We use Theorem 10 and the identities

U−1
n V −1

n xp =
n!

p!
(x)p, U−1

n+px
p = (x)p[x+ 1]n.

Then

FnU
−1
n V −1

n xp =
(2n)!

n!
U2n

n!

p!
(x)p[x+ 1]n =

=
(2n)!

p!
(1− x)n−p (n+ p)!

(2n)!
Un+p(x)p[x+ 1]n =

(n+ p)!

p!
(1− x)n−pxp,

or
SnV

−1
n = V −1

n Cn.

Theorem 13.

Snx
p =

(n+ p)! (n− p)!

n!

n
∑

m=p

(

n
m− p

)(

n
n−m

)

xm.
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Proof.

[m,→]V −1
n =

m
∑

i=0

(

m− n− 1
m− i

)

xi =
m
∑

i=0

(−1)m−i

(

n− i
m− i

)

xi,

CnVnx
p =

n
∑

i=p

(n + i)!

i!

(

n− p
i− p

)

xi,

[xm]V −1
n CnVnx

p =
m
∑

i=p

(−1)m−i

(

n− i
m− i

)

(n+ i)!

i!

(

n− p
i− p

)

=

=
(n+ p)! (n− p)!

(n−m)!m!

m
∑

i=p

(−1)m−i

(

n + i
i− p

)(

m
i

)

=

=
(n + p)! (n− p)!

(n−m)!m!
(−1)m−p

(

m− n− p− 1
m− p

)

=

=
(n+ p)! (n− p)!

n!

(

n
m− p

)(

n
n−m

)

.

Theorem 14.

S−1
n xp =

p! (n− p)!

(2n)!

n
∑

m=p

(

−n
m− p

)(

2n
n−m

)

xm.

Proof.

[xm]V −1
n C−1

n Vnx
p =

m
∑

i=p

(−1)m−i

(

n− i
m− i

)

i!

(n+ i)!

(

n− p
i− p

)

=

=
p! (n− p)!

(n−m)! (n+m)!

m
∑

i=p

(−1)m−i

(

i
i− p

)(

n+m
m− i

)

=

=
p! (n− p)!

(n−m)! (n+m)!
(−1)m−p

(

n+m− p− 1
m− p

)

=

=
p! (n− p)!

(2n)!

(

−n
m− p

)(

2n
n−m

)

.

5 Generalized Narayana polynomials of type B

Polynomials

BNn (x) =
n
∑

m=0

(

n
m

)2

xm = (1− x)2n+1
∞
∑

m=0

(

m+ n
n

)2

xm

are called Narayana polynomials of type B. Denote

[n,ց](a (x) , xa (x))ex =
Bϕn (x)

(1− x)2n+1 .

Let α̃n (x) |a (x), Bϕn (x) |a (x) denotes respectively polynomials α̃n (x),
Bϕn (x), associ-

ated with the matrices (a (x) , xa (x)), (a (x) , xa (x))ex . Then

Bϕn (x) |(1− x)−1 = n!BNn (x) .

In this connection we will called polynomials Bϕn (x) the generalized Narayana polyno-
mials of type B. Since

[n,ց] (a (x) , xa (x)) =
α̃n (x)

(1− x)n+1 =

∞
∑

m=0

un (m+ 1)

n!
xm,

21



then

[n,ց](a (x) , xa (x))ex =
∞
∑

m=0

[m+ 1]nun (m+ 1)

n!
xm,

Bϕn (x) =
(2n)!

n!
U2n[x+ 1]nun (x+ 1) = Fnun (x+ 1) .

We introduce the matrices BFn = FnE:

BFnx
p = (1− x)2n+1

∞
∑

m=0

(m+ 1)p
(

m+ n
n

)

xm, BF−1
n xp =

n!

(2n)!
(x− 1)p[x+ n]n−p.

For example,

BF1 =

(

1 1
−1 1

)

, BF2 =





1 1 1
−2 1 7
1 −2 4



 , BF3 =









1 1 1 1
−3 1 9 25
3 −5 −1 67
−1 3 −9 27









,

BF−1
1 =

1

2

(

1 −1
1 1

)

, BF−1
2 =

2!

4!





6 −2 2
5 1 −3
1 1 1



 , BF−1
3 =

3!

6!









60 −12 6 −6
47 5 −7 11
12 6 0 −6
1 1 1 1









.

Then
BFnun (x) =

Bϕn (x) .

In particular,
BFnx

n = Bϕn (x) |ex.
For the matrices BFn, Theorem 11 takes the simpler form. Since

En−1 (1,−x) (x− 1)p[x+ n]n−p = (−x− n)p[−x+ 1]n−p = (−1)n(x− 1)n−p[x+ n]p,

then

BFnE
n−1 (1,−x) BF−1

n = (−1)nJn, (−1)nJn
Bϕn (x) = Fnun (−x− n) ,

where
un (−x− n) = [n,→]

(

1 + x
(

log (−1)a
−1 (x)

)

′

, log (−1)a
−1 (x)

)

ex
.

Denote

[n,ց]
(

1 + x(log a (x))′, xa (x)
)

−1

ex
=

Bϕ
[−1]
n (x)

(1− x)2n+1 .

Since

(

1 + x(log a (x))′, xa (x)
)

−1

ex
=
(

1 + x
(

log (−1)a
−1 (x)

)

′

, x(−1)a
−1 (x)

)

ex
,

then
Bϕ[−1]

n (x) = (−1)nJn
Bϕn (x) .

Let all polynomials Bϕn (x) are symmetric, i.e.

Bϕn (x) = Jn
Bϕn (x) .

Then (xa (x))′ = a2 (x), or
∑n

m=0 an−mam = (n+ 1) an. This is possible only in the case
a (x) = (1− βx)−1:

Bϕn|(1− βx)−1 = βnn!BNn (x) .
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Example 2. Since
α̃n (x) |1 + x = xn−1,

then
Bϕn (x) |1 + x = Snx

n−1 =
(2n)!

n!2
(1 + x) xn−1;

(1 + x, x (1 + x))ex = |ex|−1



























1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
0 2 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 0 3 4 1 0 0 · · ·
0 0 1 6 5 1 0 · · ·
0 0 0 4 10 6 1 · · ·
...

...
...

...
...

...
...

. . .



























|ex| .

If a (x) = 1 + x, then (−1)a
−1 (x) = C (−x) and, hence,

[n,ց]
(

1 + x(logC (x))′, xC (x)
)

ex
=

(2n)!

n!2

1 + x

(1− x)2n+1 ;

(

1 + x(logC (x))′, xC (x)
)

ex
= |ex|−1























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
3 2 1 0 0 0 · · ·
10 6 3 1 0 0 · · ·
35 20 10 4 1 0 · · ·
126 70 35 15 5 1 · · ·
...

...
...

...
...

...
. . .























|ex| .

We introduce ordinary numerator polynomials similar to the polynomials Bϕn (x).
Denote

[n,ց]
(

(xa (x))′, xa (x)
)

=
Bαn (x)

(1− x)n+1 , [n,ց]
(

1 + x(log a (x))′, xa−1 (x)
)

=
Bα

(−1)
n (x)

(1− x)n+1 .

Then
Bα(−1)

n (x) = (−1)nJn
Bαn (x) .

Example 3. Let ϕ̃n (x) |a (x), Bαn (x) |a (x) denotes respectively polynomials ϕ̃n (x),
Bαn (x), associated with the matrices

(

(xa (x))′, xa (x)
)

ex
,
(

(xa (x))′, xa (x)
)

. Since

ϕ̃n (x) |C (x) =
(2n)!

n!
,

then

Bαn (x) |C (x) =
(2n)!

n!
S−1
n x0 =

n
∑

m=0

(

−n
m

)(

2n
n−m

)

xm;

(

(xC (x))′, xC (x)
)

=























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
6 3 1 0 0 0 · · ·
20 10 4 1 0 0 · · ·
70 35 15 5 1 0 · · ·
252 126 56 21 6 1 · · ·
...

...
...

...
...

...
. . .























.
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Respectively, polynomials

(−1)n
n
∑

m=0

(

2n
m

)(

−n
n−m

)

xm

are the numerator polynomials of the matrix

(

1 + x(logC (x))′, xC−1 (x)
)

=























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
3 0 1 0 0 0 · · ·
10 1 −1 1 0 0 · · ·
35 4 0 −2 1 0 · · ·
126 15 1 0 −3 1 · · ·
...

...
...

...
...

...
. . .























.

Example 4. Since

ϕ̃n (x) |1 + x =
(2n)!

n!
xn−1,

then
Bαn (x) |1 + x =

(2n)!

n!
S−1
n xn−1 = (2− x) xn−1;

(

(x (1 + x))′, x (1 + x)
)

=



























1 0 0 0 0 0 0 · · ·
2 1 0 0 0 0 0 · · ·
0 3 1 0 0 0 0 · · ·
0 2 4 1 0 0 0 · · ·
0 0 5 5 1 0 0 · · ·
0 0 2 9 6 1 0 · · ·
0 0 0 7 14 7 1 · · ·
...

...
...

...
...

...
...

. . .



























.

Respectively, polynomials (−1)n (−1 + 2x) are the numerator polynomials of the matrix

(

1 + x(log (1 + x))′, x(1 + x)−1) =



























1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
−1 0 1 0 0 0 0 · · ·
1 −1 −1 1 0 0 0 · · ·
−1 2 0 −2 1 0 0 · · ·
1 −3 2 2 −3 1 0 · · ·
−1 4 −5 0 5 −4 1 · · ·
...

...
...

...
...

...
...

. . .



























.

Example 5. Since
(

x(1− x)−1)′ = (1− x)−2, then

[n,ց]

((

x

1− x

)

′

,
x

1− x

)

=
1

x

(

1

(1− x)n+1 − 1

)

, Bαn (x) =
1− (1− x)n+1

x
.

Respectively, numerator polynomials of the matrix
(

(1− x)−1, x (1− x)
)

are the polyno-

mials (1− x)n+1 + (−x)n.
Example 6. Since (xex)′ = (1 + x) ex, then

[n,ց]
(

(xex)′, xex
)

=
∞
∑

m=0

(m+ 1)n + n(m+ 1)n−1

n!
xm,
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Bαn (x) |ex =
1

n!

(

Ãn (x) + n (1− x) Ãn−1 (x)
)

, Ã0 (x) = A0 (x) .

Respectively, numerator polynomials of the matrix (1 + x, xe−x) are the polynomials

(−1)n

n!
(An (x)− n (1− x)An−1 (x)) .

Note that
ϕ̃n (x) |ex = Fn (x+ n + 1) (x+ 1)n−1 = BFn (x+ n)xn−1.

In general case

ϕ̃n (x) = Fn (x+ n+ 1) ũn (x+ 1) = BFn (x+ n) ũn (x) ,

or
Fn (x+ n+ 1, x)EIn−1 =

BFn (x+ n, x) In−1 = F̃n.

Hence,
[xn]Fnx

p (x+ n+ 1) = [xn] BFnx
p (x+ n) = 0, p < n.

Here the identities for the nth elements of the columns of the matrices Fn,
BFn are

manifested:
n
∑

m=0

(−1)n−m

(

2n+ 1
n−m

)

mp

(

m+ n
n

)

= (−1)n+p(n+ 1)p,

n
∑

m=0

(−1)n−m

(

2n+ 1
n−m

)

(m+ 1)p
(

m+ n
n

)

= (−1)n+pnp, p ≤ n.

6 Numerator polynomials and generalized Lagrange se-

ries

We return to the series (β)a (x), (0)a (x) = a (x), from Section 2. Parameter β is defined
by the identity

a
(

x(β)a
β (x)

)

= (β)a (x) ,

so that
aβ
(

x(β)a
β (x)

)

= (β)a
β (x) .

Denote aβ (x) = c (x), (β)a
β (x) = d (x). By the Lagrange inversion theorem, if

b (x) cϕ (x) =
∞
∑

n=0

fn (ϕ) x
n,

where fn (x) are the polynomials, then

b (xd (x))
(

1 + x(log d (x))′
)

dϕ (x) =
∞
∑

n=0

fn (ϕ+ n)xn.

Here

fn (x) =
sn (βx)

n!
, sn (x) = [n,→] (b (x) , log a (x))ex .

Thus,

sn (βx+ βn) = [n,→]
(

b
(

x(β)a
β (x)

)

(

1 + x
(

log (β)a
β (x)

)

′

)

, log (β)a
β (x)

)

ex
,

sn (x+ βn) = [n,→]
(

b
(

x(β)a
β (x)

)

(

1 + x
(

log (β)a
β (x)

)

′

)

, log (β)a (x)
)

ex
.
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Denote

[n,ց]
(

b
(

x(β)a
β (x)

)

(

1 + xβ
(

log (β)a (x)
)

′

)

, x(β)a (x)
)

=
(β)gn (x)

(1− x)n+1 .

We introduce the matrices Gβ
n = UnE

nβU−1
n . For example,

G2 =





6 3 1
−8 −3 0
3 1 0



 , G3 =









20 10 4 1
−45 −20 −6 0
36 15 4 0
−10 −4 −1 0









, G4 =













70 35 15 5 1
−224 −105 −40 −10 0
280 126 45 10 0
−160 −70 −24 −5 0
35 15 5 1 0













.

Then
Gβ

ngn (x) = (β)gn (x) .

Theorem 15.

G−β
n = JnG

β
nJn.

Proof. Since E (1,−x) = (1,−x)E−1, by Theorem 6

JnUnE
nβU−1

n Jn = UnE (1,−x)EnβE (1,−x)U−1
n =

= Un (1,−x)Enβ (1,−x)U−1
n = UnE

−nβU−1
n .

Thus,

G−1
2 =





0 1 3
0 −3 −8
1 3 6



 , G−1
3 =









0 −1 −4 −10
0 4 15 36
0 −6 −20 −45
1 4 10 20









, G−1
4 =













0 1 5 15 35
0 −5 −24 −70 −160
0 10 45 126 280
0 −10 −40 −105 −224
1 5 15 35 70













.

Theorem 16.

Gβ
n = V −1

n

(

(1 + x)nβ, x
)T

Vn.

Proof. Since
n! |ex|VnUnx

p = [p,→] (1, ex − 1)ex,

(1/n! )U−1
n V −1

n |ex|−1xp = [p,→] (1, log (1 + x))ex ,

(1, log (1 + x))ex
(

enβ, x
)

ex
(1, ex − 1)ex =

(

(1 + x)nβ, x
)

ex
,

then

VnUnE
nβU−1

n V −1
n =

(

(1 + x)nβ, x
)T

In.

For example,

G3 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

















1 3 3 1
0 1 3 3
0 0 1 3
0 0 0 1

















1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









.

Theorem 17.

Gβ
nx

p =
n
∑

m=0

(

−nβ + p
m

)(

nβ + n− p
n−m

)

xm.
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Proof. Taking into account the polynomial argument, we prove the theorem for positive
integers β.

(

(1 + x)nβ, x
)T

Vnx
p =

n
∑

i=0

(

nβ + n− p
n− i

)

xi,

[xm]V −1
n

(

(1 + x)nβ, x
)T

Vnx
p =

=
m
∑

i=0

(−1)m−i

(

n− i
m− i

)(

nβ + n− p
n− i

)

(nβ +m− p)!

(nβ +m− p)!
=

=

(

nβ + n− p
n−m

) m
∑

i=0

(−1)m−i

(

nβ +m− p
m− i

)

=

=

(

nβ + n− p
n−m

)

(−1)m
(

nβ +m− p− 1
m

)

=

(

nβ + n− p
n−m

)(

−nβ + p
m

)

.

We introduce the matrices Xn = V −1
n (x, x)TVn. Since V −1

n =
(

(1− x)n+1, x
)

PIn, we
find:

Xnx
0 =

1− x− (1− x)n+1

x
, Xnx

p = xp−1 (1− x) .

Then

Gβ
n = (In +Xn)

nβ =
n
∑

m=0

(

nβ
m

)

Xm
n .

For example,

G3 = I3 + 3









3 1 0 0
−6 −1 1 0
4 0 −1 1
−1 0 0 −1









+ 3









3 2 1 0
−8 −5 −2 1
7 4 1 −2
−2 −1 0 1









+









1 1 1 1
−3 −3 −3 −3
3 3 3 3
−1 −1 −1 −1









,

G−1
3 = I3−3









3 1 0 0
−6 −1 1 0
4 0 −1 1
−1 0 0 −1









+6









3 2 1 0
−8 −5 −2 1
7 4 1 −2
−2 −1 0 1









−10









1 1 1 1
−3 −3 −3 −3
3 3 3 3
−1 −1 −1 −1









.

Thus,
In +Xn = G1/n

n = UnEU−1
n .

For example,

G
1/2
2 =





3 1 0
−3 0 1
1 0 0



 , G
1/3
3









4 1 0 0
−6 0 1 0
4 0 0 1
−1 0 0 0









, G
1/4
4 =













5 1 0 0 0
−10 0 1 0 0
10 0 0 1 0
−5 0 0 0 1
1 0 0 0 0













,

G
−1/2
2 =





0 0 1
1 0 −3
0 1 3



 , G
−1/3
3









0 0 0 −1
1 0 0 4
0 1 0 −6
0 0 1 4









, G
−1/4
4 =













0 0 0 0 1
1 0 0 0 −5
0 1 0 0 10
0 0 1 0 −10
0 0 0 1 5













.

From Theorem 10 it follows that

(

(1− x)−m, x
)

Gβ
n ((1− x)m, x) In−m = G

nβ

n−m

n−m.
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In particular,
(

(1− x)−m, x
)

G1/n
n ((1− x)m, x) In−m = G

1/(n−m)
n−m .

Example 7. Let b (x) = 1, a (x) = 1+x, (β)a (x) is the generalized binomial series. Then
polynomials (β)gn (x) = Gβ

nx
n are the numerator polynomials of the matrix

(

1 + x
(

log (β)a
β (x)

)

′

, x(β)a (x)
)

.

But since (1)gn (x) = 1, Gβ
nx

0 = Gβ+1
n xn, then this matrix can also be represented in the

form
(

(β)a (x)
(

1 + x
(

log (β)a
β−1 (x)

)

′

)

, x(β)a (x)
)

.

Hence, here the property of the generalized binomial series is manifested:

(β)a (x)
(

1 + x
(

log (β)a
β−1 (x)

)

′

)

= 1 + x
(

log (β)a
β (x)

)

′

.

Example 8. Let (β)a (x) is the generalized binomial series. Then polynomials Gβ
nx are

the numerator polynomials of the matrix
(

1 + x
(

log (β+1)a
β (x)

)

′

, x(β+1)a (x)
)

,

polynomials Gβ
nx

n−1 are the numerator polynomials of the matrix
(

(β)a (x)
(

1 + x
(

log (β)a
β (x)

)

′

)

, x(β)a (x)
)

.

Since G−β
n x = JnG

β
nx

n−1, then matrix
(

1 + x
(

log (1−β)a
−β (x)

)

′

, x(1−β)a (x)
)

coincides with the matrix

(1,−x)
(

1 + x
(

log (β)a
β (x)

)

′

, x(β)a
−1 (x)

)

(1,−x) ,

matrix
(

(−β)a (x)
(

1 + x
(

log (−β)a
−β (x)

)

′

)

, x(−β)a (x)
)

coincides with the matrix

(1,−x)
(

(β+1)a
−1 (x)

(

1 + x
(

log (β+1)a
β (x)

)

′

)

, x(β+1)a
−1 (x)

)

(1,−x) .

Denote

[n,ց]
(

b
(

x(β)a
β (x)

)

(

1 + xβ
(

log (β)a (x)
)

′

)

, x(β)a (x)
)

ex
=

(β)hn (x)

(1− x)2n+1 .

We introduce the matrices Hβ
n = FnE

nβF−1
n . For example,

H2 =
1

6





15 5 1
−12 2 4
3 −1 1



 , H3 =
1

20









84 28 7 1
−108 −4 15 9
54 −6 −1 9
−10 2 −1 1









,

H4 =
1

70













495 165 135/3 9 1
−880 −110 160/3 44 16
660 0 −90/3 24 36
−240 20 0 −6 16
35 −5 5/3 −1 1













.
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Then
Hβ

nhn (x) = (β)hn (x) .

Theorem 18.

H−β
n = JnH

β
nJn.

Proof. By Theorem 11

JnFnE
nβF−1

n Jn = FnE
n+1 (1,−x)EnβEn+1 (1,−x)F−1

n =

= Fn (1,−x)Enβ (1,−x)F−1
n = FnE

−nβF−1
n .

Matrix Hβ
n can be represented in the form

Hβ
n = SnG

β
nS

−1
n = V −1

n Cn

(

(1 + x)nβ, x
)T

C−1
n Vn.

For example,

H3 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

















1 0 0 0
0 4 0 0
0 0 10 0
0 0 0 20

















1 3 3 1
0 1 3 3
0 0 1 3
0 0 0 1

















1 0 0 0
0 1

4
0 0

0 0 1
10

0
0 0 0 1

20

















1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









.

Denote

tn (ϕ|β, x) =
n
∑

m=0

(

ϕ
m

)(

β
n−m

)

xm.

Theorem 19.

Hβ
nx

p =

n
∑

m=p

(

n− p
n−m

)(

n +m
m

)

−1

(1− x)n−mtm (−nβ + n+m|nβ, x) .

Proof. Since
1

n!
[xm]V −1

p Cn

(

(1 + x)nβ, x
)T

xp =

=
m
∑

i=0

(−1)m−i

(

p− i
m− i

)(

nβ
p− i

)(

n+ i
i

)

(nβ +m− p)!

(nβ +m− p)!
=,

=

(

nβ
p−m

) m
∑

i=0

(−1)m−i

(

n + i
i

)(

nβ +m− p
m− i

)

=

=

(

nβ
p−m

)

(−1)m
(

nβ +m− p− n− 1
m

)

=

(

nβ
p−m

)(

−nβ + n+ p
m

)

,

then

V −1
n Cn

(

(1 + x)nβ, x
)T

xp =
(

(1− x)n−p, x
)

V −1
p Cn

(

(1 + x)nβ, x
)T

xp =

= n!(1− x)n−ptp (−nβ + n+ p|nβ, x) .
It remains to add that

C−1
n Vnx

p =
1

n!

n
∑

m=p

(

n− p
n−m

)(

n+m
m

)

−1

xm.

In particular,

Hβ
nx

n =

(

2n
n

)

−1 n
∑

m=0

(

−nβ + 2n
m

)(

nβ
n−m

)

xm.
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Respectively, by Theorem 18

Hβ
nx

0 =

(

2n
n

)

−1 n
∑

m=0

(

−nβ
m

)(

nβ + 2n
n−m

)

xm.

Example 9. Let (β)a (x) is the generalized binomial series. Then polynomials (β)hn (x) =
(2n)!
n!

Hβ
nx

n are the numerator polynomials of the matrix

(

1 + x
(

log (β)a
β (x)

)

′

, x(β)a (x)
)

ex
.

Since (2)hn (x) = (2n)!
n!

, then polynomials (2n)!
n!

Hβ
nx

0 = (2n)!
n!

Hβ+2
n xn are the numerator

polynomials of the matrix

(

1 + x
(

log (β+2)a
β+2 (x)

)

′

, x(β+2)a (x)
)

ex
.

Since
H−β

n x0 = JnH
β
nx

n,
(

1, x(β)a (x)
)

−1
=
(

1, x(β−1)a
−1 (x)

)

,

(

x(β−1)a
−1 (x)

)

′
(

1, x(β−1)a
−1 (x)

)

(

1 + x
(

log (β)a
β (x)

)

′

)

=

=
(

1 + x
(

log (β−1)a
β−1 (x)

)

′

)

(β−1)a
−1 (x) ,

then matrix
(

1 + x
(

log (2−β)a
2−β (x)

)

′

, x(2−β)a (x)
)

coincides with the matrix

(1,−x)
((

1 + x
(

log (β−1)a
β−1 (x)

)

′

)

(β−1)a
−1 (x) , x(β−1)a

−1 (x)
)

(1,−x) .

Denote

[n,ց]
(

1, x(β)a (x)
)

ex
=

(β)ϕn (x)

(1− x)2n+1 ,
1

x
(β)ϕn (x) = (β)ϕ̃n (x) .

We introduce the matrices T β
n = F̃nE

nβF̃−1
n . For example,

T2 =
1

2

(

3 1
−1 1

)

, T3 =
1

5





12 4 1
−9 2 3
2 −1 1



 , T4 =
1

14









55 55/3 5 1
−66 0 10 6
30 −6 0 6
−5 5/3 −1 1









.

Then
T β
n ϕ̃n (x) = (β)ϕ̃n (x) .

Theorem 20.

T−β
n = J̃nT

β
n J̃n.

Proof. By Theorem 6

J̃nF̃nE
nβF̃−1

n J̃n = F̃nE
n (1,−x)EnβEn (1,−x) F̃−1

n =

= F̃n (1,−x)Enβ (1,−x) F̃−1
n = F̃nE

−nβF̃−1
n .

Matrix T β
n can be represented in the form

T β
n = S̃nA

β
nS̃

−1
n = Ṽ −1

n C̃nD̃
(

(1 + x)nβ, x
)T

D̃−1C̃−1
n Ṽn,
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where

C̃nD̃xp = (n+ 1)!

(

n+ 1 + p
p

)

xp.

For example,

T4 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

















1 0 0 0
0 6 0 0
0 0 21 0
0 0 0 56

















1 4 6 4
0 1 4 6
0 0 1 4
0 0 0 1

















1 0 0 0
0 1

6
0 0

0 0 1
21

0
0 0 0 1

56

















1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









.

Theorem 21.

T β
n x

p =

n−1
∑

m=p

(

n− 1− p
n− 1−m

)(

n+ 1 +m
m

)

−1

(1− x)n−m−1tm (−nβ + n +m+ 1|nβ, x) .

Proof. In this case p = 0, 1, . . . , n− 1. Since

1

(n+ 1)!
[xm] Ṽ −1

p+1C̃nD̃
(

(1 + x)nβ, x
)T

xp =

=

m
∑

i=0

(−1)m−i

(

p− i
m− i

)(

nβ
p− i

)(

n+ 1 + i
i

)

(nβ +m− p)!

(nβ +m− p)!
=

=

(

nβ
p−m

) m
∑

i=0

(−1)m−i

(

n+ 1 + i
i

)(

nβ +m− p
m− i

)

=

=

(

nβ
p−m

)

(−1)m
(

nβ +m− p− n− 2
m

)

=

(

nβ
p−m

)(

−nβ + n + p+ 1
m

)

,

then

Ṽ −1
n C̃nD̃

(

(1 + x)nβ, x
)T

xp =
(

(1− x)n−p−1, x
)

Ṽ −1
p+1C̃nD̃

(

(1 + x)nβ, x
)T

xp =

= (n+ 1)!(1− x)n−p−1tp (−nβ + n + p+ 1|nβ, x) .
It remains to add that

D̃−1C̃−1
n Ṽnx

p =
1

(n+ 1)!

n−1
∑

m=p

(

n− 1− p
n− 1−m

)(

n+ 1 +m
m

)

−1

xm.

In particular,

T β
n x

n−1 =

(

2n
n− 1

)

−1 n−1
∑

m=0

(

n (2− β)
m

)(

nβ
n− 1−m

)

xm.

Respectively, by Theorem 20

T β
n x

0 =

(

2n
n− 1

)

−1 n−1
∑

m=0

(

−nβ
m

)(

n (2 + β)
n− 1−m

)

xm.
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