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Abstract. We prove a central limit theorem for the joint distribution of sq(Ajn),
1 ≤ j ≤ d, where sq denotes the sum-of-digits function in base q and the Aj ’s are
positive integers relatively prime to q. We do this in fact within the framework of
quasi-additive functions. As application, we show that most elements of “Catalan-
like” sequences — by which we mean integer sequences defined by products/quotients
of factorials — are divisible by any given positive integer.

1. Introduction

In [5], Burns shows that most of the ubiquitous Catalan numbers Cn := 1
n+1

(

2n
n

)

(cf.
[15, Ex. 6.19]) are divisible by p, where p is some given prime number. Let vp(N) denote
the p-adic valuation of the integer N , which by definition is the maximal exponent α
such that pα divides N . In view of Legendre’s formula [9, p. 10] for the p-adic valuation
of factorials,

vp(n!) =
1

p− 1

(

n− sp(n)
)

, (1.1)

where sp(N) denotes the p-ary sum-of-digits function

sp(N) =
∑

j≥0

εj(N),

with εj(N) denoting the j-th digit in the p-adic representation of N , we have

vp

(

1

n+ 1

(

2n

n

))

=
1

p− 1

(

2sp(n)− sp(2n)
)

− vp(n+ 1).

Thus, one sees that the above and many more asymptotic divisibility results — such
as the divisibility of most of the Catalan numbers, or even of most of the Fuß–Catalan
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numbers (cf. [1, pp. 59–60]) by any given prime power — can be proved if one has
sufficiently precise results on the distribution of the vector

(sp(A1n), sp(A2(n)), . . . , sp(Ad(n))), n < N. (1.2)

Indeed, for p = 2, Schmidt [13] and Schmid [12] showed that for pairwise different pos-
itive odd integers A1, A2, . . . , Ad the vector (1.2) satisfies a d-dimensional central limit
theorem with asymptotic mean vector (1/2, . . . , 1/2) · log2N and asymptotic covariance
matrix Σ · log2 N with

Σ =

(

1

4

gcd(Ai, Aj)
2

AiAj

)

1≤i,j≤d

.

The purpose of the present paper is to generalize this central limit theorem to arbi-
trary primes p, and even to arbitrary bases q. We do this in Theorem 1 in Section 2, by
using an even more general concept, namely the concept of q-quasi-additive functions.

We finally apply this result in Section 3 (see Theorem 4 and Corollary 5) to prove the
somewhat non-intuitive fact that most elements of any sequence

(

S(n)
)

n≥0
of integers

given by a (non-trivial) formula

P (n)

Q(n)

∏r
i=1(Cin)!

∏s
i=1(Din)!

are divisible by any given prime power, and thus by any given positive integer. Here,
P (n) and Q(n) are polynomials in n over the integers, where Q(n) is a product of
linear factors, and the Ci’s and Di’s are positive integers with

∑r
i=1Ci =

∑s
i=1Di. The

attribute “non-trivial” means that the set of Ci’s is different from the set of Di’s. As
is pointed out in more detail in Section 3, numerous (mainly combinatorial) sequences
that appear in the literature in various contexts are of this form.

2. A central limit theorem

Let q ≥ 2 be a given integer. It is well known that the sum-of-digits function sq(n)
satisfies a central limit theorem of the form

1

N
#
{

n < N : sq(n) ≤ µq logq N + t
√

σ2
q logq N

}

= Φ(t) + o(1), (2.1)

uniformly in t, where µq = (q−1)/2, σ2
q = (q2−1)/12, and Φ(t) denotes the distribution

function of the standard Gaußian distribution. This result is easy to prove since the
digits εj(n), 0 ≤ j < logq(N), behave almost as i.i.d. random variables if n varies
between 0 and N − 1. Actually much more is known (see for example [2]). Suppose
that P (x) is a polynomial of degree D ≥ 1 with non-negative integer coefficients. Then
we also have

1

N
#
{

n < N : sq(P (n)) ≤ µq logq P (N) + t
√

σ2
q logq P (N)

}

= Φ(t) + o(1).

Note that the value P (N) can be replaced by ND without changing the validity of the
statement.

This result applies in particular to linear polynomials Pj(n) = Ajn (with integers
Aj ≥ 1). In what follows, we will consider linear combinations of the form

f(n) = c1sq(A1n) + c2sq(A2n) + · · ·+ cdsq(Adn), n < N, (2.2)
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with real numbers cj and integers Aj ≥ 1, 1 ≤ j ≤ d. Clearly, the central limit result
of Schmidt [13] and Schmid [12] mentioned in the introduction is equivalent to the
fact that f(n) as in (2.2) with q = 2, n < N , satisfies a one-dimensional central limit
theorem with asymptotic mean 1

2
(c1 + c2 + · · ·+ cd) · log2N and asymptotic covariance

cΣct · log2N , where c = (c1, c2, . . . , cd).
It is also clear that the results of [12, 13] should directly transfer to a general basis

q ≥ 2 so that we can cover general f(n). We will establish this generalization, however,
with a completely different (and in fact more modern) proof.

Theorem 1. Let q ≥ 2 be an integer, and let A1, A2, . . . , Ad be positive integers. Then
the vector

(sq(A1n), sq(A2n), . . . , sq(Adn)), 0 ≤ n < N, (2.3)

satisfies a d-dimensional central limit theorem with asymptotic mean vector ((q − 1)/2,
. . . , (q− 1)/2) · logq N and asymptotic covariance matrix Σ · logq N , where Σ is positive
semi-definite.

If we further assume that q is prime and that the integers A1, A2, . . . , Ad are not
divisible by q, then Σ is explicitly given by

Σ =

(

(q2 − 1)

12

gcd(Ai, Aj)
2

AiAj

)

1≤i,j≤d

. (2.4)

For the proof we make use of the (recent) concept of quasi-additivity which is thor-
oughly discussed in [7]. There, a function f defined on the non-negative integers is
called q-quasi-additive, if there exists r ≥ 0 such that

f(qk+ra+ b) = f(a) + f(b) for all b < qk. (2.5)

We note that if (2.5) holds for some r ≥ 0, then it holds as well for every larger r. This
also shows that linear combinations of q-quasi-additive functions are q-quasi-additive,
too. We further note that sq(n) is q-quasi-additive with parameter r = 0.

One of the main results of the paper [7] is that any q-quasi-additive function f(n) of
at most logarithmic growth satisfies a central limit theorem of the form

1

N
#
{

n < N : f(n) ≤ µ logq N + t
√

σ2 logq N
}

= Φ(t) + o(1),

for appropriate constants µ and σ2.
Our first observation is that f(n) given in (2.2) is q-quasi-additive. The logarithmic

growth property is trivially satisfied since sq(n) ≤ (q − 1) logq n.

Lemma 2. Let A and r be positive integers with qr ≥ A. Then g(n) = sq(An) is
q-quasi-additive (with parameter r).

Proof. Suppose that b < qk. Then Ab < qk+r, and consequently

g(qk+ra + b) = sq(q
k+rAa+ Ab) = sq(Aa) + sq(Ab) = g(a) + g(b). �

Since linear combinations of q-quasi-additive functions are q-quasi-additive, it directly
follows that f(n), as given by (2.2), satisfies a central limit theorem of the prescribed
form, and consequently also the vector (2.3). The asymptotic mean ((q − 1)/2, . . . ,
(q − 1)/2) · logq N of the latter is also clear.

Hence, it remains to compute the covariance matrix in the case, where q is a prime
number.
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Lemma 3. Let q ≥ 2 be a prime number, let A1, A2 be positive integers that are not
divisible by q, and set D = gcd(A1, A2). Then, uniformly for (logN)1/3 ≤ i, j ≤
logq N − (logN)1/3 and a, b ∈ {0, 1, . . . , q − 1}, we have

1

N
# {n < N : εi(A1n) = a, εj(A2n) = b}

=















1
q2

+O
(

(logN)−C
)

, if i 6= j,
1
q2

+ D2

A1A2

∑

ℓ 6=0

1
4π2ℓ2

(

e
(

− ℓA2a
qD

)

− e
(

− ℓA2(a+1)
qD

))(

e
(

ℓA1b
qD

)

− e
(

− ℓA1(b+1)
qD

))

+O
(

(logN)−C
)

, if i = j,

for any given C > 0. Here, e(x) = e2πix.

Proof. We adapt the method of [2] to the present situation. However, in order to make
the presentation more transparent, we first present a slightly simplified approach. First
we note that εj(n) = a if and only if {nq−j−1} ∈ [a/q, (a+ 1)/q), where {x} = x− ⌊x⌋
denotes the fractional part of x. We also note that the Fourier series of the characteristic
function 1[a/q,(a+1)/q)(x) is given by

1[aq ,
a+1
q )(x) =

∑

m

dm(a)e(mx) with dm(a) =

{

1
q
, if m = 0,

e(−ma
q )−e(−m(a+1)

q )
2πim

, if m 6= 0.

This Fourier series is not absolutely convergent. This is the major reason that we
have to be more precise in a second round. Observe that dm(a) = 0 if m 6= 0 and
m ≡ 0 mod q.

We have

# {n < N : εi(A1n) = a, εj(A2n) = b} =
∑

n<N

1[aq ,
a+1
q )

(

A1n

qi+1

)

1[ bq ,
b+1
q )

(

A2n

qj+1

)

=
∑

m1,m2

dm1(a) dm2(b)
∑

n<N

e

((

A1m1

qi+1
+

A2m2

qj+1

)

n

)

.

Since
∣

∣

∣

∣

∣

∑

n<N

e(αn)

∣

∣

∣

∣

∣

≤
2

|1− e(α)|
,

we may neglect all exponential sums where α = A1m1

qi+1 + A2m2

qj+1 is not an integer. At this

moment, this step is not rigorous since the Fourier series is not absolutely convergent.
Next suppose that α is an integer. If i 6= j, the number A1m1

qi+1 + A2m2

qj+1 can be an integer

only if m1 = m2 = 0 since we also assume that A1 and A2 are not divisible by q. Thus
we should get

# {n < N : εi(A1n) = a, εj(A2n) = b} = d0(a)d0(b)N + o(N) =
N

q2
+ o(N).

If i = j, then the assumption A1m1

qj+1 + A2m2

qj+1 = k for an integer k leads to |m1| ≥
1

2A1
|k|qi+1 ≥ 1

2A1
|k|q(logN)1/3 or |m2| ≥

1
2A2

|k|qj+1 ≥ 1
2A2

|k|q(logN)1/3 so that the corre-

sponding terms are negligible (if the Fourier series would be absolutely convergent).
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Thus we should get (again by observing that all summands for which α is an integer
can be put into an error term)

# {n < N : εj(A1n) = a, εj(A2n) = b} =
∑

ℓ

dℓA2/D(a)d−ℓA1/D(b)N + o(N)

=
N

q2
+
∑

ℓ 6=0

1

4π2ℓ2

(

e
(

− ℓA2a
qD

)

− e
(

− ℓA2(a+1)
qD

))(

e
(

ℓA1b
qD

)

− e
(

− ℓA1(b+1)
qD

))

N

+ o(N).

In order to make the above heuristics rigorous, we proceed as in [2]. We replace the
characteristic function 1[a/q,(a+1)/q)(x) by a smoothed version. Let χa,∆(x) be defined
by

χa,∆(x) :=
1

∆

∫ ∆/2

−∆/2

1[ a
q
, a+1

q
]({x+ z}) dz,

The Fourier coefficients of the Fourier series χa,∆(x) =
∑

m∈Z dm,∆(a)e(mx) are given
by

d0,∆(a) =
1

q
,

and for m 6= 0 by

dm,∆(a) =
e
(

−ma
q

)

− e
(

−m(a+1)
q

)

2πim
·
e
(

m∆
2

)

− e
(

−m∆
2

)

2πim∆
.

Note that dm,∆(a) = 0 if m 6= 0 and m ≡ 0 mod q, and that

|dm,∆(a)| ≤ min

(

1

π|m|
,

1

∆πm2

)

.

By definition, we have 0 ≤ χa,∆(x) ≤ 1 and

χa,∆(x) =







1, if x ∈
[

a
q
+∆, a+1

q
−∆

]

,

0, if x ∈ [0, 1] \
[

a
q
−∆, a+1

q
+∆

]

.

In particular, we set ∆ = (logN)−C for some (sufficiently large) constant C. Of course
we have to take into account all error terms. The smoothing error can be handled with
the help of a discrepancy estimate (see [2]). Putting the resulting estimates together
— we leave the details to the reader —, one obtains

# {n < N : εi(A1n) = a, εj(A2n) = b} = d0,∆(a)d0,∆(b)N +O
(

N(logN)−C
)

=
N

q2
+O

(

N(logN)−C
)

for i 6= j, and

# {n < N : εj(A1n) = a, εj(A2n) = b} =
∑

ℓ

dℓA2/D,∆(a)d−ℓA1/D,∆(b)N

+O
(

N(logN)−C
)



6 MICHAEL DRMOTA AND CHRISTIAN KRATTENTHALER

for i = j, where all estimates are uniform for (logN)1/3 ≤ i, j ≤ logq N − (logN)1/3.
Since

dm,∆(a) = dm(a)
sin(πm∆)

πm∆
= dm(a)

(

1 +O

(

1

m∆

))

for 1 ≤ |m| ≤ 1/∆, we obtain (with A = max{A1, A2})

∑

1≤|ℓ|≤1/(A∆)

dℓA2/D,∆(a)d−ℓA1/D,∆(b) =
∑

1≤|ℓ|≤1/(A∆)

dℓA2/D(a)d−ℓA1/D(b)

+O (∆ log(1/∆)) ,

and
∑

|ℓ|>1/(A∆)

dℓA2/D,∆(a)d−ℓA1/D,∆(b) = O (∆) ,

∑

|ℓ|>1/(A∆)

dℓA2/D(a)d−ℓA1/D(b) = O (∆) .

Thus,

∑

ℓ

dℓA2/D,∆(a)d−ℓA1/D,∆(b) =
∑

ℓ

dℓA2/D(a)d−ℓA1/D(b) +O

(

log logN

(logN)C

)

This completes the proof of the lemma. �

It is now not difficult to complete the computation of the covariance matrix (which
also completes the Proof of Theorem 1). By definition, the covariance of sq(A1n) and
sq(A2n) is given by

Cov =
1

N

∑

n<N

sq(A1n)sq(A2n)−
1

N

∑

n<N

sq(A1n) ·
1

N

∑

n<N

sq(A2n).

In order to apply Lemma 3, we neglect the digits εj with j ≤ (logN)1/3 or j ≥ logq(N)−

(logN)1/3 and denote by sq the sum of digits of the remaining digits εj with (logN)1/3 <
j < logq N − (logN)1/3. Then the corresponding approximate covariance Cov satisfies

Cov−Cov = O
(

(logN)5/6
)

,

which can be shown with the help of the Cauchy–Schwarz inequality. Hence, by rewrit-
ing Cov with the help of the numbers 1

N
# {n < N : εi(A1n) = a, εj(A2n) = b} (from

Lemma 3) and the numbers

1

N
# {n < N : εj(Ain) = a} =

1

q
+O

(

(logN)−C
)

(note that the fact that this asymptotic property holds uniformly for (logN)1/3 ≤ j ≤
logq N − (logN)1/3, a ∈ {0, 1, . . . , q − 1}, and i = 1, 2 follows from Lemma 3), we
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immediately get

Cov = L
D2

A1A2

q−1
∑

a,b=0

ab
∑

ℓ 6≡0 mod q

1

4π2ℓ2

·
(

e
(

− ℓA2a
qD

)

− e
(

− ℓA2(a+1)
qD

))(

e
(

ℓA1b
qD

)

− e
(

− ℓA1(b+1)
qD

))

+O
(

(logN)2−C
)

= L
D2

A1A2

q2

4π2

∑

ℓ 6≡0 mod q

1

ℓ2
+O

(

(logN)2−C
)

= L
D2

A1A2

q2 − 1

12
+O

(

(logN)2−C
)

,

where L = ⌊logq N − 2(logN)1/3⌋, and where we have used the identity

q−1
∑

a=0

a e(ak/q) =
q

e(k/q)− 1
,

which is valid for integers k that are not divisible by q. We can choose C appropriately
— for example C = 2 — and finally obtain

Cov =
q2 − 1

12

gcd(Ai, Aj)
2

AiAj

logq N +O
(

(logN)5/6
)

,

which completes the proof of Theorem 1.

3. Asymptotic divisibility of Catalan-like integer sequences

The main result in this section concerns divisibility of “Catalan-like” sequences by
prime powers.

Theorem 4. Let p be a given prime number, α a positive integer, P (n) a polynomial
in n with integer coefficients, and (Ci)1≤i≤r, (Di)1≤i≤s, (Ei)1≤i≤t, (Fi)1≤i≤t given inte-
ger sequences with Ci, Di > 0 and p ∤ gcd(Ei, Fi) for all i,

∑r
i=1Ci =

∑s
i=1Di, and

{Ci : 1 ≤ i ≤ r} 6= {Di : 1 ≤ i ≤ s}. If all elements of the sequence
(

S(n)
)

n≥0
, defined

by

S(n) :=
P (n)

∏t
i=1(Ein + Fi)

∏r
i=1(Cin)!

∏s
i=1(Din)!

, (3.1)

are integers, then

lim
N→∞

1

N
# {n < N : S(n) ≡ 0 (mod pα)} = 1. (3.2)

We note that (3.2) remains true if α increases slowly with N . In particular, we
can choose α = ⌊η logN⌋ for an appropriate η > 0. Furthermore we note that the
assumption p ∤ gcd(Ei, Fi) is not really necessary since we can always reduce the problem
to this case by separating the factors pvp(gcd(Ei,Fi)). Thus, we immediately obtain the
following corollary.
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Corollary 5. Let S(n) be given as in Theorem 4 (without assuming the condition
p ∤ gcd(Ei, Fi)). Then, for all positive integers m, we have

lim
N→∞

1

N
# {n < N : S(n) ≡ 0 (mod m)} = 1. (3.3)

We call integer sequences of the form as in (3.1) — that is, integer sequences given
by a product/quotient of factorials multiplied by a rational function — “Catalan-like”
since the Catalan numbers 1

n+1

(

2n
n

)

represent obviously such a sequence, but as well

many other sequences that one finds in the literature (and in the On-Line Encyclopedia
of Integer Sequences [14]).

Examples. All of the following sequences are “Catalan-like” in the sense of (3.1).

(1) Binomial coefficients such as the central binomial coefficients
(

2n
n

)

, or more gen-

erally
(

(a+b)n
an

)

for positive integers a and b, including variations such as
(

2n
n−1

)

, etc.

(2) Multinomial coefficients such as ((a1+a2+···+as)n)!
(a1n)! (a2n)!···(asn)!

, etc.

(3) Fuß–Catalan numbers. These are defined by (cf. [1, pp. 59–60]) 1
n

(

(m+1)n
n−1

)

, where
m is a given positive integer.

(4) Gessel’s [6] super ballot numbers (often also called super-Catalan numbers)
(2n)! (2m)!
n!m! (m+n)!

for non-negative integers m, or for m = an with a a positive integer.

(5) Many counting sequences in tree and map enumeration (cf. [11] for a survey)
such as m+1

n((m−1)n+2)

(

mn
n−1

)

(m-ary blossom trees with n white nodes; cf. [10, Sec. 3]),
2·3n

(n+2)(n+1)

(

2n
n

)

(number of rooted planar maps with n edges; cf. [18]), 2
(3n−1)(3n−2)

(

3n−1
n

)

(number of rooted non-separable planar maps with n edges; cf. [4]), 2
(3n+1)(n+1)

(

4n+1
n

)

(number of rooted planar triangulations with n+3 vertices; cf. [16]), 1
2(n+2)(n+1)

(

2n
n

)(

2n+2
n+1

)

(number of rooted Hamiltonian maps with 2n vertices; cf. [17]), to mention just a few.

What Theorem 4 says is that, for any of these sequences, most elements (in the sense
that the proportion of those in the set of all elements tends to 1) are divisible by pα,
for a given prime number p and given positive integer α.

We should at this point remind the reader of Landau’s criterion [8], which says that

U(n) :=

∏r
i=1(Cin)!

∏s
i=1(Din)!

is an integer for all n if and only if
r

∑

i=1

⌊Cix⌋ −
s

∑

i=1

⌊Dix⌋ ≥ 0 (3.4)

for all real numbers x. (Here, we still assume that
∑r

i=1Ci =
∑s

i=1Di.) In view of
[3, Lemma 3.3], which says that if U(n) is non-integral for some n then, for almost all
primes p, there exists an n such that vp

(

U(n)
)

< 0, this means (more or less; we do not
believe that the polynomial P (n) can “correct” non-integrality of U(n) for all n) that
(3.4) is an implicit assumption in Theorem 4.

For the proof of Theorem 4, we consider the integer interval [0, N − 1] as a proba-
bility space, with each integer equally likely, precisely as in Section 2. For notational
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convenience, the corresponding probability function will be denoted by PN . Func-
tions on the non-negative integers are then interpreted as random variables X on this
space by restricting them to [0, N − 1]. The expectation of X on the space, that is,
1
N

∑N−1
i=0 X(i), will be denoted by EN(X), the variance will be denoted by VarN(X),

and the covariance of two functions by CovN(X, Y ).
We need two auxiliary lemmas. The first concerns asymptotic mean and variance for

the p-adic valuation of a linear function.

Lemma 6. Let E and F be integers, E > 0, not both divisible by the prime p. If
vp(En+ B) is considered as a random variable for n in the integer interval [0, N − 1],
then

EN

(

vp(En+ F )
)

=

{

0, if p | E,
1

p−1
+ o(1), if p ∤ E,

as N → ∞, (3.5)

and

VarN
(

vp(En+ F )
)

=

{

0, if p | E,
p

(p−1)2
+ o(1), if p ∤ E,

as N → ∞. (3.6)

Proof. The first assertion in the case distinction in (3.5) is obvious since our assumptions
imply that En + F 6≡ 0 (mod p) if p | E. If p ∤ E, then the congruence En + F ≡
0 (mod pα) has a unique solution for n modulo pα for any given positive integer α.
Thus, we have

EN

(

vp(an+ b)
)

=
1

N

⌊logp N⌋
∑

ℓ=1

(

N

pℓ
+O(1)

)

=
1

p− 1
+ o(1), as N → ∞.

Similarly, still assuming p ∤ E, for the variance we have

VarN
(

vp(an + b)
)

=
1

N

⌊logp N⌋
∑

ℓ=1

(2ℓ− 1)

(

N

pℓ
+O(1)

)

−
(

EN

(

vp(an+ b)
)

)2

=
p+ 1

(p− 1)2
−

1

(p− 1)2
+ o(1), as N → ∞,

establishing also (3.6). �

The second auxiliary lemma provides an asymptotic upper bound on the covariance
of a linear function and the sum-of-digits function of a linear function.

Lemma 7. Let C, E, and F be integers, C,E > 0, and E and F not both divisible by
p. If sp(Cn) and vp(En + B) are considered as random variables for n in the integer
interval [0, N − 1], then

CovN (sp(Cn), vp(En+ F )) = O
(

log1/2p (N)
)

, as N → ∞. (3.7)

Proof. By the Cauchy–Schwarz inequality in probabilistic setting, we have

CovN

(

sp(Cn), vp
(

En + F
)

)

≤ VarN
(

sp(Cn)
)1/2

VarN

(

vp
(

En+ F
)

)1/2

.

The variance of sp(Cn) = sp(Cp−vp(C)n) has been (implicitly) given in (2.1) (see the
line below that equation; see also (2.4) with q = p and Ai = Aj = Cp−vp(C)) and turned
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out to be of the order logp(N), while the variance of vp
(

En+F
)

has been given in (3.6)
and turned out to be bounded. The assertion of the lemma is hence obvious. �

Proof of Theorem 4. With S(n) given in (3.1), we have

vp
(

S(n)
)

= vp
(

P (n)
)

−
t

∑

i=1

vp(Ein + Fi) +
r

∑

i=1

vp
(

(Cin)!
)

−
s

∑

i=1

vp
(

(Din)!
)

≥ −
t

∑

i=1

vp(Ein + Fi)−
1

p− 1

r
∑

i=1

sp(Cin) +
1

p− 1

s
∑

i=1

sp(Din). (3.8)

Here, we used Legendre’s formula (1.1) and the assumption that
∑r

i=1Ci =
∑s

i=1Di.
Now, it follows from [3, Lemma 3.5 and its proof], that under the integrality and

non-triviality assumption for S(n) of the theorem, we have r < s.
The expression on the right-hand side of (3.8) is a linear combination of the func-

tions vp(Ein+ Fi), sp(Cin), and sp(Din), which we view again as random variables on
[0, N − 1]. For convenience, let us denote the function on the right-hand side of (3.8)
by T (n). By Theorem 1 and (3.5), we have

EN

(

T (n)
)

= Ω
(

logp(N)
)

, as N → ∞.

The reader should observe that the inequality r < s is used here crucially. On the other
hand, the variance of T (n) is bounded above by the sum of the pairwise covariances of
the involved random variables (functions). By Theorem 1, (3.6), and (3.7), we see that

VarN
(

T (n)
)

= O
(

logp(N)
)

, as N → ∞.

Given a random variable X , Chebyshev’s inequality reads

P
(

|X −E(X)| < ε
)

> 1−
1

ε2
V (X). (3.9)

Choosing ε =
(

logp(n)
)3/4

and X = T (n), we get

PN

(

∣

∣T (n)− EN

(

T (n)
)
∣

∣ < log3/4p (N)
)

= 1 +O
(

log−1/2
p (N)

)

, as N → ∞.

Thus, for N large enough, we have

T (n) > EN

(

T (n)
)

− log3/4p (N) = Ω
(

logp(N)
)

> α,

with probability 1 + O
(

log−1/2
p (N)

)

. If we use this information in (3.8), then the
assertion of the theorem follows immediately. �
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Press, Boca Raton, London, New York, 2015, pp. 335–395. 589–678.

[12] J. Schmid, The joint distribution of the binary digits of integer multiples, Acta Arith. 43 (1984),
391–415.

[13] W. M. Schmidt, The joint distribution of the digits of certain integer s-tuples, Studies in Pure
Mathematics, Mem. of P. Turán (1983), 605–622.

[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[15] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge,

1999.
[16] W. T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962), 21–38.
[17] W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math. 14 (1962), 402–417.
[18] W. T. Tutte, A census of planar maps, Canad. J. Math. 15 (1963), 249–271.

∗Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße

8–10, A-1040 Vienna, Austria. WWW: https://www.dmg.tuwien.ac.at/drmota.

†Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090

Vienna, Austria. WWW: http://www.mat.univie.ac.at/~kratt.

http://www.lix.polytechnique.fr/Labo/Gilles.Schaeffer/Biblio/Sc03.ps
http://oeis.org/
http://www.mat.univie.ac.at/\lower 0.5ex\hbox ~kratt

	1. Introduction
	2. A central limit theorem
	3. Asymptotic divisibility of Catalan-like integer sequences
	References

