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Abstract

We describe an algorithm to enumerate polytopes. This algorithm is then implemented
to give a complete classification of combinatorial spheres of dimension 3 with 9 vertices
and decide polytopality of those spheres. In particular, we completely enumerate all com-
binatorial types of 4-dimensional polytopes with 9 vertices. It is shown that all of those
combinatorial types are rational : They can be realized with rational coordinates. We find
316 014 combinatorial spheres on 9 vertices. Of those, 274 148 can be realized as the bound-
ary complex of a four-dimensional polytope and the remaining 41 866 are non-polytopal.

1 Introduction

1.1 Results

Having good examples (and counterexamples) is essential in discrete geometry. To this end, a
substantial amount of work has been done on the classification of polytopes and combinatorial
spheres; see Subsection 1.4. The classification of combinatorial 3-spheres and 4-polytopes for
7 vertices was done by Perles, [Grü67, Section 6.3] and for 8 vertices it was completed by Altshuler
and Steinberg [AS85].

As a next step, we present new algorithmic techniques to obtain a complete classification
of combinatorial 3-spheres with 9 vertices into polytopes and non-polytopes. We obtain the
following results:

Theorem 1. There are precisely 316 014 combinatorial types of combinatorial 3-spheres with
9 vertices.

Theorem 2. There are precisely 274 148 combinatorial types of 4-polytopes with 9 vertices.

Therefore we have 41 866 non-polytopal combinatorial types of combinatorial 3-spheres with
9 vertices. By taking polar duals, we immediately also obtain a complete classification of
4-polytopes and 3-spheres with nine facets.

∗This research was supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry
and Dynamics.’
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1 INTRODUCTION 1.2 Methods

We provide rational coordinates for all of the combinatorial types of 4-polytopes with 9 ver-
tices. We call a polytope rational if it is combinatorially equivalent to a polytope with rational
coordinates.

Corollary 3. Every 4-polytope with up to 9 vertices is rational. Every 4-polytope with up to
9 facets is rational.

Perles showed, using Gale diagrams, that all d-polytopes with at most d + 3 vertices are
rational; see [Grü67, Chapter 6]. There is an example of Perles of a 8-polytope with 12 vertices,
which is not rational [Grü67, Theorem 5.5.4, p. 94]. For d = 4, there are examples of non-rational
polytopes with 34 [RGZ95, Corollary of Main Theorem] and 33 vertices [RG06, Thm 9.2.1].

Question 4. What is the smallest n, such that there is a non-rational 4-polytope with n vertices?

A list of all combinatorial 3-spheres with 9 vertices as well as rational polytopal realizations,
if possible, or certificates for their non-polytopality is provided as ancillary data to this arxiv
preprint as well as at the author’s website:
https://page.mi.fu-berlin.de/moritz/. In Section 6, we summarize our results grouped by number
of facets (Table 5), by f -vector (Table 7) and by flag f -vector (Table 9).

1.2 Methods

Enumerating all combinatorial 3-spheres and 4-polytopes is a challenging problem even for a
relatively small number of vertices, not only because there is a huge number of them. In fact,
already for 3-dimensional combinatorial spheres, deciding whether a combinatorial sphere is
polytopal is equivalent to the Existential Theory of the Reals [RGZ95]. However for few vertices in
small dimension a considerable amount of work has been done, for a summary see Subsection 1.4.

In order to enumerate all convex 4-polytopes with 9 vertices we proceed in three steps:

1. Completely enumerate combinatorial 3-spheres (Section 2)

2. Prove non-polytopality for some of them (Section 3)

3. Provide rational realizations for the rest of them (Section 4)

For the first step, we start with a set of simplicial spheres and repeatedly untriangulate them.
This can be done by joining two facets in the face lattice. It then needs to be checked if the
resulting face poset corresponds to a combinatorial sphere. For the second step, we resort to
the theory of oriented matroids and use Graßmann–Plücker relations to obtain non-realizability
certificates.

For the last step, instead of starting with a combinatorial sphere and deciding its realizabil-
ity as a polytope, we present an algorithm to generate as many different combinatorial types
as possible. We start with a complete set of realizations of combinatorial types of 4-polytopes
with less than 9 vertices and inductively add the 9th point at strategic locations. These loca-
tions are carefully chosen by considering the hyperplane arrangement generated by the bounding
hyperplanes of the polytopes with less than 9 vertices; compare [Grü67, Thm 5.2.1.].

There is no reason, why this method should generate all combinatorial types of 4-polytopes
with 9 vertices, since it depends on the specific realizations of the polytopes with fewer vertices.
This is treated in an exercises by Grünbaum [Grü67, Ex. 5.2.1]. In [Grü67, Section 5.5] he
explains:

[. . . ] if we are presented with a finite set of polytopes it is possible to find those among
them which are of the same combinatorial type. It may seem that this fact, together

2

https://page.mi.fu-berlin.de/moritz/


1 INTRODUCTION 1.3 Definitions

with theorem 5.2.1 which determines all the polytopes obtainable as convex hulls of
a given polytope and one additional point, are sufficient to furnish an enumeration
of combinatorial types of d-polytopes. [. . . ] However, from the result of exercise
5.2.1 it follows that it may be necessary to use different representatives of a given
combinatorial type in order to obtain all the polytopes having one vertex more which
are obtainable from polytopes of the given combinatorial type. Therefore it is not
possible to carry out the inductive determination of all the combinatorial types in
the fashion suggested above.

We agree that is in general “not possible” to determine all combinatorial types inductively. This
is obvious in the presence of non-rational combinatorial types, which can never be generated
inductively in this fashion. However, for a small number of vertices and d = 4 it turns out that
this approach is sufficient to determine all combinatorial types.

For each of the steps above we need to be able to quickly decide if a given combinatorial
sphere of polytope has been generated before. For this it is enough to look at the vertex-facet
incidences of the corresponding face lattice. Therefore, given two of those face lattices it is
sufficient to check if the two directed vertex-facet graphs are isomorphic. In order to check if
a combinatorial type is already contained in a set S of N combinatorial types, we do not run
graph isomorphism N times. Instead, we precompute a (hashable) canonical form for all of the
graphs in the set. Then we can simply check if the canonical form of the vertex-facet graph of
the given combinatorial type is in the set of normal forms of graphs in S. After computing the
canonical form, the average case to check if a graph is in S will take constant time.

Hardware and computing time

The computations in Section 2 were performed in about 10 hours on a single desktop computer
with 8 cores running at 3.6GHz with 32GB RAM. The computations for Section 3 and 4 were
performed on the allegro cluster at FU-Berlin, which has about 1000 cores running at 2.6GHz
and having about 3.5TB combined RAM. The results from Section 3 were obtained in about 800
CPU-hours and the results from Section 4 in about 2000 CPU-hours. We used sagemath [SD18]
to implement the algorithms described below.

1.3 Definitions

We assume basic familiarity with convex polytopes; see [Grü67] and [Zie95] for comprehensive
introductions. For Section 3, we assume familiarity with the basic notions of the theory of
oriented matroids, especially in the guise of chirotopes; here the standard references include
[BLVS+99], [RGZ04, Sect. 6] and [BS89].

Simplicial spheres, that is, simplicial complexes homeomorphic to a sphere, arise as boundaries
of simplicial polytopes. The notion of combinatorial spheres is used in slightly different ways in
the literature, which is why we give a concise definition below. The intention of the definition is
to get a set of combinatorial spheres that fits into the following diagram:

simplicial polytopes ⊂ polytopes

⊂ ⊂

simplicial spheres ⊂ combinatorial spheres

Here vertical inclusions indicate “taking boundary” of the polytopes.

3



1 INTRODUCTION 1.4 Previous results

Definition 5 (combinatorial sphere, compare [BZ17b, Def. 2.1]). For d ∈ N, a strongly regular
d-cell complex C is a finite d-dimensional CW -complex, that is, a collection of k-cells for k ≤ d,
such that the following two properties hold:

1. regularity: the attaching maps of all cells are homeomorphisms also on the boundary.

2. intersection: the intersection of two cells in C is again a cell in C (possibly empty).

A strongly regular d-cell complex is called a combinatorial sphere if it is homeomorphic to Sd.

It follows that for each k-cell F , there is a k-polytope P (F ) and a homeomorphism hF from
F to H , such that the preimages of the faces of P (F ) under hF are again cells of C; compare
[AS84, Section 2] and [Bar73, Section 2].

Definition 6 (Eulerian and interval connected; compare [BZ17b, Def. 2.1]). A finite graded
lattice of rank d is called

• Eulerian if all non-trivial closed intervals have the same number of odd and even elements
and it is

• interval connected if all open intervals of length at least 3 are connected.

The boundary of a d-polytope gives rise to a combinatorial (d − 1)-sphere. The intersection
poset of the set of cells of a combinatorial sphere is an Eulerian lattice, which is interval connected.
Two polytopes (or two combinatorial spheres) are called combinatorially equivalent if they give
rise to isomorphic face lattices. All properties, that only depend on the isomorphism type of
face lattice, such as (flag) f -vector, are well defined for combinatorial types of polytopes (or
combinatorial spheres).

Proposition 7. For d = 4, every interval connected Eulerian lattice of rank d + 1 is the face
lattice of a strongly regular (d− 1)-cell complex.

For a proof we refer the reader to [BZ17b, Prop. 2.2].
For d = 4 it is therefore possible to describe a combinatorial sphere purely in combinatorial

terms and it is sufficient to characterize the sphere completely by a set of facets, each containing
a set of vertices. This is how we will describe combinatorial spheres below.

1.4 Previous results

Classifications of (d − 1)-spheres and d-polytopes with n vertices and have been obtained for
various dimensions d and number of vertices n. Also certain subfamilies of all such spheres and
polytopes, namely simplicial and neighborly ones have been classified.

In dimension 3, Steinitz’ theorem, [Ste22, Satz 43, p. 77] reduces the classification 3-polytopes
to the classification of planar 3-connected graphs. There are results on the asymptotic behavior;
see [BW88], [Tut80], [RW82] and [Slo, A944].

If the number of vertices n is less or equal to d+ 3, then every combinatorial (d− 1)-spheres
coincides with the number of d-dimensional polytopes and explicit formulas are known; see [Fus06,
Thm. 1] and [Grü67, Sect. 6.1]. The techniques used for these results are Gale-diagrams. In
dimension 4, we summarize known results in Table 1. In each case, the paper we cite is the one
that completes the classification; in some cases the complete classifications was done a series of
papers.

While various classifications of simplicial and neighborly spheres and polytopes have been
obtained in the meantime, the last classification of all 3-spheres and 4-polytopes was completed

4
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2 GENERATING COMBINATORIAL SPHERES

# of vertices 5 6 7 8 9 10 11

# of f -vectors 1 4 15 40 88 ? ?
3-spheres 1 4 31 [AS85] 1 336 316 014 ? ?
4-polytopes∗ 1 4 31 [AS85] 1 294 274 148 ? ?
non-polytopal 0 0 0 42 41 866 ? ?
# of f -vectors 1 2 4 7 11 16 22

simplicial 3-spheres 1 2 5 [Bar73] 39 [AS76] 1 296 [Lut08] 247 882 [SL09]166 564 303
simplicial 4-polytopes† 1 2 5 [GS67] 37 [ABS80]1 142 [Fir17] 162 004 ?
simplicial non-polytopal 0 0 0 2 154 85 878 ?

neighborly 3-spheres 1 1 1 [GS67] 4 [AS74] 50 [Alt77] 3 540 [SL09] 897 819
neighborly 4-polytopes‡ 1 1 1 [GS67] 3 [AS73] 23 [BS87] 431 [Fir17] 13 935
neighborly non-polytopal 0 0 0 1 27 3 109 883 884

Table 1: Classification results for 4-polytopes with ≤ 11 vertices. Boldface results are new.

by Altshuler and Steinberg for 8 vertices in [AS85]. Among other methods, they consider what
3-polytopes can appear as facets of a 4-polytope. In our present classification for 9 vertices we
use completely different algorithmic methods.

Recently, Brinkmann and Ziegler enumerated all combinatorial 3-spheres with f -vector
(f0, f1, f2, f3), such that f0 + f3 ≤ 22; see [BZ17b, Table 1]. This includes all combinatorial
3-spheres on 9 vertices up to 13 facets. On the other hand, there has been an earlier attempt by
Engel to classify all combinatorial 3 spheres with 9 vertices; see [Eng91, Table 6]. The results of
Brinkmann and Ziegler contradict the results of Engel for the number of combinatorial 3-spheres
with f -vector (9, f1, f2, k) for k ∈ {10, 11, 12, 13}. Because of this disagreement, it is desirable
to have an independent check of the result. We provide this with our results in Section 2. Our
classification below partially agrees with the results of Brinkmann and Ziegler (for k < 10 and
k ≤ 12) and partially with those of Engel (for k < 10 and k > 13). We explain this in detail at
the end of Section 2.

2 Generating combinatorial spheres

We generate a complete set of combinatorial d-spheres with n vertices from a complete set of
simplicial d-spheres with n vertices; for each sphere in this set, we generate all spheres obtained
by untriangulating. By this we mean constructing a new combinatorial sphere from an old one
by removing a ridge, that is, a (d−2)-dimensional face. A combinatorial sphere is determined by
its face lattice and the face lattice can be completely recovered from the incidence of the atoms
and coatoms, that is, from the vertex-facet graph. We consider a combinatorial sphere M as the
set of its facets; each facet being a set of vertices.

Definition 8. Let M be a combinatorial sphere and f1, f2 ∈ M two of its facets that intersect
in a ridge r = f1 ∩ f2. Then the untriangulation of M with f1 and f2 is the set U(M), obtained
from M by replacing f1 and f2 by their union:

U(M) := {f1 ∪ f2} ∪M \ {f1, f2}.

The untriangulation U(M) might not correspond to a combinatorial sphere. For example, if
the new face f1 ∪ f2 completely contains another face of U(M) or if there is a face in M that
intersects both f1 and f2 but does not intersect r, then U(M) will not be a combinatorial sphere.

∗ [Slo, A5841]. † [Slo, A222318]. ‡ [Slo, A133338].
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2 GENERATING COMBINATORIAL SPHERES

In our procedure after generating U(M) it remains to be checked if the corresponding face poset
P (M) is graded of rank d+ 1, Eulerian and strongly connected.

Since every combinatorial sphere can be triangulated (not necessarily in a unique way) until
it is a simplicial sphere, all combinatorial spheres can be obtained by repeatedly untriangulating
simplicial spheres. In the process of iteratively untriangulating, we might encounter a combina-
torial type of combinatorial spheres multiple times. To detect this, we store a canonical form of
the (directed) vertex-facet graph, just as we do in Section 4. For the same reason we keep a set
of such graphs of combinatorial types of posets that do not correspond to combinatorial spheres.
If we get such a type when untriangulating, we don’t need to untriangulate any further.

Algorithm 1 Enumerating combinatorial spheres

Input: A dictionary SimpSpheres of all simplicial (d − 1)-spheres with n vertices with key-
values pairs (G,S), where S is a set of facets, each facet containing a subset of the
vertices {1, . . . , n} and G is a canonical form of the vertex-facet graph of S.

Output: A dictionary CombTypes of all combinatorial spheres with n vertices. The dictionary
CombTypes is of the same form as the dictionary SimpSpheres given as input.

1: procedure untriangulate(M,CombTypes,NonTypes) ⊲ . . . recursively
2: G← canonical form of vertex-facet graph of M
3: if (G is key of CombTypes) or (G in NonTypes) then ⊲ check if we have seen G before
4: return CombTypes ,NonTypes
5: else
6: P ← poset of M
7: if P is graded of rank d+ 1, Eulerian, strongly connected then
8: CombTypes[G]←M ⊲ add key-value pair (G,M) to CombTypes

9: for f1, f2 ∈
(

M

2

)

do ⊲ iterate over all pairs of facets
10: if f1 ∩ f2 is a ridge in P then ⊲ check if f1, f2 might share a ridge
11: U(M)← {f1∪f2}∪M \ {f1, f2} ⊲ remove facets f1, f2 and add their union
12: CombTypes,NonTypes ← untriangulate(U(M),CombTypes,NonTypes)
13: end if
14: end for
15: else
16: NonTypes ← NonTypes ∪ {G}
17: end if
18: end if
19: return CombTypes,NonTypes
20: end procedure

21: CombTypes ← empty dictionary ⊲ initialize the output dictionary
22: NonTypes ← empty set ⊲ initialize the set of non-types
23: for S ∈ SimpSpheres do
24: CombTypes,NonTypes ← untriangulate(S,CombTypes,NonTypes)
25: end for
26: return CombTypes

6



2 GENERATING COMBINATORIAL SPHERES

This iteration process can be done in multiple ways, we present Algorithm 1, a recursive
formulation, and remark:

Line 2, Canonical form of vertex-facet graph of M : This can be computed by using bliss, [JK15];
compare Algorithm 2.

Line 6, P ← poset of M : We compute the poset by iteratively calculating the intersection of
the facets.

Line 10/Line 11: additional checks if U(M) can possibly be the set of facets of a combinatorial
sphere can be added here.

Line 12, the recursion: We know that the recursion terminates, since U(M) has always strictly
less elements (facets) than M .

Line 9/Line 23: These loops can be parallelized, when keeping multiple copies of CombTypes
and NonTypes and merging them afterwards.

We use an implementation of Algorithm 1 to generate all combinatorial 3-spheres with up to
9 vertices. We start from simplicial 3-spheres: those have been enumerated up to 10 vertices,
see [Lut08] and for n ≤ 9, we use the tables provided by Lutz, [Lut]. The enumeration of the
relevant 1296 simplicial spheres with 9 has been completed by Altshuler and Steinberg, [AS76].
Since all combinatorial spheres can be obtained by recursively untriangulating, we obtain

Theorem 9. There are precisely 316 014 combinatorial types of combinatorial 3-spheres with 9
vertices.

The method explained above could be summarized as “flattening a ridge”. The dual operation
would be “edge-reduction”, that is, shrinking an edge until two vertices coincide. This is described
by Engel (also in the case of 3-dimensional polytopes); see [Eng91, Section 2] and [Eng82]. In fact,
in [Eng91] an enumeration of all combinatorial 3-spheres with 9 facets is attempted. However
our results partially disagree with those of Engel. We translate the results of [Eng91, Table 6] in
the dual setting; then for each number of facets 5 ≤ k ≤ 27 we find a number of combinatorial
3-spheres with 9 vertices. We compare these numbers to our Table 5 and find that the numbers
agree for all k ∈ {6, 5, 8, 9} and 14 ≤ k ≤ 27, but not for k ∈ {10, 11, 12, 13}. In all of those cases,
Engel claims to have found more combinatorial types of spheres. He does not provide a list of
spheres but only their count; therefore we cannot show if he might have counted some of the
spheres twice. This might have been the case, because he uses an ad hoc method to determine
whether to combinatorial spheres are isomorphic [Eng91, Section 3], while we reduce the problem
to checking if two graphs are isomorphic.

For up to 13 facets an enumeration of 3-spheres with 9 vertices is done by Brinkmann and
Ziegler [BZ17b]. Our results agree with theirs for all k except k = 13. In their paper yet
a different method for generating combinatorial spheres is used. They start by generating all
possible vertex-edge graphs of possible spheres and then sorting out those that are non-spheres;
see [BZ17b, Algorithm 3.1]. While this approach is valid, there seem to have been some problem
with the implementation, leading to the inconsistency with our results. However there is an
inconsistency only for f -vectors with k = 13 facets and only for for 2 out of the 6 f -vectors with
k = f3 = 13. This is the largest number of facets Brinkmann and Ziegler consider. For for all
other f -vectors our results agree.

In Table 2, we give the f -vectors and counts of those cases, where our results differ from
[BZ17b] or [Eng91]. Both papers do not attempt to completely decide which of the combinatorial
spheres are in fact boundary of polytopes as we do in Section 4.

7



3 PROVING NON-POLYTOPALITY

f -vector [BZ17b, Table 1] Table 5 [Eng91, Table 5]
(9, ∗, ∗, 9) 1905 1905 1908
(9, ∗, ∗, 10) 5376 5376 5411
(9, ∗, ∗, 11) 11825 11825 11974
(9, ∗, ∗, 12) 20975 20975 21129

(9, 28, 32, 13) 2136 2224 not listed
(9, 29, 33, 13) 27 45 not listed
(9, ∗, ∗, 13) 20871∗ 20975 21129

Table 2: Inconsistent results for the number of combinatorial types of 3-spheres with 9 vertices
for some f -vectors. For all other f -vectors the numbers agree.

3 Proving non-polytopality

In order to prove that some of the combinatorial 3-spheres obtained in Section 2 are not polytopal,
we analyze the orientation information which can be deduced from the combinatorial spheres.
Let’s consider a combinatorial 3-sphere P , which is realized by the boundary of a 4-polytope.
Then every ordered set of 5 vertices of P can be assigned a sign {−1, 0, 1} depending on whether
it spans a simplex of negative, zero or positive (signed) volume. The theory of oriented matroids
abstracts these concepts and collects the orientation information in the chirotope map χ, see
[BLVS+99, Chapter 3.6] for a detailed introduction. The following three rules are satisfied by
the boundary of a 4-polytope. To state them, we only need the incidence data, therefore they
can be used on combinatorial spheres.

1. If five vertices a, b, c, d, e lie in a common facet, then χ(a, b, c, d, e) = 0.

2. If four vertices a, b, c, d lie in a common facet, then for every pair e, e′ outside of that facet,
we have

χ(a, b, c, d, e) = χ(a, b, c, d, e′).

3. If the tree vertices a, b, c lie in a common ridge R, which has the two adjacent facets F and
F ′, such that R = F ∩ F ′, then for every pair d ∈ F , d′ ∈ F ′ and all e not in F and not in
F ′, we have

χ(a, b, c, d, e) = −χ(a, b, c, d′, e).

Given a combinatorial 3-sphere S (as a set of facets), we first find a partial chirotope, which can
be constructed using the rules above. That is, we find subset of s0 ⊂

(

Vertices of S

5

)

and a map
χ : s0 → {−1, 0, 1}. This can be done first adding all the signs from rule 1, fixing a non-zero
sign for an instance of rule 3 and then greedily applying rule 2 and 3 repeatedly. Apart from the
choice of the first sign, there is no other choice for the signs defined by χ. Then we can check
the Graßmann–Plücker relations, which need to be satisfied. The Graßmann–Plücker relations
involve 6 values of the map χ. Of course, with the partial chirotope on s0 we can only check
those Graßmann–Plücker relations, where all of those values are defined. If a Graßmann–Plücker
relation is violated we can conclude that the sphere in question is not polytopal.

Lemma 9. Out of the 316 014 combinatorial 3-spheres with 9 vertices, there are 24 028 spheres,
which give rise to a partial chirotope on s0, which contradicts a Graßmann–Plücker relation and
are therefore not polytopal.

∗ This number is obtained by summing all f -vector of the form (9, ∗, ∗, 13): 33 + 1223 + 7677 + 9773 + 2136 + 27

8



4 GENERATING COMBINATORIAL TYPES OF POLYTOPES

Proof. For each of the 3-spheres we provide the corresponding s0, the partial chirotope and a
violating Graßmann–Plücker relation.

In a next step we seek to enlarge the set s0, where a partial chirotope can be defined. To
this end, we consider Graßmann–Plücker relations with 5 elements from s0, where the partial
chirotope is already defined, and one element from

(

Vertices of S
5

)

, where the partial chirotope is
not yet known. In some cases we can determine the sign of the new element, add it to s0 and
repeat. Iterating this can lead to a contradiction if the combinatorial sphere is not polytopal.

Lemma 10. Out of the 316 014 combinatorial 3-spheres with 9 vertices, there are 17 755 spheres,
for which a contradiction arises when completing the partial chirotope on s0. Therefore those
17 755 spheres are not polytopal

Proof. For each of the 3-sphere we provide the corresponding s0, the chirotope together with a
finite list of deductions, each expanding the definition of the partial chirotope to a new element
using the Graßmann–Plücker relations until a contradiction is reached.

In some cases using the method of Lemma 10 does not lead to a contradiction and after a
finite number of steps. We then have a partial chirotope χ on a set s1, which contains s0 and
which cannot be enlarged by the steps described above. In some cases s1 might be a complete
chirotope.

Lemma 11. Out of the 316 014 combinatorial spheres 3-spheres with 9 vertices, there are
83 spheres, for which the partial chirotope s0 is completed to a chirotope on s1, which admits a
biquadratic final polynomial. Therefore those 83 spheres are not polytopal.

Proof. For all the relevant 83 cases, it turns out that s1 is actually a complete chirotope. In each
case, we provide the completed chirotope together with the infeasible linear program associated
to the biquadratic final polynomial.

Only 11 of the 83 cases already admit a biquadratic final polynomial for the partial chirotope
on the set s0. For the other cases there is no biquadratic final polynomial on the the partial
chirotope and we need to complete the chirotope in order to prove non-polytopality.

Since the sets of non-polytopal spheres in Lemma 9, Lemma 10 and Lemma 11 are disjoint,
we obtain

Theorem 12. There are at most

316 014− 24 028− 17 755− 83 = 274 148

4-polytopes with 9 vertices.

4 Generating combinatorial types of polytopes

We describe an algorithm to generate combinatorial types of polytopes. Let Q be a d-polytope
with n vertices and k facets, let H(Q) denote the affine hyperplane arrangement consisting of
the k hyperplanes supporting the facets of Q. We view a supporting hyperplane h as element in
R× R

d, associated to the hyperplane containing x ∈ R
d if and only if their dot product is zero:

(1, x) · h = 0. The faces of the hyperplane arrangement are given by:

faces (H(Q)) :=
{

Fα ⊂ R
d
∣

∣ α = (α1, α2, . . . , αk) ∈ {−1, 0, 1}
k if Fα 6= ∅

}

,

9



4 GENERATING COMBINATORIAL TYPES OF POLYTOPES

where

Fα =

{

x ∈ R
d

∣

∣

∣

∣

∣

(1, x) · hi ≤ 0 if αi ∈ {−1, 0}

(1, x) · hi ≥ 0 if αi ∈ {0, 1}
for 1 ≤ i ≤ k

}

By definition, the relative interiors of the faces partition R
d:

R
d =

◦
⋃

F∈faces(H(Q))

relint(F ).

Proposition 13. Let Q be a d-polytope and F ∈ faces (Hj(Q)) a face in the hyperplane arrange-
ment of its supporting hyperplanes. Then for any two points q1, q2 ∈ relint(F ) in the relative
interior of F , the polytopes Qi := conv(Q ∪ {qi}) for i = 1, 2 are combinatorially equivalent.

The proposition is a reformulation of [Grü67, Thm 5.2.1] and a proof can be found there.
Motivated by Proposition 13, we proceed inductively to generate combinatorial types of

d-polytopes with k vertices, starting from a set of polytopes with k−1 vertices. Given a polytope
Q with k − 1 vertices, we choose an interior point p from each face of H(Q). Then we form the
convex hull of Q ∪ {p} and check if this yields a polytope with k vertices. If this is the case, we
check if we have seen the combinatorial type of this polytope before. If not, we add it to our
output. In order to check quickly if we have already found a combinatorial type, we calculate
a canonical form of the (directed) vertex-facet graph, which depends only on the isomorphism
class of the graph and therefore only on the combinatorial type of the polytope: it is possible to
recover the entire face lattice from the vertex-facet graph. The canonical form can then be used
in a hash table or an dictionary.

Algorithm 2 Generating polytopes

Input: An integer k and a set of polytopes with k − 1 vertices Q

Output: A dictionary P with key-value pairs (G,P ), where P is a polytope with k vertices
and G is a canonical form of the vertex-facet graph of P .

1: procedure update(P , P ) ⊲ Update P with the combinatorial type of P .
2: G← canonical form of vertex-facet graph of P ⊲ depends only on the isomor-

phism class of the graph
3: if G is not key of P then
4: P [G]← P ⊲ add key-value pair (G,P ) to P
5: end if
6: end procedure

7: P ← empty dictionary ⊲ initialize the output dictionary
8: for Q ∈ Q do
9: for F ∈ faces (H(Q)) do ⊲ iterate over all faces in hyperplane arrangement

10: p← interior point of F ⊲ different choices are possible, e.g. center of (bounded) F

11: P ← conv(Q ∪ {p})
12: if number of vertices of P = k then
13: update(P , P )
14: end if
15: end for
16: end for
17: return P

10



4 GENERATING COMBINATORIAL TYPES OF POLYTOPES

This is all summarized in Algorithm 2; let us explain some details of this algorithm:

Line 2, canonical form of vertex-facet graph of P : This can be computed by using bliss [JK15].

Line 3: if G is already a key in P , that is, there is already a polytope P ′, which is combinatorially
isomorphic to P in the dictionary P , then we could still decide to update the dictionary;
for example if P has a shorter description than P ′, i.e. simpler rational coordinates.

Line 8 Q ∈ Q: at this point the algorithm can be parallelized; each case Q can be run separately
yielding a dictionary PQ. Those must then be collected to give the desired dictionary P .

Line 9, F ∈ faces (H(Q)): the hyperplane arrangement can be computed using sagemath meth-
ods [SD18].

Line 10, p ← interior point of F : Here we have some choice for interior point of the rational,
not necessarily bounded polyhedron, which is face of the hyperplane arrangement F . To
avoid dealing with unbounded polyhedra, we intersect the entire hyperplane arrangement
H(Q) with a rational cuboid (for example axes aligned) that contains all of the vertices of
H(Q) in its interior. The vertices of H(Q) are its zero-dimensional faces. In general, it has
more vertices than Q. This reduces the problem to finding a rational point in the relative
interior of a rational polytope. We can simply take the barycenter of the vertices of the
polyhedron.

We illustrate the procedure in Figure 1 by looking at what happens to an irregular hexagon.
Since the classification of polytopes in dimension 2 is so simple, it might seem like a wasteful
way to generate a heptagon, but in higher dimensions the classifications get more interesting.

We use an implementation of Algorithm 2 for the generation of 4-polytopes. We start with
a realization of the simplex comprised of the origin together with the standard basis vectors of
R

4. In running Algorithm 2, there is some choice involved: in Line 10, we choose a point in the
interior of a (potentially unbounded) polyhedron.

In a first run, we intersect the unbounded polyhedra with an axes aligned cuboid, which
contains all the vertices of H(Q) with a padding of 1 unit. For example when going from the
simplex in the first step to polytopes with 6 vertices, we intersection the cells in the hyperplane
arrangement with the axes aligned cuboid given by the two coordinates (−1,−1,−1,−1) and
(2, 2, 2, 2). Then we choose as an interior point the barycenter.

In a second run, we choose the same bounding cuboid, but choose the interior point of the
bounded polyhedra differently: we strive for comparatively ‘simple’ rational coordinates. For
example, we might look for rational numbers with small absolute values for numerator and
denominator. (It is of course conceivable to take another definition of ‘simple’.) We pick a subset
of vertices from the set of all vertices of the polyhedron that affinely span the affine hull of the
polyhedron. Then we look at the barycenter of this subset of vertices and choose the subset with
the ‘simplest’ rational coordinates.

Putting together the results from these two runs, we obtain

Theorem 14. There are at least 274 148 combinatorial types of 4-polytopes with 9 vertices.

Proof. We provide rational coordinates for all combinatorial types in question.

This theorem together with Theorem 12 implies

Theorem 15. There are precisely 274 148 combinatorial types of 4-polytopes with 9 vertices.

11



(a) The hyperplane arrangement induced by the facets. . .

(b) . . . in a bounding box with barycenters of all faces.

(c) Adding a point give a new combinatorial type.

Figure 1: Generating a heptagon from a hexagon.



5 APPLICATIONS

5 Applications

The complete classification of combinatorial 3-spheres and 4-polytopes with up to 9 vertices
immediately has some applications. We only want to provide two such applications here.

5.1 Non-realizable flag f-vectors

Recently, Brinkmann and Ziegler provided the first example of a flag f -vector of a combinatorial
sphere, that does not appear as the flag f -vector of a polytope, [BZ17a]. Such a flag f -vector
is called non-realizable. The non-realizable flag f -vector they provide is (f0, f1, f2, f3; f02) =
(12, 40, 40, 12; 120). There is precisely one sphere, but no polytope with this flag f -vector. Our
complete classification gives three additional examples of non-realizable flag f -vectors. The non-
realizable flag f -vectors are those in Table 9 that have a “0” entry in the columns “4-polytopes”.
They are (9, 25, 26, 10; 50), (9, 27, 29, 11; 53) and (9, 27, 30, 12; 57). For the last two we have two
types of combinatorial spheres and for the first one there is a unique type of combinatorial sphere.
We give the sphere as a list of facets in Table 3. (Here vertices are the set {1, 2, 3, 4, 5, 6, 7, 8, 9}
and a facet 12345 is an abbreviation for the set {1, 2, 3, 4, 5}.)

flag f -vector facets of non-realizable 3-sphere
(9, 25, 26, 10; 50) [12345,12469,12578,12678,13468,1358,23459,25679,346789,35789]
(9, 27, 29, 11; 53) [12346,12357,12678,1345,14568,15789,2349,23579,24679,34589,46789]
(9, 27, 29, 11; 53) [12345,12469,12567,13468,13578,1678,23489,2359,25679,35789,46789]
(9, 27, 30, 12; 57) [12345,12468,12567,13458,15789,16789,23479,2357,24679,34689,3579,3589]
(9, 27, 30, 12; 57) [1234,12358,1246,12567,13468,15789,16789,23457,24679,34579,34689,3589]

Table 3: Non-realizable flag f -vectors and spheres with those flag f -vectors

5.2 Vertex-edges graphs of polytopes

In his PhD-thesis [Esp14], Espenschied examines under what circumstances the complete t-partite
graph Kn1,n2,...,nt

can appear as the vertex-edge graph of a polytope.

Conjecture 15 (Espenschied’s conjecture [Esp14, p.82]). If Kn1,n2,...,nt
is the graph of a poly-

tope, then {n1, n2, . . . nt} ⊂ {1, 2} as sets.

We disprove the above conjecture by looking at the graphs of all 4-polytopes with 9 vertices
and find a number of counter-examples to this conjecture. In fact, there are 14 polytopes that
contradict Espenschied’s conjecture. We list the complete multipartite graphs and the number
of combinatorial types of polytopes with that graph in Table 4. See the survey paper by Bayer
[Bay17] for more on graphs of polytopes.

Graph K3,2,2,2 K3,2,2,1,1 K3,2,1,1,1,1 K3,1,1,1,1,1,1

number of combinatorial types 1 2 5 6

Table 4: Number of counter-examples to Espenschied’s conjecture
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6 Tables of results
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(5, *, *, 5) 1 1 0 1
(6, *, *, 6) 1 1 0 1
(6, *, *, 7) 1 1 0 1
(6, *, *, 8) 1 1 0 1
(6, *, *, 9) 1 1 0 1
(6, *, *, *) 4 4 0 4

(7, *, *, 6) 1 1 0 1
(7, *, *, 7) 3 3 0 2
(7, *, *, 8) 5 5 0 2
(7, *, *, 9) 7 7 0 2
(7, *, *, 10) 6 6 0 2
(7, *, *, 11) 4 4 0 2
(7, *, *, 12) 3 3 0 2
(7, *, *, 13) 1 1 0 1
(7, *, *, 14) 1 1 0 1
(7, *, *, *) 31 31 0 15

(8, *, *, 6) 1 1 0 1
(8, *, *, 7) 5 5 0 2
(8, *, *, 8) 27 27 0 3
(8, *, *, 9) 76 76 0 4
(8, *, *, 10) 138 137 1 4
(8, *, *, 11) 209 205 4 3
(8, *, *, 12) 231 225 6 4
(8, *, *, 13) 226 218 8 3
(8, *, *, 14) 173 166 7 4
(8, *, *, 15) 122 117 5 3
(8, *, *, 16) 70 65 5 3
(8, *, *, 17) 33 31 2 2
(8, *, *, 18) 16 14 2 2
(8, *, *, 19) 5 4 1 1
(8, *, *, 20) 4 3 1 1
(8, *, *, *) 1336 1294 42 40
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(9, *, *, 6) 1 1 0 1
(9, *, *, 7) 7 7 0 2
(9, *, *, 8) 76 76 0 4
(9, *, *, 9) 467 463 4 6
(9, *, *, 10) 1905 1872 33 5
(9, *, *, 11) 5376 5218 158 6
(9, *, *, 12) 11825 11277 548 6
(9, *, *, 13) 20975 19666 1309 6
(9, *, *, 14) 31234 28821 2413 5
(9, *, *, 15) 39875 36105 3770 6
(9, *, *, 16) 44461 39436 5025 5
(9, *, *, 17) 43870 38007 5863 6
(9, *, *, 18) 38493 32492 6001 5
(9, *, *, 19) 30216 24741 5475 5
(9, *, *, 20) 21089 16747 4342 4
(9, *, *, 21) 13231 10069 3162 4
(9, *, *, 22) 7181 5306 1875 3
(9, *, *, 23) 3604 2468 1136 3
(9, *, *, 24) 1390 946 444 2
(9, *, *, 25) 567 331 236 2
(9, *, *, 26) 121 76 45 1
(9, *, *, 27) 50 23 27 1
(9, ∗, ∗, ∗) 316014 274148 41866 88

Table 5: Combinatorial 3-spheres and 4-polytopes with ≤ 9 vertices, grouped by number of
facets.
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(5, 10, 10, 5) 1 1 0 1

(6, 13, 13, 6) 1 1 0 1
(6, 14, 15, 7) 1 1 0 1
(6, 14, 16, 8) 1 1 0 1
(6, 15, 18, 9) 1 1 0 1

(7, 15, 14, 6) 1 1 0 1
(7, 16, 16, 7) 2 2 0 1
(7, 17, 17, 7) 1 1 0 1
(7, 17, 18, 8) 4 4 0 2
(7, 18, 19, 8) 1 1 0 1
(7, 17, 19, 9) 1 1 0 1
(7, 18, 20, 9) 6 6 0 2
(7, 18, 21, 10) 4 4 0 2
(7, 19, 22, 10) 2 2 0 1
(7, 18, 22, 11) 1 1 0 1
(7, 19, 23, 11) 3 3 0 2
(7, 19, 24, 12) 2 2 0 1
(7, 20, 25, 12) 1 1 0 1
(7, 20, 26, 13) 1 1 0 1
(7, 21, 28, 14) 1 1 0 1

f -vector 3
-s

p
h
er

es

4
-p

o
ly

to
p
es

n
o
n
-r

ea
li
za

b
le

#
o
f
fl
a
g
f
-v

ec
to

r.

(8, 16, 14, 6) 1 1 0 1
(8, 18, 17, 7) 4 4 0 2
(8, 19, 18, 7) 1 1 0 1
(8, 19, 19, 8) 13 13 0 2
(8, 20, 20, 8) 12 12 0 2
(8, 21, 21, 8) 2 2 0 1
(8, 19, 20, 9) 1 1 0 1
(8, 20, 21, 9) 31 31 0 2
(8, 21, 22, 9) 37 37 0 3
(8, 22, 23, 9) 7 7 0 2
(8, 20, 22, 10) 7 7 0 2
(8, 21, 23, 10) 71 71 0 3
(8, 22, 24, 10) 57 56 1 3
(8, 23, 25, 10) 3 3 0 1
(8, 21, 24, 11) 26 26 0 3
(8, 22, 25, 11) 129 128 1 4
(8, 23, 26, 11) 54 51 3 2
(8, 21, 25, 12) 4 4 0 1
(8, 22, 26, 12) 75 75 0 4
(8, 23, 27, 12) 133 129 4 3
(8, 24, 28, 12) 19 17 2 1
(8, 22, 27, 13) 16 16 0 2
(8, 23, 28, 13) 113 112 1 3
(8, 24, 29, 13) 97 90 7 2
(8, 22, 28, 14) 3 3 0 1
(8, 23, 29, 14) 30 30 0 2
(8, 24, 30, 14) 105 103 2 3
(8, 25, 31, 14) 35 30 5 1
(8, 23, 30, 15) 5 5 0 1
(8, 24, 31, 15) 39 39 0 2
(8, 25, 32, 15) 78 73 5 2
(8, 24, 32, 16) 8 8 0 1
(8, 25, 33, 16) 33 32 1 2
(8, 26, 34, 16) 29 25 4 1
(8, 25, 34, 17) 8 8 0 1
(8, 26, 35, 17) 25 23 2 2
(8, 26, 36, 18) 6 6 0 1
(8, 27, 37, 18) 10 8 2 1
(8, 27, 38, 19) 5 4 1 1
(8, 28, 40, 20) 4 3 1 1

Table 6: Combinatorial 3-spheres and 4-polytopes with ≤ 8 vertices, grouped by f -vector.
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(9, 18, 15, 6) 1 1 0 1
(9, 19, 17, 7) 1 1 0 1
(9, 20, 18, 7) 6 6 0 2
(9, 20, 19, 8) 1 1 0 1
(9, 21, 20, 8) 31 31 0 2
(9, 22, 21, 8) 37 37 0 3
(9, 23, 22, 8) 7 7 0 2
(9, 20, 20, 9) 1 1 0 1
(9, 22, 22, 9) 129 129 0 3
(9, 23, 23, 9) 211 209 2 3
(9, 24, 24, 9) 118 116 2 3
(9, 25, 25, 9) 7 7 0 2
(9, 26, 26, 9) 1 1 0 1
(9, 22, 23, 10) 12 12 0 3
(9, 23, 24, 10) 398 397 1 4
(9, 24, 25, 10) 904 897 7 4
(9, 25, 26, 10) 524 504 20 4
(9, 26, 27, 10) 67 62 5 3
(9, 23, 25, 11) 66 65 1 4
(9, 24, 26, 11) 1188 1185 3 4
(9, 25, 27, 11) 2650 2593 57 4
(9, 26, 28, 11) 1344 1266 78 4
(9, 27, 29, 11) 125 107 18 3
(9, 28, 30, 11) 3 2 1 1
(9, 23, 26, 12) 3 3 0 1
(9, 24, 27, 12) 335 333 2 5
(9, 25, 28, 12) 3275 3250 25 4
(9, 26, 29, 12) 5928 5662 266 5
(9, 27, 30, 12) 2171 1943 228 4
(9, 28, 31, 12) 113 86 27 2
(9, 24, 28, 13) 33 33 0 2
(9, 25, 29, 13) 1223 1219 4 5
(9, 26, 30, 13) 7677 7536 141 6
(9, 27, 31, 13) 9773 9023 750 5
(9, 28, 32, 13) 2224 1829 395 3
(9, 29, 33, 13) 45 26 19 1
(9, 25, 30, 14) 205 205 0 3
(9, 26, 31, 14) 3624 3608 16 6
(9, 27, 32, 14) 14312 13744 568 5
(9, 28, 33, 14) 11714 10268 1446 4
(9, 29, 34, 14) 1379 996 383 2
(9, 25, 31, 15) 15 15 0 1
(9, 26, 32, 15) 771 771 0 4
(9, 27, 33, 15) 7977 7878 99 5
(9, 28, 34, 15) 20764 19241 1523 5
(9, 29, 35, 15) 9961 7984 1977 3
(9, 30, 36, 15) 387 216 171 1
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(9, 26, 33, 16) 96 96 0 2
(9, 27, 34, 16) 2038 2035 3 4
(9, 28, 35, 16) 13869 13440 429 5
(9, 29, 36, 16) 22973 20057 2916 4
(9, 30, 37, 16) 5485 3808 1677 2
(9, 26, 34, 17) 7 7 0 1
(9, 27, 35, 17) 268 268 0 2
(9, 28, 36, 17) 4077 4047 30 4
(9, 29, 37, 17) 19345 18090 1255 4
(9, 30, 38, 17) 18645 14763 3882 3
(9, 31, 39, 17) 1528 832 696 1
(9, 27, 36, 18) 23 23 0 1
(9, 28, 37, 18) 596 596 0 2
(9, 29, 38, 18) 6671 6519 152 4
(9, 30, 39, 18) 21049 18482 2567 4
(9, 31, 40, 18) 10154 6872 3282 2
(9, 28, 38, 19) 45 45 0 1
(9, 29, 39, 19) 1061 1057 4 2
(9, 30, 40, 19) 9073 8578 495 4
(9, 31, 41, 19) 17202 13559 3643 3
(9, 32, 42, 19) 2835 1502 1333 1
(9, 29, 40, 20) 84 84 0 1
(9, 30, 41, 20) 1601 1574 27 2
(9, 31, 42, 20) 9905 8793 1112 3
(9, 32, 43, 20) 9499 6296 3203 2
(9, 30, 42, 21) 128 128 0 1
(9, 31, 43, 21) 2114 2016 98 2
(9, 32, 44, 21) 8281 6536 1745 3
(9, 33, 45, 21) 2708 1389 1319 1
(9, 31, 44, 22) 175 172 3 1
(9, 32, 45, 22) 2298 2064 234 2
(9, 33, 46, 22) 4708 3070 1638 2
(9, 32, 46, 23) 223 212 11 1
(9, 33, 47, 23) 1976 1563 413 2
(9, 34, 48, 23) 1405 693 712 1
(9, 33, 48, 24) 231 209 22 1
(9, 34, 49, 24) 1159 737 422 2
(9, 34, 50, 25) 209 163 46 1
(9, 35, 51, 25) 358 168 190 1
(9, 35, 52, 26) 121 76 45 1
(9, 36, 54, 27) 50 23 27 1

Table 7: Combinatorial 3-spheres and 4-polytopes with 9 vertices, grouped by f -vector
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(5, 10, 10, 5; 20) 1 1 0

(6, 13, 13, 6; 26) 1 1 0
(6, 14, 15, 7; 29) 1 1 0
(6, 14, 16, 8; 32) 1 1 0
(6, 15, 18, 9; 36) 1 1 0

(7, 15, 14, 6; 29) 1 1 0
(7, 16, 16, 7; 32) 2 2 0
(7, 17, 17, 7; 32) 1 1 0
(7, 17, 18, 8; 35) 3 3 0
(7, 17, 18, 8; 36) 1 1 0
(7, 18, 19, 8; 35) 1 1 0
(7, 17, 19, 9; 38) 1 1 0
(7, 18, 20, 9; 38) 4 4 0
(7, 18, 20, 9; 39) 2 2 0
(7, 18, 21, 10; 41) 2 2 0
(7, 18, 21, 10; 42) 2 2 0
(7, 19, 22, 10; 42) 2 2 0
(7, 18, 22, 11; 44) 1 1 0
(7, 19, 23, 11; 45) 2 2 0
(7, 19, 23, 11; 46) 1 1 0
(7, 19, 24, 12; 48) 2 2 0
(7, 20, 25, 12; 49) 1 1 0
(7, 20, 26, 13; 52) 1 1 0
(7, 21, 28, 14; 56) 1 1 0

(8, 16, 14, 6; 32) 1 1 0
(8, 18, 17, 7; 35) 3 3 0
(8, 18, 17, 7; 36) 1 1 0
(8, 19, 18, 7; 35) 1 1 0
(8, 19, 19, 8; 38) 12 12 0
(8, 19, 19, 8; 39) 1 1 0
(8, 20, 20, 8; 38) 9 9 0
(8, 20, 20, 8; 39) 3 3 0
(8, 21, 21, 8; 38) 2 2 0
(8, 19, 20, 9; 41) 1 1 0
(8, 20, 21, 9; 41) 23 23 0
(8, 20, 21, 9; 42) 8 8 0
(8, 21, 22, 9; 41) 20 20 0
(8, 21, 22, 9; 42) 16 16 0
(8, 21, 22, 9; 43) 1 1 0
(8, 22, 23, 9; 41) 5 5 0
(8, 22, 23, 9; 42) 2 2 0
(8, 20, 22, 10; 44) 6 6 0
(8, 20, 22, 10; 45) 1 1 0
(8, 21, 23, 10; 44) 41 41 0
(8, 21, 23, 10; 45) 23 23 0
(8, 21, 23, 10; 46) 7 7 0
(8, 22, 24, 10; 44) 20 20 0
(8, 22, 24, 10; 45) 35 35 0
(8, 22, 24, 10; 46) 2 1 1
(8, 23, 25, 10; 45) 3 3 0
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(8, 21, 24, 11; 47) 17 17 0
(8, 21, 24, 11; 48) 8 8 0
(8, 21, 24, 11; 49) 1 1 0
(8, 22, 25, 11; 47) 38 38 0
(8, 22, 25, 11; 48) 62 62 0
(8, 22, 25, 11; 49) 28 27 1
(8, 22, 25, 11; 50) 1 1 0
(8, 23, 26, 11; 48) 40 40 0
(8, 23, 26, 11; 49) 14 11 3
(8, 21, 25, 12; 50) 4 4 0
(8, 22, 26, 12; 50) 25 25 0
(8, 22, 26, 12; 51) 32 32 0
(8, 22, 26, 12; 52) 17 17 0
(8, 22, 26, 12; 53) 1 1 0
(8, 23, 27, 12; 51) 58 58 0
(8, 23, 27, 12; 52) 70 68 2
(8, 23, 27, 12; 53) 5 3 2
(8, 24, 28, 12; 52) 19 17 2
(8, 22, 27, 13; 53) 9 9 0
(8, 22, 27, 13; 54) 7 7 0
(8, 23, 28, 13; 54) 50 50 0
(8, 23, 28, 13; 55) 51 51 0
(8, 23, 28, 13; 56) 12 11 1
(8, 24, 29, 13; 55) 71 69 2
(8, 24, 29, 13; 56) 26 21 5
(8, 22, 28, 14; 56) 3 3 0
(8, 23, 29, 14; 57) 16 16 0
(8, 23, 29, 14; 58) 14 14 0
(8, 24, 30, 14; 58) 63 63 0
(8, 24, 30, 14; 59) 38 37 1
(8, 24, 30, 14; 60) 4 3 1
(8, 25, 31, 14; 59) 35 30 5
(8, 23, 30, 15; 60) 5 5 0
(8, 24, 31, 15; 61) 26 26 0
(8, 24, 31, 15; 62) 13 13 0
(8, 25, 32, 15; 62) 61 59 2
(8, 25, 32, 15; 63) 17 14 3
(8, 24, 32, 16; 64) 8 8 0
(8, 25, 33, 16; 65) 24 24 0
(8, 25, 33, 16; 66) 9 8 1
(8, 26, 34, 16; 66) 29 25 4
(8, 25, 34, 17; 68) 8 8 0
(8, 26, 35, 17; 69) 20 19 1
(8, 26, 35, 17; 70) 5 4 1
(8, 26, 36, 18; 72) 6 6 0
(8, 27, 37, 18; 73) 10 8 2
(8, 27, 38, 19; 76) 5 4 1
(8, 28, 40, 20; 80) 4 3 1

Table 8: Combinatorial 3-spheres and 4-polytopes with ≤ 8 vertices, grouped by flag f -vector.

17



flag f-vector 3
-s

p
h
e
re

s

4
-p

o
ly

to
p
e
s

n
o
n
-r

e
a
li
z
a
b
le

(9, 18, 15, 6; 36) 1 1 0
(9, 19, 17, 7; 38) 1 1 0
(9, 20, 18, 7; 38) 4 4 0
(9, 20, 18, 7; 39) 2 2 0
(9, 20, 19, 8; 41) 1 1 0
(9, 21, 20, 8; 41) 23 23 0
(9, 21, 20, 8; 42) 8 8 0
(9, 22, 21, 8; 41) 20 20 0
(9, 22, 21, 8; 42) 16 16 0
(9, 22, 21, 8; 43) 1 1 0
(9, 23, 22, 8; 41) 5 5 0
(9, 23, 22, 8; 42) 2 2 0
(9, 20, 20, 9; 44) 1 1 0
(9, 22, 22, 9; 44) 93 93 0
(9, 22, 22, 9; 45) 32 32 0
(9, 22, 22, 9; 46) 4 4 0
(9, 23, 23, 9; 44) 111 111 0
(9, 23, 23, 9; 45) 90 90 0
(9, 23, 23, 9; 46) 10 8 2
(9, 24, 24, 9; 44) 51 51 0
(9, 24, 24, 9; 45) 63 63 0
(9, 24, 24, 9; 46) 4 2 2
(9, 25, 25, 9; 44) 5 5 0
(9, 25, 25, 9; 45) 2 2 0
(9, 26, 26, 9; 44) 1 1 0
(9, 22, 23, 10; 47) 8 8 0
(9, 22, 23, 10; 48) 3 3 0
(9, 22, 23, 10; 49) 1 1 0
(9, 23, 24, 10; 47) 242 242 0
(9, 23, 24, 10; 48) 122 122 0
(9, 23, 24, 10; 49) 33 32 1
(9, 23, 24, 10; 50) 1 1 0
(9, 24, 25, 10; 47) 347 347 0
(9, 24, 25, 10; 48) 427 427 0
(9, 24, 25, 10; 49) 128 121 7
(9, 24, 25, 10; 50) 2 2 0
(9, 25, 26, 10; 47) 145 145 0
(9, 25, 26, 10; 48) 311 311 0
(9, 25, 26, 10; 49) 67 48 19
(9, 25, 26, 10; 50) 1 0 1
(9, 26, 27, 10; 47) 16 16 0
(9, 26, 27, 10; 48) 42 42 0
(9, 26, 27, 10; 49) 9 4 5
(9, 23, 25, 11; 50) 51 51 0
(9, 23, 25, 11; 51) 11 11 0
(9, 23, 25, 11; 52) 3 2 1
(9, 23, 25, 11; 53) 1 1 0
(9, 24, 26, 11; 50) 548 548 0
(9, 24, 26, 11; 51) 431 431 0
(9, 24, 26, 11; 52) 196 194 2
(9, 24, 26, 11; 53) 13 12 1
(9, 25, 27, 11; 50) 587 587 0
(9, 25, 27, 11; 51) 1230 1230 0
(9, 25, 27, 11; 52) 777 741 36
(9, 25, 27, 11; 53) 56 35 21
(9, 26, 28, 11; 50) 161 161 0
(9, 26, 28, 11; 51) 715 715 0
(9, 26, 28, 11; 52) 442 381 61
(9, 26, 28, 11; 53) 26 9 17
(9, 27, 29, 11; 51) 70 70 0
(9, 27, 29, 11; 52) 53 37 16
(9, 27, 29, 11; 53) 2 0 2
(9, 28, 30, 11; 52) 3 2 1

flag f-vector 3
-s

p
h
e
re

s

4
-p

o
ly

to
p
e
s

n
o
n
-r

e
a
li
z
a
b
le

(9, 23, 26, 12; 53) 3 3 0
(9, 24, 27, 12; 53) 200 200 0
(9, 24, 27, 12; 54) 104 104 0
(9, 24, 27, 12; 55) 25 24 1
(9, 24, 27, 12; 56) 5 4 1
(9, 24, 27, 12; 57) 1 1 0
(9, 25, 28, 12; 53) 834 834 0
(9, 25, 28, 12; 54) 1319 1319 0
(9, 25, 28, 12; 55) 938 927 11
(9, 25, 28, 12; 56) 184 170 14
(9, 26, 29, 12; 53) 487 487 0
(9, 26, 29, 12; 54) 2264 2264 0
(9, 26, 29, 12; 55) 2589 2496 93
(9, 26, 29, 12; 56) 586 414 172
(9, 26, 29, 12; 57) 2 1 1
(9, 27, 30, 12; 54) 692 692 0
(9, 27, 30, 12; 55) 1219 1121 98
(9, 27, 30, 12; 56) 258 130 128
(9, 27, 30, 12; 57) 2 0 2
(9, 28, 31, 12; 55) 97 81 16
(9, 28, 31, 12; 56) 16 5 11
(9, 24, 28, 13; 56) 29 29 0
(9, 24, 28, 13; 57) 4 4 0
(9, 25, 29, 13; 56) 456 456 0
(9, 25, 29, 13; 57) 494 494 0
(9, 25, 29, 13; 58) 232 231 1
(9, 25, 29, 13; 59) 39 37 2
(9, 25, 29, 13; 60) 2 1 1
(9, 26, 30, 13; 56) 683 683 0
(9, 26, 30, 13; 57) 2610 2610 0
(9, 26, 30, 13; 58) 3097 3063 34
(9, 26, 30, 13; 59) 1229 1134 95
(9, 26, 30, 13; 60) 57 45 12
(9, 26, 30, 13; 61) 1 1 0
(9, 27, 31, 13; 57) 1907 1907 0
(9, 27, 31, 13; 58) 4990 4857 133
(9, 27, 31, 13; 59) 2733 2192 541
(9, 27, 31, 13; 60) 141 66 75
(9, 27, 31, 13; 61) 2 1 1
(9, 28, 32, 13; 58) 1252 1187 65
(9, 28, 32, 13; 59) 934 633 301
(9, 28, 32, 13; 60) 38 9 29
(9, 29, 33, 13; 59) 45 26 19
(9, 25, 30, 14; 59) 122 122 0
(9, 25, 30, 14; 60) 74 74 0
(9, 25, 30, 14; 61) 9 9 0
(9, 26, 31, 14; 59) 466 466 0
(9, 26, 31, 14; 60) 1451 1451 0
(9, 26, 31, 14; 61) 1235 1232 3
(9, 26, 31, 14; 62) 439 430 9
(9, 26, 31, 14; 63) 32 28 4
(9, 26, 31, 14; 64) 1 1 0
(9, 27, 32, 14; 60) 2441 2441 0
(9, 27, 32, 14; 61) 6294 6236 58
(9, 27, 32, 14; 62) 4827 4500 327
(9, 27, 32, 14; 63) 729 556 173
(9, 27, 32, 14; 64) 21 11 10
(9, 28, 33, 14; 61) 4225 4143 82
(9, 28, 33, 14; 62) 6252 5423 829
(9, 28, 33, 14; 63) 1208 698 510
(9, 28, 33, 14; 64) 29 4 25
(9, 29, 34, 14; 62) 1158 911 247
(9, 29, 34, 14; 63) 221 85 136

Table 9: Combinatorial 3-spheres and 4-polytopes with 9 vertices, grouped by flag f -vector.
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(9, 25, 31, 15; 62) 15 15 0
(9, 26, 32, 15; 62) 188 188 0
(9, 26, 32, 15; 63) 394 394 0
(9, 26, 32, 15; 64) 174 174 0
(9, 26, 32, 15; 65) 15 15 0
(9, 27, 33, 15; 63) 1675 1675 0
(9, 27, 33, 15; 64) 3533 3525 8
(9, 27, 33, 15; 65) 2303 2254 49
(9, 27, 33, 15; 66) 457 416 41
(9, 27, 33, 15; 67) 9 8 1
(9, 28, 34, 15; 64) 5811 5769 42
(9, 28, 34, 15; 65) 10468 9938 530
(9, 28, 34, 15; 66) 4167 3358 809
(9, 28, 34, 15; 67) 315 175 140
(9, 28, 34, 15; 68) 3 1 2
(9, 29, 35, 15; 65) 5763 5221 542
(9, 29, 35, 15; 66) 3911 2683 1228
(9, 29, 35, 15; 67) 287 80 207
(9, 30, 36, 15; 66) 387 216 171
(9, 26, 33, 16; 65) 42 42 0
(9, 26, 33, 16; 66) 54 54 0
(9, 27, 34, 16; 66) 679 679 0
(9, 27, 34, 16; 67) 961 961 0
(9, 27, 34, 16; 68) 380 377 3
(9, 27, 34, 16; 69) 18 18 0
(9, 28, 35, 16; 67) 4071 4063 8
(9, 28, 35, 16; 68) 6584 6459 125
(9, 28, 35, 16; 69) 2918 2684 234
(9, 28, 35, 16; 70) 292 232 60
(9, 28, 35, 16; 71) 4 2 2
(9, 29, 36, 16; 68) 9767 9394 373
(9, 29, 36, 16; 69) 10885 9252 1633
(9, 29, 36, 16; 70) 2267 1401 866
(9, 29, 36, 16; 71) 54 10 44
(9, 30, 37, 16; 69) 4369 3332 1037
(9, 30, 37, 16; 70) 1116 476 640
(9, 26, 34, 17; 68) 7 7 0
(9, 27, 35, 17; 69) 153 153 0
(9, 27, 35, 17; 70) 115 115 0
(9, 28, 36, 17; 70) 1635 1635 0
(9, 28, 36, 17; 71) 1886 1875 11
(9, 28, 36, 17; 72) 536 519 17
(9, 28, 36, 17; 73) 20 18 2
(9, 29, 37, 17; 71) 7560 7445 115
(9, 29, 37, 17; 72) 9095 8500 595
(9, 29, 37, 17; 73) 2540 2054 486
(9, 29, 37, 17; 74) 150 91 59
(9, 30, 38, 17; 72) 11070 9780 1290
(9, 30, 38, 17; 73) 7007 4805 2202
(9, 30, 38, 17; 74) 568 178 390
(9, 31, 39, 17; 73) 1528 832 696

flag f-vector 3
-s

p
h
e
re

s

4
-p

o
ly

to
p
e
s

n
o
n
-r

e
a
li
z
a
b
le

(9, 27, 36, 18; 72) 23 23 0
(9, 28, 37, 18; 73) 355 355 0
(9, 28, 37, 18; 74) 241 241 0
(9, 29, 38, 18; 74) 3144 3130 14
(9, 29, 38, 18; 75) 2893 2815 78
(9, 29, 38, 18; 76) 624 565 59
(9, 29, 38, 18; 77) 10 9 1
(9, 30, 39, 18; 75) 10603 10059 544
(9, 30, 39, 18; 76) 8925 7477 1448
(9, 30, 39, 18; 77) 1491 938 553
(9, 30, 39, 18; 78) 30 8 22
(9, 31, 40, 18; 76) 7996 5923 2073
(9, 31, 40, 18; 77) 2158 949 1209
(9, 28, 38, 19; 76) 45 45 0
(9, 29, 39, 19; 77) 697 697 0
(9, 29, 39, 19; 78) 364 360 4
(9, 30, 40, 19; 78) 4908 4797 111
(9, 30, 40, 19; 79) 3603 3331 272
(9, 30, 40, 19; 80) 557 447 110
(9, 30, 40, 19; 81) 5 3 2
(9, 31, 41, 19; 79) 11005 9505 1500
(9, 31, 41, 19; 80) 5791 3910 1881
(9, 31, 41, 19; 81) 406 144 262
(9, 32, 42, 19; 80) 2835 1502 1333
(9, 29, 40, 20; 80) 84 84 0
(9, 30, 41, 20; 81) 1111 1103 8
(9, 30, 41, 20; 82) 490 471 19
(9, 31, 42, 20; 82) 6145 5753 392
(9, 31, 42, 20; 83) 3432 2835 597
(9, 31, 42, 20; 84) 328 205 123
(9, 32, 43, 20; 83) 7617 5458 2159
(9, 32, 43, 20; 84) 1882 838 1044
(9, 30, 42, 21; 84) 128 128 0
(9, 31, 43, 21; 85) 1558 1509 49
(9, 31, 43, 21; 86) 556 507 49
(9, 32, 44, 21; 86) 5986 5057 929
(9, 32, 44, 21; 87) 2189 1436 753
(9, 32, 44, 21; 88) 106 43 63
(9, 33, 45, 21; 87) 2708 1389 1319
(9, 31, 44, 22; 88) 175 172 3
(9, 32, 45, 22; 89) 1781 1649 132
(9, 32, 45, 22; 90) 517 415 102
(9, 33, 46, 22; 90) 3974 2742 1232
(9, 33, 46, 22; 91) 734 328 406
(9, 32, 46, 23; 92) 223 212 11
(9, 33, 47, 23; 93) 1657 1362 295
(9, 33, 47, 23; 94) 319 201 118
(9, 34, 48, 23; 94) 1405 693 712
(9, 33, 48, 24; 96) 231 209 22
(9, 34, 49, 24; 97) 1047 689 358
(9, 34, 49, 24; 98) 112 48 64
(9, 34, 50, 25; 100) 209 163 46
(9, 35, 51, 25; 101) 358 168 190
(9, 35, 52, 26; 104) 121 76 45
(9, 36, 54, 27; 108) 50 23 27

Combinatorial 3-spheres and 4-polytopes with 9 vertices, grouped by flag f -vector (continued).
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