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Abstract

We study a sequence transformation pipeline that maps certain sequences with

rational generating functions to permutation-based sequence families of combinatorial

significance. Many of the number triangles we encounter can be related to simplicial

objects such as the associahedron and the permutahedron. The linkages between these

objects is facilitated by the use of the previously introduced T transform.

1 Introduction

In this note, we shall define a transformation pipeline beginning with certain sequences pos-
sessing a simple ordinary generating function, that combines the inverse Sumudu transform
[9, 10, 34] (or inverse Laplace Borel transfom) with the reversion of exponential generating
functions. Previously, we have studied the invertible T transform, that uses inversion, the
Sumudu transform and reversion, beginning with an exponential generating function [2].

The sequences and the number triangles that we shall encounter will be referenced, where
known, by their Annnnnn number of the On-Line Encyclopedia of Integer Sequences [29, 30].
The comments and references to be found under the Annnnnn numbers of these sequences are
an invaluable aid to extending the breadth of this note. A particular theme to be gleaned
in reference to many of the sequences and triangles in this note is their association with
objects such as the f -vectors and the h-vectors of simplicial objects such as the associahedra,
permutohedra and the stellahedra [12].

We adopt a number of conventions. All number triangles encountered are infinite in
extent (downwards and to the right). We only exhibit short truncations of these. On
occasion, we use the language of Riordan arrays [4, 27, 28]. The notation (g, f) signifies
an ordinary Riordan array, while [g, f ] denotes an exponential Riordan array. Many of the
sequences (including polynomial sequences) in this note are examples of moment sequences
[3, 5, 6] associated to families of orthogonal polynomials [15, 22, 32]. Many have generating
functions expressible in continued fraction form [8, 33]. The notation

J (a, b, c, . . . ;α, β, γ, . . .)
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signifies a Jacobi-type continued fraction

1

1− ax−
αx2

1− bx−
βx2

1− cx−
γx2

1− · · ·

.

Similarly, the notation
S(a, b, c, . . . ;α, β, γ, . . .)

signifies a Stieltjes-type continued fraction

1

1−
ax

1−
αx

1−
bx

1−
βx

1− · · ·

.

This non-conventional notation will be seen to be useful in the sequel for the patterns that
will become apparent.

The Deléham notation
[r0, r1, r2, . . .] ∆ [s0, s1, s2, . . .]

signifies the number triangle whose bi-variate generating function is given by

1

1−
r0x+ s0xy

1−
r1x+ s1xy

1−
r2x+ s2xy

1− · · ·

.

The reversal of the triangle (going from Tn,k to Tn,n−k) is then given by

[s0, s1, s2, . . .] ∆ [r0, r1, r2, . . .].

In addition, we use the notation

[r0, r1, r2, . . .] ∆
(1) [s0, s1, s2, . . .]

to signify the triangle with generating function

1

1− (r0x+ s0xy)−
r1x+ s1xy

1−
r2x+ s2xy

1− · · ·

.
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If f(x) is a generating function with f(0) 6= 0, then by its reversion we will mean

1

x
Rev(xf(x)).

Operationally, we solve the equation

uf(u) = x

and take u(x)/x for the solution that satisfies u(0) = 0.
We use the notation

c(x) =
1−

√
1− 4x

2x

to denote the generating function of the Catalan numbers Cn = 1
n+1

(

2n
n

)

A000108. Thus c(x)

is the reversion of 1− x in the sense above. Also in this sense, the reversion of 1
1+(r+1)x+rx2

is 1
1−(r+1)x

c
(

rx2

(1−(r+1)x)2

)

. Looking at the number triangles that these generating functions

expand to, we can say that the Narayana triangle N3, which begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 20 10 1 0 0
1 15 50 50 15 1 0
1 21 105 175 105 21 1





















,

is the reversion of the triangle that begins





















1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 1 1 0 0 0 0
−1 −1 −1 −1 0 0 0
1 1 1 1 1 0 0
−1 −1 −1 −1 −1 −1 0
1 1 1 1 1 1 1





















.

The ordinary generating functions g(x) =
∑

n=0 gnx
n and the exponential generating

functions f(x) =
∑

n=0 fn
xn

n!
that are used in this note depend on the coefficients gn and fn

only. Thus x is a “dummy variable”. We variously use x, z, t for this dummy variable in the
note. The variable r is used as a parameter, but also as such a dummy variable in bi-variate
expressions.

The Stirling numbers of the second kind, elements of the exponential Riordan array
[1, ex − 1] A048993, will be denoted by S(n, k) in this note. We have

S(n, k) =
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn.
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2 Preliminaries: From Narayana to Euler

There are three Narayana triangles in common usage. In terms of their general terms, these
are characterised as follows.

N1(n, k) =
1

k + 1

(

n + 1

k

)(

n

k

)

.

This triangle begins




















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 20 10 1 0 0
1 15 50 50 15 1 0





















.

N2(n, k) =
1

n− k + 1

(

n− 1

n− k

)(

n

k

)

.

This triangle begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 1 0 0 0
0 1 6 6 1 0 0
0 1 10 20 10 1 0
0 1 15 50 50 15 1





















.

Finally, we have

N3(n, k) =
1

k + 1

(

n + 1

k

)(

n

k

)

.

This triangle begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 20 10 1 0 0
1 15 50 50 15 1 0
1 21 105 175 105 21 1





















.

We have

Triangle A-number Generating function Reversion of

N1 A131198 1
1+(r−1)x

c
(

rx
(1+(r−1)x)2

)

1−rx
1−(r−1)x

N2 A090181 1
1−(r−1)x

c
(

x
(1−(r−1)x)2

)

1−x
1+(r−1)x

N3 A001263 1
1−(r+1)x

c
(

rx2

(1−(r+1)x)2

)

1
1+(r+1)x+rx2

4
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Expressing their (ordinary) generating functions as continued fractions, we have the follow-
ing.

Type N1 N2 N3

Jacobi J (1, r + 1, r + 1, . . . ; r, r, r, . . .) J (r, r + 1, r + 1, . . . ; r, r, r, . . .) J (r + 1, r + 1, r + 1, . . . ; r, r, r, . . .)
Stieltjes S(1, 1, 1, . . . ; r, r, r . . .) S(r, r, r, . . . ; 1, 1, 1, . . . ) −−−

These three triangles can be mapped to the three Eulerian triangles essentially by taking the
logarithmic derivative of the inverse Sumudu (or Laplace Borel) transform of the reversion of
their generating functions. The three Eulerian triangles E1, E2 and E3 can be characterized
by their bivariate generating functions as follows.

Triangle Generating function A-number
E1

1−r
ert−ret

A173018

E2
(1−r)ert

ert−ret
A123125

E3
et(r+1)(r−1)2

(ert−ret)2
A008292

For the triangle N1, we start with 1−rx
1−(r−1)x

. We then have the following.

1. The inverse Sumudu transform of 1−rx
1−(r−1)x

is r−et(r−1)

r−1
.

2. The logarithmic derivative of this result is (r−1)et(r−1)

r−et(r−1) .

Then the negative of this exponential generating function, or (1−r)et(r−1)

r−et(r−1) , expands to give the
Eulerian triangle E2





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 4 1 0 0 0
0 1 11 11 1 0 0
0 1 26 66 26 1 0
0 1 57 302 302 57 1





















.

For the triangle N2, we start with the generating function 1−x
1−(1−r)x

. We then have the
following.

1. The inverse Sumudu transform of 1−x
1−(1−r)x

is ret(1−r)−1
r−1

.

2. The logarithmic derivative of this result is r(r−1)

et(r−1)−r
.

Dividing by r, we get the exponential generating function r−1
et(r−1)−r

which expands to give the
Eulerian triangle E1





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 11 11 1 0 0 0
1 26 66 26 1 0 0
1 57 302 302 57 1 0





















.

Finally, we have the following.
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1. The inverse Sumudu transform of 1
1+(r+1)x+rx2 is re−rt−e−t

r−1
.

2. The logarithmic derivative of this result is −1 + et(r−1)
ert−ret

.

Then
1

r

(

1 +

(

−1 +
et(r − 1)

ert − ret

))

=
et(1− r)

ert − ret

expands to give the Eulerian triangle E1.





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 11 11 1 0 0 0
1 26 66 26 1 0 0
1 57 302 302 57 1 0





















.

Alternatively,

−1

r

d

dt

(

−1 +
et(r − 1)

ert − ret

)

=
et(r+1)(r − 1)2

(ert − ret)2

expands to given the Eulerian triangle E3 that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 11 11 1 0 0 0
1 26 66 26 1 0 0
1 57 302 302 57 1 0
1 120 1191 2416 1191 120 1





















.

We have the following table of continued fraction generating functions for the Eulerian
triangles.

Type E1 E2 E3

Jacobi J (1, r + 2, 2r + 3, . . . ; r, 4r, 9r, . . .) J (r, 2r + 1, 3r + 2, . . . ; r, 4r, 9r, . . .) J (r + 1, 2(r + 1), 3(r + 1), . . . ; 2r, 6r, 12r, . . .)
Stieltjes S(1, 2, 3, . . . ; r, 2r, 3r . . .) S(r, 2r, 3r, . . . ; 1, 2, 3, . . . ) −−−

At this stage we can invoke the T transform [2] to map E1 to N1 and to map E2 to N2.
These relationships can also be seen clearly in terms of the Deléham notation.

N1 [1, 0, 1, 0, 1, 0, . . .] ∆ [0, 1, 0, 1, 0, 1, 0, . . .]
N2 [0, 1, 0, 1, 0, . . .] ∆ [1, 0, 1, 0, . . .]

N3 [0, 1, 0, 1, 0, . . .] ∆(1) [1, 0, 1, 0, 1, 0, . . .]
E1 [1, 0, 2, 0, 3, 0, . . .] ∆ [0, 1, 0, 2, 0, 3, 0, . . .]
E2 [0, 1, 0, 2, 0, 3, 0, . . .] ∆ [1, 0, 2, 0, 3, 0, . . .]

E3 [0, 1, 0, 2, 0, . . .] ∆(1) [1, 0, 2, 0, 3, 0, . . .]
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Thus for instance the ordinary generating function of E3 is given by

1

1− xy −
x

1−
2xy

1−
2x

1−
3xy

1− · · ·

.

Note that the image of the symmetric Narayana triangle N3 by T −1 is the triangle with
generating function

J (r + 1, 2(r + 1), 3(r + 1), . . . ; r, 4r, 9r, . . .).

This is A046802, which begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 7 7 1 0 0 0
1 15 33 15 1 0 0
1 31 131 131 31 1 0
1 63 473 883 473 63 1





















.

The row polynomials of this triangle are the h-polynomials associated to the stellahedra.
Multiplying this triangle on the right by the binomial triangle B =

((

n

k

))

gives us the
triangle A248727, which begins





















1 0 0 0 0 0 0
2 1 0 0 0 0 0
5 5 1 0 0 0 0
16 24 10 1 0 0 0
65 130 84 19 1 0 0
326 815 720 265 36 1 0
1957 5871 6605 3425 803 69 1





















.

Its rows give the f -polynomials for the stellahedra [12].

3 Étude I: An introductory example

We introduce the transformation pipeline by way of a simple example. The rational gener-
ating function that we work with in this section is

g(x) =
1

1− x2
.
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This expands to give the sequence

1, 0, 1, 0, 1, 0, 1, 0, . . . .

Regarded in the form
1

(1− x)(1 + x)
,

its expansion is seen to give the partial sums of the sequence

1,−1, 1,−1, 1,−1, 1,−1, . . . .

The INVERT(−1) transform of g(x) is

g(x)

1− xg(x)
=

1

1− x− x2

which expands to give the Fibonacci numbers A000045

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Similarly, the INVERT(1) transform of g(x) is given by

g(x)

1 + g(x)
=

1

1 + x− x2
,

which expands to give the signed Fibonacci numbers

1,−1, 2,−3, 5,−8, 13,−21, 34,−55, 89, . . . .

We now wish to operate on the generating function g(x) as follows.

1. Take the inverse Sumudu transform of g(x) to get g̃(t) (that is, we get the corresponding
exponential generating function)

2. Take the logarithmic derivative of g̃(t) = g̃′(t)
g̃(t)

:= h(t)

3. Form 1−h(t) and get
∫ z

0
(1−h(t)) dt (thus pre-pending a 0 to the expansion of 1−h(t)).

4. Get the derivative of the reversion of this last result.

We shall refer to the application of this sequence of operations as the “transformation
pipeline” P. Note that we have chosen the sample generating function 1

1−x2 to ensure that
all these steps make sense in this case, as we shall now see.

Proposition 1. The image of the generating function g(x) = 1
1−x2 under the transformation

pipeline is

P
(

1

1− x2

)

=
1

2− ex
,

the generating function of the Fubini numbers

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, . . . A000670

which enumerate ordered partitions.
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Proof. The proof consists of carrying out the steps of the pipeline.

1. The inverse Sumudu transform of g(x) = 1
1−x2 is g̃(t) = cosh(t)

2. The logarithmic derivative of g̃(t) is tanh(t).

3. Calculate
∫ z

0
(1− tanh(t)) dt = 2z − ln

(

e2z

2
+ 1

2

)

4. Solve 2z − ln
(

e2z

2
+ 1

2

)

= x for z to get 1
2
ln (2e−x − 1)

5. Taking the derivative of this last expression gives us 1
2−ex

.

A natural question that arises is whether we can extend this to the parameterized gen-
erating function 1

1−rx2 . Unfortunately, this is not so easy. Taking the case of 1
1−2x2 , we find

that we have

1

1− 2x2
→ cosh(

√
2t) →

√
2 tanh(

√
2t) → (1 +

√
2)z − ln

(

e2
√
2z

2
+

1

2

)

.

Unfortunately, the reversion of the last power series is non-elementary. We note that numer-
ically, the expansion of the derivative of the reversion begins

1, 2, 12, 112, 1440, 23648, 473088, 11164288, 303648000, 9352781312, . . . .

A significant difference between this sequence and that of the Fubini numbers now emerges.
The Fubini numbers admit of a continued fraction ordinary generating function, with integer
coefficients. In effect, this generating function is given by

1

1− x−
2x2

1− 4x−
8x2

1− 7x−
18x2

1− 10x−
32x2

1− 13x− · · ·

,

or equivalently
1

1−
x

1−
2x

1−
2x

1−
4x

1−
3x

1−
6x

1− · · ·

.
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We use the shorthand
J (1, 4, 7, 10, . . . ; 2, 8, 18, 32, . . .)

and
S(1, 2, 2, 4, 3, 6, 4, 8, 5, . . .) = S(1, 2, 3, 4, . . . ; 2, 4, 6, 8, . . .),

for these continued fractions, where J stands for “Jacobi”, and S stands for “Stieltjes”.
We now note that the sequence

1, 2, 12, 112, 1440, 23648, 473088, 11164288, 303648000, 9352781312, . . .

does not possess an ordinary generating function expressible in terms of a continued fraction
with integer coefficients.

Example 2. We consider the sequence that begins

1, 0, 2, 0, 2, 0, 2, 0, 2, 0, . . .

with generating function

g(x) =
1 + x2

1− x2
.

We find the following pipeline.

1 + x2

1− x2
→ 2 cosh(t)− 1 → 2 sinh(t)

2 cosh(t)− 1
→ 2z − ln

(

22z − ez + 1
)

.

Reverting this last expression and taking the derivative, we find that under the transforma-
tion pipeline,

1 + x2

1− x2
→ 2

4− 3ex +
√

ex(4− 3ex)
,

with the later exponential generating function expanding to

1, 2, 12, 110, 1380, 22022, 426972, 9747950, 256176660, . . . .

This suggests reversing the pipeline for sequences with generating functions of the form

2

(r + 1)− reax +
√

eax((r + 1)− rex)
,

for suitable values of a and x. A simple case that presents itself is a = 4, r = 0. Then we
get

2

1 +
√

e4x(1)
=

2

1 + e2x
=

e−z

cosh(z)
= e−z sech(z),

which expands to give the sequence that begins

1,−1, 0, 2, 0,−16, 0, 272, 0,−7936, 0, . . . .
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The ordinary generating function of this sequence is

J (−1,−1,−1,−1, . . . ;−1,−4,−9,−25, . . .),

or equivalently

S(−1,−1,−2,−2,−3,−3,−4, . . .) = S(−1,−2,−3, . . . ;−1,−2,−3, . . .).

To begin the reverse pipeline, we form the sequence

0, 1,−1, 0, 2, 0,−16, 0, 272, 0,−7936, 0, . . .

with exponential generating function

∫ x

0

e−z

cosh(z)
dz = 2x− ln

(

e2x

2
+

1

2

)

.

We now revert this sequence to get the sequence

0, 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, . . .

of right-shifted Fubini numbers, with generating function −1
2
ln (2e−x − 1).

The logarithmic derivative sequence that we seek now begins

−1,−3,−13,−75,−541,−4683,−47293,−545835,−7087261, . . .

with generating function

− d

dx

1

2− ex
= − ex

(ex − 2)2
.

To reverse the logarithmic derivative we integrate and take the exponential:

∫ z

0

− ex

(ex − 2)2
dx =

ez − 1

ez − 2
→ e

e
z
−1

ez−2 .

This is now the exponential generating function of the pre-image sequence g̃(t). This sequence
begins

1,−1,−2,−5,−13,−12, 379, 6907, 99112, 1378941, 19514571, 284384318, . . . .

It does not have a rational ordinary generating function.
We note that the intermediate sequence

1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, . . .

of once-shifted Fubini numbers with exponential generating function ez

(2−ez)2
has an ordinary

generating function expressible as the continued fraction

J (3, 6, 9, 12, . . . , 3(n+ 1), . . . ; 4, 12, 24, 40, . . . , 2(n+ 1)(n+ 2), . . .).
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We have the following general result.

Proposition 3. Let F (z) be the end of the transformation pipeline g(x) → F (z), that is,
F (x) = P(g(x)). Then

g̃(t) = et−Rev(
∫

t

0
F (z) dz),

and

F (z) =
d

dz
Rev

(
∫ z

0

(1− g̃′(t)

g̃(t)
dt

)

.

Proof. By the pipeline, we have
∫ z

0

(1− g̃′(t)

g̃(t)
dt = z − ln(g̃(z)) = Rev

∫ z

0

F (t) dt.

Thus

ln(g̃(z)) = z − Rev

∫ z

0

F (t) dt.

We shall now generalize the generating function 1
1−x2 to the parameterized generating

function

g(x) =
1 + (r − 1)x

(1− x)(1 + rx)
→ g̃(t) =

e−rt + ret

1 + r
.

This is the bivariate generating function of the triangle that begins
























1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 −1 0 0 0 0
0 1 −1 1 0 0 0
0 1 −1 1 −1 0 0
0 1 −1 1 −1 1 0
0 1 −1 1 −1 1 −1

























,

or
(

1

1− x
, 0 · x

)

−
(

x

1− x
,−x

)

in terms of Riordan arrays.
We note at this juncture that by multiplying this matrix on the right by B =

((

n

k

))

we
obtain the matrix

























1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0
1 2 2 1 0 0 0 0
0 −2 −4 −3 −1 0 0 0
1 3 6 7 4 1 0 0
0 −3 −9 −13 −11 −5 −1 0

























,
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or
(

1

1− x
, 0 · x

)

−
(

x

1− x2
,
−x

1 + x

)

,

which has bivariate generating function 1+rx
(1−x)(1+(r+1)x)

.

The sequence with generating function g(x) = 1+(r−1)x
(1−x)(1+rx)

is the partial sum sequence of
the sequence

1,−1, r,−r2, r3,−r4, r5,−r6, r7,−r8, r9, . . .

with generating function 1+(r−1)x
1+rx

. The inverse binomial transform of 1+rx
(1−x)(1+(r+1)x)

expands
to give the sequence

1,−1, r + 1,−(r + 1)2, (r + 1)3,−(r + 1)4, (r + 1)5,−(r + 1)6, . . . .

The coefficient array of these polynomials is then
























1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
−1 −2 −1 0 0 0 0 0
1 3 3 1 0 0 0 0
−1 −4 −6 −4 −1 0 0 0
1 5 10 10 5 1 0 0
−1 −6 −15 −20 −15 −6 −1 0

























.

The next result shows that the reversion of this triangle is a variant of the Narayana triangle.

Proposition 4. The reversion of the inverse binomial transform of g(x) = 1+(r−1)x
(1−x)(1+rx)

ex-

pands to the signed Narayana triangle that begins
























1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 −3 1 0 0 0 0 0
1 −6 6 −1 0 0 0 0
1 −10 20 −10 1 0 0 0
1 −15 50 −50 15 −1 0 0
1 −21 105 −175 105 −21 1 0

























.

Proof. The inverse binomial transform of g(x) is given by 1+rx
1+(r+1)x

. Solving the equation

u(1 + ru)

1 + (r + 1)u
= x

for u such that u(0) = 0, we find

u(x) =
x

1− (r + 1)x
c

(

−rx

(1− (r + 1)x)2

)

.

Then 1
1−(r+1)x

c
(

−rx
(1−(r+1)x)2

)

expands to give the signed Narayana triangle above.
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After these preliminaries, we can now state the main result of this section.

Proposition 5.

P
(

1 + (r − 1)x

(1− x)(1 + rx)

)

=
1

1 + r(1− ez)
.

Proof. We let F (z) = 1
r+1−rez

. Then
∫ z

0
F (t) dt = 1

r+1
(πi+ z − ln(rez − r − 1)). Then

Rev

∫ z

0

F (t) dt = (r + 1)z − ln

(

1 + erx(r+1)

r + 1

)

.

This gives us

g̃(t) = et−Rev(
∫

t

0 F (z) dz) =
1

r + 1
e−rx(rex(r+1) + 1).

Taking the Sumudu transform of this exponential generating function gives us

g(x) =
1 + (r − 1)x

(1− x)(1 + rx)
.

Proposition 6. We have, for r 6= 0, that

P
(

1 + (r − 1)x

(1− x)(1 + rx)

)

=
1

1 + r(1− ez)

is the generating function of the moment sequence for the family of orthogonal polynomials

whose coefficient array is given by the exponential Riordan array

[

1

1 + rz
, ln

(

1 + (r + 1)z

1 + rz

)]

.

These moments appear as the initial column elements in the inverse array

[

1

1 + r(1− ez)
,

ez − 1

1 + r(1− ez)

]

.

Proof. We let [g, f ] =
[

1
1+r(1−ez)

, ez−1
1+r(1−ez)

]

. We find that

A(z) = f ′(f̄(z)) = (1 + rz)(1 + (r + 1)z),

and

Z(x) =
g′(f̄(z))

g(f̄(z))
= r(1 + (r + 1)z).

Thus the production matrix of [g, f ] is tri-diagonal and hence [g, f ]−1 is the coefficient array
of a family of orthogonal polynomials.
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The production matrix has generating function

ezy(r(1 + (r + 1)z) + y(1 + rz)(1 + (r + 1)z)).

It begins
















r 1 0 0 0 0
r(r + 1) 3r + 1 1 0 0 0

0 4r(r + 1) 5r + 2 1 0 0
0 0 9r(r + 1) 7r + 3 1 0
0 0 0 16r(r + 1) 9r + 4 1
0 0 0 0 25r(r + 1) 11r + 5

















.

Corollary 7. P
(

1+(r−1)x
(1−x)(1+rx)

)

= 1
1+r(1−ez)

is the generating function of the moments for the

family of orthogonal polynomials Pn(x; r) that satisfy the three-term recurrence

Pn(x, r) = (x− (r + (n− 1)(2r + 1)))Pn−1(x; r)− r(r + 1)(n− 1)2Pn−2(x; r),

with P0(x; r) = 1 and P1(x; r) = x− r.

Note that the sequences with exponential generating function 1
r+1−rez

have an ordinary
generating function given by

J (r, 3r + 1, 5r + 2, . . . ; r(r + 1), 4r(r + 1), 9r(r + 1), . . .),

or equivalently

S(r, 2r, 3r, . . . ; r + 1, 2(r + 1), 3(r + 1), . . .) = S(r, r + 1, 2r, 2(r + 1), 3r, 3(r + 1) . . .).

The sequence generated by 1
r+1−rex

is the polynomial sequence that begins

1, r, r(2r+1), r(6r2+6r+1), r(24r3+36r2+14r+1), r(120r4+240r3+150r2+30r+1), . . . ,

with coefficient array an,k = k!S(n, k), where S(n, k) are the Stirling numbers of the second
kind. This is A019538, which begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 6 6 0 0 0
0 1 14 36 24 0 0
0 1 30 150 240 120 0
0 1 62 540 1560 1800 720





















.

This triangle counts the number of set compositions of n with k blocks [25], among other
combinatorial interpretations. Thus we have





















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 −1 0 0 0 0
0 1 −1 1 0 0 0
0 1 −1 1 −1 0 0
0 1 −1 1 −1 1 0





















P−→





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 6 6 0 0 0
0 1 14 36 24 0 0
0 1 30 150 240 120 0
0 1 62 540 1560 1800 720





















.
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There are many important combinatorial applications of this array, which in the Deléham
notation is

[0, 1, 0, 2, 0, 3, 0, 4, 0, 5, . . .] ∆ [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .],

with bivariate generating function

J (r, 3r + 1, 5r + 2, . . . ; r(r + 1), 4r(r + 1), 9r(r + 1), . . .).

For r = 1 . . . 5, this polynomial sequence 1, r, r(2r + 1), . . . evaluates to A000670, A004123,
A032033, A094417, and A094418. They are referred to as generalized ordered Bell numbers.
One should see also A094416, which gathers these sequences into a single array.

We remark that using the T transform, we can associate the sequences with generating
function

J (r, 3r + 1, 5r + 2, . . . ; r(r + 1), 4r(r + 1), 9r(r + 1), . . .)

with those with generating function

J (r, 2r + 1, 2r + 1, . . . ; r(r + 1), r(r + 1), r(r + 1), . . .).

The coefficient array of the polynomial sequence defined by J (r, 2r + 1, 2r + 1, . . . ; r(r +
1), r(r + 1), r(r + 1), . . .) is A086810 (see also A033282), or

[0, 1, 0, 1, 0, 1, . . .] ∆ [1, 1, 1, 1, 1, . . .].

This triangle, which has general element

1

n+ 1

(

n− 1

n− k

)(

n + k

k

)

,

begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 5 5 0 0 0
0 1 9 21 14 0 0
0 1 14 56 84 42 0
0 1 20 120 300 330 132





















.

Thus we have




















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 −1 0 0 0 0
0 1 −1 1 0 0 0
0 1 −1 1 −1 0 0
0 1 −1 1 −1 1 0





















T ◦P−−→





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 5 5 0 0 0
0 1 9 21 14 0 0
0 1 14 56 84 42 0
0 1 20 120 300 330 132





















.

Row n+1 of this triangle is the f -vector of the simplicial complex dual to an associahedron
of type An [21].
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By multiplying the expansion of 1+(r−1)x
(1−x)(1+rx)

on the right by B, we obtain the bivariate

expansion of 1+rx
(1−x)(1+(r+1)x)

. This coefficient array begins

























1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0
1 2 2 1 0 0 0 0
0 −2 −4 −3 −1 0 0 0
1 3 6 7 4 1 0 0
0 −3 −9 −13 −11 −5 −1 0

























.

This can be expressed in terms of Riordan arrays as

(

1

1− x
, 0 · x

)

+

(

−x

1− x2
,

−x

1 + x

)

.

The reversion of this triangle, with generating function 1
1−rx

c
(

−x(r+(r+1)x
(1−rx)2

)

, begins

























1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 3 2 −1 0 0 0 0
1 3 −4 −5 1 0 0 0
1 −3 −14 0 9 −1 0 0
0 −9 −4 35 15 −14 1 0

























.

The ordinary generating function of this triangle is then

J (0,−r,−r,−r, . . . ;−(r + 1),−(r + 1),−(r + 1), . . .).

We can associate it via the T transform with the triangle whose generating function is

J (0,−r,−2r,−3r, . . . ;−(r + 1),−4(r + 1),−9(r + 1), 16(r + 1), . . .).

This begins
























1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
5 10 4 −1 0 0 0 0
0 −18 −36 −17 1 0 0 0

−61 −183 −136 33 46 −1 0 0
0 479 1437 1329 263 −107 1 0

























.
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This has generating function
(r + 2)e(r+1)x

1 + (r + 1)e(r+2)x
.

Multiplying on the right by B−1, we get the triangle with generating function

J (0,−(r − 1),−2(r − 1),−3(r − 1), . . . ;−r,−4r,−9r,−16r, . . .),

which begins
























1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 −1 7 −1 0 0 0 0
0 −1 21 −21 1 0 0 0
0 −1 51 −161 51 −1 0 0
0 −1 113 −813 813 −113 1 0

























.

The general (n, k)-term of this matrix is given by

(−1)k
n
∑

j=0

(

n

j

)

(−1)n−jE1(j, k).

Its has generating function is
(r + 1)erx

1 + re(r+1)x
.

This is a signed version of A271697. We note that if we multiply this now on the left by B,
we get the signed Eulerian triangle

























1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 −4 1 0 0 0 0 0
1 −11 11 −1 0 0 0 0
1 −26 66 −26 1 0 0 0
1 −57 302 −302 57 −1 0 0
1 −120 1191 −2416 1191 −120 1 0

























,

with ordinary generating function

J (1,−(r − 2),−(2r − 3),−(3r − 4), . . . ;−r,−4r,−9r,−16r, . . .),

and exponential generating function 1+r

e−x(r+1)−r
. The image of this under the inverse T trans-
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form is the signed Narayana triangle

























1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 −3 1 0 0 0 0 0
1 −6 6 −1 0 0 0 0
1 −10 20 −10 1 0 0 0
1 −15 50 −50 15 −1 0 0
1 −21 105 −175 105 −21 1 0

























,

with generating function

J (1, 1− r, 1− r, 1− r, . . . ;−r,−r,−r,−r, . . .),

or
1

1− (r + 1)x
c

(

rx

(1− (r + 1)x)2

)

.

This reverts to the generating function

1 + rx

1 + (r + 1)x
,

the inverse binomial transform of g(x).

The inverse Sumudu transform of 1+rx
1+(r+1)x

is r+e−t(r+1)

r+1
. The logarithmic derivative of this

is

− 1 + r

1 + ret(r+1)
,

which expands to give the variant Eulerian triangle that begins

























−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 −4 1 0 0 0 0
0 1 −11 11 −1 0 0 0
0 1 −26 66 −26 1 0 0
0 1 −57 302 −302 57 −1 0
0 1 −120 1191 −2416 1191 −120 1

























.

We have the following.

∫ z

0

1 + r

1 + ret(r+1)
dt = z(r + 1) + ln

(

1 + r

1 + rez(r+1)

)

.

Solving the reversion equation

z(r + 1) + ln

(

1 + r

1 + rez(r+1)

)

= x
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we get

z(x) =
− ln (e−x − r(1− e−x))

1 + r
.

Then

z′(x) =
1

1− r(ex − 1)

is the bivariate generating function of the triangle that begins
























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 1 6 6 0 0 0 0
0 1 14 36 24 0 0 0
0 1 30 150 240 120 0 0
0 1 62 540 1560 1800 720 0
0 1 126 1806 8400 16800 15120 5040

























.

This is the triangle (k!S(n, k)), A019538.

To complete this section, we look at the generating function 1+(r−1)x
1+rx

. The inverse Sumudu

transform gives us g̃(t) = e−rt+r−1
r

, whose logarithmic derivative is − r
1+(r−1)ert

. Taking the
negative of this, we get r

1+(r−1)ert
, the bivariate generating function for the triangle that

begins




















1 0 0 0 0 0 0
1 −1 0 0 0 0 0
2 −3 1 0 0 0 0
6 −12 7 −1 0 0 0
24 −60 50 −15 1 0 0
120 −360 390 −180 31 −1 0
720 −2520 3360 −2100 602 −63 1





















,

which in the Deléham notation is

[1,−1, 2,−2, 3,−3, . . .] ∆ [1, 0, 2, 0, 3, 0, . . .].

This is a signed version of A130850. It has general term

(n− k)!(−1)kS(n+ 1, n− k + 1).

Now
∫ z

0

r

1 + (r − 1)ert
dt = ln (erz(r − 1) + 1) + ln(r) + rz,

and the solution to the reversion equation

ln (erz(r − 1) + 1) + ln(r) + rz = x

is given by
− ln (1− r + re−x)

r
.
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We then have

d

dx

− ln (1− r + re−x)

r
=

e−x

1− r + re−x
=

1

r − (r − 1)ex
.

This is the bivariate generating function of the triangle that begins





















1 0 0 0 0 0 0
−1 1 0 0 0 0 0
1 −3 2 0 0 0 0
−1 7 −12 6 0 0 0
1 −15 50 −60 24 0 0
−1 31 −180 390 −360 120 0
1 −63 602 −2100 3360 −2520 720





















,

or
[1, 0, 2, 0, 3, 0, . . .] ∆ [1,−1, 2,−2, 3,−3, . . .].

This is a signed version of A028246, which gives the number of k-dimensional faces in the
first barycentric subdivision of the standard n-dimensional simplex.

We then have



















1 0 0 0 0 0 0
−1 1 0 0 0 0 0
1 −3 2 0 0 0 0
−1 7 −12 6 0 0 0
1 −15 50 −60 24 0 0
−1 31 −180 390 −360 120 0
1 −63 602 −2100 3360 −2520 720



















·B =



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 6 6 0 0 0
0 1 14 36 24 0 0
0 1 30 150 240 120 0
0 1 62 540 1560 1800 720



















,

where B is the binomial matrix
((

n

k

))

. The action of B in this case is on the second
parameter r with the effect r → r + 1. Thus we have

1

r − (r − 1)ex
→ 1

1 + r(1− ex)
.

The generating function (1 − x)g(x) = 1+(r−1)x
1+rx

is the bivariate generating function of the
triangle that begins





















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0





















.

We calculate its reversion, that is, the coefficient array whose bivariate generating function
is

1

x
Rev

1 + (r − 1)x

1 + rx
=

1

1− rx
c

(

(1− r)x

(1− rx)2

)

.
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This gives us the triangle that begins

















1 0 0 0 0 0
1 0 0 0 0 0
2 −1 0 0 0 0
5 −5 1 0 0 0
14 −21 9 −1 0 0
42 −84 56 −14 1 0

















.

The generating function for this triangle is then

J (1, 2− r, 2− r, 2− r, . . . ; 1− r, 1− r, 1− r, . . .),

or
[1,−1, 1,−1, . . .] ∆ [0, 1, 0, 1, 0, . . .].

It is a signed version of A126216. Under the T −1 map this is transformed into

J (1, 3− r, 5− 2r, 7− 3r, . . . ; 1− r, 4(1− r), 9(1− r), . . .).

This expands to give the triangle that begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
2 −1 0 0 0 0 0
6 −6 1 0 0 0 0
24 −36 14 −1 0 0 0
120 −240 150 −30 1 0 0
720 −1800 1560 −540 62 −1 0





















.

The general term of this array is (n−k)!(−1)kS(n, n−k). This is a signed version of A090582
or

[1, 1, 2, 2, 3, 3, . . .] ∆ [0, 1, 0, 2, 0, 3, 0, . . .],

with generating function
r

e−rx + r − 1
.

We can operate on each of these “on the right” by the binomial matrix to get an equivalent
sequence of related matrices. Effectively, we change r to r + 1 in each of the generating
functions. Thus we start with 1+rx

1+(r+1)x
, which expands to the triangle



















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0



















·B =



















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 1 0 0 0 0 0
−1 −2 −1 0 0 0 0
1 3 3 1 0 0 0
−1 −4 −6 −4 −1 0 0
1 5 10 10 5 1 0



















.
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We now have the reversion of triangles


















1 0 0 0 0 0 0
−1 0 0 0 0 0 0
1 1 0 0 0 0 0
−1 −2 −1 0 0 0 0
1 3 3 1 0 0 0
−1 −4 −6 −4 −1 0 0
1 5 10 10 5 1 0



















revert−−−−→



















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −3 1 0 0 0 0
1 −6 6 −1 0 0 0
1 −10 20 −10 1 0 0
1 −15 50 −50 15 −1 0



















,

where we have


















1 0 0 0 0 0 0
1 0 0 0 0 0 0
2 −1 0 0 0 0 0
5 −5 1 0 0 0 0
14 −21 9 −1 0 0 0
42 −84 56 −14 1 0 0
132 −330 300 −120 20 −1 0



















·B =



















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −3 1 0 0 0 0
1 −6 6 −1 0 0 0
1 −10 20 −10 1 0 0
1 −15 50 −50 15 −1 0



















.

This is a signed version of the Narayana triangle. The generating function of this triangle
is

J (1, 1− r, 1− r, 1− r, . . . ;−r,−r,−r, . . .).

Under the T −1 transform, this is mapped to

J (1, 2− r, 3− 2r, 4− 3r, . . . ;−r,−4r,−9r, . . .),

which expands to give the signed Eulerian triangle


















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −4 1 0 0 0 0
1 −11 11 −1 0 0 0
1 −26 66 −26 1 0 0
1 −57 302 −302 57 −1 0



















=



















1 0 0 0 0 0 0
1 0 0 0 0 0 0
2 −1 0 0 0 0 0
6 −6 1 0 0 0 0
24 −36 14 −1 0 0 0
120 −240 150 −30 1 0 0
720 −1800 1560 −540 62 −1 0



















·B.

This then has the generating function

r + 1

e−(r+1)x + r
.

The following observation is appropriate. If we reverse the two coefficient arrays


















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 6 6 0 0 0
0 1 14 36 24 0 0
0 1 30 150 240 120 0
0 1 62 540 1560 1800 720



















T
−1

−−−→



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 5 5 0 0 0
0 1 9 21 14 0 0
0 1 14 56 84 42 0
0 1 20 120 300 330 132



















,

and multiply each on the right by the inverse of the binomial matrix, we obtain respectively
the Euler triangle E1 and the Narayana triangle N1. As shown in [2], the two triangles E1

and N1 are paired triangles under the T transform.


















1 0 0 0 0 0 0
1 0 0 0 0 0 0
2 1 0 0 0 0 0
6 6 1 0 0 0 0
24 36 14 1 0 0 0
120 240 150 30 1 0 0
720 1800 1560 540 62 1 0



















·B−1 =



















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 11 11 1 0 0 0
1 26 66 26 1 0 0
1 57 302 302 57 1 0



















.
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1 0 0 0 0 0 0
1 0 0 0 0 0 0
2 1 0 0 0 0 0
5 5 1 0 0 0 0
14 21 9 1 0 0 0
42 84 56 14 1 0 0
132 330 300 120 20 1 0



















·B−1 =



















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 20 10 1 0 0
1 15 50 50 15 1 0



















.

Example 8. In this example, we review how, starting from a number triangle with a simple
rational bivariate generating function, we can associate to it, in a reversible manner, other
triangles. By the partial P transform, we shall understand the two steps: taking the inverse
Sumudu transform, followed by taking the logarithmic derivative of this. For this example
we shall start with the generating function G(x) = 1−(r+1)x

(1−x)(1−rx)
= 1−(r+1)x

1−(r+1)x+rx2 . This expands
to give the triangle that begins





















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 −1 0 0 0 0
0 −1 −1 −1 0 0 0
0 −1 −1 −1 −1 0 0
0 −1 −1 −1 −1 −1 0





















.

The reversion of G(x) is 1
1+(r+1)x

c
(

x(1+r+rx)
(1+(r+1)x)2

)

which expands to give the triangle that begins





















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 4 1 0 0 0
0 1 8 8 1 0 0
0 1 13 29 13 1 0





















.

This is essentially A100754, [1]. Its row sums are the Fine numbers A00957 [19]. Its gener-
ating function may be represented as the continued fraction

J (0, r + 1, r + 1, . . . ; r, r, r, . . .).

We now have

Proposition 9.

P
(

1− (r + 1)x

(1− x)(1− rx)

)

=
1

1 + r(ex − 1)
.

Proof. The inverse Sumudu transform of G(x) is G̃(t) = ret−ert

r−1
. The logarithmic derivative

of G̃(t) is r(et−ert)
ret−ert

. We now form

1− r(et − ert)

ret − ert
=

ert(r − 1)

ret − ert
,
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which is the generating function of the Euler triangle E2





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 4 1 0 0 0
0 1 11 11 1 0 0
0 1 26 66 26 1 0
0 1 57 302 302 57 1





















.

We then solve the equation
∫ z

0

ert(r − 1)

ret − ert
dt = x

to get

z(x) =
ln(r − e−x(r − 1))

r − 1
.

Finally, we differentiate this last result to get 1
1+r(ex−1)

.

The generating function P
(

1−(r+1)x
(1−x)(1−rx)

)

= 1
1+r(ex−1)

expands to give the triangle that

begins




















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 2 0 0 0 0
0 −1 6 −6 0 0 0
0 −1 14 −36 24 0 0
0 −1 30 −150 240 −120 0
0 −1 62 −540 1560 −1800 720





















.

The ordinary generating function for this triangle takes the form of the continued fraction

J (−r, 1− 3r, 2− 5r, 3− 7r, . . . ; r(r − 1), 4r(r− 1), 16r(r− 1), . . .).

Now the T transform maps this triangle to the triangle given by

J (−r, 1− 2r, 1− 2r, 1− 2r, . . . ; r(r − 1), r(r − 1), r(r− 1), . . .).

This triangle begins





















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 2 0 0 0 0
0 −1 5 −5 0 0 0
0 −1 9 −21 14 0 0
0 −1 14 −56 84 −42 0
0 −1 20 −120 300 −330 132





















.
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Thus we have associated the initial triangle




















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 −1 0 0 0 0
0 −1 −1 −1 0 0 0
0 −1 −1 −1 −1 0 0
0 −1 −1 −1 −1 −1 0





















in a number of reversible ways (reversion, the P transform, the T ◦ P transform, and a
partial P transform) to four other triangles, each with rich combinatorial interpretations.

Example 10. For this example, our starting point is g(x) = 1+(r−1)x
(1−x)(1+rx)

= 1+(r−1)x
1+(r−1)x−rx2 . This

expands to give

1, 0, r, r(1− r), r(r2 − r + 1), r(1− r)(r2 + 1), r(r4 − r3 + r2 − r + 1), . . . ,

with coefficient array that begins




















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 −1 0 0 0 0
0 1 −1 1 0 0 0
0 1 −1 1 −1 0 0
0 1 −1 1 −1 1 0





















.

The reversion of this triangle, with generating function

1

1− x(r − 1)
c

(

x(1− r(1 + x))

(1− x(r − 1))2

)

,

begins




















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 1 0 0 0 0
0 −1 4 −1 0 0 0
0 −1 8 −8 1 0 0
0 −1 13 −29 13 −1 0





















.

Invoking the P pipeline, we have

1. g̃(t) = e−rt+ret

r+1
.

2. The logarithmic derivative of g̃(t) is 1− r+1
1+ret(r+1) .

3. We have 1− (1− r+1
1+ret(r+1) ) =

r+1
1+ret(r+1) .
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4. We have
∫ z

0
r+1

1+ret(r+1) dt = z(r + 1) + ln(r + 1)− ln
(

1 + rez(r+1)
)

.

5. Solving z(r+1)+ln(r+1)− ln
(

1 + rez(r+1)
)

= x and differentiating gives us 1
1+r(1−ex)

.

Thus we have

Proposition 11.

P
(

1 + (r − 1)x

1 + (r − 1)x− rx2

)

=
1

1 + r(1− ex)
.

The generating function 1
1+r(1−ex)

expands to give





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 6 6 0 0 0
0 1 14 36 24 0 0
0 1 30 150 240 120 0
0 1 62 540 1560 1800 720





















.

Note that at the intermediate stage, the generating function r+1
1+ret(r+1) expands to give the

signed Eulerian triangle that begins





















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 1 0 0 0 0
0 −1 4 −1 0 0 0
0 −1 11 −11 1 0 0
0 −1 26 −66 26 −1 0
0 −1 57 −302 302 −57 1





















.

We note now that letting r → r + 1 brings us from 1+(r−1)
1+(r−1)x−rx2 to 1+rx

1+rx−(r+1)x2 . Then

P
(

1 + rx

1 + rx− (r + 1)x2

)

=
1

1 + (r + 1)(1− ex)
.

This last generating function expands to give





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 5 2 0 0 0 0
13 31 24 6 0 0 0
75 233 266 132 24 0 0
541 2071 3120 2310 840 120 0
4683 21305 39842 39180 21360 6120 720





















,

27



which is




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 6 6 0 0 0
0 1 14 36 24 0 0
0 1 30 150 240 120 0
0 1 62 540 1560 1800 720





















·B.

Note that again we see that P
(

1
1−x2

)

= 1
2−ex

by letting r = 0. Setting r = 1 shows that

P
(

1+x
1+x−2x2

)

= 1
3−2x2 . Thus the sequence A151575 which begins

1, 0, 2,−2, 6,−10, 22,−42, 86,−170, 342, . . .

is mapped by P to the sequence A004123 which begins

1, 2, 10, 74, 730, 9002, 133210, . . . .

The sequence A151575 is a signed version of A078008, which counts closed walks starting and
ending at the same vertex of a triangle. The sequence A004123 is associated to generalizations
of the permutahedron [26].

Example 12. The examples of g(x) that we have worked with so far have expanded to
sequences that begin 1, 0, . . ., and the pipeline P has been designed to work with this in
mind. In the following example, our initial g(x) does not follow this pattern, so we modify
the pipeline appropriately.

We take g(x) = 1−(r+1)x
1−x

. This expands to give the sequence

1,−r,−r,−r,−r,−r,−r, . . . .

The reversion of g(x) is given by

1

1 + x
c

(

(r + 1)x

(1 + x)2

)

.

This expands to give the number triangle that begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 5 5 0 0 0
0 1 9 21 14 0 0
0 1 14 56 84 42 0
0 1 20 120 300 330 132





















.

As we have seen, row n+ 1 of this triangle is the f -vector of the simplicial complex dual to
an associahedron of type An.
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Taking the inverse Sumudu transform of g(x), we get the exponential generating function
g̃(t) = 1 + r(1− et), whose logarithmic derivative is

ret

ret − r − 1
.

We now form

1−
∫ z

0

ret

ret − r − 1
dt = 1 + iπ − ln (r(ex − 1)− 1) .

This expands to give the number triangle that begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 2 0 0 0
0 1 7 12 6 0 0
0 1 15 50 60 24 0
0 1 31 180 390 360 120





















.

This is an extended form of A028246, whose (n, k)-element gives the number of k-dimensional
faces in the first barycentric subdivision of the standard n-dimensional simplex [11]. The
reversion of this triangle begins

























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 −1 2 0 0 0 0 0
0 −1 7 −7 0 0 0 0
0 −1 18 −52 34 0 0 0
0 −1 41 −253 437 −213 0 0
0 −1 88 −1020 3453 −4203 1630 0
0 −1 183 −3707 21670 −49044 45783 −14747

























.

The sequence on the diagonal is an alternating sign version of A074059, which gives the
dimensions of the cohomology ring of the moduli space of n-pointed curves of genus 0 sat-
isfying the associativity equations of physics. If we reverse this triangle and then get the
reversion of the resulting triangle, we get the triangle that begins





















1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
6 12 7 1 0 0 0
24 60 50 15 1 0 0
120 360 390 180 31 1 0





















.

This has generating function

1 + ln

(

r

r + 1− erx

)

.
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Beheading this array gives the array





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
6 12 7 1 0 0 0
24 60 50 15 1 0 0
120 360 390 180 31 1 0
720 2520 3360 2100 602 63 1





















,

which is A130850. This is

[1, 1, 2, 2, 3, 3, . . .] ∆ [1, 0, 2, 0, 3, 0, . . .],

with general term
n−k
∑

i=0

(−1)n−i−k

(

n− k

i

)

(i+ 1)n,

and exponential generating function

r

(r + 1)e−rx − 1
.

Its ordinary generating function is

J (r + 1, 2r + 3, 3r + 5, . . . ; r + 1, 4(r + 1), 9(r + 1), . . .).

The T transform thus maps it to

J (r + 1, r + 2, r + 2, . . . ; r + 1, r + 1, r + 1, . . .),

which expands to give the triangle that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
5 10 6 1 0 0 0
14 35 30 10 1 0 0
42 126 140 70 15 1 0
132 462 630 420 140 21 1





















.

This is A060693, whose (n, k)-element counts Schröder paths of length 2n with k peaks [24].
This is N2 ·B, which is equal to

[1, 1, 1, 1, 1, 1, . . .] ∆ [1, 0, 1, 0, 1, 0, . . .].
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4 Étude II

In this section, we apply the pipeline P defined above to the family of sequences with ordinary
generating function

g(x) =
1− 2x

1− 2x− rx2
= 1− rx2

1− 2x− rx2
=

(

1,
x2

1− 2x

)

· 1

1− rx
.

Thus g(x) = g(x, r) expands to give the sequence

an(r) =

⌊n

2
⌋

∑

k=0

(

n− k − 1

n− 2k

)

2n−2krk,

which begins
1, 0, r, 2r, r2 + 4r, 4r2 + 8r, r3 + 12r2 + 16r, . . .

with coefficient array that begins




















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 2 0 0 0 0 0
0 4 1 0 0 0 0
0 8 4 0 0 0 0
0 16 12 1 0 0 0





















.

For r = 0 . . . 3 these sequences are, respectively

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ,

1, 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, . . . ,

1, 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, . . .

1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, . . . .

The second sequence is a variant of the Pell numbers, while the last sequence A054878 counts
the number of closed walks of length n along the edges of a tetrahedron based at a vertex.
The inverse binomial transform of an(r) has generating function 1−x

1−(r+1)x2 and begins

1,−1, r+ 1,−(r+ 1), (r+ 1)2,−(r+ 1)2, (r+ 1)3,−(r+ 1)3, (r+ 1)4,−(r+ 1)4, (r+ 1)5, . . . .

The INVERT(−1) transform of g(x), that is, g(x)
1−xg(x)

, expands to give the sequence that
begins

1, 1, r+1, 4r+1, r2+11r+1, 7r2+26r+1, r3+30r2+57r+1, 10r3+102r2+120r+1, . . . .

For r = 0 . . . 3 we get the sequence

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . ,
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1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, . . . , A001519

1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, . . . , A133494

and
1, 1, 4, 13, 43, 142, 469, 1549, 5116, 16897, 55807, . . . , A003688

For instance, for r = 1 we obtain the sequence A001519, essentially a bisection of the
Fibonacci numbers. The reversion of the above triangle has generating function

1

1 + 2x
c

(

x(2− rx)

(1 + 2x)2

)

.

This expands to give the triangle that begins





















1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −2 0 0 0 0 0
0 −4 2 0 0 0 0
0 −8 10 0 0 0 0
0 −16 36 −5 0 0 0





















.

The above generating function is equal to

J (0, 2, 2, 2, . . . ;−r,−r,−r, . . .).

This triangle is a stretched version of the triangle that begins





















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −2 2 0 0 0 0
0 −4 10 −5 0 0 0
0 −8 36 −42 14 0 0
0 −16 112 −224 168 −42 0
0 −32 320 −960 1200 −660 132





















.

This is a signed scaled version of A086810. It has general term

(−1)k2n−k

n+ 1

(

n− 1

n− k

)(

n+ k

k

)

.

Its generating function is given by

S(−r,−r,−r, . . . ; 2− r, 2− r, 2− r, . . .),

or equivalently

J (−r, 2(1− r), 2(1− r), . . . ; r(r − 2), r(r − 2), r(r− 2), . . .).
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Proposition 13. We have

P(g(x)) =
1

√

1 + r(1− e2x)
.

Proof. We calculate

g̃(t) = e
t−Rev

(

∫

t

0
1√

1+r−re2x
dx

)

.

We have

=

∫ t

0

1√
1 + r − re2x

dx =
1√
r + 1

(

ln(
√
−re2t + r + 1−

√
r + 1)− ln(1−

√
r + 1)− t

)

.

We now solve for x = x(t) in

1√
r + 1

(

ln(
√
−re2x + r + 1−

√
r + 1)− ln(1−

√
r + 1)− x

)

= t.

We then arrive at

g̃(t) = et−x(t) = et
(

cosh(
√
1 + rt)− sinh(

√
1 + rt)√

1 + r

)

.

Taking the Sumudu transform of g̃(t) now gives g(x) = 1−2x
1−2x−rx2 as required.

The generating function 1√
1+r−re2x

expands to give the Galton-type triangle [23] that
begins

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 2 3 0 0 0 0 0
0 4 18 15 0 0 0 0
0 8 84 180 105 0 0 0
0 16 360 1500 2100 945 0 0
0 32 1488 10800 27300 28350 10395 0
0 64 6048 72240 294000 529200 436590 135135

























.

This is A211402. Its reversion begins





















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −2 0 0 0 0 0
0 −4 2 0 0 0 0
0 −8 16 0 0 0 0
0 −16 88 −16 0 0 0
0 −32 416 −272 0 0 0





















.

The ordinary generating function of the above Galton triangle is

S(r, 3r, 5r, . . . ; 2(r + 1), 4(r + 1), 6(r + 1) . . .),
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or equivalently

J (r, 5r + 2, 9r + 4, 13r + 6, . . . ; 1 · 2r(r + 1), 3 · 4r(r + 1), 5 · 6r(r + 1), 7 · 8r(r + 1), . . .).

In the Deléham notation, it is

[0, 2, 0, 4, 0, 6, 0, . . .] ∆ [1, 2, 3, 4, 5, . . .].

Note that the triangle

[0, 2, 0, 4, 0, 6, 0, . . .] ∆ [1, 0, 1, 0, 1, . . .]

is the exponential Riordan array
[

1,
1

2
(e2x − 1)

]

of generalized Stirling numbers S2(n, k) of the second kind. This is A075497. The above
Galton array then has general element (2k − 1)!!S2(n, k).

Proposition 14. We have, for r 6= 0, that

P
(

1− 2x

1− 2x− rx2

)

=
1

1 + r(1− e2x)

is the moment sequence for the family of orthogonal polynomials whose coefficient array is

given by the exponential Riordan array

[

1

1 + 2rx
,
1

2
ln

(

1 + 2(r + 1)x

1 + 2rx

)]

.

These moments appear as the initial column elements in the inverse array

[

1

1 + r(1− e2x)
,

e2x − 1

2(1 + r(1− e2x))

]

.

Proof. . We let [g, f ] =
[

1
1+r(1−e2x)

, e2x−1
2(1+r(1−e2x))

]

. We find that

A(x) = f ′(f̄(x)) = (1 + 2rx)(1 + 2(r + 1)x),

and

Z(x) =
g′(f̄(x))

g(f̄(x))
= r(1 + 2(r + 1)x).

Thus the production matrix of [g, f ] is tri-diagonal and [g, f ]−1 is the coefficient array of a
family of orthogonal polynomials.

The production matrix has generating function

exy(r(1 + 2(r + 1)x) + y(1 + 2rx)(1 + 2(r + 1)x)).
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It begins

















r 1 0 0 0 0
2r(r + 1) 5r + 2 1 0 0 0

0 12r(r + 1) 9r + 4 1 0 0
0 0 30r(r + 1) 13r + 6 1 0
0 0 0 56r(r + 1) 17r + 8 1
0 0 0 0 90r(r + 1) 21r + 10

















.

Corollary 15. P
(

1−2x
1−2x−rx2

)

= 1
1+r(1−e2x)

is the generating function of the moments of the

family of orthogonal polynomials Pn(x; r) that satisfy the three-term recurrence

Pn(x; r) = (x− (r + (n− 1)(4r + 2)))Pn−1(x; r)− (n− 1)(2n− 3)2r(r + 1)Pn−2(x; r),

with P0(x; r) = 1, P1(x; r) = x− r.

We note that for r = 0, we get the moment matrix
[

1, 1
2
(e2x − 1)

]

A075497 of scaled
Stirling numbers of the second kind.

5 Étude III

For this section, we consider the generating function

1− 3x− (r − 2)x2

(1− x)(1 − 2r − 2rx2)
= 1 + x2 r(1− 2x)

(1− x)(1− 2x− 2rx2)
.

This expands to give a sequence that begins

1, 0, r, r, r(2r + 1), r(6r + 1), r(4r2 + 14r + 1), r(20r2 + 30r + 1), . . . .

For r = 1, this gives the sequence

1, 0, 1, 1, 3, 7, 19, 51, 139, 379, 1035, . . . ,

where the sequence A052948 which begins

1, 1, 3, 7, 19, 51, 139, 379, 1035, . . . .

This is related to the descent polytopes [14]. The inverse binomial transform gives the
sequence that begins

1,−1, r+1,−(2r+1), (r+1)(2r+1),−(2r+1)2, (r+1)(2r+1)2,−(2r+1)3, (r+1)(2r+1)3, . . . .

For r = 1, we get the sequence that begins

1,−1, 2,−3, 6,−9, 18,−27, 54,−81, 162, . . . .
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the absolute value of this sequence A038754 counts all paths of length n, starting at the
initial node on the path graph P5. It is an eigen-sequence of the matrix that begins

























1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 1

























.

The image of 1,−1, 2,−3, 6,−9, 18,−27, . . . by this matrix is the sequence

1, 0, 3, 0, 9, 0, 27, 0, 81, 0, 243, . . . .

Proposition 16. We have

P
(

1− 3x− (r − 2)x2

(1− x)(1− 2r − 2rx2)

)

=
1

√

1 + 2r(1− ez)
.

The coefficient array for the polynomial family defined by 1√
1+2r(1−ez)

begins

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 3 0 0 0 0 0
0 1 9 15 0 0 0 0
0 1 21 90 105 0 0 0
0 1 45 375 1050 945 0 0
0 1 93 1350 6825 14175 10395 0
0 1 189 4515 36750 132300 218295 135135

























.

It is related to the Galton matrix of the previous section by its (n, k)-term being that of the
former divided by 2n−k. The ordinary generating function is given by

S(r, 3r, 5r, . . . ; 2r + 1, 2(2r + 1), 3(2r + 1), . . .),

or equivalently,

J (r, 5r + 1, 9r + 2, . . . ; r(2r + 1), 2 · 3r(2r + 1), 3 · 5r(2r + 1), . . .).

In the Deléham notation, the triangle is given by

[0, 1, 0, 2, 0, 3, . . .] ∆ [1, 2, 3, 4, 5, . . .].

This is A211608. Reverting
∫ z

0

1
√

1 + 2r(1− et)
dt,
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we obtain the generating function

−

√
2r + 1

(

(

−r +
√
2r + 1− 1

)

e−
√
2r+1x + r

)

(

−r +
√
2r + 1− 1

)

e−
√
2r+1x − r

of the signed André triangle, which begins





























1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 −1 4 0 0 0 0 0 0
0 1 −11 4 0 0 0 0 0
0 −1 26 −34 0 0 0 0 0
0 1 −57 180 −34 0 0 0 0
0 −1 120 −768 496 0 0 0 0





























.

Note that the absolute value of this triangle (essentially A094503) then has generating func-
tion √

1− 2r
(

r −
(

r +
√
1− 2r − 1

)

e
√
1−2rx

)

(

r +
√
1− 2r − 1

)

e
√
1−2rx + r

.

The “unstretched” version of this is the triangle A096078 that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 4 0 0 0 0
1 11 34 34 0 0 0
1 26 180 496 496 0 0
1 57 768 4288 11056 11056 0
1 120 2904 28768 141584 349504 349504





















.

This is defined by
Tn,k = (k + 1)Tn−1,k + (n− k + 1)Tn,k−1.

The diagonal elements are the reduced tangent numbers A002105.

Proposition 17. We have, for r 6= 0, that

P
(

1− 3x− (r − 2)x2

(1− x)(1− 2x− 2rx2)

)

=
1

√

1 + 2r(1− ez)

is the generating function of the moment sequence for the family of orthogonal polynomials

whose coefficient array is given by the exponential Riordan array

[

1√
1 + 2rz

, ln

(

1 + z(1 + 2r)

1 + 2rz

)]

.

37

http://oeis.org/A094503
http://oeis.org/A096078
http://oeis.org/A002105


These moments appear as the initial column in the inverse array

[

1
√

1 + 2r(1− ez)
,

ez − 1

1− 2r(1− ez)

]

.

Proof. Let [g, f ] =

[

1√
1+2r(1−ez)

, ez−1
1−2r(1−ez)

]

. We find that

A(z) = f ′(f̄(z)) = (1 + 2rx)(1 + (2r + 1)z),

and

Z(z) =
g′(f̄(z))

g(f̄(z))
= r(1 + (1 + 2r)z).

Thus the production matrix of [g, f ] is tri-diagonal and hence [g, f ]−1 is the coefficient array
of a family of orthogonal polynomials.

The production matrix has generating function

ezy(r(1 + (1 + 2r)z) + y((1 + 2rz)(1 + (2r + 1)z))).

It begins












r 1 0 0 0
r(2r + 1) 5r + 1 1 0 0

0 6r(2r + 1) 9r + 2 1 0
0 0 15r(2r + 1) 13r + 3 1
0 0 0 28r(2r + 1) 17r + 4













.

Corollary 18. P
(

1−3x−(r−2)x2

(1−x)(1−2x−2rx2)

)

= 1√
1+2r(1−ex)

is the generating function of the moment

sequence for the family of ortohgonal polynomials Pn(x; r) that satisfy the three-term recur-

rence

Pn(x; r) = (x−(r+(n−1)(4r+1))Pn−1(x; r)−(n−1)(r(2r+1)+(n−2)2r(2r+1))Pn−2(x; r),

with P0(x; r) = 1 and P1(x; r) = x− r.

We note that the sequence generated by 1√
1+2rz

which begins

1,−r, 3r2,−15r3, 105r4,−945r5, 10395r6, . . .

is the moment sequence for the orthogonal polynomials with coefficient array

[

1√
1− 2rz

,
z

1− 2rz

]

=

[

1√
1 + 2rz

,
z

1 + 2rz

]−1

.

See A176230.
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