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ABSTRACT. We show that the number of numerical semigroups with multiplicity three, four or five and fixed
genus is increasing as a function in the genus. To this end we use the Kunz polytope for these multiplicities.
Counting numerical semigroups with fixed multiplicity and genus is then an integer partition problem with
some extra conditions (those of membership to the Kunz polytope). For the particular case of multiplicity
four, we are able to prove that the number of numerical semigroups with multiplicity four and genus g is the
number of partitions x + y + z = g +6 with 0 < x ≤ y ≤ z, x 6= 1, y 6= 2 and z 6= 3.

INTRODUCTION

LetN be the set of the nonnegative integers. A subset S ofN is a numerical semigroup if for every a,b ∈
S, a +b ∈ S, 0 ∈ S and N \ S is a finite set. The cardinality of the set N \ S is called the genus of S, denoted
by g (S), and its maximum is called the Frobenius number of S and it is denoted by F(S). Sometimes the
Frobenius number is replaced by the conductor of S, which is the least integer c(S) such that c(S)+n ∈ S
for all n ∈N. In fact, F(S) = c(S)−1.

Let A be a subset of N, we denote by 〈A〉 the least monoid containing A. It is easy to show that 〈A〉
is a numerical semigroup if and only if gcd(A) = 1. If S is a numerical semigroup and 〈A〉 = S, then we
say that A is a generating system for S. If no proper subset of A generates S as a monoid, then A is a
minimal generating system for S. Numerical semigroups have a unique minimal generating system, and
it has finitely many elements. The cardinality of this set is the embedding dimension of the numerical
semigroup (see for instance [15, Chapter 1]).

If S = 〈a1, . . . , ap〉, (with a1 < ·· · < ap ), the number a1 is called the multiplicity of S. Clearly, the multi-
plicity is the least positive integer in S.

Let s be a nonzero element of S. The Apéry set of s in S is the set Ap(S, s) = {x ∈ S | x − s ∉ S}. According
to [15, Lemma 1.4], Ap(S,n) = {0 = w(0), w(1), . . . , w(n−1)}, where w(i ) is the least element of S congruent
with i modulo n, for all i ∈ {0, . . . ,n −1}.

The study of these invariants is an interesting topic of research, both from the pure semigroupist point
of view or due to their counterpart in curves or algebro-geometry codes (see for instance [1] and the
references therein). In this paper we focus in the study of the tree of numerical semigroups restricted to
a fixed multiplicity, and we give some insight on how this tree is for multiplicities three, four and five.
We use linear integer programming to study the growth of the number of numerical semigroups with low
multiplicity as the genus increases. It was conjectured in [4] that the number of numerical semigroups
with given genus grows as the Fibonacci sequence. This conjecture was asymptotically proved in [18]. In
particular, the main result in [18] implies that for a given genus g large enough, there are more numerical
semigroups with genus g +1 than those of genus g . However, there is no known lower bound when this
occurs, and even if this bound where known and bigger than 68, we would not be able to answer the
natural question: are there more numerical semigroups of genus g + 1 than numerical semigroups of
genus g ? This is because we only know the number of numerical semigroups with genus g for g ≤ 67 (see
[7]).

The contents of this work is organized as follows. In Section 1, we show some previous results and some
remarks that will be used later in the paper. In Section 2, we study semigroups of multiplicity three, and
characterize their number of children depending on their Frobenius number and genus. In Section 3, we
make use of the Kunz polytope for multiplicity four and the equation of the hyper-plane corresponding to
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semigroups with fixed genus g . Then we compute the number of integer points in this intersection, and
we obtain that the number of numerical semigroups with multiplicity four and genus g is an increasing
function in g . We show that there are exactly the same number of numerical semigroups of genus g and
multiplicity four than unordered partitions of the integer g+6 in three elements such that the i th element
in the partition is not i . In Section 4, we show that the number of numerical semigroups with multiplicity
five and genus g is also an increasing function in g .

1. PRELIMINARIES

Let m be a positive integer and g be a nonnegative integer. We denote by S (m, g ) the set of numerical
semigroups with multiplicity m and genus g .

Let S be a numerical semigroup with multiplcity m. Then the Apéry set of m in S has m elements. If,
as above, w(i ) denotes the element in Ap(S,m) congruent with i modulo m, then there exists a positive
integer ki such that w(i ) = ki m + i . The tuple (k1, . . . ,km−1) is known as the Kunz coordinates of S. It is
well known that the set of Kunz coordinates of numerical semigroups with multiplicity m is precisely the
set of nonnegative integer solutions of

xi ≥ 1, for all i ∈ {1, . . . ,m −1},
xi +x j −xi+ j ≥ 0, for all 1 ≤ i ≤ j ≤ m −1, i + j ≤ m −1,

xi +x j −xi+ j−m ≥−1, for all 1 ≤ i ≤ j ≤ m −1, i + j > m.

These equations define a polytope known as the Kunz polytope associated to m. In addition, if S has
genus g , then k1+·· ·+km−1 = g (see [16]). Thus the set S (m, g ) is in one to one correspondence with the
set of nonnegative integer solutions of

xi ≥ 1, for all i ∈ {1, . . . ,m −1},
xi +x j −xi+ j ≥ 0, for all 1 ≤ i ≤ j ≤ m −1, i + j ≤ m −1,

xi +x j −xi+ j−m ≥−1, for all 1 ≤ i ≤ j ≤ m −1, i + j > m,
x1 +·· ·+xm−1 = g .

We can use any linear integer software to solve this system of equations and inequalities, and thus we
have a procedure to compute the whole set S (m, g ) for m and g fixed. For instance we can use the GAP
[8] package NormalizInterface [10], which is one of the many existing interfaces to Normaliz [5], to
compute this set of integer points. The package NumericalSgps [6] already has a function that computes
the inequalities defining the Kunz polytope.

gap> LoadPackage("normaliz");
gap> LoadPackage("num");
gap> eq:=KunzPolytope(4);
[ [ 1, 0, 0, -1 ], [ 0, 1, 0, -1 ], [ 0, 0, 1, -1 ], [ 2, -1, 0, 0 ],

[ 1, 1, -1, 0 ], [ 1, 1, -1, 0 ], [ -1, 1, 1, 1 ], [ -1, 1, 1, 1 ],
[ 0, -1, 2, 1 ] ]

gap> cone:=NmzCone(["inhom_inequalities",eq,
"inhom_equations",[[1,1,1,-4]]]);

<a Normaliz cone>
gap> sol:=NmzModuleGenerators(cone);
[ [ 1, 1, 2, 1 ], [ 1, 2, 1, 1 ], [ 2, 1, 1, 1 ] ]

We can alternatively compute these coordinates with numericalsgps in the following way. For high
genus, this approach is not recommended.

gap> l:=NumericalSemigroupsWithGenus(4);;
gap> l4:=Filtered(l, s->Multiplicity(s)=4);;
gap> List(l4,KunzCoordinatesOfNumericalSemigroup);
[ [ 2, 1, 1 ], [ 1, 2, 1 ], [ 1, 1, 2 ] ]
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For instance, if we want to compute the Kunz coordinates of all the elements in S (4,204) we may proceed
as follows.

gap> cone:=NmzCone(["inhom_inequalities",eq,
"inhom_equations",[[1,1,1,-204]]]);

<a Normaliz cone>
gap> sol:=NmzModuleGenerators(cone);;
gap> Length(sol);
3570
This computation takes 38 milliseconds. However, NumericalSemigroupsWithGenus(204)will not stop
(recall that we already mentioned in the introduction that the number of numerical semigroups of genus
g is known for g ≤ 67).

The following result will be helpfull to study the monotony of the number of numerical semigroups
with multiplicity four or five as a function in the genus.

Lemma 1. Let fi :N→N be maps with 0 ≤ i ≤ n −1, and let f :N→N be a map defined as f (m) = fi (m),
if i ≡ m mod n. If f (kn) ≤ f (kn +1) ≤ ·· · ≤ f ((k +1)n), then the function f is nondecreasing.

Proof. Let x, y ∈ N be such that x ≤ y , x = k1n + i and y = k2n + j , with i , j non-negative integers. If
k1 = k2, then the assertion follows directly from the hypothesis. So assume that k1 < k2. Observe that, by
induction, f ((k1+1)n) ≤ f (k2n), since for every nonnegative integer k, the inequality f (kn) ≤ f ((k+1)n)
holds. Hence, f (x) = f (k1n + i ) ≤ f (k1n + i +1) ≤ ·· · ≤ f ((k1 +1)n) ≤ f (k2n) ≤ ·· · ≤ f (k2n + j ) = f (y). �

Let S1, S2 be numerical semigroups such that S1 = S2 ∪F(S2). Then S2 is called a child of S1.
The tree of numerical semigroups is a tree with set of vertices the set of numerical semigroups, rooted

in N, and e = (S,T ) is an edge of this tree if and only if S is a child of T , and S = T \ {x} with x a minimal
generator of T larger than F(T ). In [9, Proposition 1] it is proved that this definition is well founded, that
is, the tree of numerical semigroups is indeed a tree. Figure 1 shows the tree of numerical semigroups of
genus up to five (this figured was rendered with d3js [3]). Observe that a node in the tree of numerical
semigroups is a leaf if all its minimal generators are below the Frobenius number.

Let m be a positive integer. We can define the tree of numerical semigroups with multiplicity m as the
subtree of the tree of numerical semigroups with vertices those numerical semigroups with multiplicity
m.

Remark 2. Observe that there is at most one semigroup of embedding dimension two and multiplicity
two for a fixed genus. Thus the tree of numerical semigroups with multiplicity two is simply a half line.

A possible approach to solve the conjecture stating that number of numerical semigroups of genus g
does not decrease as g increases would be to determine in each level (for each genus g ) that there are less
leaves than nodes with two or more children. This is what we have tried to achieve with low multiplicities.
We were able to prove this for multiplicity three (for multiplicity one or two the problem is trivial). For
multiplicity four the number of cases and subcases was too large, and thus we decided to use directly
linear integer programming.

2. TREE OF SEMIGROUPS OF MULTIPLICITY THREE

Numerical semigroups with multiplicity tree have been extensively studied in the literature. They have
been parametrized in different ways. Next we recall some possibilities, one depending on the Frobenius
number and genus, while the other relies on the remainder of the conductor modulo three.

Lemma 3 ([14, Lemma 6]). Let S be a numerical semigroup with multiplicity three, Frobenius number f

and genus g . Then f +1
2 ≤ g < 2 f +3

3 .

Theorem 4 ([14, Theorem 7]). Let f be a positive integer greater than or equal to four that is not multiple

of three. Let g be a positive integer such that f +1
2 ≤ g < 2 f +3

3 . Then S = 〈3,3g − f , f + 3〉 is a numerical
semigroup with multiplicity three, Frobenius number f and genus g .
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 2, 3  1 

 2, 5 

 3 .. 5 

 3, 4 

 3, 5, 7 

 4 .. 7 

 4, 5, 6 

 4, 5, 7 

 4, 6, 7, 9 

 5 .. 9 

 5, 6, 7, 8 

 5, 6, 7, 9 

 5, 6, 8, 9 

 5, 7, 8, 9, 11 

 6 .. 11 

 4, 6, 7 

 4, 6, 9, 11 

 4, 7, 9, 10 

 4, 5, 11 

 3, 5 

 3, 7, 8 

 3, 7, 11 

 3, 8, 10 

 2, 7  2, 9  2, 11 

FIGURE 1. The tree of numerical semigroups up to genus 5

Remark 5. The inequalities f +1
2 ≤ g < 2 f +3

3 hold true if and only if 3g−3
2 < f ≤ 2g −1.

By using this two results, [14, Corollary 10] gives a formula for the number of numerical semigroups
with multiplicity three and genus g , g a nonnegative integer:

#S (3, g ) = g −
⌊

2g −1

3

⌋
.

Note that this is equivalent to #S (3, g ) = bg /3c+1, which is nondecreasing. Also, in [2, Theorem 4.1], it is
shown that #S (3, g ) = ⌈

(g +1)/3
⌉

, which is equivalent to the preceding expressions.

Corollary 6. The number of numerical semigroups with multiplicity three and genus g , with g a nonneg-
ative integer, is a nondecreasing function in g .

For multiplicity three we can distinguish which semigroups have children. We will show that if the
numerical semigroup has embedding dimension two, then it cannot have children; while if it has em-
bedding dimension three (maximal embedding dimension) it may have one or two children.

Lemma 7. Let S be a numerical semigroup with multiplicity three and embedding dimension two. Then S
has no children.

Proof. If S has embedding dimension two, then S = 〈3,k〉 for some integer k with k ≥ 3 and gcd(k,3) = 1.
By Sylvester’s formula, the Frobenius number of S is 3k − 3−k = 2k − 3, which is greater than or equal
to k. Thus S has no minimal generators greater than the Frobenius number, and consequently it has no
children. �
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In order to see what happens in the maximal embedding dimension case, we will use the following
result.

Proposition 8 ([11, Proposition 3.1]). Let S be a numerical semigroup with multiplicity three, conductor
c = 3b + c̄ , with b ∈N, and maximal embedding dimension.

(i) If c̄ = 0, then S = 〈3,3k1 +1,3b +2〉, where
⌈

b+1
2

⌉
≤ k1 ≤ b,

(ii) If c̄ = 2, then S = 〈3,3k2 +2,3b +4〉, where
⌈

b+1
2

⌉
≤ k1 ≤ b.

Recall that in order to determine the number of children of a numerical semigroup in the tree of nu-
merical semigroups, one has to know which generators are greater than the Frobenius number. Next, we
give a better upper bound for the Frobenius number for the maximal embedding dimension case.

Proposition 9. Let S be a numerical semigroups with multiplicity three and maximal embedding dimen-
sion. Then F(S) ≤ 2g(S)−2.

Proof. Let c, f and g be the conductor, Frobenius number and genus of S, respectively.

If c ≡ 0 mod 3, by Proposition 8, S = 〈3,3k1 +1,3b +2〉, for some integer k1 fulfilling
⌈

b+1
2

⌉
≤ k1 ≤ b. By

Theorem 4, S = 〈3,3g − f , f +3〉. Then, we deduce that b = f +1
3 and k1 = g − f +1

3 where
⌈

f +4
6

⌉
≤ g − f +1

3 ≤
f +1

3 .

As x < dxe, we have f +4
6 ≤

⌈
f +4

6

⌉
≤ g − f +1

3 , that is, f +4
6 ≤ g − f +1

3 . So, f ≤ 2g −2.

If c ≡ 2 mod 3, by Proposition 8, S = 〈3,3k2 +2,3b +4〉 for some integer k1 such that
⌈

b+1
2

⌉
≤ k2 ≤ b; by

Theorem 4, S = 〈3,3g − f , f +3〉. Hence, b = f −1
3 and k2 = g − f +2

3 , where
⌈

f +2
6

⌉
≤ g − f +2

3 ≤ f −1
3 .

Since x < dxe, we obtain f +2
6 ≤

⌈
f +2

6

⌉
≤ g − f +2

3 , that is, f +2
6 ≤ g − f +2

3 . So, f ≤ 2g −2. �

With these results we can characterize numerical semigroups with embedding dimension three having
no children, one child or two children, in the tree of numerical semigroups with embedding dimension
three.

Theorem 10. Let S be a numerical semigroup with multiplicity three. And let T3 be the tree of numerical
semigroups of embedding dimension three.

1. S is a leaf in T3 if and only if S has embedding dimension two.

2. S has one child in T3 if and only if S has maximal embedding dimension and F(S) > 3g(S)
2 .

3. S has two children in T3 if and only if S has maximal embedding dimension and F(S) < 3g(S)
2 .

Moreover, if we fix the genus g ≥ 5, there is

i. a numerical semigroup with embedding dimension three and genus g with two children in in T3;
ii. a numerical semigroup with embedding dimension two and genus g (and thus a leaf in T3) if and only

if g mod 3 ∈ {0,1};
iii. one or more numerical semigroups with embedding dimension three and genus g with one child in

T3.

In particular,

#S (3, g +1) =
{

#S (3, g ), if g mod 3 ∈ {0,1},

#S (3, g )+1, otherwise.

Proof. We already know that S has no children in the case S has embedding dimension two (Lemma 7).
Observe that if S has embedding dimension two, S = 〈3,k〉 for some integer k, and k is determined by
the Frobenius number of S (by Sylsvester’s formula). As S is symmetric, the genus of S equals (F(S)+
1)/2. Hence k is determined by g(S). This means that for a fixed genus g there is at most one numerical
semigroup with multiplicity two and genus g . Sylverster’s formula yields F(S) = 3k −3−k, whence k =
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 3, 4 

 3, 5, 7 

 3, 4, 5  3, 5 

 3, 7  3, 7, 11 

 3, 8  3, 8, 13 

 3, 10, 14 

 3, 11, 13 

 3, 10, 11 

 3, 8, 10 

 3, 7, 8 

FIGURE 2. The tree of numerical semigroups with multiplicity three and genus up to seven

(F(S)+1)/2+1 = g (S)+1 > 3. Thus there will be only a semigroup with this conditions if g > 2 and g +1 is
not a multiple of 3. That is, when g > 2 and either g ≡ 0 mod 3 or g ≡ 1 mod 3.

By Lemma 3 and Theorem 4, we also know that S = 〈3,3g − f , f +3〉 with f = F(S) and g = g(S), and that
3g − f < f +3. Hence in the case f < 3g − f , S has two children, and in the case f > 3g − f , the semigroup
S will have one child.

By Remark 5, 3g−3
2 < f . Therefore, if S has two children, then 3g−3

2 < f < 3g
2 , and there is at most an

integer f that is not a multiple of three fulfilling these conditions. If g ≡ 1 mod 2, then f = 3g−1
2 ; while for

g ≡ 0 mod 2, we have f = 3g−2
2 .

If f > 3g − f , by Remark 5 and Proposition 9, we deduce 3g /2 < f ≤ 2g −2. Notice that 3g /2 < 2g −2 if
and only if g > 4. For g even, that is, g = 2k for some positive integer k, we have 3k < F ≤ 4k −2, which
makes k −2 possible integers. Observe that 3k +1 is a possible choice of f that is not a multiple of three.
For g = 2k +1, we have 3k +3/2 < f ≤ 4k, whence 3k +2 ≤ f ≤ 4k. Here f = 3k +2 is a possible choice for
f . �

Remark 11. Observe that with the above result we recover that #S (3, g ) ≤ #S (3, g +1). Indeed we know
when #S (3, g ) < #S (3, g +1).

3. TREE OF SEMIGROUPS OF MULTIPLICITY FOUR

In this section we check that #S (4, g ) is a non decreasing map in g , that is, if g1 ≤ g2, then #S (4, g1) ≤
#S (4, g2). To this end, we will make use of the following result.

Lemma 12 ([11, Lemma 2.2]). Let m ∈N, m > 1, and let k = (k1, . . . ,km−1) ∈Nm−1. Assume that

m∗ = max
{
mki + i | 1 ≤ i ≤ m −1

}= ki∗m + i∗.
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Then k is the Kunz vector of a numerical semigroup with multiplicity m if and only if

ki +k j −k(i+ j ) mod m ≥
{

0, if 1 ≤ i + j < m,
−1, if i + j > m,

for all i , j ∈ {1, . . . ,m −1} \ {i∗}.

Now we study these equations with multiplicity m = 4 and genus g . We distinguish three cases.

Case 1: m∗ = 4k1 +1. Then we have the following equations:

(1)



k1 +k2 +k3 = g ,
k1,k2,k3 ≥ 1,

k2 +k3 −k1 ≥−1,
2k3 −k2 ≥−1,

k1 > k2,
k1 > k3.

Case 2: m∗ = 4k2 +2. In this case, the equations are:

(2)



k1 +k2 +k3 = g ,
k1,k2,k3 ≥ 1,
2k1 −k2 ≥ 0,

2k3 −k2 ≥−1,
k2 ≥ k1,
k2 > k3.

Case 3: m∗ = 4k3 +3. Under these conditions, the equations become:

(3)



k1 +k2 +k3 = g ,
k1,k2,k3 ≥ 1,

k1 +k2 −k3 ≥ 0,
2k1 −k2 ≥ 0,

k3 ≥ k1,
k3 ≥ k2.

By counting the number of solutions of these systems, using barvinok [17], we get the following re-
sults.

Proposition 13. The number of numerical semigroups with multiplicity four and Frobenius number con-
gruent with one modulo four is

• 1, if g = 4;

• (11
4 − g

2

)⌊ g
2

⌋+ (g −8)
⌊

g+1
3

⌋
+ g 2

8 − 9g
8 +9, if 5 ≤ g ≤ 8;

• 5, if g = 9;

•
⌊

g+1
5

⌋2 − 3
2

⌊
g+1

3

⌋2 − 3
2

⌊
g+2

6

⌋2 −
⌊

2g+4
5

⌋2 + (5
4 −

g
2

)⌊ g
2

⌋+ ⌊
g+1

5

⌋
+ (

g − 1
2

)⌊ g+1
3

⌋
+ (⌊ g

2

⌋− 1
2

)⌊ g+2
6

⌋
+(

−
⌊

g+1
5

⌋
+ g +1

)⌊
2g+4

5

⌋
− g 2

8 − 7g
8 , if g ≥ 10.

The code used in Proposition 13 is

P := [g] -> { [x,y,z] :
x+y+z=g and x>=1 and y>=1 and z>=1 and
y+z-x>=-1 and 2*z-y>=-1 and
x>y and x>z

};
card P;

Proposition 14. The number of numerical semigroups with multiplicity four and Frobenius number con-
gruent with two modulo four is
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• 1, if g = 4;
• 1, if g = 5;

• (7− g )
⌊1

5 (2g +1)
⌋− g 2

4 + 25g
4 − 59

2 , if 6 ≤ g ≤ 7;

• −⌊ g
5

⌋2 +⌊ g
4

⌋2 − 3
2

⌊ g
3

⌋2 +
⌊

2g
5

⌋2 −
⌊

g+2
5

⌋2 +
⌊

g+2
4

⌋2 +
⌊

2g+1
5

⌋2 −⌊ g
5

⌋+ (
g − 3

2

)⌊ g
3

⌋+ (1− g )
⌊

2g
5

⌋
+⌊ g

4

⌋(
1−⌊ g

2

⌋)+ ( g
2 − 1

4

)⌊ g
2

⌋+⌊
2g
5

⌋⌊
g+2

5

⌋
−⌊ g

2

⌋⌊
g+2

4

⌋
+ (⌊ g

5

⌋− g +1
)⌊2g+1

5

⌋
+ g 2

8 − g
8 , if g ≥ 8.

The code used to obtain Proposition 14 is

P := [g] -> { [x,y,z] :
x+y+z=g and x>=1 and y>=1 and z>=1 and
2*x-y>=0 and 2*z-y>=-1 and
y>=x and y>z

};
card P;

Proposition 15. The number of numerical semigroups with multiplicity four and Frobenius number con-
gruent with three modulo four is

• 1, if g = 3;
• (−21/2+35/8g −3/8g 2), if 4 ≤ g ≤ 5;
• 3, if g = 6;

• ⌊ g
5

⌋2 −
⌊

2g
5

⌋2 − 3
2

⌊
g+2

3

⌋2 − 3
2

⌊
g+5

6

⌋2 +⌊ g
5

⌋+ (−⌊ g
5

⌋+ g −1
)⌊2g

5

⌋
+ ( g

2 − 3
4

)⌊ g
2

⌋+ (
g + 1

2

)⌊ g+2
3

⌋
+(−⌊ g

2

⌋+ g + 1
2

)⌊ g+5
6

⌋
− 5g 2

8 + 5g
8 , if g ≥ 7.

The code for this case is

P := [g] -> { [x,y,z] :
x+y+z=g and x>=1 and y>=1 and z>=1 and
x+y-z>=0 and 2*x-y>=0 and
z>=x and z>=y

};
card P;

By Propositions 13, 14 and 15, we obtain the next result.

Theorem 16. Let g be an integer greater than nine. Then #S (4, g ) = ⌊ g
4

⌋2 − 3
2

⌊ g
3

⌋2 +
⌊

g+1
5

⌋2 −
3
2

⌊
g+1

3

⌋2 − 3
2

⌊
g+2

6

⌋2 −
⌊

g+2
5

⌋2 +
⌊

g+2
4

⌋2 − 3
2

⌊
g+2

3

⌋2 − 3
2

⌊
g+5

6

⌋2 +
⌊

2g+1
5

⌋2 −
⌊

2g+4
5

⌋2 + (
g − 3

2

)⌊ g
3

⌋ −⌊ g
5

⌋⌊
2g
5

⌋
+⌊ g

4

⌋(
1−⌊ g

2

⌋)+(1
4 +

g
2

)⌊ g
2

⌋+⌊
g+1

5

⌋
+(

g − 1
2

)⌊ g+1
3

⌋
+(⌊ g

2

⌋− 1
2

)⌊ g+2
6

⌋
+

⌊
2g
5

⌋⌊
g+2

5

⌋
−⌊ g

2

⌋⌊
g+2

4

⌋
+(

g + 1
2

)⌊ g+2
3

⌋
+ (−⌊ g

2

⌋+ g + 1
2

)⌊ g+5
6

⌋
+ (⌊ g

5

⌋− g +1
)⌊2g+1

5

⌋
+

(
−

⌊
g+1

5

⌋
+ g +1

)⌊
2g+4

5

⌋
− 5g 2

8 − 3g
8 .

It is easy to check that for g ≥ 10, #S (4, g ) is a function in g that verifies Lemma 1 with n = 60. The
values of #S (4, g ) for g ∈ {0, . . . ,9} can be obtained as follows.

gap> List([0..9], g->Length(Filtered(NumericalSemigroupsWithGenus(g),
s->Multiplicity(s)=4)));

[ 0, 0, 0, 1, 3, 4, 6, 7, 9, 11 ]

Therefore we have the following consequence.

Corollary 17. Let g be a nonnegative integer. Then #S (4, g ) ≤ #S (4, g +1).

The functions given in Propositions 13 to 15 are not monotone, but as the last corollary says, the sum
of the three is nondecreasing.
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If one looks for the sequence #S (4, g ) with g ∈ N in The On-Line Encyclopedia of Integer Sequences
[13], one finds that it is related to an special kind of integer partitions. Next, we will explain this connec-
tion.

Let n be a nonnegative integer and k be a positive integer. An unordered partition of n in k parts is a
sequence (p1, . . . , pk ) such that p1 ≤ p2 ≤ ·· · ≤ pk and p1 +·· ·+pk = n.

We show that the number of semigroups with multiplicity four and genus g is precisely the number of
partitions of n = g +6 into three parts such that every i th part is different from i . That is, the number of
integer solutions of 

x + y + z = n,
x ≥ 2,
y ≥ 3,
z ≥ 4,
y ≥ x,
z ≥ y.

Using again barvinok with

P := [n] -> { [x,y,z] :
x+y+z=n and x>=2 and y>=3 and z>=4
and x<=y and y<=z

};
card P;
we obtain that the number of solutions is

1, if n = 9,
(n −12)+bn

2 c, if 10 ≤ n ≤ 12,
3
2

⌊n+2
3

⌋2 + 1
2

⌊n
2

⌋+ (−n − 3
2

)⌊n+2
3

⌋+ n2

4 − n
4 , if n ≥ 13.

Therefore, if n ≥ 13, the cardinal of the set of the solutions can be seen as a function f (n) = fi (n) with
n ≡ i mod 6 where the functions fi (n) are: f0(n) =−3n +3n2, f1(n) =−1−2n +3n2, f2(n) =−1−n +3n2,
f3(n) =−1+3n2, f4(n) =−1+n+3n2 and f5(n) =−1+2n+3n2. If we use these auxiliary functions together
with the splitting in 60 functions of the expression in Theorem 16, the computation f (n)−#S (4,n −6)
yields 0. Hence, we get the following corollary.

Corollary 18. The number of semigroups with multiplicity four and genus g is the same that the number
of unordered partitions of g +6 into three parts such that every i th part is different from i .

4. OTHER MULTIPLICITIES

We can repeat the same procedure for other multiplicities. For example, for multiplicity five we get the
following result.

Proposition 19. If g is an non negative number greater than 13, then #S (5, g ) equals
1215g 3

124 − 1
4

⌊ g
2

⌋
g 2− 1771g 2

124 −⌊ 1
5 (2g +2)

⌋
g + 201g

31 + 3
⌊ g

7

⌋3

2 − 8
⌊ g

4

⌋3

3 +3
⌊

2g
7

⌋3− 13
6

⌊
3g
7

⌋3+ 2
3

⌊
4g
9

⌋3− 19
22

⌊
g+1

7

⌋3− 3
2

⌊
g+1

6

⌋3−
8
3

⌊
g+1

4

⌋3 − 5
3

⌊
g+1

3

⌋3 + 7
3

⌊
g+2

9

⌋3 + 3
2

⌊
g+2

7

⌋3 + 3
2

⌊
g+2

6

⌋3 − 2
3

⌊
g+2

5

⌋3 − 8
3

⌊
g+2

4

⌋3 − 1
3

⌊
g+2

3

⌋3 − 17
6

⌊
g+3
10

⌋3 − 7
3

⌊
g+3

9

⌋3 −
7
6

⌊
g+3

7

⌋3 − 4
3

⌊
g+3

6

⌋3 − 1
3

⌊
g+3

5

⌋3 − 8
3

⌊
g+3

4

⌋3 + 7
3

⌊
g+4

9

⌋3 + 2
⌊

g+4
7

⌋3 − 2
3

⌊
g+4

6

⌋3 − 1
3

⌊
g+4

5

⌋3 − 8
3

⌊
g+5
10

⌋3 − 7
3

⌊
g+5

9

⌋3 −
7
6

⌊
g+5

7

⌋3 + 2
⌊

g+5
6

⌋3 + 7
3

⌊
g+6

9

⌋3 − 8
3

⌊
g+6

7

⌋3 − 17
6

⌊
g+7
10

⌋3 − 7
3

⌊
g+7

9

⌋3 − 17
6

⌊
g+9
10

⌋3 + 5
2

⌊ 1
15 (2g +1)

⌋3 + 4
3

⌊ 1
7 (2g +1)

⌋3 +
427
124

⌊ 1
5 (2g +1)

⌋3 + 17
6

⌊ 1
7 (2g +2)

⌋3 − 1
3

⌊ 1
5 (2g +2)

⌋3 + 779
264

⌊ 1
7 (2g +3)

⌋3 + 7
3

⌊ 1
7 (2g +5)

⌋3 + 5
2

⌊ 1
15 (2g +6)

⌋3 +
5
6

⌊ 1
7 (2g +6)

⌋3 + 5
2

⌊ 1
15 (2g +9)

⌋3 + 5
2

⌊ 1
15 (2g +12)

⌋3 − 1
6

⌊ 1
10 (3g +1)

⌋3 − 3
2

⌊ 1
7 (3g +1)

⌋3 − 3
2

⌊ 1
7 (3g +2)

⌋3 +
361
93

⌊ 1
10 (3g +3)

⌋3 + 2
3

⌊ 1
7 (3g +3)

⌋3 − 3191
186

⌊ 1
10 (3g +4)

⌋3 + 2
3

⌊ 1
7 (3g +4)

⌋3 − 3
2

⌊ 1
7 (3g +5)

⌋3 − 3
2

⌊ 1
7 (3g +6)

⌋3 −
1
6

⌊ 1
10 (3g +9)

⌋3 + 2
3

⌊ 1
9 (4g +1)

⌋3 + 2
3

⌊ 1
9 (4g +3)

⌋3 − 4
3

⌊ 1
9 (4g +4)

⌋3 − 2
3

⌊ 1
9 (4g +5)

⌋3 − 2
3

⌊ 1
9 (4g +7)

⌋3 + 2
3

⌊ 1
9 (4g +8)

⌋3 +
(5− g )

⌊ g
9

⌋2 + (g −5)
⌊ g

9

⌋2 +3
⌊ g

7

⌋2 + (2g −5)
⌊ g

4

⌋2 +2
(
3− 3g

2

)⌊
2g
7

⌋2 +2
( 1

2 −
g
2

)⌊ g
3

⌋2 +2
( g

2 − 1
2

)⌊ g
3

⌋2 + (
g − 3

2

)⌊ 3g
7

⌋2 +
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3g
2 −3

)⌊
3g
7

⌋2 + ( 3
2 − g

)⌊ 4g
9

⌋2 +
(

2339g
286 − 614

143

)⌊
g+1

7

⌋2 + 1
2

⌊
g+1

7

⌋2 +
(

3g
2 − 3

⌊ g
2

⌋
2 − 3

2

)⌊
g+1

6

⌋2 + 1
2

⌊
g+1

5

⌋2 + (2g −

3)
⌊

g+1
4

⌋2 + 3

(
g − 3

⌊ g
2

⌋
2 − 1

2

)⌊
g+1

3

⌋2 +
(
−g + 3

⌊ g
2

⌋
2 + 1

2

)⌊
g+1

3

⌋2 + (3 − g )
⌊

g+2
9

⌋2 + (2g − 1)
⌊

g+2
4

⌋2 + (− g
2 − 1

2

)⌊ g+2
3

⌋2 +
( g

2 + 1
2

)⌊ g+2
3

⌋2 + ( g
2 +1

)⌊ g+2
3

⌋2 + (
g − 5

2

)⌊ g+3
9

⌋2 +
(
−g +

⌊
2g
7

⌋
2 + 1

2

)⌊
g+3

7

⌋2 +
(

g +
⌊

2g
7

⌋
2 −2

)⌊
g+3

7

⌋2 +
(⌊ g

3

⌋+ 1
2

)⌊ g+3
6

⌋2 +
(

3g
2 − 3

⌊ g
2

⌋
2

)⌊
g+3

6

⌋2 +
(
− 3g

2 +⌊ g
3

⌋+ 3
⌊ g

2

⌋
2 +2

)⌊
g+3

6

⌋2 + ( g
2 + 3

2

)⌊ g+3
5

⌋2 + (2g + 1)
⌊

g+3
4

⌋2 +(
3g
2 −3

⌊ g
2

⌋+ 3
2

)⌊
g+4

6

⌋2 +
(⌊

g+1
3

⌋
+ 1

2

)⌊
g+4

6

⌋2 + ( g
2 +1

)⌊ g+4
5

⌋2 + (g − 1)
⌊

g+5
9

⌋2 + (−⌊ g
3

⌋− 1
2

)⌊ g+5
6

⌋2 +(
−⌊ g

3

⌋−⌊
g+2

3

⌋)⌊
g+5

6

⌋2 +
( ⌊

4g
9

⌋
2 − g

)⌊
g+6

9

⌋2 + (g + 1)
⌊

g+6
7

⌋2 + (g + 2)
⌊

g+9
10

⌋2 + (5 − g )
⌊ 1

15 (2g +1)
⌋2 +(

−g +
⌊

g+1
7

⌋
2 +2

)⌊ 1
7 (2g +1)

⌋2 +
(

299g
124 − 785

248

)⌊ 1
5 (2g +1)

⌋2 +
(

3
2 −

3g
2

)⌊ 1
7 (2g +2)

⌋2 +
(
−g −

⌊
3g
7

⌋
2 +1

)⌊ 1
7 (2g +2)

⌋2 +

1
2

⌊
g+1

5

⌋⌊ 1
5 (2g +2)

⌋2 + ⌊ 1
5 (2g +2)

⌋2 +
(
− 807g

1144 + 145
⌊

g+1
7

⌋
88 + 5149

2288

)⌊ 1
7 (2g +3)

⌋2 + (2 − g )
⌊ 1

15 (2g +6)
⌋2 +(

3
⌊

g+6
7

⌋
2 − g

2

)⌊ 1
7 (2g +6)

⌋2 + ( 1
2 − g

)⌊ 1
15 (2g +9)

⌋2 + (−g − 1)
⌊ 1

15 (2g +12)
⌋2 +

(
g
2 −

⌊
g+3

5

⌋
− 1

2

)⌊ 1
10 (3g +1)

⌋2 +(
2g − 5

2

)⌊ 1
7 (3g +1)

⌋2 +
(

3g
2 + 3

2

⌊ 1
7 (2g +1)

⌋− 3
2

)⌊ 1
7 (3g +2)

⌋2 +
(

1157g
124 + 2003

124

⌊ 1
5 (2g +1)

⌋− 55
4

)⌊ 1
10 (3g +3)

⌋2 +(−g − 1
2

)⌊ 1
7 (3g +3)

⌋2 +
(

5163g
124 −⌊ g

2

⌋− 1941
124

⌊ 1
5 (2g +1)

⌋− 2489
124

)⌊ 1
10 (3g +4)

⌋2 +
(
−g +

⌊
g+3

7

⌋
− 1

2

)⌊ 1
7 (3g +4)

⌋2 +(
3g
2 + 3

2

⌊ 1
7 (2g +3)

⌋)⌊ 1
7 (3g +5)

⌋2 +
(
2g +

⌊ g
7

⌋
2 − 1

2

⌊ 1
7 (2g +6)

⌋+1

)⌊ 1
7 (3g +6)

⌋2 +(
g
2 −

⌊
g+4

5

⌋
− 3

⌊
g+9
10

⌋
2 +1

)⌊ 1
10 (3g +9)

⌋2 + ( 3
2 − g

)⌊ 1
9 (4g +1)

⌋2 +
(
−g +

⌊
g+2

9

⌋
+ 3

2

)⌊ 1
9 (4g +3)

⌋2 + (
g + 1

2

)⌊ 1
9 (4g +4)

⌋2 +(
g −⌊ g

9

⌋− 1
2

)⌊ 1
9 (4g +4)

⌋2+
(
g −

⌊
g+5

9

⌋
+ 1

2

)⌊ 1
9 (4g +5)

⌋2+
(
g −

⌊
g+3

9

⌋
+ 1

2

)⌊ 1
9 (4g +7)

⌋2+(−g +⌊ g
9

⌋+ 1
2

)⌊ 1
9 (4g +8)

⌋2+
3
⌊ g

7

⌋
2 +

(
− g 2

2 + 5g
2 − 7

3

)⌊ g
4

⌋ + 2
(

g 2

2 −2g + 3
2

)⌊
2g
7

⌋
+ ⌊ g

9

⌋(
− g 2

2 + 3g
2 − 3

⌊ g
3

⌋2

2 + (
g − 1

2

)⌊ g
3

⌋− 8
3

)
+⌊ g

9

⌋(
g 2

2 − 3g
2 + 3

⌊ g
3

⌋2

2 + ( 1
2 − g

)⌊ g
3

⌋+ 8
3

)
+

(
− g 2

2 + 3g
2 − 5

6

)⌊
3g
7

⌋
+

(
− g 2

2 +2g − 3
2

)⌊
3g
7

⌋
+

(
g 2

2 − 3g
2 + 5

6

)⌊
4g
9

⌋
+⌊ g

6

⌋2
(
3− 3

⌊ g
2

⌋
2

)
+ 2

⌊ g
3

⌋(
− g 2

4 + 3g
4 −

⌊ g
2

⌋
2 − 1

3

)
+ 2

⌊ g
3

⌋(
g 2

4 − 3g
4 +

⌊ g
2

⌋
2 + 1

3

)
+ (− g

2 − 1
4

)⌊ g
2

⌋ +
(
− g 2

4 + g
4 + 1

4

)⌊ g
2

⌋ +(
− g 2

4 + g
2 + 1

4

)⌊ g
2

⌋ + ⌊ g
6

⌋2
(

3
⌊ g

2

⌋
2 − 3

2

)
+ ⌊ g

6

⌋(
g 2

8 − g
8 + ( 5

4 −
g
2

)⌊ g
2

⌋) + ⌊ g
6

⌋(
− g 2

8 + g
8 + ( g

2 − 9
4

)⌊ g
2

⌋+ 3
2

)
+(

2625g
572 − 7771

3432

)⌊
g+1

7

⌋
−

⌊
g+1

7

⌋
6 +

(
− 3g 2

8 + 7g
8 + ( g

2 − 3
4

)⌊ g
2

⌋)⌊
g+1

6

⌋
+

(
g 2

4 − g
4 +

⌊ g
2

⌋
2 + 1

2

)⌊
g+1

5

⌋
+

(
− g 2

2 + 3g
2 − 1

3

)⌊
g+1

4

⌋
+(

3g 2

4 − 3g
4 + (1− g )

⌊ g
2

⌋+ 2
3

)⌊
g+1

3

⌋
+ 3

(
− g 2

2 + g
2 + (

g − 1
2

)⌊ g
2

⌋)⌊
g+1

3

⌋
+

(
g 2

2 − 3g
2 + 3

⌊ g
3

⌋2

2 + ( 1
2 − g

)⌊ g
3

⌋+ 2
3

)⌊
g+2

9

⌋
+(

− g 2

2 + g
2 + 2

3

)⌊
g+2

4

⌋
+

⌊
g+2

6

⌋2 (
3
2 −

⌊
g+2

3

⌋)
+

(
− g 2

4 − g
4 −

⌊ g
2

⌋
2 − 2

3

)⌊
g+2

3

⌋
+

(
− g 2

4 − g
4 −

⌊ g
2

⌋
2 − 1

6

)⌊
g+2

3

⌋
+(

g 2

4 + g
4 +

⌊ g
2

⌋
2 + 1

6

)⌊
g+2

3

⌋
+

⌊
g+2

6

⌋2
(
− 3

⌊ g
2

⌋
2 +

⌊
g+2

3

⌋
+1

)
+

⌊
g+2

6

⌋(
− g 2

8 + g
8 − 1

2

⌊
g+2

3

⌋2 + ( g
2 − 5

4

)⌊ g
2

⌋+ ⌊
g+2

3

⌋
2 + 1

6

)
+

⌊
g+2

6

⌋(
1
2

⌊
g+2

3

⌋2 − 3
⌊

g+2
3

⌋
2 + 5

6

)
+

(
− g 2

2 + g
2 − 3

⌊ g
3

⌋2

2 + (
g − 1

2

)⌊ g
3

⌋− 1
6

)⌊
g+3

9

⌋
+(

3
2

⌊
2g
7

⌋2 + (2− g )
⌊

2g
7

⌋
+ 2

3

)⌊
g+3

7

⌋
+

(
g 2

2 − g
2 + 3

2

⌊
2g
7

⌋2 + (2− g )
⌊

2g
7

⌋)⌊
g+3

7

⌋
+

(
−

⌊ g
3

⌋2

2 −
⌊ g

3

⌋
2 + 1

6

)⌊
g+3

6

⌋
+(

3g 2

8 − 7g
8 −

⌊ g
3

⌋2

2 −
⌊ g

3

⌋
2 + ( 3

4 −
g
2

)⌊ g
2

⌋+ 1
6

)⌊
g+3

6

⌋
+

(
− 3g 2

8 − g
8 + ( g

2 + 1
4

)⌊ g
2

⌋+ 1
2

)⌊
g+3

6

⌋
+(

− g 2

2 − g
2 + 2

3

)⌊
g+3

4

⌋
+

(
− g 2

2 − g + (g +1)
⌊ g

2

⌋− 1
2

)⌊
g+4

6

⌋
+

(
− 1

2

⌊
g+1

3

⌋2 −
⌊

g+1
3

⌋
2 + 1

6

)⌊
g+4

6

⌋
+
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− g 2

4 − 5g
4 +

⌊ g
2

⌋
2 − 2

3

)⌊
g+4

5

⌋
+

(
− g 2

2 − g
2 − 3

2

⌊
g+2

3

⌋2 + (
g + 3

2

)⌊ g+2
3

⌋
+ 1

3

)⌊
g+5

9

⌋
+

( ⌊ g
3

⌋2

2 +
⌊ g

3

⌋
2 − 1

6

)⌊
g+5

6

⌋
+( ⌊ g

3

⌋2

2 +
⌊ g

3

⌋
2 + 1

2

⌊
g+2

3

⌋2 −
⌊

g+2
3

⌋
2 − 1

3

)⌊
g+5

6

⌋
+

(
g 2

2 − g
2 +

⌊
4g
9

⌋2 + 3
2

⌊
g+1

3

⌋2 + ( 3
2 − g

)⌊ 4g
9

⌋
+ (−g − 1

2

)⌊ g+1
3

⌋
− 1

3

)⌊
g+6

9

⌋
+

2
⌊

g+6
7

⌋
3 +

(
− g 2
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Corollary 20. Let S (5, g ) be the set of numerical semigroups with multiplicity five and genus g . Then
#S (5, g ) ≤ #S (5, g +1).

Proof. Applying Lemma 1 with n = 79380. �

These computations have been performed in Wolfram Mathematica [12] using the following code,
where mult5[g] is the formula giving in Proposition 19.

polynomials = Table[
FullSimplify[mult5[79380 k + i], k \[Element] Integers], {i, 0, 79380}];

pol[k_] := Evaluate[polynomials];
dif = Expand[Table[

pol[79380 k + i + 1][[i]] - pol[79380 k + i][[i]], {i, 1, 79381}]];
And@@Table[FullSimplify[dif[[i]] > 0, k > 0], {i, 1, 79381}]
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