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ON ENUMERATION OF DYCK PATHS WITH COLORED HILLS

MILAN JANJIĆ

Department for Mathematics and Informatics, University of Banja Luka,

Republic of Srpska, BA

Abstract. We continue to investigate the properties of the earlier defined
functions fm and gm, which depend on an initial arithmetic function f0.
In this papers values of f0 are the Fine numbers. We investigate functions
fi, gi, (i = 1, 2, 3, 4). For each function, we derive an explicit formula and
give a combinatorial interpretation. It appears that g2 and g3 are well-known
combinatorial object called the Catalan triangles.

We finish with an identity consisting of ten items.

1. Introduction

This paper is a continuation of the investigations of restricted words from the
author’s previous papers, where two quantities fm(n) and gm(n, k) are defined
as follows. For an initial arithmetic function f0, fm, (m > 1) is the mth invert
transform of f0. The function gm(n, k) is defined in the following way:

(1) gm(n, k) =
∑

i1+i2+···+ik=n

fm−1(i1) · fm−1(i2) · · · fm−1(ik).

Also, the following equation holds:

(2) fm(n) =
n
∑

k=1

gm(n, k).

We restate [2, Propositions 10] which will be used throughout the paper.

Proposition 1. Let f0 the arithmetic function which values are nonnegative inte-
gers, and f0(1) = 1. Assume next that, for n ≥ 1, we have fm−1(n) words of length
n− 1 over a finite alphabet α. Let x be a letter which is not in α. Then, the value
of gm(n, k) is the number of words of length n − 1 over the alphabet α ∪ {x} in
which x appears exactly k − 1 times.

We denote by Gm(n) the array gm(n, k) viewed as a lower triangular matrix of
order n. It is proved in [2, Proposition 6] that

(3) Gm(n) = G1(n) · Lm−1
n .

In particular, we have

(4) gm(n, k) =

n
∑

i=k

(

i− 1

k − 1

)

cm−1(n, i),
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and

(5)
∞
∑

n=k

gm(n, k)xn =

(

∞
∑

i=1

fm−1(i)x
i

)k

.

2. A combinatorial result

We start with a combinatorial proof that the sequence C0, C1, . . . of the Catalan
numbers is the invert transform of the sequence F1,F2, . . . of the Fine numbers with
F1 = 1. We define f0(n) = Fn, (n ≥ 1). Thus, f0(1) = 1, f0(2) = 0, f0(3) = 1, and
so on. It is a well-known fact that Fn is the number of Dyck paths of semi-length
n− 1 with no hills.

All investigation in the paper are based on the following result.

Theorem 1. For m ≥ 1, we have

(1) The value of gm(n, k) is the number of Dyck paths of semilength n − 1
having hills in m colors, of which k − 1 are in color m.

(2) The value of fm(n) is the number of Dyck paths of semilength n− 1 having
hills in m colors.

Proof. We use induction on m. We have f0(n) = Fn. It is well-known that f0(n)
is the number of Dyck paths of semilength n− 1 with no hills. If we consider the
symbol x in Proposition 1 as a hill (of color 1), then the first assertion holds for
m = 1. The second assertion holds by (2).

Assume that the assertion is true for m > 1, that is, Assume that fm−1(n) equals
the number of Dyck paths of semilength n − 1 having hills in m − 1 colors. Since
fm−1(1) = 1 and since the empty Dyck path has no hills, we may apply (2) to
obtain the assertion. �

We state two particular cases. Firstly, for m = 1, the value of f1(n) is the
number of Dyck paths of semilength n−1, which equals the Catalan number Cn−1.
Hence,

f1(n) = Cn−1.

Since f1(1), f1(2), . . . is the invert transform of f0(1), f0(2), . . ., we obtain the
following relation between Fine and Catalan numbers.

Corollary 1. The sequence C0, C1, . . . of the Catalan numbers is the invert trans-
form of the sequence F1,F2, . . . of the Fine numbers.

From [2, Identity 12], by the use of the identity i ·
(

i−1

k−1

)

= k
(

i
k

)

, we obtain the
following identity relating the Fine and the Catalan numbers via the partial Bell
polynomials.

Identity 1.

(k − 1)!Bn,k(C0, 2! · C1, 3! · C2, . . .) =

n
∑

i=k

(

i

k

)

(i − 1)!Bn,k(F1, 2! · F2, 3! · F3, . . .).

3. Catalan triangle g2(n, k)

According to Theorem 1, we have

Corollary 2. (1) The value of g1(n, k) is the number of Dyck paths of semilength
n− 1 having k − 1 hills.
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(2) The number of Dyck paths of semilngth n− 1 equals f1(n).

We conclude that
f1(n) = Cn−1,

where Cn−1 is the Catalan number.
An explicit formula for g1(n, k) will be derived later.
The Segner’s formula means that the sequence C1, C2, . . . of the Catalan numbers

is the invert transform of the sequence C0, C1, . . .. This yields that f2(n) = Cn,
for all n. We thus obtain the following combinatorial interpretation of the Catalan
numbers.

Corollary 3. The Catalan number Cn is the number of Dyck paths of semilength
n− 1 having hills in two colors.

Remark 1. Note that this property of Catalan number is equivalent to Stanley [6,
BE.52].

We also have the following identity relating the Catalan numbers and the partial
Bell polynomials.

Identity 2.

(k − 1)!Bn,k(C1, 2! · C1, 3! · C3, . . .) =

n
∑

i=k

(

i

k

)

(i − 1)!Bn,k(C0, 2! · C1, 3! · C2, . . .).

We firstly derive an explicit formula for g2(n, k). It is known that

g(x) =
1−

√
1− 4x

2x
is the ordinary generating function for the sequence C0, C1, . . .. It follows from
(5) that

∑∞
n=k g2(n, k)x

n is the expansion of [xg(x)]k into powers of x. Using the
binomial theorem and the expansion of a binomial series, we obtain

∞
∑

n=k

g2(n, k)x
n =

∞
∑

j=0

[

k
∑

i=0

(−1)i+j

(

k

i

)∏j−1

t=0 (i − 2t)

2k−j · j!

]

xj .

Comparing coefficients of the same powers of x, we firstly obtain

Identity 3. If n < k, then

k
∑

i=0

(−1)i+n

(

k

i

) n−1
∏

t=0

(i − 2t) = 0.

The case n ≥ k yields

g2(n, k) =
2n−k

n!

k
∑

i=1

(−1)i+n

(

k

i

) n−1
∏

t=0

(i − 2t).

It is clear that
∏n−1

t=0
(i−2t) = 0, if i is even. If i is odd, we denote i = 2j−1, (1 ≤

j ≤ ⌊k+1

2
⌋. Hence

Proposition 2. The following formula holds:

(6) g2(n, k) =
2n−k

n!

⌊ k+1

2
⌋

∑

j=1

(−1)j−1

(

k

2j − 1

)

· (2j − 1)!! · (2n− 2j − 1)!!.
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In particular, since g2(n, 1) = f1(n) = Cn−1, we obtain the following result.

Corollary 4. For n > 1, we have

Cn−1 =
2n−1

n!
· (2n− 3)!!.

Remark 2. The preceding is the famous Euler’s formula for the Catalan numbers.

We now prove that g2(n, k) satisfies a simple recurrence relation.

Proposition 3. For 1 ≤ k < n, the following recurrence holds:

(7) g2(n+ 1, k + 1) = g2(n+ 1, k + 2) + g2(n, k).

Proof. According to (1), we have

(8) g2(n+ 1, k + 1) =
∑

i1+i2+···+ik+1=n+1

Ci1−1 · Ci2−1 · · ·Cik+1−1,

where the sum is taken over positive it.
Firstly, we extract the term obtained for ik+1 = 1. Since Cik+1−1 = C0 = 1, we

obtain
∑

i1+i2+···ik=n

Ci1−1 · Ci2−1 · · ·Cik−1 = C2(n, k),

which is the second term on the right-hand side in formula (3). It remains to
calculate the sum on the right-hand side of Equation (8), when ik+1 > 1. We
consider the equation

g2(n+ 1, k + 2) =
∑

j1+j2+···+jk+1+jk+2=n+1

Cj1−1 · Cj2−1 · · ·Cjk+1−1 · Cjk+2−1.

Denote jk+1 + jk+2 = ik+1 > 1. This equation is fulfilled for the following pairs of
(jk+1, jk+2):

{(1, ik+1 − 1), (2, ik+1 − 2), . . . , (ik+1 − 1, 1)}.
. We rearrange terms in the sum as follows:

g2(n+ 1, k + 2) =
∑

j1+···+jk+ik+1=n+1

Cj1−1Cj2−1 · · ·Cjk−1 ·
ik+1−1
∑

i=1

Ci−1Cik+1−1−i.

Segner’s formula implies
∑ik+1−1

i=1 Ci−1Cik+2−1−i = Cik+1−1. We thus obtain

g2(n+ 1, k + 2) =
∑

j1+···+jk+ik+1=n+1

Cj1−1Cj2−1 · · ·Cjk−1 · Cik+1−1,

for ik+1 > 1, which is the first term in Equation (7). �

We now prove that the following vertical recurrence holds:

Proposition 4. For n, k > 1, we have

(9) g2(n, k) =

n−2
∑

i=k−1

g2(n− 1, i) + 1.



ON ENUMERATION OF DYCK PATHS WITH COLORED HILLS 5

Proof. From Proposition 3, we obtain the following sequence of equations.

g2(n+ 1, 3) = g2(n+ 1, 2)− g2(n, 1),

g2(n+ 1, 4) = g2(n+ 1, 3)− g2(n, 2),

...

g2(n+ 1, k + 2) = g2(n+ 1, k + 1)− g2(n, k).

Adding terms on the left-hand sides of these equations, and those on the right-hand
sides, we obtain

k
∑

i=1

g2(n, i) = g2(n+ 1, 2)− g2(n+ 1, k + 2).

Replacing n by n− 1, and k by k − 2, (k > 2), we obtain

g2(n, 2) = g2(n, k) +

k−2
∑

i=1

g2(n− 1, i).

In particular, for k = n, this equation becomes

g2(n, 2) =

n−2
∑

i=1

g2(n− 1, i) + 1,

and the formula follows. �

We now derive a simpler explicit formula for g2(n, k).

Proposition 5. The following formula holds: g2(n, n) = 1, and

(10) g2(n, k) =
k
∏n−k−1

i=1 (n+ i)

(n− k)!
,

otherwise. Equivalently,

(11) g2(n, k) =
k

n− k

(

2n− k − 1

n

)

, (n > k).

Proof. We use the recurrence (7). We have

g2(n+ 1, k + 1)− g2(n, k) =
(n+ 2) · · · (2n− k − 1) · [(k + 1)(2n− k)− k(n+ 1)]

(n− k)!

=
(n+ 2) · · · (2n− k − 1) · (k + 2)(n− k)

(n− k)!

=
(k + 2)(n+ 2) · · · (2n− k − 1)

(n− k − 1)!
= g2(n+ 1, k + 2).

and the assertion follows by induction. �

From (9), we obtain the following identity:

Identity 4. For n > k, we have

k

n− k
·
(

2n− k − 1

n

)

=

n−2
∑

i=k−1

i

n− i− 1

(

2n− 3− i

n− 1

)

+ 1.
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We denote by A(n, k) the mirror triangle of g2(n, k). Hence, A(n, k) = g2(n, n−
k + 1).

Proposition 6. The triangle A(n, k) satisfies the following conditions:

(1) A(n, 1) = 1, A(n, n) = Cn−1.
(2) A(n+ 1, k + 1) = A(n+ 1, k) +A(n, k + 1),
(3) A(n, n− 1) = Cn−1.

Proof. (1) We have A(n + 1, 1) = g2(n + 1, n + 1) = f0(1)
n+1 = 1. Also,

A(n, n) = g2(n, 1) = Cn−1.
(2) We have A(n+ 1, k+ 1) = g2(n+ 1, n− k + 1). Using Proposition 3 yields

A(n+ 1, k + 1) = g2(n+ 1, n− k + 2) + g2(n, n− k) = A(n+ 1, k) +A(n, k + 1).

(3) We have A(n, n − 1) = g2(n, 2). According to (1), we have g2(n, 2) =
∑n−2

i=1
Ci−1Cn−i−2. Applying the Segner’s formula yields A(n, n − 1) =

Cn−1.
�

Remark 3. We note that the triangle A(n, k) is the Catalan triangle, considered
in Koshy[3, Chapter 15]. The chapter is devoted to a family of binary words.

Comparing result which is obtained in this Chapter, and our result, we obtain
the following result:

Identity 5. The following sets has the same number of elements:

(1) The number of Dyck paths of semilength n − 1 having hills in two colors,
of which n− k hills in color 2.

(2) The number of binary words of length n+k−2 having n−1 ones and k−1
zeros and no initial segment has more zeros than ones.

We also give a bijective proof.

Proof. In a Dyck word of semilength n − 1 with n − k hills of color 2, we replace
each hill of color 2 by 1. Between two hills of color 2 are the standard Dyck paths,
which we interpret as binary words having the same number of zeros and ones, and
no initial segment having more zeros that ones. In this way we obtain a binary
words having n − 1 ones and k − 1 zeros, and no initial segment has more zeros
then ones. It is clear that this correspondence is injective.

Conversely, if w is a binary word satisfying 2. Scanning from left to right,
starting from the last zero, we find interval consisting of the same numbers of ones
and zeros. This interval produces a standard Dyck path. If there ones behind the
last zero, we replace each of them by the hill of color 2.

Continuing the same procedure, we obtain Dyck path of semilength n−1 having
n− k hills of color 2. This correspondence is also bijective.

�

4. Catalan triangle g3(n, k)

From Theorem 1, we obtain

Corollary 5. (1) The value of g3(n, k) is the number of Dyck paths of semilength
n− 1 hills i three colors, of which k − 1 hills in color 3.
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(2) The number of Dyck paths of semilngth n − 1 having hills in three colors
equals f3(n).

We derive an explicit formula for g3(n, k).

Proposition 7. We have

(12) g3(n, k) =
k

n

(

2n

n− k

)

.

Proof. According to (2), we have

g3(n, k) =

n
∑

i=k

(

i− 1

k − 1

)

g2(n, i).

Using (10) yields

g3(n, k) =
n
∑

i=k

(

i− 1

k − 1

)

i · (n+ 1) · (n+ 2) · · · (2n− i− 1)

(n− i)!

Using the identity i ·
(

i−1

k−1

)

= k
(

i

k

)

implies

g3(n, k) =
k

n
·

n
∑

i=k

(

i

k

)

n(n+ 1) · (n+ 2) · · · (2n− i− 1)

(n− i)!
,

that is

g3(n, k) =
k

n
·

n
∑

i=k

(

i

k

)(

2n− i− 1

n− 1

)

.

Hence, our statement is equivalent to the following binomial identity. �

Identity 6. We have

(13)

(

2n

n+ k

)

=

n
∑

i=k

(

i

k

)(

2n− i− 1

n− 1

)

.

Proof. We prove the identity combinatorially. We count subsets of n+ k elements
of the set width 2n element after the position of the (k + 1)th element. If i + 1 is

the position of the k+1th element of the set then we have
(

i

k

)

elements before and
(

2n−i−1

n−1

)

after this element. Since k ≤ i ≤ n the identity is true. �

Remark 4. The Catalan triangle g3(n, k) is defined by Shapiro [4].

Taking into account his original combinatorial interpretation, we obtain the fol-
lowing:

Identity 7. The following sets has the same number of elements:

(1) The number of nonintersecting lattice paths in the first quadrant at the
distance k.

(2) The number of Dyck paths of semilength n− 1 having hills in three colors,
of which k − 1 hills are of color 3.

Proof. Dyck paths consider here have a simple recurrence, and it is easy to see that
g3(n, k) satisfies this recurrence. �

Remark 5. This array is also considered in Koshy[3, Chapter 14].

We derive one more relation between g2(n, k) and g3(n, k).
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Proposition 8. We have

(14) g2(n, k) =
k−1
∑

i=0

(

k

i

)

g3(n− k, k − i).

Proof. Using [2, Proposition 2], we obtain

g2(n, k) =
∑

i1+i2+···+ik=n

Ci1−1 · Ci2−1 · · ·Cik−1,

where the sum is taken over positive it, (t = 1, . . . , k). Replacing it − 1 = jt, (t =
1, 2, . . . , k) we obtain

g2(n, k) =
∑

j1+j2+···+jk=n−k

Cj1 · Cj2 · · ·Cjk ,

where the sum is taken over nonnegative jt. Note that in the case k = n we have
g2(n, n) = 1. We consider the case k < n. Assume that there are i, (0 ≤ i ≤ k − 1)
of jt which are equal 0. Then

g2(n, k) =

k−1
∑

i=0

(

k

i

)

·
∑

s1+s2+···+sk−i=n−k

Cs1 · Cs2 · · ·Csk−i
,

where st > 0, (t = 1, 2, . . . , k − i) and k − i ≥ n− k. According Equation (??), we
have

∑

s1+s2+···+sk−i=n−k

Cs1 · Cs2 · · ·Csk−i
= g3(n− k, k − i),

which proves the statement. �

We next derive an explicit formula for f3(n).

Proposition 9. The following formula holds:

f3(n) =

(

2n− 1

n

)

.

Proof. We have

f3(n) =
1

n

n
∑

k=1

k

(

2n

n− k

)

=
1

n

∑

k=0

(n− k)

(

2n

k

)

=

n
∑

k=0

(

2n

k

)

−
n
∑

k=1

k

n
· 2n
k

·
(

2n− 1

k − 1

)

= 1 +
n
∑

k=1

[(

2n− 1

k

)

+

(

2n− 1

k − 1

)]

− 2
n
∑

k=1

(

2n− 1

k − 1

)

=

n
∑

k=0

(

2n− 1

k

)

−
n−1
∑

k=0

(

2n− 1

k

)

=

(

2n− 1

n

)

.

�
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Remark 6. A combinatorial proof of this equation is given in [4, Proposition 3.1].
The preceding proof means that all results in our paper depend only on the

fundamental properties of Fine and Catalan numbers.

5. Catalan array g4(n, k)

This case is considered in [2, Section 4], where the following results are obtained.

Proposition 10. (1)

(15) g4(n, k) =
2n−k

n!

k
∑

i=1

(−1)k−i

(

k

i

)

·
n−1
∏

j=0

(i + 2j).

(2) The value of g4(n, k) is the number of ternary words of length 2n−1, having
k − 1 letters equal to 2, and in all binary subwords the number of ones is
greater by 1 than the number of zeros. Also, each 2 is both preceded and
followed by a binary subword.

(3) The value of f4(n) is the number of ternary words of length 2n−1 in which
2 is preceded and followed by a binary subword in which the number of
ones is greater by 1 than the number of zeros.

As a consequence, we have the following Euler-type identities:

Identity 8. The following sets have the same number of elements.

(1) The set of Dyck paths of semilength n − 1 having hills in four colors, of
which k − 1 in color 4.

(2) The set of ternary words of length 2n − 1, having k − 1 letters equal to
2, and in all binary subwords the number of ones is greater by 1 than the
number of zeros. Also, each 2 is both preceded and followed by a binary
subword.

Identity 9. (1) The set of Dyck paths of semilength n− 1 having hills in four
color.

(2) The set of ternary words of length 2n− 1, such that in all binary subwords
the number of ones is greater by 1 than the number of zeros, and each 2 is
both preceded and followed by a binary subword.

6. Some explicit formulas and identities

From (3) and the fact that, for each integer p, we have

Lp
n =

(

pi−j

(

i− 1

j − 1

))

n×n

,

a mutually connection among different gm(n, k) is easy to obtain.
Up to now, we have no an explicit formulas for g1(n, k).
In matrix form, we haveG1(n) = G3(n)L

−2
n . Hence, the following equation holds:

(16) g1(n, k) =
k

n
·

n
∑

i=k

(−2)i−k

(

i

k

)(

2n

n− i

)

.

Since g1(n, 1) = Fn, we have the following identity for the Fine numbers:
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Identity 10.

Fn =
1

n
·

n
∑

i=1

(−2)i−1 · i ·
(

2n

n− i

)

.

We next prove the following binomial identity.

Identity 11.
(

2n− 2

n− 1

)

=

n
∑

i=1

(−1)i−1i ·
(

2n

n− i

)

.

Proof. We have

f1(n) =

n
∑

k=1

g1(n, k) =
1

n

n
∑

k=1

n
∑

i=k

k(−2)i−k

(

i

k

)(

2n

n− i

)

.

Changing the order of summation yields

f1(n) =
1

n

n
∑

i=1

(

2n

n− i

)

·
i
∑

k=1

k(−2)i−k

(

i

k

)

.

�

Next, we have

i
∑

k=1

k(−2)i−k

(

i

k

)

= i

i−1
∑

t=0

(−2)t
(

i− 1

t

)

= (−1)i−1i.

Next, we write g2, g3, g4 as alternating sums.
Since G2(n) = G3(n) · L−1

n , we have

(17) g2(n, k) =
k

n
·

n
∑

i=k

(−1)i−k

(

i

k

)

·
(

2n

n− i

)

.

Comparing this equation and (11), we obtain the following identity:

Identity 12. For k > 0, we have
(

2n− k − 1

n

)

=
n− k

k

n
∑

i=k

(−1)i−k

(

i

k

)(

2n

n− i

)

.

Also, since g2(n, 1) = Cn−1, we obtain the following identity for the Catalan
numbers.

Identity 13.

nCn−1 =
n
∑

i=1

(−1)i−1i ·
(

2n

n− i

)

.

We finish with two exotic identities. The first one consists of eigth items: a
sum, a product, two integers, a rising factorial, a falling factorial, and two binomial
coefficients.

Identity 14.

k ·
n−k−1
∏

i=1

(n+ i) = (n− k − 1)! ·
k−1
∑

i=0

(k − i)

(

k

i

)(

2n− 2k

n+ 2k − i

)

.
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The identity is derived from (14).
From G4(n) = G3(n)Ln, we obtain the identity consisting of ten items: an

integer, two sums, a power of −1, a power of 2, a falling factorial, a rising factorial,
and three binomial coefficients.

Identity 15.

n
∑

i=k

i

(

i− 1

k − 1

)(

2n

n− i

)

=
2n−k

(n− 1)!

k
∑

i=1

(−1)k+i

(

k

i

)

i(i+ 2) · · · (i+ 2n− 2).
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