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LIMINAL RECIPROCITY AND FACTORIZATION STATISTICS

TREVOR HYDE

ABSTRACT. Let Md,n(q) denote the number of monic irreducible polynomials

in Fq[x1, x2, . . . , xn] of degree d. We show that for a fixed degree d, the se-

quence Md,n(q) converges q-adically to an explicitly determined rational func-

tion Md,∞(q). Furthermore we show that the limit Md,∞(q) is related to the

classic necklace polynomial Md,1(q) by an involutive functional equation, lead-

ing to a phenomenon we call liminal reciprocity. The limiting first moments

of factorization statistics for squarefree polynomials are expressed in terms of

a family of symmetric group representations as a consequence of liminal reci-

procity.

1. INTRODUCTION

Let Fq be a field with q elements. How many irreducible polynomials are there

in Fq[x1, x2, . . . , xn] of total degree d? Let Md,n(q) denote the number of irre-

ducible polynomials in Fq[x1, x2, . . . , xn] of total degree d which are monic with

respect to some fixed monomial ordering (Md,n(q) is independent of which mono-

mial ordering we choose.) When n = 1, Md,1(q) is given by the dth necklace

polynomial

Md,1(q) :=
1

d

∑

e|d

µ(d/e)qe, (1.1)

where µ is the Möbius function. There does not appear to be a simple analog of

(1.1) forMd,n(q) when n > 1. In Lemma 2.1 we show thatMd,n(q) is a recursively

computable polynomial in q for all n ≥ 1. The table below gives approximations

of M3,n(q) for small n.

n M3,n(q)

1 −1
3q +

1
3q

3

2 −1
3q −

1
3q

2 + 1
3q

3 − q5 − 2
3q

6 + . . .

3 −1
3q −

1
3q

2 + q4 + q5 + 1
3q

6 − q7 + . . .

4 −1
3q −

1
3q

2 + 2
3q

4 + 2q5 + 7
3q

6 + 2q7 + . . .

5 −1
3q −

1
3q

2 + 2
3q

4 + 5
3q

5 + 10
3 q

6 + 4q7 + . . .

6 −1
3q −

1
3q

2 + 2
3q

4 + 5
3q

5 + 3q6 + 5q7 + . . .

7 −1
3q −

1
3q

2 + 2
3q

4 + 5
3q

5 + 3q6 + 14
3 q

7 + . . .
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The sequence of polynomials M3,n(q) appears to converge q-adically as the

number of variables n increases. We show that for any degree d, the sequence

of polynomials Md,n(q) converges q-adically to a rational function Md,∞(q) as

n→ ∞. The limit Md,∞(q) is closely related to (1.1).

Theorem 1.1. Let Md,n(q) be the number of irreducible degree d polynomials in

Fq[x1, x2, . . . , xn] which are monic with respect to some fixed monomial ordering.

Then Md,n(q) is a polynomial in q and for each d ≥ 1 the sequence of polynomials

Md,n(q) converges q-adically to the rational function

Md,∞(q) := −
1

d

∑

e|d

µ(d/e)

(

1

1− 1
q

)e

.

In particular Md,∞(q) satisfies the following functional equation,

Md,∞(q) = −Md,1

(

1
1− 1

q

)

. (1.2)

Furthermore the rate of convergence of Md,n(q) is bounded by the congruence

Md,n(q) ≡Md,∞(q) mod qn+1.

Note that the q-adic convergence of a sequence of polynomials in q is equivalent

to coefficientwise convergence in the ring of formal power series.

The fractional linear transformation q 7→ 1
1− 1

q

is an involution, hence (1.2) is

equivalent to

Md,1(q) = −Md,∞

(

1
1− 1

q

)

.

We view this involutive functional equation relating irreducible polynomial counts

in one and infinitely many variables as the first instance of a phenomenon which

we call liminal reciprocity.

1.1. Liminal reciprocity for type polynomials. Let Polyd,n(Fq) denote the set of

polynomials in Fq[x1, x2, . . . , xn] of total degree dwhich are monic with respect to

some fixed monomial ordering. Since the polynomial ring Fq[x1, x2, . . . , xn] has

unique factorization, each element f ∈ Polyd,n(Fq) has a well-defined factoriza-

tion type. The factorization type of a polynomial f ∈ Polyd,n(Fq) is the partition

λ ⊢ d given by the degrees of the Fq-irreducible factors of f .

The factorization type does not record the multiplicities of individual factors,

only the degrees of the irreducible factors. For example, the polynomials x2 and

x(x+1) both have factorization type [1, 1] since they each have two linear factors.

Definition. If λ ⊢ d is a partition, then the λ-type polynomial Tλ,n(q) is the num-

ber of elements of Polyd,n(Fq) with factorization type λ. Similarly we define the

squarefree λ-type polynomial T sf
λ,n(q) to be the number of squarefree elements of

Polyd,n(Fq) with factorization type λ. The type polynomials may be expressed in

terms of Md,n(q) as

Tλ,n(q) =
∏

j≥1

((

Mj,n(q)

mj(λ)

))

T sf
λ,n(q) =

∏

j≥1

(

Mj,n(q)

mj(λ)

)

,
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wheremj(λ) is the number of parts of λ of size j,
(

x
m

)

= 1
m!x(x−1) · · · (x−m+1)

is the usual binomial coefficient, and
(( x
m

))

= 1
m!x(x+ 1) · · · (x+m− 1). Recall

that
(x
m

)

counts the number of subsets of size m in a set of size x and
(( x
m

))

counts

the number of subsets of size m with repetition in a set of size x.

It follows from Theorem 1.1 that the q-adic limits

Tλ,∞(q) = lim
n→∞

Tλ,n(q) T sf
λ,∞(q) = lim

n→∞
T sf
λ,n(q)

converge to rational functions. Our next result gives a version of liminial reci-

procity for type polynomials.

Theorem 1.2 (Liminal reciprocity). Let λ be a partition and let ℓ(λ) =
∑

j≥1mj(λ)

be the number of parts of λ. The following identities hold in Q(q),

Tλ,∞(q) = (−1)ℓ(λ)T sf
λ,1

(

1
1− 1

q

)

T sf
λ,∞(q) = (−1)ℓ(λ)Tλ,1

(

1
1− 1

q

)

These identities are involutive in the sense that we can swap the ∞ and 1 sub-

scripts to get equivalent statements. The new feature we see in Theorem 1.2 is the

relationship between squarefree polynomials and general polynomials of a given

factorization type. This connection is closely related to Stanley’s combinatorial

reciprocity phenomenon [13].

1.2. Liminal first moments of squarefree factorization statistics. We call a

function P defined on Polyd,n(Fq) a factorization statistic if P (f) depends only

on the factorization type of f . Recently we demonstrated a surprising connection

between the first moments of factorization statistics on the set of univariate poly-

nomials (n = 1) and the symmetric group representation theoretic structure of the

cohomology of point configurations in Euclidean space. See Section 3 for precise

definitions.

Theorem 1.3 ([9, Thm. 2.4, Thm. 2.5]). Let P be a factorization statistic, and

let ψk
d , φkd be the characters of the Sd-representations H2k(PConfd(R

3),Q) and

Hk(PConfd(R
2),Q) respectively. Then

(1)
∑

f∈Polyd,1(Fq)

P (f) =

d−1
∑

k=0

〈P,ψk
d 〉q

d−k

(2)
∑

f∈Polysf
d,1(Fq)

P (f) =

d−1
∑

k=0

(−1)k〈P, φkd〉q
d−k,

where 〈P,Q〉 = 1
d!

∑

τ∈Sd
P (τ)Q(τ) is the standard inner product of class func-

tions on Sd.

The squarefree case of Theorem 1.3 is originally due to Church, Ellenberg, and

Farb [6, Prop. 4.1]. The general case was shown by the author [9] using different
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methods which also gave a new proof of the squarefree case. Theorem 1.3 provides

a bridge between the arithmetic and combinatorics of factorization statistics on one

hand and the geometry and representation theory of configuration spaces on the

other.

Computations suggest there are not direct analogs of Theorem 1.3 for n > 1.

However, an analog does emerge in the liminal squarefree case.

Theorem 1.4. Let P be a factorization statistic, and let σkd be the character of the

Sd-representation

Σk
d =

d−1
⊕

j=k

sgnd ⊗H2j(PConfd(R
3),Q)⊕(

j

k). (1.3)

Then for each n the first moment
∑

f∈Polysfd,n(Fq)
P (f) is a polynomial in q and

lim
n→∞

∑

f∈Polysfd,n(Fq)

P (f) =
1

(1− q)d

d−1
∑

k=0

(−1)k〈P, σkd 〉q
d−k,

where the limit is taken q-adically.

Since the limit in Theorem 1.4 is taken q-adically, the representation theoretic

interpretation of first moments manifests for sufficiently large n. For example, let

L be the linear factor statistic where L(f) is the number of linear factors of f ;

the following table shows approximations of the first moment of L on Polysf3,n(Fq)

scaled by (1− q)3.

n (1− q)3
∑

f∈Polysf3,n(Fq)
L(f)

1 q − 5q2 + 10q3 − 10q4 + 5q5 − q6

2 q − 4q2 + 2q3 + 7q4 − 6q5 − 3q6 + 2q7 + q8 + q9 − q10

3 q − 4q2 + 3q3 − q4 + 7q5 − 6q6 − 3q8 + 3q9 − q11 + q12 + q14 − q15

4 q − 4q2 + 3q3 − q5 + 7q6 − 6q7 − 3q10 + 3q11 − q16 + q17 + q20 − q21

5 q − 4q2 + 3q3 − q6 + 7q7 − 6q8 − 3q12 + 3q13 − q22 + q23 + q27 − q28

This table suggests that

∑

f∈Polysf3,n(Fq)

L(f) =
q − 4q2 + 3q3 +O(qn+1)

(1− q)3
.

From Theorem 1.4 we conclude that

〈L, σ23〉 = 1 〈L, σ13〉 = 4 〈L, σ03〉 = 3.

Note that these inner products are positive integers—this reflects that L, viewed as

a class function of the symmetric group, is the character of the standard permuta-

tion representation.
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1.3. Related work. Carlitz [4, 5] studied the asymptotic behavior of Md,n(q) for

n ≥ 1. His investigations were subsequently refined and extended in [1, 7, 8, 14,

15]. Our Theorem 1.1 may be interpreted as a result on the q-adic asymptotics of

Md,n(q) as n → ∞. The q-adic convergence of Md,n(q) and the determination of

the limit appear to be new.

The liminal reciprocity identities (Theorem 1.1 and Theorem 1.2) were discov-

ered empirically. We do not know the proper context for these results. The proof of

the liminal reciprocity for type polynomials (Theorem 1.2) passes through a well-

known example of Stanley’s combinatorial reciprocity phenomenon [13, Ex. 1.1].

Combinatorial reciprocity is a family of dualities between related combinatorial

problems which concretely manifests as functional equations similar in form to

our liminal reciprocity identities. However, the precise relationship between limi-

nal and combinatorial reciprocity remains unclear. We would be interested to know

of other examples of liminal reciprocity.

The relationship between the liminal first moments of squarefree factorization

statistics and representations of the symmetric group parallels our results in [9].

Church, Ellenberg, and Farb [6] established the connection between first moments

of squarefree factorization statistics for univariate polynomials and the cohomol-

ogy of point configurations in R2 in a formula they call the twisted Grothendieck-

Lefschetz formula for squarefree polynomials. One application of their result is to

deduce the asymptotic stability of first moments as a consequence of representa-

tion stability. We extend this connection to general univariate polynomials in [9,

Thm. 2.7]. However, this connection does not extend to liminal first moments; the

family of representations Σk
d does not exhibit representation stability.

The results in [9] are expressed in terms of expected values of factorization

statistics. In this paper we focus on first moments as they lead to a cleaner statement

for Theorem 1.4. The translation between expected values and first moments is

simply a factor of qd for general polynomials, but is more subtle for squarefree

polynomials as it affects the family of characters determining the coefficients. The

equivalence between Theorem 1.3 (2) and [9, Thm. 2.5] follows from [10, Prop.

4.2]. Alternatively, Theorem 1.3 (2) may be found as stated in [6, Prop. 4.1].

1.4. Acknowledgements. The author thanks Nir Gadish, Ofir Gorodetsky, Jeff

Lagarias, Bob Lutz, Phil Tosteson, and Michael Zieve for helpful conversations

and suggestions on the manuscript.

2. HYPERSURFACE FACTORIZATION STATISTICS

Let Fq be a finite field. Fix some monomial ordering on Fq[x1, x2, . . . , xn]
and let Polyd,n(Fq) be the set of all degree d polynomials in Fq[x1, x2, . . . , xn]
which are monic with respect to the monomial ordering. Note that the size of

Polyd,n(Fq) is independent of the choice of monomial ordering. For each m ≥ 1
let Polymd,n(Fq) ⊆ Polyd,n(Fq) be the subset of those polynomials with all factors

of multiplicity at most m. There is a filtration

Poly1d,n(Fq) ⊆ Poly2d,n(Fq) ⊆ Poly3d,n(Fq) ⊆ . . . ⊆ Polyd,n(Fq),
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and Poly1d,n(Fq) = Polysfd,n(Fq) is the set of the squarefree polynomials.

Recall that Fq[x1, x2, . . . , xn] is a unique factorization domain, hence every el-

ement of Polyd,n(Fq) can be uniquely factored into a product of irreducible monic

polynomials. We define the factorization type of f ∈ Polyd,n(Fq) to be the parti-

tion of d given by the degrees of the irreducible factors of f . If λ is a partition of

d, then we write Polyλ,n(Fq) for the set of all f ∈ Polyd,n(Fq) with factorization

type λ. For m ≥ 1, let Polymλ,n(Fq) := Polymd,n(Fq) ∩ Polyλ,n(Fq). If λ = [d]
is the partition with one part, we write Irrd,n(Fq) := Poly[d],n(Fq) for the set of

monic, irreducible, degree d polynomials.

Lemma 2.1 shows that the cardinality of each of the sets of polynomials just

defined is given by a polynomial in the size of the field q.

Lemma 2.1. For any d, n ≥ 1,

(1) |Polyd,n(Fq)| = Pd,n(q), where

Pd,n(q) =
q(

d+n

n ) − q(
d+n−1

n )

q − 1
= q(

d+n−1

n ) q
(d+n−1

n−1 ) − 1

q − 1
.

(2) Md,n(q) is a polynomial of q with rational coefficients.

(3) For every m ≥ 1 and every partition λ ⊢ d,

|Polymλ,n(Fq)| = Tm
λ,n(q) :=

∏

j≥1

(

Mj,n(q) + min{m,mj(λ)} − 1

mj(λ)

)

,

where mj(λ) is the number of parts of λ of size j. In particular, when

m = 1 we have

|Polysfλ,n(Fq)| = T sf
λ,n(q) :=

∏

j≥1

(

Mj,n(q)

mj(λ)

)

.

(4) For every partition λ ⊢ d,

|Polyλ,n(Fq)| = Tλ,n(q) :=
∏

j≥1

((

Mj,n(q)

mj(λ)

))

,

where
((

x
m

))

:=
(

x+m−1
m

)

is the number of subsets with repetition of size m
chosen from an x element set.

Proof. (1) There are q(
d+n

n ) polynomials in n variables of degree at most d. Hence

there are q(
d+n

n ) − q(
d+n−1

n ) polynomials in n variables of degree exactly d. If we

choose a monomial order, every degree d polynomial has a nonzero leading coef-

ficient. Therefore the total number of degree d monic polynomials in n variables

is

|Polyd,n(Fq)| =
q(

d+n

n ) − q(
d+n−1

n )

q − 1
.

(2) We proceed by induction on d to show that

|Irrd,n(Fq)| =Md,n(q)
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for some polynomial Md,n(x) ∈ Q[x]. If d = 1, then all polynomials are irre-

ducible, hence

|Irr1,n(Fq)| = |Poly1,n(Fq)| = qn,

So M1,n(q) = qn. Suppose our claim were true for all degrees less than d > 1.

Counting the number of polynomials with factorization type λ directly we find

|Polyλ,n(Fq)| =
∏

j≥1

((

|Irrj,n(Fq)|

mj(λ)

))

. (2.1)

By unique factorization there is a decomposition

Polyd,n(Fq) =
⊔

λ⊢d

Polyλ,n(Fq),

hence

Pd,n(q) = |Irrd,n(Fq)|+
∑

λ⊢d
λ6=[d]

|Polyλ,n(Fq)|.

If λ 6= [d], then all parts j of λ are smaller than d, hence by our inductive hypothesis

we have |Irrj,n(Fq)| =Mj,n(q) for all such j. Thus

|Irrd,n(Fq)| =Md,n(q) := Pd,n(q)−
∑

λ⊢d
λ6=[d]

∏

j≥1

((

Mj,n(q)

mj(λ)

))

.

Finally, (3) and (4) follow from (2.1) and (2). �

For ease of reference we collect the definitions of the polynomials appearing in

Lemma 2.1.

Definition 2.2. Let d, n ≥ 1 and λ ⊢ d, then

Pd,n(q) =
q(

d+n

n ) − q(
d+n−1

n )

q − 1
= q(

d+n−1

n ) q
(d+n−1

n−1 ) − 1

q − 1

Md,n(q) = |Irrd,n(Fq)| = |Poly[d],n(Fq)|

Tλ,n(q) = |Polyλ,n(Fq)| =
∏

j≥1

((

Mj,n(q)

mj(λ)

))

Tm
λ,n(q) = |Polymλ,n(Fq)| =

∏

j≥1

(

Mj,n(q) + min(m,mj(λ))− 1

mj(λ)

)

T sf
λ,n(q) = T 1

λ,n(q) = |Polysfλ,n(Fq)| =
∏

j≥1

(

Mj,n(q)

mj(λ)

)

Pm
d,n(q) = |Polymd,n(Fq)| =

∑

λ⊢d

Tm
λ,n(q),

where d represents degree, n the number of variables, andm the maximum multiplicity

of a factor.
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There is a well-known formula [12, Cor. 2.1] for Md,1(q) given by counting ele-

ments in Fqd by the field they generate,

Md,1(q) =
1

d

∑

e|d

µ(e)qd/e. (2.2)

The value of Md,1(k) for an integer k ≥ 1 has a combinatorial interpretation as

the number of aperiodic necklaces made with beads of k colors. For this reason,

Md,1(q) is known as the dth necklace polynomial. There is no apparent analog of

(2.2) nor a combinatorial interpretation for Md,n(k) when n > 1. Instead Md,n(q)
may be computed inductively as in the proof of Lemma 2.1:

M1,n(q) = P1,n(q) = qn

Md,n(q) = Pd,n(q)−
∑

λ⊢d
λ6=[d]

Tλ,n(q).

Our next result shows that all the polynomials listed in Definition 2.2 converge

q-adically to rational functions as the number of variables n tends to infinity.

Theorem 2.3. Let d ≥ 1. Then,

(1) The sequence Pd,n(q) converges q-adically to

Pd,∞(q) = lim
n→∞

Pd,n(q) =

{

− 1
1− 1

q

d = 1

0 d > 1.

(2) For every m ≥ 1 the sequence Pm
d,n(q) converges q-adically to

Pm
d,∞(q) = lim

n→∞
Pm
d,n(q) =























−
(

1
1− 1

q

)k
d = (m+ 1)(k − 1) + 1

(

1
1− 1

q

)k
d = (m+ 1)k

0 d 6≡ 0, 1 mod m+ 1.

In particular, if m = 1, then

P sf
d,∞(q) = (−1)d

(

1
1− 1

q

)⌊ d+1

2
⌋
.

(3) For all partitions λ ⊢ d and m ≥ 1 the sequences Md,n(q), Tλ,n(q), and

Tm
λ,n(q) converge q-adically to rational functions as n→ ∞. Furthermore,

Tλ,∞(q) =
∏

j≥1

((

Mj,∞(q)

mj(λ)

))

T sf
λ,∞(q) =

∏

j≥1

(

Mj,∞(q)

mj(λ)

)

.
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Proof. (1) From Lemma 2.1 we have

Pd,n(q) = q(
d+n−1

n ) q
(d+n−1

n−1 ) − 1

q − 1
.

For d = 1 this simplifies to

P1,n(q) = q
qn − 1

q − 1
.

Since limn→∞ qn = 0 in the q-adic topology, it follows that

P1,∞(q) = lim
n→∞

q
qn − 1

q − 1
= −

q

q − 1
= −

1

1− 1
q

.

If d > 1, then
(d+n−1

n

)

→ ∞ as n→ ∞. Thus

Pd,∞(q) = lim
n→∞

q(
d+n−1

n ) q
(d+n−1

v−1 ) − 1

q − 1
= 0.

(2) Consider the generating functions

Z(Tm
n , t) =

∑

d≥0

∑

λ⊢d

Tm
λ,n(q)t

d =
∑

d≥0

Pm
d,n(q)t

d

Z(Tn, t) =
∑

d≥0

∑

λ⊢d

Tλ,n(q)t
d =

∑

d≥0

Pd,n(q)t
d.

From unique factorization in Fq[x1, x2, . . . , xn] we have the following product for-

mulas

Z(Tm
n , t) =

∏

j≥1

(1 + tj + t2j + . . .+ tmj)Mj,n(q) =
∏

j≥1

(

1− t(m+1)j

1− tj

)Mj,n(q)

Z(Tn, t) =
∏

j≥1

(

1

1− tj

)Mj,n(q)

.

Hence Z(Tn, t) = Z(Tn, t
m+1)Z(Tm

n , t). Taking a coefficientwise q-adic limit as

n→ ∞ we have by (1) that

1− 1
1− 1

q

t = Z(T∞, t) = Z(T∞, t
m+1)Z(Tm

∞ , t) =
(

1− 1
1− 1

q

tm+1
)

∑

d≥0

Pm
d,∞(q)td.

Comparing coefficients we conclude that

Pm
d+m+1,∞(q) =

1

1− 1
q

Pm
d,∞(q)

for all d ≥ 0, together with the initial values

Pm
0,∞(q) = 1

Pm
1,∞(q) = −

1

1− 1
q

Pm
d,∞(q) = 0 for 1 < d ≤ m.
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Then (2) follows by induction.

(3) It suffices to prove that for every d ≥ 1 the sequence Md,n(q) converges q-

adically to a rational function, the other claims follow by the explicit formuls given

in Definition 2.2 and continuity. Recall the recursive formulas for Md,n(q) used in

the proof of Lemma 2.1. For all d, n ≥ 1,

M1,n(q) = P1,n(q)

Md,n(q) = Pd,n(q)−
∑

λ⊢d
λ6=[d]

∏

j≥1

((

Mj,n(q)

mj(λ)

))

.

Taking q-adic limits as n→ ∞ we have by (1) that

M1,∞(q) = P1,∞(q) = −
1

1− 1
q

,

Md,∞(q) = −
∑

λ⊢d
λ6=[d]

∏

j≥1

((

Mj,∞(q)

mj(λ)

))

.

It follows by induction that Md,∞(q) is a rational function of q for all d ≥ 1. �

There is a surprising relationship between the number of irreducible polyno-

mials in one variable Md,1(q) and the limit Md,∞(q) which gives us an explicit

formula for Md,∞(q). This relationship takes the form of an involutive functional

equation which we call liminal reciprocity.

Theorem 2.4 (Liminal reciprocity). For all d ≥ 1,

Md,∞(q) = −Md,1

(

1
1− 1

q

)

.

More explicitly,

Md,∞(q) = −
1

d

∑

e|d

µ(d/e)

(

1

1− 1
q

)e

.

Proof. Recall the generating function Z(Tn, t) used in the proof of Theorem 2.3

(2),

Z(Tn, t) =
∑

d≥0

Pd,n(q)t
d =

∏

j≥1

(

1

1− tj

)Mj,n(q)

Taking the coefficientwise q-adic limit as n→ ∞ gives, by Theorem 2.3 (1), that

1− 1
1− 1

q

t =
∏

d≥1

(

1

1− td

)Md,∞(q)

. (2.3)

Taking logarithms and expanding as power series in t,

−
∑

k≥1

(

1

1− 1
q

)k tk

k
=
∑

d≥1

∑

m≥1

Md,∞(q)
tmd

m
.
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Comparing coefficients of tk

k yields the identity,

−

(

1

1− 1
q

)k

=
∑

d|k

dMd,∞(q).

Therefore by Möbius inversion,

Md,∞(q) = −
1

d

∑

e|d

µ(d/e)

(

1

1− 1
q

)e

.

Recall that

Md,1(q) =
1

d

∑

e|d

µ(d/e)qe.

Hence we conclude

Md,∞(q) = −Md,1

(

1
1− 1

q

)

.

�

The rate of convergence of Md,n(q) can be determined from the proof of Theo-

rem 2.4.

Corollary 2.5. For all d ≥ 1,

Md,n(q) ≡Md,∞(q) mod qn+1.

Proof. Recall that

Pd,n(q) = q(
d+n−1

n ) q
(d+n−1

n−1 ) − 1

q − 1
.

Since
(

d+n−1
n

)

≥ n+ 1 for d ≥ 2 and

P1,n(q) =
qn+1 − q

q − 1
,

it follows that
∑

d≥0

Pd,n(q)t
d ≡ 1− 1

1− 1

q

t mod qn+1.

Thus

1− 1
1− 1

q

t ≡
∏

d≥1

(

1

1− td

)Md,n(q)

mod qn+1,

and (2.3) implies

Md,n(q) ≡Md,∞(q) mod qn+1.

�

Notice that the fractional linear transformation q 7−→ 1
1− 1

q

is an involution. Thus

Theorem 2.4 is equivalent to

Md,1(q) = −Md,∞

(

1
1− 1

q

)

.
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Our next result combines the liminal reciprocity between Md,1(q) and Md,∞(q)
with the combinatorial reciprocity identity

(

−x

m

)

= (−1)m
(( x

m

))

, (2.4)

to deduce a striking relationship between factorization statistics of polynomials

when n = 1 and n = ∞.

Theorem 2.6 (Liminal reciprocity). For any partition λ, let ℓ(λ) =
∑

j≥1mj(λ)
denote the number of parts of λ. Then

T sf
λ,∞(q) = (−1)ℓ(λ)Tλ,1

(

1
1− 1

q

)

,

Tλ,∞(q) = (−1)ℓ(λ)T sf
λ,1

(

1
1− 1

q

)

.

Proof. By Theorem 2.3 (3), Theorem 2.4, and the combinatorial reciprocity iden-

tity (2.4) we have

T sf
λ,∞(q) =

∏

j≥1

(

Mj,∞(q)

mj(λ)

)

=
∏

j≥1

(−Mj,1

(

1
1− 1

q

)

mj(λ)

)

=
∏

j≥1

(−1)mj (λ)









Mj,1

(

1
1− 1

q

)

mj(λ)









= (−1)ℓ(λ)Tλ,1

(

1
1− 1

q

)

.

The second identity follows from a parallel computation noting that (2.4) is equiv-

alent to
((

−x

m

))

= (−1)m
(

x

m

)

.

�

The liminal reciprocity identity

T sf
λ,∞(q) = (−1)ℓ(λ)Tλ,1

(

1
1− 1

q

)

relates the limiting number of squarefree polynomials with factorization type λ in

Fq[x1, x2, . . . , xn] as n → ∞ to the number of polynomials Fq[x] with factoriza-

tion type λ with no restrictions on factor multiplicity. This relationship is, to us,

rather mysterious. It would be interesting to find a conceptual explanation for this

relationship between infinite and one dimensional factorization statistics.
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3. LIMINAL FIRST MOMENTS OF SQUAREFREE FACTORIZATION STATISTICS

A factorization statistic is a function P defined on Polyd,n(Fq) such that P (f)
only depends on the factorization type of f ∈ Polyd,n(Fq). Equivalently, P is

a function defined on the partitions of the degree d, or as a class function of the

symmetric group Sd. Recently we [9] determined explicit formulas for the first

moments of factorization statistics on Polyd,1(Fq) and Polysfd,1(Fq) in terms of the

characters of symmetric group representations related to the cohomology of point

configurations in Euclidean space.

Theorem 3.1 ([9, Thm. 2.4, Thm. 2.5], [6, Prop. 4.1]). Let P be a factorization

statistic, and letψk
d , φkd be the characters of the Sd-representations H2k(PConfd(R

3),Q)

and Hk(PConfd(R
2),Q) respectively. Then

(1)
∑

f∈Polyd,1(Fq)

P (f) =
d−1
∑

k=0

〈P,ψk
d 〉q

d−k

(2)
∑

f∈Polysf
d,1(Fq)

P (f) =

d−1
∑

k=0

(−1)k〈P, φkd〉q
d−k,

where 〈P,ψk
d〉 =

1
d!

∑

τ∈Sd
P (τ)ψk

d (τ) is the standard inner product of class func-

tions on Sd.

The identity (2) was first shown by Church, Ellenberg, and Farb [6, Prop. 4.1]

using algebro-geometric methods including the Grothendieck-Lefschetz trace for-

mula. They called this identity the twisted Grothendieck-Lefschetz formula. We

gave a new proof in [9, Thm. 2.5] using a generating function argument. Our

results in [9] are stated in terms of expected values instead of first moments; this

distinction has little effect in the Polyd,1(Fq) case, but does change the family of

representations in the squarefree case Polysfd,1(Fq). This version of (2) appears in

[6, Prop. 4.1].

The next result combines Theorem 3.1 with liminal reciprocity to express the

limiting first moments of squarefree factorization statistics in terms of characters

of symmetric group representations.

Theorem 3.2. Let P be a factorization statistic, and let σkd be the character of the

Sd-representation

Σk
d =

d−1
⊕

j=k

sgnd ⊗H2j(PConfd(R
3),Q)⊕(

j

k). (3.1)

Then

lim
n→∞

∑

f∈Polysfd,n(Fq)

P (f) =
1

(1− q)d

d
∑

k=0

(−1)k〈P, σkd 〉q
d−k.

Theorem 3.2 follows from the following representation theoretic interpretation

of the liminal squarefree type polynomials T sf
λ,∞(q). Recall that for a partition λ
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the liminal squarefree type polynomial T sf
λ,∞(q) is defined by

T sf
λ,∞(q) = lim

n→∞
T sf
λ,n(q),

where T sf
λ,n(q) is the number of monic squarefree polynomials in Fq[x1, x2, . . . , xn]

with factorization type λ.

Theorem 3.3. Let λ ⊢ d be a partition, and let σkd be the character of the Sd-

representation Σk
d defined in (3.1). Then

T sf
λ,∞(q) =

1

zλ(1− q)d

d−1
∑

k=0

(−1)kσkd(λ)q
d−k,

where zλ =
∏

j≥1 j
mj (λ)mj(λ)! is the number of permutations in Sd commuting

with a permutation of cycle type λ.

Proof. Let ψk
d be the character of the Sd-representation H2k(PConfd(R

3),Q). In

[9, Thm. 2.1] we showed that for all partitions λ ⊢ d,

Tλ,1(q) =
1

zλ

d−1
∑

k=0

ψk
d(λ)q

d−k.

Thus, by Theorem 2.6 we have

T sf
λ,∞(q) = (−1)ℓ(λ)Tλ,1

(

1
1− 1

q

)

=
1

zλ

d−1
∑

j=0

(−1)ℓ(λ)ψj
d(λ)

(

1

1− 1
q

)d−j

=
1

zλ(1− q)d

d−1
∑

j=0

(−1)d−ℓ(λ)ψj
d(λ)q

d−j(q − 1)j

=
1

zλ(1− q)d

d−1
∑

j=0

sgnd(λ)ψ
j
d(λ)q

d−j
j
∑

k=0

(−1)k
(

j

k

)

qj−k

=
1

zλ(1− q)d

d−1
∑

k=0

(−1)k
( d
∑

j=k

(

j

k

)

sgnd(λ)ψ
j
d(λ)

)

qd−k

=
1

zλ(1− q)d

d−1
∑

k=0

(−1)kσkd(λ)q
d−k.

�

We now prove Theorem 3.3.

Proof. Since P depends only on factorization type we have

lim
n→∞

∑

f∈Polysfd,n(Fq)

P (f) = lim
n→∞

∑

λ⊢d

P (λ)T sf
λ,n(q) =

∑

λ⊢d

P (λ)T sf
λ,∞(q).
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Then Theorem 3.3 implies

∑

λ⊢d

P (λ)T sf
λ,∞(q) =

∑

λ⊢d

1

zλ(1− q)d

d
∑

k=0

(−1)kP (λ)σkd(λ)q
d−k

=
1

(1− q)d

d
∑

k=0

(−1)k
∑

λ⊢d

P (λ)σkd (λ)

zλ
qd−k

=
1

(1− q)d

d
∑

k=0

(−1)k〈P, σkd 〉q
d−k.

�

The coefficients of T sf
λ,1(q) also have representation theoretic interpretations,

which suggests that we might hope for a version of Theorem 3.3 for the limiting

first moments of factorization statistics on Polyd,n(Fq). However, computations

show that the coefficients of Tλ,∞(q) are determined by virtual characters, unlike

those of T sf
λ,∞(q). Since this is what we would expect for an arbitrary class function

valued in 1
zλ
Z we do not pursue it.

In [9] we pose the question of finding a geometric interpretation of Theorem

3.1 which explains the connection between the configuration space PConfd(R
3)

and factorization statistics of degree d polynomials over Fq. Going further, we

would like to know any conceptual explanation for Theorem 3.3, be it geometric or

combinatorial. The sequence of representations Σk
d is unfamiliar to us; some basic

properties are collected below in Proposition 3.5 with the hope that they may be

recognized by the reader.

The representation theoretic interpretation of the coefficients of T sf
λ,∞(q) was

discovered empirically by the author pursuing generalizations of squarefree split-

ting measures to multivariate polynomials. It was in the course of trying to establish

this connection with representation theory that the liminal reciprocity and all the

results of [9] were found.

3.1. Example. We demonstrate the liminal reciprocity identity of Theorem 2.6

by computing the expected value of the sign statistic sgnd on degree d univariate

polynomials Polyd,1(Fq) and the limiting expected value of sgnd on squarefree

degree d polynomials Polysfd,∞(Fq).

Let sgnd be the sign character of Sd. Note that sgnd(λ) = (−1)d(−1)ℓ(λ),
where ℓ(λ) =

∑

j≥1mj(λ) is the number of parts of λ. Recall that Pd,n(q) =

|Polyd,n(Fq)| and P sf
d,n(q) = |Polysfd,n(Fq)|.

Proposition 3.4. Let d ≥ 1.

(1) The expected value Ed,1(sgnd) of the sign statistic on the set Polyd,1(Fq)
is given by

Ed,1(sgnd) :=
1

Pd,1(q)

∑

f∈Polyd,1(Fq)

sgnd(f) =
1

q⌊d/2⌋
.
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(2) The limiting expected value Esf
d,∞(sgnd) of the sign statistic on the set

Polysfd,n(Fq) as n→ ∞ is given by

Esf
d,∞(sgnd) := lim

n→∞

1

P sf
d,n(q)

∑

f∈Polysfd,n(Fq)

sgnd(f) =

(

1

1− 1
q

)⌊d/2⌋

,

where the limit is taken 1/q-adically.

Proof. (1) Since sgnd(f) depends only on the factorization type of f we have
∑

f∈Polyd,1(Fq)

sgnd(f) =
∑

λ⊢d

sgn(λ)Tλ,1(q).

Theorem 2.6 gives the identity

(−1)ℓ(λ)Tλ,1(q) = T sf
λ,∞

(

1
1− 1

q

)

,

from which we deduce for each d ≥ 1
∑

λ⊢d

sgn(λ)Tλ,1(q) =
∑

λ⊢d

(−1)d(−1)ℓ(λ)Tλ,1(q)

=
∑

λ⊢d

(−1)dT sf
λ,∞

(

1
1− 1

q

)

= (−1)dP sf
d,∞

(

1
1− 1

q

)

.

Theorem 2.3 (2) tells us

P sf
d,∞(q) = (−1)d

(

1
1− 1

q

)⌊ d+1

2
⌋
.

Thus,
∑

λ⊢d

sgnd(λ)Tλ,1(q) = (−1)dP sf
d,∞

(

1
1− 1

q

)

= q⌊
d+1

2
⌋.

Since Pd,1(q) = qd and d− ⌊(d + 1)/2⌋ = ⌊d/2⌋ it follows that

Ed,1(sgnd) =
1

Pd,1(q)

∑

f∈Polyd,1(Fq)

sgn(f) =
1

q⌊d/2⌋
.

(2) For each n ≥ 1,

Esf
d,n(sgnd) :=

1

P sf
d,n(q)

∑

f∈Polysfd,n(Fq)

sgnd(f) =
1

P sf
d,n(q)

∑

λ⊢d

sgn(λ)T sf
λ,n(q).

Taking a limit as n→ ∞,

Esf
d,∞(sgnd) =

1

P sf
d,∞(q)

∑

λ⊢d

sgnd(λ)T
sf
λ,∞(q).

Theorem 2.6 gives us

(−1)ℓ(λ)T sf
λ,∞(q) = Tλ,1

(

1
1− 1

q

)

.
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Therefore,
∑

λ⊢d

sgnd(λ)T
sf
λ,∞(q) =

∑

λ⊢d

(−1)d(−1)ℓ(λ)T sf
λ,∞(q)

=
∑

λ⊢d

(−1)dTλ,1

(

1
1− 1

q

)

= (−1)d
(

1
1− 1

q

)d
.

Since P sf
d,∞(q) = (−1)d

(

1
1− 1

q

)⌊(d+1)/2⌋
and d−⌊(d+1)/2⌋ = ⌊d/2⌋ we conclude

that

Esf
d,∞(sgnd) =

1

P sf
d,∞(q)

∑

λ⊢d

sgnd(λ)T
sf
λ,∞(q) =

(

1

1− 1
q

)⌊d/2⌋

.

�

Note that Theorem 3.1 (1) tells us that

Ed,1(sgnd) =
d−1
∑

k=0

〈sgnd, ψ
k
d 〉

qk
.

Comparing this with Proposition 3.4 (1) it follows that H2k(PConfd(R
3),Q) has

a one dimensional sgnd component when k = ⌊d/2⌋ and no sgnd component for

any other value of k.

The sign function sgnd is closely related to the Liouville function λ studied

by Carlitz [2, 3] in the context of polynomials in Fq[x]. In particular, if f(x) ∈
Polyd,1(Fq)

λ(f) = (−1)dsgnd(f).

Carlitz [2, (ii) pg. 121][3, Sec. 3] computes the first moment of the Liouville

function using zeta functions. Proposition 3.4 may also be deduced from his result.

We thank Ofir Gorodetsky for bringing this work to our attention.

3.2. The Sd-representations Σk
d. Theorem 3.2 relates the limiting first moments

of factorization statistics on squarefree polynomials with a family of symmetric

group representations Σk
d. Recall that

Σk
d =

d−1
⊕

j=k

sgnd ⊗H2j(PConfd(R
3),Q)⊕(

j

k).

We conclude with Proposition 3.5 which records some observations about the rep-

resentations Σk
d.

Proposition 3.5. Let σkd be the character of Σk
d. Then

(1) The dimension of Σk
d is

dimΣk
d =

d−1
∑

i=k

[

d

d− i

](

i

i− k

)

,
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where
[

m
n

]

is an unsigned Stirling number of the first kind.

(2) The representation

d−1
⊕

k=0

Σk
d

has dimension (2d− 1)!! = (2d − 1)(2d − 3) · · · 3 · 1.

(3) Σ0
d is isomorphic to the regular representation Q[Sd].

Note that the sequence dimΣk
d appears as A088996 in the Online Encyclopedia

of Integer Sequences [11].

Proof. (1) The dimension of a representation is given by evaluating its character

on the identity, hence

dimΣk
d = σkd([1

d]).

Theorem 3.3 implies that

T sf
[1d],∞(q) =

1

d!(1− q)d

d−1
∑

k=0

(−1)kσkd([1
d])qd−k.

On the other hand, we may compute T sf
[1d],∞

(q) directly as

T sf
[1d],∞(q) =

(

Md,∞(q)

d

)

=

(

− 1
1− 1

q

d

)

.

The binomial coefficient
(x
d

)

expands as a polynomial in x in terms of the unsigned

Stirling numbers of the first kind,

(

x

d

)

=
1

d!

d−1
∑

k=0

(−1)k
[

d

d− k

]

xd−k.

Thus,

T sf
[1d],∞(q) =

1

d!

d−1
∑

i=0

(−1)i
[

d

d− i

]

(

−
1

1− 1
q

)d−i

=
1

d!(1− q)d

d−1
∑

i=0

(−1)i
[

d

d− i

]

qd−i(1− q)i

=
1

d!(1− q)d

d−1
∑

i=0

i
∑

j=0

(−1)i+j

[

d

d− i

](

i

j

)

qd−(i−j).

Let k = i− j and write the sum in terms of i and k to get

T sf
[1d],∞(q) =

1

d!(1 − q)d

d−1
∑

k=0

(−1)k

(

d−1
∑

i=k

[

d

d− i

](

i

i− k

)

)

qd−k.
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Comparing coefficients in our two expressions for T sf
[1d],∞

(q) we conclude that

dimΣk
d = σkd([1

d]) =
d−1
∑

i=k

[

d

d− i

](

i

i− k

)

.

(2) Let ψk
d be the character of H2k(PConfd(R

3),Q). Then using the definition

of Σk
d and switching the order of summation we have

d−1
∑

k=0

σkd([1
d]) =

d−1
∑

k=0

d
∑

j=k

(

j

k

)

ψj
d([1

d]) =
d−1
∑

j=0

j
∑

k=0

(

j

k

)

ψj
d([1

d]) =
d−1
∑

j=0

2jψj
d([1

d]).

Note that by Theorem 3.1 (1),

d−1
∑

j=0

ψj
d([1

d])

qj
= d!

T[1d],1(q)

qd
=
d!

qd

(

q + d− 1

d

)

. (3.2)

Evaluating (3.2) at q = 1
2 implies

d−1
∑

j=0

2jψj
d([1

d]) = 2dd!

(

d− 1
2

d

)

= (2d− 1)(2d − 3) · · · 3 · 1 = (2d− 1)!!.

Therefore dim
⊕d

k=0Σ
k
d = (2d− 1)!!.

(3) By definition we have

Σ0
d
∼= sgnd ⊗

d−1
⊕

j=0

H2j(PConfd(R
3),Q).

In [9, Thm. 2.8] we showed that

d−1
⊕

j=0

H2j(PConfd(R
3),Q) ∼= Q[Sd],

where Q[Sd] is the regular representation. The claim follows from

sgnd ⊗Q[Sd] ∼= Q[Sd].

�
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