TILTING MODULES FOR THE AUSLANDER ALGEBRA OF $K[x]/(x^n)$

JAN GEUENICH

ABSTRACT. We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of $K[x]/(x^n)$ and the interval of rational permutation braids in the braid group on *n* strands. Hence, there are only finitely many tilting modules.

1. INTRODUCTION

In this note we classify all tilting modules for the Auslander algebra Λ_n of the truncated polynomial ring $K[x]/(x^n)$.

Brüstle, Hille, Ringel and Röhrle [BHRR99] characterized the classical tilting modules for Λ_n as those tilting modules that admit a Δ -filtration with respect to the unique quasi-hereditary structure. They also parameterized the basic classical tilting modules by the symmetric group S_n , proving there are $c_n = n!$ of them.

Iyama and Zhang [IZ16] strengthened this result by constructing an anti-isomorphism from S_n viewed as a poset with the left weak order to the poset of classical tilting modules. More precisely, they associated with each $w \in S_n$ an ideal I_w in Λ_n that is a classical tilting module.

Our main result is the following:

Theorem (Corollary 8.6). The tensor products $I_v \otimes_{\Lambda_n} I_w$ with $v, w \in S_n$ are the basic tilting modules for Λ_n .

In order to get a complete and irredundant list of the tilting modules and to determine the tilting poset, we will refine the previous statement.

For this, we consider the braid group \mathcal{B}_n with generators $\mathfrak{s}_1, \ldots, \mathfrak{s}_{n-1}$ subject to the braid relations. The symmetric group \mathcal{S}_n will be regarded as a subset of the braid group \mathcal{B}_n where elements $w \in \mathcal{S}_n$ with reduced expression (i_1, \ldots, i_ℓ) are identified with $\underline{w} := \mathfrak{s}_{i_1} \cdots \mathfrak{s}_{i_\ell}$.

The right weak order on S_n then extends to a partial order on \mathcal{B}_n such that $x \leq_R y$ if and only if $x^{-1}y$ can be written as a product of the generators \mathfrak{s}_i . The elements $x \in \mathcal{B}_n$ with the property $w_- \leq_R x \leq_R w_+$ now form the interval $[w_-, w_+]_R$ of so-called *rational permutation braids* where $w_- := \underline{w_0}^{-1}$, $w_+ := \underline{w_0}$ and w_0 is the longest element of \mathcal{S}_n .

²⁰¹⁰ Mathematics Subject Classification. 16G20, 16D90.

Key words and phrases. Auslander algebra, tilting theory, braid group.

Observing that the assignment $(v, w) \mapsto \underline{v} \underline{w}^{-1}$ defines a bijection between the set of pairs $(v, w) \in S_n \times S_n$ without common right descent and $[w_-, w_+]_R$ (see [DG17, Remark 5.9]), we can formulate the refined version of our result:

Theorem (Corollary 8.8). *There is a poset isomorphism:*

$$[w_{-}, w_{+}]_{R} \longrightarrow \operatorname{tilt} \Lambda_{n}$$
$$\underline{v} \, \underline{w}^{-1} \longmapsto I_{w} \otimes_{\Lambda_{n}} I_{v^{-1}w_{0}}$$

To illustrate the theorem, we depict below the Hasse diagram of the poset tilt Λ_3 where $\otimes = \otimes_{\Lambda_3}$:

As a consequence of the previous theorem, the number t_n of isomorphism classes of basic tilting modules for Λ_n equals the number of pairs of permutations in S_n without common right descent. These integers t_n form the sequence OEIS:A000275 and satisfy the recursive formula

$$t_0 = 1,$$
 $t_n = \sum_{k=0}^{n-1} (-1)^{n+k+1} {n \choose k}^2 t_k$ for $n > 0.$

The first few values of the sequences c_n and t_n are recorded below:

n	1	2	3	4	5	6	7
c_n	1	2	6	24	120	720	5040
t_n	1	3	19	211	3651	90921	3081513

 $\mathbf{2}$

2. NOTATION AND TERMINOLOGY

For the remaining part of this paper we fix an algebraically closed field K and a finite-dimensional algebra Λ over K.

By a module we always mean a right module. The category of finitedimensional Λ -modules is denoted by mod Λ and its bounded derived category by $\mathcal{D}(\Lambda) = \mathcal{D}^b(\mod \Lambda)$. We write proj Λ for the full subcategory of mod Λ consisting of projective modules and $\mathcal{K}(\Lambda) = \mathcal{K}^b(\operatorname{proj} \Lambda)$ for its bounded homotopy category. Given a complex $M \in \mathcal{D}(\Lambda)$ we denote by add(M) the smallest full additive subcategory and by thick(M)the smallest full triangulated subcategory of $\mathcal{D}(\Lambda)$ that contains all direct summands of M. We regard $\mathcal{K}(\Lambda)$ as a full subcategory of $\mathcal{D}(\Lambda)$. Objects of $\mathcal{D}(\Lambda)$ isomorphic to objects in $\mathcal{K}(\Lambda)$ are called *perfect*.

The Hasse diagram of a poset X is the quiver Q(X) with vertex set X without parallel arrows such that there is an arrow $x \to z$ in Q(X) if and only if x > z and $x \ge y \ge z$ only for $y \in \{x, z\}$.

3. Background on tilting theory

We collect relevant definitions and results from tilting theory needed later. For details see [Ric91; Yek99; HU05a; HU05b; AI12].

A complex T in $\mathcal{K}(\Lambda)$ is *tilting* if $\operatorname{Hom}_{\mathcal{K}(\Lambda)}(T, T[q]) = 0$ for all $q \neq 0$ and $\operatorname{thick}(\Lambda) = \mathcal{K}(\Lambda)$. A module T in $\operatorname{mod} \Lambda$ or a complex T in $\mathcal{D}(\Lambda)$ is said to be *tilting* if T viewed as an object in $\mathcal{D}(\Lambda)$ is isomorphic to a tilting complex in $\mathcal{K}(\Lambda)$. By a *classical tilting module* over Λ we mean a tilting module $T \in \operatorname{mod} \Lambda$ with proj. dim $T \leq 1$.

Tilting complexes $T, T' \in \mathcal{D}(\Lambda)$ are *equivalent* if $\operatorname{add}(T) = \operatorname{add}(T')$. The set tilt[•] Λ of equivalence classes of tilting complexes in $\mathcal{D}(\Lambda)$ forms a poset under the relation

$$T \ge T' :\Leftrightarrow \operatorname{Hom}_{\mathcal{D}(\Lambda)}(T, T'[q]) = 0 \ \forall q > 0$$

as shown in [AI12, Theorem 2.11]. We denote by tilt Λ the subposet of tilting modules and by tilt₁ Λ the subposet of classical tilting modules.

Remark 3.1. Set $X^{\perp} := \{Y \in \text{mod } \Lambda \mid \text{Ext}_{\Lambda}^{q}(X, Y) = 0 \forall q > 0\}$. Then $T \geq T' \Leftrightarrow T^{\perp} \supseteq T'^{\perp}$ for all $T, T' \in \text{tilt } \Lambda$ (see [HU05b, Lemma 2.1]).

Let $\Lambda^e = \Lambda^{\mathrm{op}} \otimes_K \Lambda$ be the enveloping algebra of Λ . A two-sided tilting complex over Λ is a complex $T \in \mathcal{D}(\Lambda^e)$ such that

$$T \otimes^{\mathbb{L}}_{\Lambda} \widetilde{T} \cong \Lambda \cong \widetilde{T} \otimes^{\mathbb{L}}_{\Lambda} T \text{ in } \mathcal{D}(\Lambda^e)$$

for some $\widetilde{T} \in \mathcal{D}(\Lambda^e)$. The set of isomorphism classes of two-sided tilting complexes over Λ is known as the *derived Picard group* DPic(Λ). It is a group with composition $-\otimes_{\Lambda}^{\mathbb{L}}$ – and identity Λ (see [Yek99]).

Theorem 3.2 ([Ric91]). For every two-sided tilting complex T over Λ the functor pairs

$$\mathcal{D}(\Lambda) \xrightarrow[-\otimes_{\Lambda}^{\mathbb{L}} \widetilde{T}]{\mathcal{T}} \mathcal{D}(\Lambda) \qquad \qquad \mathcal{D}(\Lambda^{\mathrm{op}}) \xrightarrow[\widetilde{T}\otimes_{\Lambda}^{\mathbb{L}} -]{\mathcal{T}} \mathcal{D}(\Lambda^{\mathrm{op}})$$

are quasi-inverse equivalences of triangulated categories.

In particular, $T_{\Lambda} \in \text{tilt}^{\bullet} \Lambda$ and ${}_{\Lambda}T \in \text{tilt}^{\bullet} \Lambda^{\text{op}}$ are tilting complexes.

A complex T in $\mathcal{D}(\Lambda^e)$ is said to be *biperfect* if T_{Λ} is perfect in $\mathcal{D}(\Lambda)$ and $_{\Lambda}T$ is perfect in $\mathcal{D}(\Lambda^{\text{op}})$. For every T in $\mathcal{D}(\Lambda^e)$ there are canonical morphisms $\Lambda \to \mathbb{R}\text{Hom}_{\Lambda}(T,T)$ and $\Lambda \to \mathbb{R}\text{Hom}_{\Lambda^{\text{op}}}(T,T)$ in $\mathcal{D}(\Lambda^e)$, the so-called *left-* and *right-multiplication maps* (see [Yek92, § 3]).

Theorem 3.3 ([Miy03, Proposition 1.8]). Let $T \in \mathcal{D}(\Lambda^e)$ be biperfect. The complex T is a two-sided tilting complex over Λ if and only if both the left-multiplication map $\Lambda \to \mathbb{R}\operatorname{Hom}_{\Lambda}(T,T)$ and the right-multiplication map $\Lambda \to \mathbb{R}\operatorname{Hom}_{\Lambda^{\operatorname{op}}}(T,T)$ are isomorphisms in $\mathcal{D}(\Lambda^e)$.

The next result by Happel and Unger and its corollary will be crucial.

Theorem 3.4 ([HU05b, Theorem 2.2]). For all modules $T, T' \in \text{tilt } \Lambda$ with T' > T there exists an arrow $T' \to T''$ in $Q(\text{tilt } \Lambda)$ with $T'' \ge T$.

A subquiver Q' of a quiver Q is successor-closed if $(v \in Q' \Rightarrow w \in Q')$ for all arrows $v \to w$ in Q.

Corollary 3.5. If Q' is a finite successor-closed subquiver of $Q(\operatorname{tilt} \Lambda)$ with $\Lambda \in Q'$, then $Q' = Q(\operatorname{tilt} \Lambda)$.

Proof. This follows from the proof of [HU05a, Corollary 2.2]. \Box

If Λ has finite global dimension, the concept of tilting modules coincides with the dual concept of cotilting modules (see [HU96, Lemma 1.3]). We continue with some results that are valid in this situation.

Lemma 3.6. Assume gl. dim $\Lambda < \infty$. There is a poset isomorphism

$$\operatorname{tilt} \Lambda^{\operatorname{op}} \longrightarrow (\operatorname{tilt} \Lambda)^{\operatorname{op}}$$
$$T \longmapsto D(T)$$

induced by the standard duality $D := \operatorname{Hom}_K(-, K) : \operatorname{mod} \Lambda^{\operatorname{op}} \to \operatorname{mod} \Lambda$.

Proof. Indeed, $D(T) \in \text{tilt } \Lambda$ for every $T \in \text{tilt } \Lambda^{\text{op}}$ because Λ has finite global dimension. The map clearly is an isomorphism of posets. \Box

We denote by f-res Λ and f-cores Λ the posets of functorially finite subcategories of mod Λ that are resolving and coresolving, respectively. The poset structure is given by inclusion (see [AR91] for definitions). All subcategories are assumed to be closed under direct summands. Moreover, we abbreviate ${}^{\perp}Y := \{X \in \text{mod }\Lambda \mid \text{Ext}_{\Lambda}^{q}(X,Y) = 0 \forall q > 0\}$. The following characterization of tilting modules is often useful: **Theorem 3.7** ([AR91], [KS03, Corollary 0.3]). Assume gl. dim $\Lambda < \infty$. There is a commutative diagram of poset isomorphisms:

Moreover, $\operatorname{add}(T) = T^{\perp} \cap {}^{\perp}(T^{\perp})$ for every $T \in \operatorname{tilt} \Lambda$.

Still assuming gl. dim $\Lambda < \infty$, we will end this background section with the remarkable observation that, whenever tilt Λ is finite, every self-orthogonal Λ -module is partial tilting and tilt Λ forms a lattice. This is a consequence of the following recent result by Iyama and Zhang:

Theorem 3.8 ([IZ18]). If gl. dim $\Lambda < \infty$ and tilt Λ is finite, all resolving and all coresolving subcategories of mod Λ are functorially finite.

Proof. The implication $(1) \Rightarrow (2)$ of [IZ18, Theorem 3.2] and [KS03, Corollary 0.3] show that every resolving subcategory is functorially finite. Dually, since all cotilting modules are also tilting modules, every coresolving subcategory is functorially finite. \Box

Recall that $M \in \text{mod } \Lambda$ is self-orthogonal if $\text{Ext}_{\Lambda}^{q}(M, M) = 0 \ \forall q > 0$.

Corollary 3.9. If gl. dim $\Lambda < \infty$ and tilt Λ is finite, every self-orthogonal module in mod Λ is a direct summand of a tilting module.

Proof. Use Theorem 3.8 and the dual of [AR91, Proposition 5.12]. \Box

Corollary 3.10. If gl. dim $\Lambda < \infty$ and tilt Λ is finite, tilt Λ is a lattice. In this case, the meet $T \wedge T'$ of elements T, T' in tilt Λ is given by

$$(T \wedge T')^{\perp} = T^{\perp} \cap T'^{\perp}.$$

Proof. Theorem 3.8 shows that f-res Λ admits meets, since the intersection of resolving subcategories is resolving. Analogously, f-cores Λ admits meets. Now apply Theorem 3.7.

4. The Auslander algebra of $K[x]/(x^n)$

From now on let $\Lambda = \Lambda_n$ be the path algebra over K of the quiver

$$1 \xrightarrow{\beta_2} 2 \xrightarrow{\beta_3} \cdots \xrightarrow{\beta_n} n$$

modulo the relations $\alpha_1 \beta_2$ and $\alpha_i \beta_{i+1} - \beta_i \alpha_{i-1}$ for all 1 < i < n.

Then Λ is the Auslander algebra of $K[x]/(x^n)$, i.e. the endomorphism algebra of the direct sum of the *n* indecomposable $K[x]/(x^n)$ -modules $K[x]/(x^i)$ with $1 \leq i \leq n$. Its classical tilting, support τ -tilting and exceptional modules were investigated in [BHRR99; IZ16; HP17].

Remark 4.1. Some basic properties of Λ are collected in [HP17, § 1]. For us it is important to know that gl. dim $\Lambda \leq 2$ and $e_n \Lambda$ is a projective-injective Λ -module.

5. Classical tilting modules

The classical tilting modules for the Auslander algebra $\Lambda = \Lambda_n$ are classified in [BHRR99]. An explicit anti-isomorphism between the poset tilt₁ Λ and the symmetric group $S = S_n$ on *n* letters with the left weak order was established by Yusuke Tsujioka in his Master's thesis. We will recall this classification as presented in [IZ16] below.

For $1 \leq i < n$ we denote by $s_i \in \mathcal{S}$ the transposition of i and i + 1. The *length* of $w \in \mathcal{S}$ is

$$\ell(w) \ := \ \sharp\{(i,j) \, | \, 1 \le i < j \le n, w(i) > w(j)\} \, .$$

A sequence (i_1, \ldots, i_ℓ) in $\{1, \ldots, n-1\}$ is said to be a reduced expression for w if $w = s_{i_1} \cdots s_{i_\ell}$ and $\ell = \ell(w)$. The left weak order \geq_L and the right weak order \geq_R on S are defined by:

$$w \ge_L v \quad :\Leftrightarrow \quad \ell(w) = \ell(v) + \ell(wv^{-1})$$
$$w \ge_R v \quad :\Leftrightarrow \quad \ell(w) = \ell(v) + \ell(v^{-1}w)$$

Each of these two orders turns \mathcal{S} into a lattice with maximal element

$$w_0 := \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix} \in \mathcal{S}$$

Observe that the arrows in the Hasse diagram $Q(\mathcal{S}, \geq_L)$ are $s_i v \to v$ for $v \in \mathcal{S}$ and $1 \leq i < n$ with $s_i v >_L v$ and the assignment $w \mapsto w^{-1}$ yields an isomorphism of posets $(\mathcal{S}, \geq_R) \to (\mathcal{S}, \geq_L)$.

For $1 \leq i < n$ let I_i be the ideal $\Lambda(1 - e_i)\Lambda$ in Λ . More generally, we define for all $w \in S$

$$I_w := I_{i_1} \cdots I_{i_\ell}$$

where $\underline{i} = (i_1, \ldots, i_\ell)$ is any reduced expression for w. For a proof why the ideal I_w in Λ only depends on w and not on the particular choice of the reduced expression \underline{i} see [IZ16, Proposition 3.15].

Theorem 5.1 ([IZ16, Theorem 3.18]). There are poset isomorphisms:

$$(\mathcal{S}, \geq_L) \longrightarrow (\operatorname{tilt}_1 \Lambda)^{\operatorname{op}} \qquad (\mathcal{S}, \geq_R) \longrightarrow (\operatorname{tilt}_1 \Lambda^{\operatorname{op}})^{\operatorname{op}}$$
$$w \longmapsto I_w \qquad w \longmapsto I_w$$

Theorem 5.2 ([IZ16, Theorem 3.5]). For every element $w \in S$ both the left-multiplication map $\Lambda \to \operatorname{End}_{\Lambda}(I_w)$ and the right-multiplication map $\Lambda^{\operatorname{op}} \to \operatorname{End}_{\Lambda^{\operatorname{op}}}(I_w)$ are isomorphisms of algebras.

6. The derived Picard Group

The goal of this section is to construct a homomorphism from the braid group $\mathcal{B} = \mathcal{B}_n$ on *n* strands to the derived Picard group $\text{DPic}(\Lambda)$.

Proposition 6.1. For every element $w \in S$ the ideal I_w is a two-sided tilting complex over Λ .

Proof. It is $\mathbb{R}\text{Hom}_{\Lambda}(T,T) = \text{End}_{\Lambda}(T)$ and $\mathbb{R}\text{Hom}_{\Lambda^{\text{op}}}(T,T) = \text{End}_{\Lambda^{\text{op}}}(T)$ for $T = I_w$ by Theorem 5.1. Now use Theorems 3.3 and 5.2. \Box

Before stating this section's main result, we recall properties of braid groups. Details can be found for example in [KT08, Chapter 6].

Let $\mathcal{F} = \mathcal{F}_n$ be the free group with generators \mathfrak{s}_i for $1 \leq i < n$. The braid group \mathcal{B} is by definition the quotient of \mathcal{F} by the relations

(*)
$$\begin{aligned} \mathbf{\mathfrak{s}}_i \mathbf{\mathfrak{s}}_j &= \mathbf{\mathfrak{s}}_j \mathbf{\mathfrak{s}}_i & \text{for } 1 \leq i < i+1 < j < n, \\ \mathbf{\mathfrak{s}}_i \mathbf{\mathfrak{s}}_{i+1} \mathbf{\mathfrak{s}}_i &= \mathbf{\mathfrak{s}}_{i+1} \mathbf{\mathfrak{s}}_i \mathbf{\mathfrak{s}}_{i+1} & \text{for } 1 \leq i < i+1 < n. \end{aligned}$$

We denote by \mathcal{B}_+ the monoid generated by \mathfrak{s}_i with $1 \leq i < n$ subject to the same relations (*). It is well-known that the canonical monoid morphism $\mathcal{B}_+ \to \mathcal{B}$ is injective. In this way, \mathcal{B}_+ becomes a subset of \mathcal{B} . With $\mathcal{B}_- := (\mathcal{B}_+)^{-1}$ we then have

$${\mathcal B} \ = \ {\mathcal B}_+ {\mathcal B}_- \ = \ {\mathcal B}_- {\mathcal B}_+$$
 .

The *length* of an element $x = \mathfrak{s}_{i_1} \cdots \mathfrak{s}_{i_\ell}$ in \mathcal{B}_+ is the integer $\ell(x) = \ell$.

The rule $\mathfrak{s}_i \mapsto s_i$ induces a surjective group morphism $\mathcal{B} \to \mathcal{S}, x \mapsto \overline{x}$, whose kernel is generated by the elements \mathfrak{s}_i^2 . Furthermore, we can and will regard the symmetric group \mathcal{S} as a subset \mathcal{S}_+ of \mathcal{B}_+ by identifying each element $w = s_{i_1} \cdots s_{i_\ell} \in \mathcal{S}$ of length ℓ with $\underline{w} := \mathfrak{s}_{i_1} \cdots \mathfrak{s}_{i_\ell} \in \mathcal{B}_+$. We write w_+ for $w_0 \in \mathcal{S}$ when considered as the element w_0 of \mathcal{S}_+ .

Remark 6.2. The pair (\mathcal{B}_+, w_+) is a comprehensive Garside monoid in the sense of [KT08, Theorem 6.20] and the canonical map $\mathcal{B}_+ \to \mathcal{B}$ is the embedding into its group of fractions.

After the preparation, we get to the promised result:

Proposition 6.3. The map $S \to DPic(\Lambda)$ given by $w \mapsto I_w$ extends to a group homomorphism:

$$\begin{array}{ccc} \mathcal{B} & \longrightarrow & \mathrm{DPic}(\Lambda) \\ x & \longmapsto & T_x \end{array}$$

Proof. Consider the diagram

where π and φ are the group morphisms given by $\mathfrak{s}_i \mapsto \mathfrak{s}_i$ and $\mathfrak{s}_i \mapsto I_i$, respectively. For all reduced expressions (i_1, \ldots, i_ℓ) for $w \in \mathcal{S}$ we have by [IZ16, Propositions 3.17] in DPic(Λ)

$$\varphi(\mathfrak{s}_{i_1}\cdots\mathfrak{s}_{i_\ell}) = I_{i_1}\otimes^{\mathbb{L}}_{\Lambda}\cdots\otimes^{\mathbb{L}}_{\Lambda}I_{i_\ell} = I_w.$$

It follows that φ factors over π because \mathcal{B} is defined by relations v = wwith $v = \mathfrak{s}_{i_1} \cdots \mathfrak{s}_{i_\ell}, w = \mathfrak{s}_{j_1} \cdots \mathfrak{s}_{j_\ell} \in \mathcal{F}$ where (i_1, \ldots, i_ℓ) and (j_1, \ldots, j_ℓ) are reduced expressions for the element $\pi(v) = \pi(w) \in \mathcal{S}$. \Box

7. TILTING COMPLEXES

Composing the map $\mathcal{B}_+ \to \mathrm{DPic}(\Lambda)$ from Proposition 6.3 with the canonical map $\mathrm{DPic}(\Lambda) \to \mathrm{tilt}^{\bullet} \Lambda$ yields a map $\mathcal{B}_+ \to \mathrm{tilt}^{\bullet} \Lambda$. In this section we discuss why this map becomes an anti-morphism of posets when endowing \mathcal{B}_+ with the right divisibility order. Furthermore, we show that it preserves covering relations.

The right-divisibility order \geq_L and the left-divisibility order \geq_R are extensions of \geq_L and \geq_R from \mathcal{S}_+ to \mathcal{B} where for $v, w \in \mathcal{B}$:

$$y \ge_L x \quad :\Leftrightarrow \quad yx^{-1} \in \mathcal{B}_+$$
$$y \ge_R x \quad :\Leftrightarrow \quad x^{-1}y \in \mathcal{B}_+$$

Proposition 7.1. There is a morphism of strict posets:

$$(\mathcal{B}_+, >_L) \longrightarrow (\operatorname{tilt}^{\bullet} \Lambda)^{\operatorname{op}}$$
$$x \longmapsto T_x$$

Proof. It suffices to verify $T_x > T_{\mathfrak{s}_i x}$ for every $x \in \mathcal{B}_+$ and $1 \leq i < n$. Theorem 5.1 shows $\Lambda > I_i$ and we get $T_x = \Lambda \otimes_{\Lambda}^{\mathbb{L}} T_x > I_i \otimes_{\Lambda}^{\mathbb{L}} T_x = T_{\mathfrak{s}_i x}$ in tilt[•] Λ with Theorem 3.2 and Proposition 6.3.

The following fact is a variation of [IZ16, Lemma 4.3]:

Lemma 7.2. For all $1 \le i < n$ we have a short exact sequence

$$0 \to e_i \Lambda \xrightarrow{\iota = \begin{pmatrix} \alpha_{i-1} \\ \beta_{i+1} \end{pmatrix}} e_{i-1} \Lambda \oplus e_{i+1} \Lambda \xrightarrow{\pi = (-\beta_i \cdot \alpha_i \cdot)} e_i I_i \to 0$$

in mod Λ where ι is a minimal left and π a minimal right add $((1-e_i)\Lambda)$ approximation and by convention $e_0 := 0$.

Proof. This short exact sequence is the minimal projective resolution of $e_i I_i = \operatorname{rad}(e_i \Lambda)$. For $j \neq i$, applying $\operatorname{Hom}_{\Lambda}(-, e_j \Lambda)$ and $\operatorname{Hom}_{\Lambda}(e_j \Lambda, -)$ yields exact sequences:

$$\operatorname{Hom}_{\Lambda}(e_{i-1}\Lambda \oplus e_{i+1}\Lambda, e_{j}\Lambda) \xrightarrow{\iota^{*}} \operatorname{Hom}_{\Lambda}(e_{i}\Lambda, e_{j}\Lambda) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}(e_{i}I_{i}, e_{j}\Lambda)$$

 $\operatorname{Hom}_{\Lambda}(e_{j}\Lambda, e_{i-1}\Lambda \oplus e_{i+1}\Lambda) \xrightarrow{\pi_{*}} \operatorname{Hom}_{\Lambda}(e_{j}\Lambda, e_{i}I_{i}) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}(e_{j}\Lambda, e_{i}\Lambda)$

Letting S_i be the simple Λ^e -module given by the short exact sequence $0 \to I_i \to \Lambda \to S_i \to 0$ we have with [IZ16, Lemma 3.6]

$$\operatorname{Ext}^{1}_{\Lambda}(e_{i}I_{i}, e_{j}\Lambda) \cong \operatorname{Ext}^{2}_{\Lambda}(S_{i}, e_{j}\Lambda) \cong e_{j}\Lambda \otimes_{\Lambda} S_{i} = 0.$$

Clearly, $\operatorname{Ext}^{1}_{\Lambda}(e_{j}\Lambda, e_{i}\Lambda) = 0$, too. Therefore ι and π are $\operatorname{add}((1 - e_{i})\Lambda)$ approximations. Both of them are minimal by [AR91, Proposition 1.1],
since neither $e_{i}I_{i}$ nor $e_{i}\Lambda$ is a direct summand of $e_{i-1}\Lambda \oplus e_{i+1}\Lambda$. \Box

The next lemma will be essential to determine $Q(\operatorname{tilt} \Lambda)$.

Lemma 7.3. For all $x \in \mathcal{B}_+$ and $1 \leq i < n$ we have a triangle

$$e_i T_x \xrightarrow{\iota} e_{i-1} T_x \oplus e_{i+1} T_x \xrightarrow{\pi} e_i T_{\mathfrak{s}_i x} \longrightarrow \cdot$$

in $\mathcal{D}(\Lambda)$ where ι is a minimal left and π a minimal right $\operatorname{add}((1-e_i)T_x)$ approximation. Furthermore, $e_jT_{\mathfrak{s}_i x} = e_jT_x$ for all $1 \leq j \leq n$ with $j \neq i$.

Proof. Apply $- \otimes_{\Lambda}^{\mathbb{L}} T_x$ to the triangle $e_i \Lambda \to e_{i-1} \Lambda \oplus e_{i+1} \Lambda \to e_i I_i \to \cdot$ induced by the sequence in Lemma 7.2 and to the identities $e_j I_i = e_j \Lambda$. Then use Theorem 3.2.

Corollary 7.4. There is an arrow $T_x \to T_{\mathfrak{s}_i x}$ in the quiver $Q(\operatorname{tilt}^{\bullet} \Lambda)$ for all $x \in \mathcal{B}_+$ and $1 \leq i < n$.

Proof. Use Lemma 7.3 and [AI12, Theorem 2.35].

For $x \in \mathcal{B}_+$ and $1 \leq i \leq n$ it makes sense to refer to $e_i T_x$ as the *i*-th summand of T_x , since by Theorem 3.2

$$\dim_K \operatorname{End}_{\mathcal{D}(\Lambda)}(e_i T_x) = \dim_K \operatorname{End}_{\Lambda}(e_i \Lambda) = i.$$

We write $T_x \xrightarrow{i} T_{\mathfrak{s}_i x}$ for an arrow $T_x \longrightarrow T_{\mathfrak{s}_i x}$ in $Q(\operatorname{tilt}^{\bullet} \Lambda)$ to emphasize the fact that it corresponds to mutating the *i*-th summand.

We close this section with an interesting observation that will enable us to determine the possible dimension vectors of tilting modules for Λ . For this purpose, let $V = K_0(\Lambda)$ be the Grothendieck group of $\mathcal{D}(\Lambda)$. The symmetric group S acts on V^n via

$$s_i \cdot (\dots, v_{i-1}, v_i, v_{i+1}, \dots) = (\dots, v_{i-1}, v_{i-1} - v_i + v_{i+1}, v_{i+1}, \dots)$$

with $v_0 := 0$. For each $x \in \mathcal{B}_+$ we define $d(T_x)$ as the element in V^n whose *i*-th component is the equivalence class of the *i*-th summand $e_i T_x$. It can be computed by the following formula:

Lemma 7.5. $d(T_x) = \overline{x} \cdot d(\Lambda)$ for all $x \in \mathcal{B}_+$.

Proof. The case x = 1 is trivial. Otherwise we write $x = \mathfrak{s}_i y$ for some iand $y \in \mathcal{B}_+$. Let $u := d(T_x)$. By induction we have $v := d(T_y) = \overline{y} \cdot d(\Lambda)$. With Lemma 7.3 we get $u_i = v_{i-1} - v_i + v_{i+1}$ and $u_j = v_j$ for all $j \neq i$. We conclude $u = s_i \cdot v = \overline{\mathfrak{s}_i} \cdot (\overline{y} \cdot d(\Lambda)) = \overline{x} \cdot d(\Lambda)$.

Corollary 7.6. The set $\{d(T_x) \mid x \in \mathcal{B}_+\} = \{d(I_w) \mid w \in \mathcal{S}\}$ is finite.

8. TILTING MODULES

In this section we finally classify the tilting modules for the Auslander algebra Λ and determine the poset structure of tilt Λ . We begin with four lemmata that serve as the main steps of the classification's proof.

Lemma 8.1. $T_{\underline{v}\,\underline{w}} = I_v \otimes^{\mathbb{L}}_{\Lambda} I_w \cong I_v \otimes_{\Lambda} I_w \in \text{tilt } \Lambda \text{ for all } v, w \in \mathcal{S}.$

Proof. The short exact sequence $0 \to I_w \to \Lambda \to \Lambda/I_w \to 0$ shows that $\operatorname{Tor}_q^{\Lambda}(I_v, I_w) \cong \operatorname{Tor}_{q+1}^{\Lambda}(I_v, \Lambda/I_w)$ for all q > 0. Since proj. dim $(I_v)_{\Lambda} \leq 1$, we see that $I_v \otimes_{\Lambda}^{\mathbb{L}} I_w \cong I_v \otimes_{\Lambda} I_w$ is a module. \Box

We use the notation $[a, b]_L$ for the interval $\{x \in \mathcal{B} \mid a \leq_L x \leq_L b\}$ and define the interval $[a, b]_R$ similarly. Let $\mathcal{S}_- := (\mathcal{S}_+)^{-1}$ and $w_- := (w_+)^{-1}$. The elements of

$$[w_{-}, w_{+}] := [w_{-}, w_{+}]_{L} = [w_{-}, w_{+}]_{R} = \mathcal{S}_{+}\mathcal{S}_{-} = \mathcal{S}_{-}\mathcal{S}_{+}$$

are the rational permutation braids studied in [DG17, Proposition 4.3].

It is not hard to see that for $x \in [w_-, w_+]$ the module $T_{w_+x} \in \text{tilt } \Lambda^{\text{op}}$ corresponds to $T_{x^{-1}w_+} \in \text{tilt } \Lambda$ under the isomorphism from Lemma 3.6. We prove a special case:

Lemma 8.2. $T_{w_{\perp}^2} = D(\Lambda)$ in tilt Λ .

Proof. Let (i_1, \ldots, i_ℓ) be a reduced expression for w_0 . By Theorem 5.1 there are paths

$$\Lambda_{\Lambda} \xrightarrow{i_{\ell}} \cdots \xrightarrow{i_{1}} (I_{w_{0}})_{\Lambda} \quad \text{in } Q(\text{tilt } \Lambda) \text{ and}$$
$$_{\Lambda}\Lambda \xrightarrow{i_{1}} \cdots \xrightarrow{i_{\ell}} {}_{\Lambda}(I_{w_{0}}) \quad \text{in } Q(\text{tilt } \Lambda^{\text{op}}).$$

Now, $(I_{w_0})_{\Lambda}$ is the unique module $T_{\Lambda} \in \text{tilt } \Lambda$ with proj. dim $T_{\Lambda} \leq 1$ and inj. dim $T_{\Lambda} \leq 1$ (see [BHRR99]). Similarly, $_{\Lambda}(I_{w_0})$ is the unique module $_{\Lambda}T \in \text{tilt } \Lambda^{\text{op}}$ with proj. dim $_{\Lambda}T \leq 1$ and inj. dim $_{\Lambda}T \leq 1$. Because of Lemma 3.6 we must have $(I_{w_0})_{\Lambda} \cong D(_{\Lambda}(I_{w_0}))$ such that there is a path

$$\Lambda \xrightarrow{i_{\ell}} \cdots \xrightarrow{i_1} I_{w_0} \xrightarrow{i_{\ell}} \cdots \xrightarrow{i_1} D(\Lambda)$$

in $Q(\operatorname{tilt} \Lambda)$. Corollary 7.4 now implies $T_{w_{\perp}^2} = D(\Lambda)$ in tilt Λ .

The next insight is a consequence of Voigt's lemma.

Lemma 8.3. The set $\mathbb{T} = \{T_x \mid x \in \mathcal{B}_+\} \cap \text{tilt } \Lambda$ is finite.

Proof. Let $X = \{\dim_K T_x \mid T_x \in \mathbb{T}\}$. On the one hand, for each $d \in X$ the set $\{T_x \in \mathbb{T} \mid \dim_K T_x = d\}$ is finite because of [HS01, Corollary 9]. On the other hand, Corollary 7.6 implies $X \subseteq \{\dim_K I_w \mid w \in S\}$, so X is finite, too. This proves the claim. \Box

We formulate one last lemma before turning to the classification.

Lemma 8.4. Let Q' be the full subquiver of $Q = Q(\text{tilt } \Lambda)$ spanned by \mathbb{T} . Then Q' = Q and every arrow in this quiver is of the form $T_x \xrightarrow{i} T_{\mathfrak{s}_i x}$ for some $x \in \mathcal{B}_+$ and $1 \leq i < n$.

Proof. We show that Q' is a successor-closed subquiver of Q so that, using Lemma 8.3, Corollary 3.5 is applicable: Let $T_x \to T$ be an arrow in Q for some $x \in \mathcal{B}_+$. According to [HU05b, § 1], there exist $1 \leq i \leq n$, an indecomposable Λ -module Y such that $T = (1 - e_i)T_x \oplus Y$ and a

10

short exact sequence $0 \to e_i T_x \xrightarrow{\iota} E \to Y \to 0$ in which ι is a minimal left $\operatorname{add}((1-e_i)T_x)$ -approximation. Given that the projective-injective module $e_n\Lambda$ appears as a summand of every tilting module, we have $e_nT_x \cong e_n\Lambda$, so $i \neq n$. Thus $Y \cong e_i T_{\mathfrak{s}_i x}$ and $T = T_{\mathfrak{s}_i x}$ by Lemma 7.3. \Box

Now we are ready to prove our main result.

Theorem 8.5. There is a poset isomorphism:

$$\begin{array}{cccc} [1, w_+^2]_L & \longrightarrow & (\operatorname{tilt} \Lambda)^{\operatorname{op}} \\ x & \longmapsto & T_x \end{array}$$

Proof. The map is well-defined by Lemma 8.1 because $[1, w_+^2]_L = S_+S_+$. According to Proposition 7.1 it is a morphism of posets.

(1) For all $T_x, T_y \in \text{tilt } \Lambda$ with $x, y \in \mathcal{B}_+$ and $T_x \geq T_y$ there is $z \in \mathcal{B}_+$ with $T_{zx} = T_y$: Given a path $T_x = T_{x_0} \to \cdots \to T_{x_\ell}$ in Q with $T_{x_\ell} \geq T_y$ and $x_k = \mathfrak{s}_{i_k} \cdots \mathfrak{s}_{i_1} x$ for all $0 \leq k \leq \ell$, either $T_{x_\ell} = T_y$ or by Theorem 3.4 and Lemma 8.4 there is an arrow $T_{x_\ell} \to T_{x_{\ell+1}}$ in Q with $T_{x_{\ell+1}} \geq T_y$ and $x_{\ell+1} = \mathfrak{s}_{i_{\ell+1}} x_\ell$ for some $i_{\ell+1}$. If our claim were false, we would get an infinite path $T_{x_0} \to \cdots \to T_{x_\ell} \to \cdots$ in contradiction to Lemma 8.3.

(2) For all $T \in \text{tilt } \Lambda$ and $x, y \in \mathcal{B}_+$ with $T_x = T = T_y$ we have x = y: Our argument uses induction on $\ell = \min\{\ell(x), \ell(y)\}$ and follows [AM17, Lemma 6.4]. If $\ell = 0$, we have $T = \Lambda$, so x = 1 = y by Proposition 7.1. Otherwise we can write $x = x'\mathfrak{s}_i, y = y'\mathfrak{s}_j$ for some i, j and $x', y' \in \mathcal{B}_+$. Let \mathfrak{s}_{ij} be the join of the elements \mathfrak{s}_i and \mathfrak{s}_j in the lattice (\mathcal{S}_+, \geq_L) , i.e.

$$\mathfrak{s}_{ij} = \begin{cases} \mathfrak{s}_i = \mathfrak{s}_j & \text{if } i = j, \\ \mathfrak{s}_i \mathfrak{s}_j = \mathfrak{s}_j \mathfrak{s}_i & \text{if } |i - j| > 1, \\ \mathfrak{s}_i \mathfrak{s}_j \mathfrak{s}_i = \mathfrak{s}_j \mathfrak{s}_i \mathfrak{s}_j & \text{if } |i - j| = 1. \end{cases}$$

Then $T_{\mathfrak{s}_{ij}}^{\perp} = T_{\mathfrak{s}_i}^{\perp} \cap T_{\mathfrak{s}_j}^{\perp}$ with [IZ16, Theorem 4.12], [IRTT15, Remark 1.13] and [AIR14]. Now $T_{\mathfrak{s}_i} \geq T$ and $T_{\mathfrak{s}_j} \geq T$ because of $x \geq_L \mathfrak{s}_i$ and $y \geq_L \mathfrak{s}_j$. Hence, $T_{\mathfrak{s}_{ij}} \geq T$ by Remark 3.1. So by (1) there is $z \in \mathcal{B}_+$ with $T_{z\mathfrak{s}_{ij}} = T$. Consequently, $T_{z_i} = T_{x'}$ and $T_{z_j} = T_{y'}$ for $z_i = z\mathfrak{s}_{ij}\mathfrak{s}_i^{-1}$ and $z_j = z\mathfrak{s}_{ij}\mathfrak{s}_j^{-1}$ by Proposition 6.3. Without loss of generality we may assume $\ell(x) = \ell$ so that $z_i = x'$ by induction. Because of $\ell(z_j) = \ell(z_i) = \ell - 1$ induction also gives $z_j = y'$. Thus $x = z\mathfrak{s}_{ij} = y$.

(3) *Injectivity:* Follows immediately from (2).

(4) Surjectivity: By Lemma 8.4 it suffices to check for each $x \in \mathcal{B}_+$ with $T_x \in \text{tilt } \Lambda$ that $x \in [1, w_+^2]_L$. Firstly, we have $T_x \ge D(\Lambda) = T_{w_+^2}$ due to Lemma 8.2. Secondly, there exists $z \in \mathcal{B}_+$ with $T_{zx} = T_{w_+^2}$ by (1). Finally, we conclude $zx = w_+^2$ with (2), so $x \in [1, w_+^2]_L$.

Corollary 8.6. The tensor products $I_v \otimes_{\Lambda} I_w$ with $v, w \in S$ are the basic tilting modules for Λ .

Recall that a Λ -module E is called *exceptional* if it is self-orthogonal and $\operatorname{End}_{\Lambda}(E) = K$.

Corollary 8.7. The modules $e_1(I_v \otimes_{\Lambda} I_w)$ with $v, w \in S$ are the exceptional modules for Λ .

Proof. Use dim_K End_A $(e_i(I_v \otimes_A I_w)) = i$ and Corollaries 3.9 and 8.6. \Box Corollary 8.8. There is a poset isomorphism:

$$[w_{-}, w_{+}]_{R} \longrightarrow \operatorname{tilt} \Lambda$$

$$x \longmapsto T_{x^{-1}w_{+}}$$

Proof. Use Theorem 8.5 and the fact that $x \mapsto x^{-1}w_+$ defines an antiisomorphism $[w_-, w_+]_R \to [1, w_+^2]_L$ of posets.

Remark 8.9. The poset isomorphism from Corollary 8.8 restricts to an isomorphism $[1, w_+]_R \rightarrow \text{tilt}_1 \Lambda$.

Next, we strengthen Theorem 8.5 by describing the simplicial complex of tilting modules $\Sigma(\Lambda)$ combinatorially. Recall from [Ung07] that $\Sigma(\Lambda)$ is by definition the abstract simplicial complex whose r-dimensional faces are the sets $\{M_0, \ldots, M_r\}$ of isomorphism classes of indecomposable Λ -modules with the property that $M_0 \oplus \cdots \oplus M_r$ is a direct summand of a tilting module for Λ . The vertex set of $\Sigma(\Lambda)$ is by Corollary 3.9 the set of isomorphism classes of indecomposable self-orthogonal Λ -modules.

We define $\mathcal{V} = \mathcal{V}_n$ as the set $[1, w_+^2]_L \times \{1, \ldots, n\}$ modulo the equivalence relation ~ generated by $(\mathfrak{s}_j x, i) \sim (x, i)$ for $\mathfrak{s}_j x >_L x$ and $j \neq i$. Let $\Sigma = \Sigma_n$ be the (n-1)-dimensional abstract simplicial complex with

 $\{\{(x, i_0), \dots, (x, i_r)\} \in \mathcal{V}^{r+1} \mid 1 \le i_0 < \dots < i_r \le n\}$

as its set of r-dimensional faces.

Theorem 8.10. There is an isomorphism $\Sigma \to \Sigma(\Lambda)$ of abstract simplicial complexes given by the assignment $(x, i) \mapsto e_i T_x$.

Proof. The assignment defines a surjective simplicial map by Lemma 7.3 and Theorem 8.5. To prove that it yields an isomorphism, it is enough to check its injectivity. For this, assume $e_iT_x \cong U \cong e_iT_y$ for some vertex U of $\Sigma(\Lambda)$. We will show $(x,i) \sim (y,i)$. Let $T_x \wedge T_y$ be the meet of T_x and T_y in tilt Λ . By (1) in the proof of Theorem 8.5 we can choose $x' = \mathfrak{s}_{j_\ell} \cdots \mathfrak{s}_{j_1}$ with $T_{x'x} = T_x \wedge T_y$. Then $T_x \ge T_{x_r} \ge T_x \wedge T_y$ for every $x_r = \mathfrak{s}_{j_r} \cdots \mathfrak{s}_{j_1} x$ with $0 \le r \le \ell$. Using Remark 3.1 and Corollary 3.10 we conclude $T_x^{\perp} \supseteq T_{x_r}^{\perp} \supseteq T_x^{\perp} \cap T_y^{\perp}$ and then also ${}^{\perp}(T_x^{\perp}) \subseteq {}^{\perp}(T_{x_r}^{\perp})$. Thus

 $U \in \operatorname{add}(T_x) \cap \operatorname{add}(T_y) \subseteq (T_x^{\perp} \cap T_y^{\perp}) \cap {}^{\perp}(T_x^{\perp}) \subseteq \operatorname{add}(T_{x_r})$

by Theorem 3.7, so $e_i T_{x_r} \cong U$ for all $0 \leq r \leq \ell$. It follows $i \notin \{j_1, \ldots, j_\ell\}$ by Lemma 7.3 and therefore $(x, i) \sim (x'x, i)$. Analogously, there is y'with $T_x \wedge T_y = T_{y'y}$ and $(y, i) \sim (y'y, i)$. But then x'x = y'y because of $T_{x'x} = T_x \wedge T_y = T_{y'y}$ and Theorem 8.5. Consequently, $(x, i) \sim (y, i)$. \Box

12

The boundary $\partial \Delta$ of a pure-dimensional abstract simplicial complex Δ is the subcomplex spanned by all its faces of codimension one that are contained in precisely one facet of Δ . Note that

 $\Sigma = \partial \Sigma \stackrel{\cdot}{\cup} \{(1,n)\} \stackrel{\cdot}{\cup} \{F \cup \{(1,n)\} | F \in \partial \Sigma\}.$

Therefore Σ is completely determined by its boundary.

Example 8.11. The geometric realization of $\partial \Sigma(\Lambda_3)$ looks as follows:

Its vertices are the following self-orthogonal modules where $\otimes = \otimes_{\Lambda_3}$:

$$P_{1} = e_{1}\Lambda_{3} \quad M_{1} = e_{1}I_{s_{1}} \quad C_{1} = e_{1}I_{w_{0}} \quad N_{1} = D(I_{s_{1}}e_{1}) \quad J_{1} = D(\Lambda_{3}e_{1})$$

$$P_{2} = e_{2}\Lambda_{3} \quad M_{2} = e_{2}I_{s_{2}} \quad C_{2} = e_{2}I_{w_{0}} \quad N_{2} = D(I_{s_{2}}e_{2}) \quad J_{2} = D(\Lambda_{3}e_{2})$$

$$X_{1} = e_{1}I_{s_{1}} \otimes I_{s_{1}} \qquad Y_{1} = D(I_{s_{1}} \otimes I_{s_{1}}e_{1})$$

$$X_{2} = e_{2}I_{s_{2}} \otimes I_{s_{2}} \qquad Y_{2} = D(I_{s_{2}} \otimes I_{s_{2}}e_{2})$$

Returning to the general case, let $p_{n,i}$ be the number of isomorphism classes of modules occurring as *i*-th summand of some tilting module T_x for Λ_n . By Theorem 8.10 we have

$$p_{n,i} = \#\{(x,i) \in \mathcal{V}_n\}.$$

Remark 8.12. Computations for small *n* suggest that $p_{n,i}$ is the integer $a_{n+1,i+1}$ in OEIS:A046802 such that $p_n := \sum_{1 \le i \le n} p_{n,i}$ would be one less than the number of arrangements of an *n*-element set (OEIS:A000522):

n	$p_{n,1}$	$p_{n,2}$	$p_{n,3}$	$p_{n,4}$	$p_{n,5}$	p_n
1	1	-	-	-	-	1
2	3	1	-	-	-	4
3	7	7	1	-	-	15
4	15	33	15	1	-	64
5	31	131	131	31	1	325

Since the first summands of the tilting modules T_x are the exceptional modules, this would be in line with [HP17] who proved that the number of isomorphism classes of exceptional modules for Λ_n is $2^n - 1$. In fact, checking $p_{n,1} = 2^n - 1$ would give an alternative proof of their result.

9. Exceptional sequences

In this final section we will relate the action of the braid group on full exceptional sequences in $\mathcal{D}(\Lambda)$, which was studied in [HP17], to its action on DPic(Λ) by left multiplication (via the map in Proposition 6.3). For simplicity, we only consider full exceptional sequences of modules.

The set of all sequences (E_1, \ldots, E_n) of isomorphism classes of exceptional Λ -modules with $\operatorname{Ext}_{\Lambda}^q(E_j, E_i) = 0$ for all $q \ge 0$ and i < j will be denoted by $\operatorname{exs} \Lambda$ in what follows.

Remark 9.1. For $0 \le i < n$ and $i^* := n - i$ let Δ_{i^*} be the standard module given by the short exact sequence

$$(\Delta) \qquad 0 \longrightarrow e_i \Lambda \xrightarrow{\beta_{i+1}} e_{i+1} \Lambda \longrightarrow \Delta_{i^*} \longrightarrow 0.$$

Applying the functor $-\otimes_{\Lambda}^{\mathbb{L}} I_w$ for $w \in \mathcal{S}$ yields a short exact sequence

$$0 \longrightarrow e_i I_w \longrightarrow e_{i+1} I_w \longrightarrow \mathcal{E}_{w,i^*} \longrightarrow 0$$

with $\mathcal{E}_{w,i^*} := \Delta_{i^*} \otimes_{\Lambda} I_w \cong \Delta_{i^*} \otimes_{\Lambda}^{\mathbb{L}} I_w$ (compare the proof of Lemma 8.1).

Then $\mathcal{E}_w := (\mathcal{E}_{w,1}, \ldots, \mathcal{E}_{w,n}) \in \text{exs } \Lambda$ because of $(\Delta_1, \ldots, \Delta_n) \in \text{exs } \Lambda$ and Theorem 3.2. In view of Theorem 5.1 and [HP17, Proposition 3.4] we have a commutative diagram of bijections:

Let us prove that Φ and Ψ commute with mutation, i.e. $L_{i^*}(\mathcal{E}_w) = \mathcal{E}_{s_iw}$ whenever $s_iw >_L w$. By Theorem 3.2 and Proposition 6.3 it suffices to check this for w = 1. Then the left mutation

$$\mathcal{L}_{i^*}(\mathcal{E}_1) = (\ldots, \Delta_{i^*-1}, \mathcal{L}_{\Delta_{i^*}}(\Delta_{i^*+1}), \Delta_{i^*}, \Delta_{i^*+2}, \ldots)$$

is given by the canonical triangle

$$\mathbb{R}\mathrm{Hom}_{\Lambda}(\Delta_{i^*}, \Delta_{i^*+1}) \otimes_K \Delta_{i^*} \longrightarrow \Delta_{i^*+1} \longrightarrow \mathrm{L}_{\Delta_{i^*}}(\Delta_{i^*+1}) \longrightarrow \cdot .$$

Taking cohomology, $L_{\Delta_{i^*}}(\Delta_{i^*+1})$ is seen to be the middle term of a short exact sequence $0 \to S_i \to L_{\Delta_{i^*}}(\Delta_{i^*+1}) \to \Delta_{i^*} \to 0$ that corresponds to a non-zero element of the one-dimensional vector space $\operatorname{Ext}^1_{\Lambda}(\Delta_{i^*}, S_i)$. An easy calculation that uses $e_i I_i = \operatorname{rad}(e_i \Lambda)$ and $e_j I_i = e_j \Lambda$ for $j \neq i$ now shows $\mathcal{E}_{s_i} = L_{i^*}(\mathcal{E}_1)$.

Remark 9.2. Every tilting module $T = I_v \otimes_{\Lambda} I_w$ with $v, w \in S$ gives rise to an exceptional sequence $\mathcal{E} = (\mathcal{E}_1, \ldots, \mathcal{E}_n)$ in $\mathcal{D}(\Lambda)$ where

$$\mathcal{E}_{i^*} := \cdots \longrightarrow \underset{-2}{\longrightarrow} 0 \xrightarrow{\beta_{i+1}} e_{i+1}T \xrightarrow{\beta_{i+1}} 0 \xrightarrow{0} \cdots$$

This follows by applying $-\otimes_{\Lambda}^{\mathbb{L}} T$ to the triangle induced by (Δ) .

REFERENCES

ACKNOWLEDGMENTS

First of all, I would like to thank Julia Sauter for raising the question of whether the tilting modules for the Auslander algebra Λ_n can be classified. I am grateful to Baptiste Rognerud for pointing me to [DG17]. I thank both of them and Biao Ma for interesting discussions.

References

- [AIR14] T. Adachi, O. Iyama, and I. Reiten, "τ-tilting theory," Compos. Math., vol. 150, no. 3, pp. 415–452, 2014.
 DOI: 10.1112/S0010437X13007422. arXiv: 1210.1036 [math.RT].
- [AI12] T. Aihara and O. Iyama, "Silting mutation in triangulated categories," J. Lond. Math. Soc. (2), vol. 85, no. 3, pp. 633-668, 2012.
 DOI: 10.1112/jlms/jdr055. arXiv: 1009.3370 [math.RT].
- [AM17] T. Aihara and Y. Mizuno, "Classifying tilting complexes over preprojective algebras of Dynkin type," *Algebra Number Theory*, vol. 11, no. 6, pp. 1287–1315, 2017.
 DOI: 10.2140/ant.2017.11.1287. arXiv: 1509.07387 [math.RT].
- [AR91] M. Auslander and I. Reiten, "Applications of contravariantly finite subcategories," Adv. Math., vol. 86, no. 1, pp. 111–152, 1991.
 DOI: 10.1016/0001-8708(91)90037-8.
- [BHRR99] T. Brüstle, L. Hille, C. M. Ringel, and G. Röhrle, "The Δ -filtered modules without self-extensions for the Auslander algebra of $k[T]/(T^n)$," Algebr. Represent. Theory, vol. 2, no. 3, pp. 295–312, 1999. DOI: 10.1023/A:1009999006899.
- [DG17] F. Digne and T. Gobet, "Dual braid monoids, Mikado braids and positivity in Hecke algebras," *Math. Z.*, vol. 285, no. 1-2, pp. 215–238, 2017.
 DOI: 10.1007/s00209-016-1704-z. arXiv: 1508.06817 [math.GR].
- [HU96] D. Happel and L. Unger, "Modules of finite projective dimension and cocovers," *Math. Ann.*, vol. 306, no. 3, pp. 445–457, 1996.
 DOI: 10.1007/BF01445260.
- [HU05a] D. Happel and L. Unger, "On a partial order of tilting modules," Algebr. Represent. Theory, vol. 8, no. 2, pp. 147–156, 2005.
 DOI: 10.1007/s10468-005-3595-2.
- [HU05b] D. Happel and L. Unger, "On the quiver of tilting modules," J. Algebra, vol. 284, no. 2, pp. 857–868, 2005.
 DOI: 10.1016/j.jalgebra.2004.11.007.
- [HP17] L. Hille and D. Ploog, "Exceptional sequences and spherical modules for the Auslander algebra of $k[x]/(x^t)$," version 2, 2017. arXiv: 1709.03618 [math.RT].
- [HS01] B. Huisgen-Zimmermann and M. Saorín, "Geometry of chain complexes and outer automorphisms under derived equivalence," *Trans. Amer. Math. Soc.*, vol. 353, no. 12, pp. 4757–4777, 2001.
 DOI: 10.1090/S0002-9947-01-02815-X.

REFERENCES

- [IRTT15] O. Iyama, I. Reiten, H. Thomas, and G. Todorov, "Lattice structure of torsion classes for path algebras," *Bull. Lond. Math. Soc.*, vol. 47, no. 4, pp. 639–650, 2015.
 DOI: 10.1112/blms/bdv041. arXiv: 1312.3659 [math.RT].
- [IZ16] O. Iyama and X. Zhang, "Classifying τ -tilting modules over the Auslander algebra of $K[x]/(x^n)$," version 1, 2016. arXiv: 1602.05037 [math.RT].
- [IZ18] O. Iyama and X. Zhang, "Tilting modules over Auslander-Gorenstein algebras," version 2, 2018. arXiv: 1801.04738 [math.RT].
- [KT08] C. Kassel and V. Turaev, *Braid groups*. Springer, New York, 2008, vol. 247, pp. xii+340.
 DOI: 10.1007/978-0-387-68548-9.
- [KS03] H. Krause and Ø. Solberg, "Applications of cotorsion pairs," J. London Math. Soc. (2), vol. 68, no. 3, pp. 631–650, 2003.
 DOI: 10.1112/S0024610703004757.
- [Miy03] J.-I. Miyachi, "Recollement and tilting complexes," J. Pure Appl. Algebra, vol. 183, no. 1-3, pp. 245–273, 2003.
 DOI: 10.1016/S0022-4049(03)00072-0.
- [OEIS] OEIS Foundation Inc., *The On-Line Encyclopedia of Integer Sequences*. Online: https://oeis.org/.
- [Ric91] J. Rickard, "Derived equivalences as derived functors," J. London Math. Soc. (2), vol. 43, no. 1, pp. 37–48, 1991.
 DOI: 10.1112/jlms/s2-43.1.37.
- [QPA17] The QPA-team, QPA quivers, path algebras and representations a GAP package, version 1.27, 2017. Online: https://folk.ntnu.no/oyvinso/QPA/.
- [Ung07] L. Unger, "Combinatorial aspects of the set of tilting modules," in Handbook of tilting theory, vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 259–277.
 DOI: 10.1017/CB09780511735134.010.
- [Yek99] A. Yekutieli, "Dualizing complexes, Morita equivalence and the derived Picard group of a ring," J. London Math. Soc. (2), vol. 60, no. 3, pp. 723-746, 1999.
 DOI: 10.1112/S0024610799008108. arXiv: math/9810134 [math.RA].
- [Yek92] A. Yekutieli, "Dualizing complexes over noncommutative graded algebras," J. Algebra, vol. 153, no. 1, pp. 41–84, 1992.
 DOI: 10.1016/0021-8693(92)90148-F.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, D-33501 BIELEFELD *E-mail address*: jan.geuenich@math.uni-bielefeld.de