TILTING MODULES FOR THE AUSLANDER ALGEBRA OF $K[x] /\left(x^{n}\right)$

JAN GEUENICH

Abstract

We construct an isomorphism between the partially ordered set of tilting modules for the Auslander algebra of $K[x] /\left(x^{n}\right)$ and the interval of rational permutation braids in the braid group on n strands. Hence, there are only finitely many tilting modules.

1. Introduction

In this note we classify all tilting modules for the Auslander algebra Λ_{n} of the truncated polynomial ring $K[x] /\left(x^{n}\right)$.

Brüstle, Hille, Ringel and Röhrle [BHRR99] characterized the classical tilting modules for Λ_{n} as those tilting modules that admit a Δ-filtration with respect to the unique quasi-hereditary structure. They also parameterized the basic classical tilting modules by the symmetric group \mathcal{S}_{n}, proving there are $c_{n}=n!$ of them.

Iyama and Zhang [IZ16] strengthened this result by constructing an anti-isomorphism from \mathcal{S}_{n} viewed as a poset with the left weak order to the poset of classical tilting modules. More precisely, they associated with each $w \in \mathcal{S}_{n}$ an ideal I_{w} in Λ_{n} that is a classical tilting module.

Our main result is the following:
Theorem (Corollary 8.6). The tensor products $I_{v} \otimes_{\Lambda_{n}} I_{w}$ with $v, w \in \mathcal{S}_{n}$ are the basic tilting modules for Λ_{n}.

In order to get a complete and irredundant list of the tilting modules and to determine the tilting poset, we will refine the previous statement.

For this, we consider the braid group \mathcal{B}_{n} with generators $\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{n-1}$ subject to the braid relations. The symmetric group \mathcal{S}_{n} will be regarded as a subset of the braid group \mathcal{B}_{n} where elements $w \in \mathcal{S}_{n}$ with reduced expression $\left(i_{1}, \ldots, i_{\ell}\right)$ are identified with $\underline{w}:=\mathfrak{s}_{i_{1}} \cdots \mathfrak{s}_{i_{\ell}}$.

The right weak order on \mathcal{S}_{n} then extends to a partial order on \mathcal{B}_{n} such that $x \leq_{R} y$ if and only if $x^{-1} y$ can be written as a product of the generators \mathfrak{s}_{i}. The elements $x \in \mathcal{B}_{n}$ with the property $w_{-} \leq_{R} x \leq_{R} w_{+}$ now form the interval $\left[w_{-}, w_{+}\right]_{R}$ of so-called rational permutation braids where $w_{-}:=\underline{w}_{0}{ }^{-1}, w_{+}:=\underline{w}_{0}$ and w_{0} is the longest element of \mathcal{S}_{n}.

Observing that the assignment $(v, w) \mapsto \underline{v} \underline{w}^{-1}$ defines a bijection between the set of pairs $(v, w) \in \mathcal{S}_{n} \times \mathcal{S}_{n}$ without common right descent and $\left[w_{-}, w_{+}\right]_{R}$ (see [DG17, Remark 5.9]), we can formulate the refined version of our result:

Theorem (Corollary 8.8). There is a poset isomorphism:

$$
\begin{aligned}
& {\left[w_{-}, w_{+}\right]_{R} } \longrightarrow \operatorname{tilt} \Lambda_{n} \\
& \underline{v}^{-1} \underline{w}^{-1} \longmapsto \\
& I_{w} \otimes_{\Lambda_{n}} I_{v^{-1} w_{0}}
\end{aligned}
$$

To illustrate the theorem, we depict below the Hasse diagram of the poset tilt Λ_{3} where $\otimes=\otimes_{\Lambda_{3}}$:

As a consequence of the previous theorem, the number t_{n} of isomorphism classes of basic tilting modules for Λ_{n} equals the number of pairs of permutations in \mathcal{S}_{n} without common right descent. These integers t_{n} form the sequence OEIS:A000275 and satisfy the recursive formula

$$
t_{0}=1, \quad t_{n}=\sum_{k=0}^{n-1}(-1)^{n+k+1}\binom{n}{k}^{2} t_{k} \quad \text { for } n>0
$$

The first few values of the sequences c_{n} and t_{n} are recorded below:

n	1	2	3	4	5	6	7
c_{n}	1	2	6	24	120	720	5040
t_{n}	1	3	19	211	3651	90921	3081513

2. Notation and terminology

For the remaining part of this paper we fix an algebraically closed field K and a finite-dimensional algebra Λ over K.

By a module we always mean a right module. The category of finitedimensional Λ-modules is denoted by $\bmod \Lambda$ and its bounded derived category by $\mathcal{D}(\Lambda)=\mathcal{D}^{b}(\bmod \Lambda)$. We write proj Λ for the full subcategory of $\bmod \Lambda$ consisting of projective modules and $\mathcal{K}(\Lambda)=\mathcal{K}^{b}(\operatorname{proj} \Lambda)$ for its bounded homotopy category. Given a complex $M \in \mathcal{D}(\Lambda)$ we denote by $\operatorname{add}(M)$ the smallest full additive subcategory and by thick (M) the smallest full triangulated subcategory of $\mathcal{D}(\Lambda)$ that contains all direct summands of M. We regard $\mathcal{K}(\Lambda)$ as a full subcategory of $\mathcal{D}(\Lambda)$. Objects of $\mathcal{D}(\Lambda)$ isomorphic to objects in $\mathcal{K}(\Lambda)$ are called perfect.

The Hasse diagram of a poset X is the quiver $Q(X)$ with vertex set X without parallel arrows such that there is an arrow $x \rightarrow z$ in $Q(X)$ if and only if $x>z$ and $x \geq y \geq z$ only for $y \in\{x, z\}$.

3. Background on tilting theory

We collect relevant definitions and results from tilting theory needed later. For details see [Ric91; Yek99; HU05a; HU05b; AI12].

A complex T in $\mathcal{K}(\Lambda)$ is tilting if $\operatorname{Hom}_{\mathcal{K}(\Lambda)}(T, T[q])=0$ for all $q \neq 0$ and $\operatorname{thick}(\Lambda)=\mathcal{K}(\Lambda)$. A module T in $\bmod \Lambda$ or a complex T in $\mathcal{D}(\Lambda)$ is said to be tilting if T viewed as an object in $\mathcal{D}(\Lambda)$ is isomorphic to a tilting complex in $\mathcal{K}(\Lambda)$. By a classical tilting module over Λ we mean a tilting module $T \in \bmod \Lambda$ with proj. $\operatorname{dim} T \leq 1$.

Tilting complexes $T, T^{\prime} \in \mathcal{D}(\Lambda)$ are equivalent if $\operatorname{add}(T)=\operatorname{add}\left(T^{\prime}\right)$. The set tilt ${ }^{\bullet} \Lambda$ of equivalence classes of tilting complexes in $\mathcal{D}(\Lambda)$ forms a poset under the relation

$$
T \geq T^{\prime}: \Leftrightarrow \operatorname{Hom}_{\mathcal{D}(\Lambda)}\left(T, T^{\prime}[q]\right)=0 \forall q>0
$$

as shown in [AI12, Theorem 2.11]. We denote by tilt Λ the subposet of tilting modules and by $\operatorname{tilt}_{1} \Lambda$ the subposet of classical tilting modules.

Remark 3.1. Set $X^{\perp}:=\left\{Y \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{q}(X, Y)=0 \forall q>0\right\}$. Then $T \geq T^{\prime} \Leftrightarrow T^{\perp} \supseteq T^{\prime \perp}$ for all $T, T^{\prime} \in$ tilt Λ (see [HU05b, Lemma 2.1]).

Let $\Lambda^{e}=\Lambda^{\mathrm{op}} \otimes_{K} \Lambda$ be the enveloping algebra of Λ. A two-sided tilting complex over Λ is a complex $T \in \mathcal{D}\left(\Lambda^{e}\right)$ such that

$$
T \otimes_{\Lambda}^{\mathbb{L}} \widetilde{T} \cong \Lambda \cong \widetilde{T} \otimes_{\Lambda}^{\mathbb{L}} T \quad \text { in } \mathcal{D}\left(\Lambda^{e}\right)
$$

for some $\widetilde{T} \in \mathcal{D}\left(\Lambda^{e}\right)$. The set of isomorphism classes of two-sided tilting complexes over Λ is known as the derived Picard group $\operatorname{DPic}(\Lambda)$. It is a group with composition $-\otimes_{\Lambda}^{\mathbb{L}}-$ and identity Λ (see [Yek99]).

Theorem 3.2 ([Ric91]). For every two-sided tilting complex T over Λ the functor pairs

$$
\mathcal{D}(\Lambda) \underset{-\otimes_{\Lambda}^{\text {L }} \tilde{T}}{\stackrel{-\otimes_{\mathrm{L}}^{\mathrm{L}} T}{\rightleftarrows}} \mathcal{D}(\Lambda) \quad \mathcal{D}\left(\Lambda^{\mathrm{op}}\right) \stackrel{T \otimes_{\Lambda}^{\mathrm{L}}-}{\underset{\tilde{T} \otimes_{\Lambda}^{\mathrm{L}}-}{\rightleftarrows}} \mathcal{D}\left(\Lambda^{\mathrm{op}}\right)
$$

are quasi-inverse equivalences of triangulated categories.
In particular, $T_{\Lambda} \in$ tilt $^{\bullet} \Lambda$ and $\Lambda_{\Lambda} T \in$ tilt ${ }^{\bullet} \Lambda^{\mathrm{op}}$ are tilting complexes.
A complex T in $\mathcal{D}\left(\Lambda^{e}\right)$ is said to be biperfect if T_{Λ} is perfect in $\mathcal{D}(\Lambda)$ and ${ }_{\Lambda} T$ is perfect in $\mathcal{D}\left(\Lambda^{\mathrm{op}}\right)$. For every T in $\mathcal{D}\left(\Lambda^{e}\right)$ there are canonical morphisms $\Lambda \rightarrow \mathbb{R} \operatorname{Hom}_{\Lambda}(T, T)$ and $\Lambda \rightarrow \mathbb{R} \operatorname{Hom}_{\Lambda^{\text {op }}}(T, T)$ in $\mathcal{D}\left(\Lambda^{e}\right)$, the so-called left- and right-multiplication maps (see [Yek92, § 3]).

Theorem 3.3 ([Miy03, Proposition 1.8]). Let $T \in \mathcal{D}\left(\Lambda^{e}\right)$ be biperfect. The complex T is a two-sided tilting complex over Λ if and only if both the left-multiplication map $\Lambda \rightarrow \mathbb{R} \operatorname{Hom}_{\Lambda}(T, T)$ and the right-multiplication map $\Lambda \rightarrow \mathbb{R} \operatorname{Hom}_{\Lambda^{\text {op }}}(T, T)$ are isomorphisms in $\mathcal{D}\left(\Lambda^{e}\right)$.

The next result by Happel and Unger and its corollary will be crucial.
Theorem 3.4 ([HU05b, Theorem 2.2]). For all modules $T, T^{\prime} \in \operatorname{tilt} \Lambda$ with $T^{\prime}>T$ there exists an arrow $T^{\prime} \rightarrow T^{\prime \prime}$ in $Q(\operatorname{tilt} \Lambda)$ with $T^{\prime \prime} \geq T$.

A subquiver Q^{\prime} of a quiver Q is successor-closed if $\left(v \in Q^{\prime} \Rightarrow w \in Q^{\prime}\right)$ for all arrows $v \rightarrow w$ in Q.
Corollary 3.5. If Q^{\prime} is a finite successor-closed subquiver of $Q(\operatorname{tilt} \Lambda)$ with $\Lambda \in Q^{\prime}$, then $Q^{\prime}=Q($ tilt $\Lambda)$.
Proof. This follows from the proof of [HU05a, Corollary 2.2].
If Λ has finite global dimension, the concept of tilting modules coincides with the dual concept of cotilting modules (see [HU96, Lemma 1.3]). We continue with some results that are valid in this situation.
Lemma 3.6. Assume $\mathrm{gl} . \operatorname{dim} \Lambda<\infty$. There is a poset isomorphism

$$
\begin{aligned}
\operatorname{tilt} \Lambda^{\mathrm{op}} & \longrightarrow(\operatorname{tilt} \Lambda)^{\mathrm{op}} \\
T & \longmapsto D(T)
\end{aligned}
$$

induced by the standard duality $D:=\operatorname{Hom}_{K}(-, K): \bmod \Lambda^{\mathrm{op}} \rightarrow \bmod \Lambda$.
Proof. Indeed, $D(T) \in$ tilt Λ for every $T \in$ tilt $\Lambda^{\text {op }}$ because Λ has finite global dimension. The map clearly is an isomorphism of posets.

We denote by f-res Λ and f-cores Λ the posets of functorially finite subcategories of $\bmod \Lambda$ that are resolving and coresolving, respectively. The poset structure is given by inclusion (see [AR91] for definitions). All subcategories are assumed to be closed under direct summands. Moreover, we abbreviate ${ }^{\perp} Y:=\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{q}(X, Y)=0 \forall q>0\right\}$. The following characterization of tilting modules is often useful:

Theorem 3.7 ([AR91], [KS03, Corollary 0.3]). Assume gl. $\operatorname{dim} \Lambda<\infty$. There is a commutative diagram of poset isomorphisms:

Moreover, $\operatorname{add}(T)=T^{\perp} \cap^{\perp}\left(T^{\perp}\right)$ for every $T \in \operatorname{tilt} \Lambda$.
Still assuming gl. $\operatorname{dim} \Lambda<\infty$, we will end this background section with the remarkable observation that, whenever tilt Λ is finite, every self-orthogonal Λ-module is partial tilting and tilt Λ forms a lattice. This is a consequence of the following recent result by Iyama and Zhang:
Theorem 3.8 ([IZ18]). If gl. $\operatorname{dim} \Lambda<\infty$ and tilt Λ is finite, all resolving and all coresolving subcategories of $\bmod \Lambda$ are functorially finite.
Proof. The implication $(1) \Rightarrow(2)$ of [IZ18, Theorem 3.2] and [KS03, Corollary 0.3] show that every resolving subcategory is functorially finite. Dually, since all cotilting modules are also tilting modules, every coresolving subcategory is functorially finite.

Recall that $M \in \bmod \Lambda$ is self-orthogonal if $\operatorname{Ext}_{\Lambda}^{q}(M, M)=0 \forall q>0$.
Corollary 3.9. If gl. $\operatorname{dim} \Lambda<\infty$ and tilt Λ is finite, every self-orthogonal module in $\bmod \Lambda$ is a direct summand of a tilting module.
Proof. Use Theorem 3.8 and the dual of [AR91, Proposition 5.12].
Corollary 3.10. If gl. $\operatorname{dim} \Lambda<\infty$ and tilt Λ is finite, tilt Λ is a lattice. In this case, the meet $T \wedge T^{\prime}$ of elements T, T^{\prime} in tilt Λ is given by

$$
\left(T \wedge T^{\prime}\right)^{\perp}=T^{\perp} \cap T^{\prime \perp}
$$

Proof. Theorem 3.8 shows that f-res Λ admits meets, since the intersection of resolving subcategories is resolving. Analogously, f-cores Λ admits meets. Now apply Theorem 3.7.

4. The Auslander algebra of $K[x] /\left(x^{n}\right)$

From now on let $\Lambda=\Lambda_{n}$ be the path algebra over K of the quiver

$$
1 \leftrightarrows \beta_{2} \alpha_{1} 2 \underset{\alpha_{2}}{\beta_{3}} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \beta_{n-1} \beta_{\alpha_{n-1}}^{\leftrightarrows} n
$$

modulo the relations $\alpha_{1} \beta_{2}$ and $\alpha_{i} \beta_{i+1}-\beta_{i} \alpha_{i-1}$ for all $1<i<n$.
Then Λ is the Auslander algebra of $K[x] /\left(x^{n}\right)$, i.e. the endomorphism algebra of the direct sum of the n indecomposable $K[x] /\left(x^{n}\right)$-modules $K[x] /\left(x^{i}\right)$ with $1 \leq i \leq n$. Its classical tilting, support τ-tilting and exceptional modules were investigated in [BHRR99; IZ16; HP17].
Remark 4.1. Some basic properties of Λ are collected in [HP17, § 1]. For us it is important to know that gl. $\operatorname{dim} \Lambda \leq 2$ and $e_{n} \Lambda$ is a projectiveinjective Λ-module.

5. Classical tilting modules

The classical tilting modules for the Auslander algebra $\Lambda=\Lambda_{n}$ are classified in [BHRR99]. An explicit anti-isomorphism between the poset $\operatorname{tilt}_{1} \Lambda$ and the symmetric group $\mathcal{S}=\mathcal{S}_{n}$ on n letters with the left weak order was established by Yusuke Tsujioka in his Master's thesis. We will recall this classification as presented in [IZ16] below.

For $1 \leq i<n$ we denote by $s_{i} \in \mathcal{S}$ the transposition of i and $i+1$. The length of $w \in \mathcal{S}$ is

$$
\ell(w):=\sharp\{(i, j) \mid 1 \leq i<j \leq n, w(i)>w(j)\} .
$$

A sequence $\left(i_{1}, \ldots, i_{\ell}\right)$ in $\{1, \ldots, n-1\}$ is said to be a reduced expression for w if $w=s_{i_{1}} \cdots s_{i_{\ell}}$ and $\ell=\ell(w)$. The left weak order \geq_{L} and the right weak order \geq_{R} on \mathcal{S} are defined by:

$$
\begin{aligned}
w \geq_{L} v & : \Leftrightarrow \quad \ell(w)=\ell(v)+\ell\left(w v^{-1}\right) \\
w \geq_{R} v & : \Leftrightarrow \quad \ell(w)=\ell(v)+\ell\left(v^{-1} w\right)
\end{aligned}
$$

Each of these two orders turns \mathcal{S} into a lattice with maximal element

$$
w_{0}:=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right) \in \mathcal{S} .
$$

Observe that the arrows in the Hasse diagram $Q\left(\mathcal{S}, \geq_{L}\right)$ are $s_{i} v \rightarrow v$ for $v \in \mathcal{S}$ and $1 \leq i<n$ with $s_{i} v>_{L} v$ and the assignment $w \mapsto w^{-1}$ yields an isomorphism of posets $\left(\mathcal{S}, \geq_{R}\right) \rightarrow\left(\mathcal{S}, \geq_{L}\right)$.

For $1 \leq i<n$ let I_{i} be the ideal $\Lambda\left(1-e_{i}\right) \Lambda$ in Λ. More generally, we define for all $w \in \mathcal{S}$

$$
I_{w}:=I_{i_{1}} \cdots I_{i_{\ell}}
$$

where $\underline{i}=\left(i_{1}, \ldots, i_{\ell}\right)$ is any reduced expression for w. For a proof why the ideal I_{w} in Λ only depends on w and not on the particular choice of the reduced expression \underline{i} see [IZ16, Proposition 3.15].

Theorem 5.1 ([IZ16, Theorem 3.18]). There are poset isomorphisms:

$$
\begin{array}{rlrl}
\left(\mathcal{S}, \geq_{L}\right) & \longrightarrow\left(\operatorname{tilt}_{1} \Lambda\right)^{\mathrm{op}} & \left(\mathcal{S}, \geq_{R}\right) & \longrightarrow\left(\mathrm{tilt}_{1} \Lambda^{\mathrm{op}}\right)^{\mathrm{op}} \\
w & \longmapsto I_{w} & w & \longmapsto I_{w}
\end{array}
$$

Theorem 5.2 ([IZ16, Theorem 3.5]). For every element $w \in \mathcal{S}$ both the left-multiplication map $\Lambda \rightarrow \operatorname{End}_{\Lambda}\left(I_{w}\right)$ and the right-multiplication map $\Lambda^{\mathrm{op}} \rightarrow \operatorname{End}_{\Lambda^{\mathrm{op}}}\left(I_{w}\right)$ are isomorphisms of algebras.

6. The derived Picard group

The goal of this section is to construct a homomorphism from the braid group $\mathcal{B}=\mathcal{B}_{n}$ on n strands to the derived Picard group $\operatorname{DPic}(\Lambda)$.

Proposition 6.1. For every element $w \in \mathcal{S}$ the ideal I_{w} is a two-sided tilting complex over Λ.

Proof. It is $\mathbb{R H o m}_{\Lambda}(T, T)=\operatorname{End}_{\Lambda}(T)$ and $\mathbb{R} \operatorname{Hom}_{\Lambda^{\text {op }}}(T, T)=\operatorname{End}_{\Lambda^{\text {op }}}(T)$ for $T=I_{w}$ by Theorem 5.1. Now use Theorems 3.3 and 5.2.

Before stating this section's main result, we recall properties of braid groups. Details can be found for example in [KT08, Chapter 6].

Let $\mathcal{F}=\mathcal{F}_{n}$ be the free group with generators \mathfrak{s}_{i} for $1 \leq i<n$. The braid group \mathcal{B} is by definition the quotient of \mathcal{F} by the relations

$$
\begin{align*}
\mathfrak{s}_{i} \mathfrak{s}_{j} & =\mathfrak{s}_{j} \mathfrak{s}_{i} & & \text { for } 1 \leq i<i+1<j<n, \\
\mathfrak{s}_{i} \mathfrak{s}_{i+1} \mathfrak{s}_{i} & =\mathfrak{s}_{i+1} \mathfrak{s}_{i} \mathfrak{s}_{i+1} & & \text { for } 1 \leq i<i+1<n .
\end{align*}
$$

We denote by \mathcal{B}_{+}the monoid generated by \mathfrak{s}_{i} with $1 \leq i<n$ subject to the same relations (\star). It is well-known that the canonical monoid morphism $\mathcal{B}_{+} \rightarrow \mathcal{B}$ is injective. In this way, \mathcal{B}_{+}becomes a subset of \mathcal{B}. With $\mathcal{B}_{-}:=\left(\mathcal{B}_{+}\right)^{-1}$ we then have

$$
\mathcal{B}=\mathcal{B}_{+} \mathcal{B}_{-}=\mathcal{B}_{-} \mathcal{B}_{+} .
$$

The length of an element $x=\mathfrak{s}_{i_{1}} \cdots \mathfrak{s}_{i_{\ell}}$ in \mathcal{B}_{+}is the integer $\ell(x)=\ell$.
The rule $\mathfrak{s}_{i} \mapsto s_{i}$ induces a surjective group morphism $\mathcal{B} \rightarrow \mathcal{S}, x \mapsto \bar{x}$, whose kernel is generated by the elements \mathfrak{s}_{i}^{2}. Furthermore, we can and will regard the symmetric group \mathcal{S} as a subset \mathcal{S}_{+}of \mathcal{B}_{+}by identifying each element $w=s_{i_{1}} \cdots s_{i_{\ell}} \in \mathcal{S}$ of length ℓ with $\underline{w}:=\mathfrak{s}_{i_{1}} \cdots \mathfrak{s}_{i_{\ell}} \in \mathcal{B}_{+}$. We write w_{+}for $w_{0} \in \mathcal{S}$ when considered as the element $\underline{w_{0}}$ of \mathcal{S}_{+}.

Remark 6.2. The pair $\left(\mathcal{B}_{+}, w_{+}\right)$is a comprehensive Garside monoid in the sense of [KT08, Theorem 6.20] and the canonical map $\mathcal{B}_{+} \rightarrow \mathcal{B}$ is the embedding into its group of fractions.

After the preparation, we get to the promised result:
Proposition 6.3. The map $\mathcal{S} \rightarrow \operatorname{DPic}(\Lambda)$ given by $w \mapsto I_{w}$ extends to a group homomorphism:

$$
\begin{aligned}
& \mathcal{B} \longrightarrow \operatorname{DPic}(\Lambda) \\
& x \longmapsto T_{x}
\end{aligned}
$$

Proof. Consider the diagram

where π and φ are the group morphisms given by $\mathfrak{s}_{i} \mapsto \mathfrak{s}_{i}$ and $\mathfrak{s}_{i} \mapsto I_{i}$, respectively. For all reduced expressions $\left(i_{1}, \ldots, i_{\ell}\right)$ for $w \in \mathcal{S}$ we have by [IZ16, Propositions 3.17] in $\operatorname{DPic}(\Lambda)$

$$
\varphi\left(\mathfrak{s}_{i_{1}} \cdots \mathfrak{s}_{i_{\ell}}\right)=I_{i_{1}} \otimes_{\Lambda}^{\mathbb{L}} \cdots \otimes_{\Lambda}^{\mathbb{L}} I_{i_{\ell}}=I_{w} .
$$

It follows that φ factors over π because \mathcal{B} is defined by relations $v=w$ with $v=\mathfrak{s}_{i_{1}} \cdots \mathfrak{s}_{i_{\ell}}, w=\mathfrak{s}_{j_{1}} \cdots \mathfrak{s}_{j_{\ell}} \in \mathcal{F}$ where $\left(i_{1}, \ldots, i_{\ell}\right)$ and $\left(j_{1}, \ldots, j_{\ell}\right)$ are reduced expressions for the element $\overline{\pi(v)}=\overline{\pi(w)} \in \mathcal{S}$.

7. Tilting complexes

Composing the map $\mathcal{B}_{+} \rightarrow \operatorname{DPic}(\Lambda)$ from Proposition 6.3 with the canonical map $\operatorname{DPic}(\Lambda) \rightarrow$ tilt ${ }^{\bullet} \Lambda$ yields a map $\mathcal{B}_{+} \rightarrow$ tilt Λ. In this section we discuss why this map becomes an anti-morphism of posets when endowing \mathcal{B}_{+}with the right divisibility order. Furthermore, we show that it preserves covering relations.

The right-divisibility order \geq_{L} and the left-divisibility order \geq_{R} are extensions of \geq_{L} and \geq_{R} from \mathcal{S}_{+}to \mathcal{B} where for $v, w \in \mathcal{B}$:

$$
\begin{aligned}
y \geq_{L} x & : \Leftrightarrow \quad y x^{-1} \in \mathcal{B}_{+} \\
y \geq_{R} x & : \Leftrightarrow \quad x^{-1} y \in \mathcal{B}_{+}
\end{aligned}
$$

Proposition 7.1. There is a morphism of strict posets:

$$
\begin{aligned}
\left(\mathcal{B}_{+},>_{L}\right) & \longrightarrow\left(\operatorname{tilt}^{\bullet} \Lambda\right)^{\mathrm{op}} \\
x & \longmapsto T_{x}
\end{aligned}
$$

Proof. It suffices to verify $T_{x}>T_{\mathfrak{s}_{i} x}$ for every $x \in \mathcal{B}_{+}$and $1 \leq i<n$. Theorem 5.1 shows $\Lambda>I_{i}$ and we get $T_{x}=\Lambda \otimes_{\Lambda}^{\mathbb{L}} T_{x}>I_{i} \otimes_{\Lambda}^{\mathbb{L}} T_{x}=T_{\mathfrak{s}_{i} x}$ in tilt ${ }^{\bullet} \Lambda$ with Theorem 3.2 and Proposition 6.3.

The following fact is a variation of [IZ16, Lemma 4.3]:
Lemma 7.2. For all $1 \leq i<n$ we have a short exact sequence

$$
0 \rightarrow e_{i} \Lambda \xrightarrow{\iota=\binom{\alpha_{i-1} \cdot}{\beta_{i+1} \cdot}} e_{i-1} \Lambda \oplus e_{i+1} \Lambda \xrightarrow{\pi=\left(-\beta_{i^{*}} \cdot \alpha_{i^{*}}\right)} e_{i} I_{i} \rightarrow 0
$$

in $\bmod \Lambda$ where ι is a minimal left and π a minimal right $\operatorname{add}\left(\left(1-e_{i}\right) \Lambda\right)$ approximation and by convention $e_{0}:=0$.
Proof. This short exact sequence is the minimal projective resolution of $e_{i} I_{i}=\operatorname{rad}\left(e_{i} \Lambda\right)$. For $j \neq i$, applying $\operatorname{Hom}_{\Lambda}\left(-, e_{j} \Lambda\right)$ and $\operatorname{Hom}_{\Lambda}\left(e_{j} \Lambda,-\right)$ yields exact sequences:

$$
\begin{aligned}
& \operatorname{Hom}_{\Lambda}\left(e_{i-1} \Lambda \oplus e_{i+1} \Lambda, e_{j} \Lambda\right) \xrightarrow{\iota^{*}} \operatorname{Hom}_{\Lambda}\left(e_{i} \Lambda, e_{j} \Lambda\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(e_{i} I_{i}, e_{j} \Lambda\right) \\
& \operatorname{Hom}_{\Lambda}\left(e_{j} \Lambda, e_{i-1} \Lambda \oplus e_{i+1} \Lambda\right) \xrightarrow{\pi_{*}} \operatorname{Hom}_{\Lambda}\left(e_{j} \Lambda, e_{i} I_{i}\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(e_{j} \Lambda, e_{i} \Lambda\right)
\end{aligned}
$$

Letting S_{i} be the simple Λ^{e}-module given by the short exact sequence $0 \rightarrow I_{i} \rightarrow \Lambda \rightarrow S_{i} \rightarrow 0$ we have with [IZ16, Lemma 3.6]

$$
\operatorname{Ext}_{\Lambda}^{1}\left(e_{i} I_{i}, e_{j} \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{2}\left(S_{i}, e_{j} \Lambda\right) \cong e_{j} \Lambda \otimes_{\Lambda} S_{i}=0
$$

Clearly, $\operatorname{Ext}_{\Lambda}^{1}\left(e_{j} \Lambda, e_{i} \Lambda\right)=0$, too. Therefore ι and π are $\operatorname{add}\left(\left(1-e_{i}\right) \Lambda\right)$ approximations. Both of them are minimal by [AR91, Proposition 1.1], since neither $e_{i} I_{i}$ nor $e_{i} \Lambda$ is a direct summand of $e_{i-1} \Lambda \oplus e_{i+1} \Lambda$.

The next lemma will be essential to determine $Q(\operatorname{tilt} \Lambda)$.
Lemma 7.3. For all $x \in \mathcal{B}_{+}$and $1 \leq i<n$ we have a triangle

$$
e_{i} T_{x} \xrightarrow{\iota} e_{i-1} T_{x} \oplus e_{i+1} T_{x} \xrightarrow{\pi} e_{i} T_{\mathfrak{s}_{i} x} \longrightarrow \text {. }
$$

in $\mathcal{D}(\Lambda)$ where ι is a minimal left and π a minimal right $\operatorname{add}\left(\left(1-e_{i}\right) T_{x}\right)$ approximation. Furthermore, $e_{j} T_{\mathfrak{s}_{i} x}=e_{j} T_{x}$ for all $1 \leq j \leq n$ with $j \neq i$.
Proof. Apply $-\otimes_{\Lambda}^{\mathbb{L}} T_{x}$ to the triangle $e_{i} \Lambda \rightarrow e_{i-1} \Lambda \oplus e_{i+1} \Lambda \rightarrow e_{i} I_{i} \rightarrow$. induced by the sequence in Lemma 7.2 and to the identities $e_{j} I_{i}=e_{j} \Lambda$. Then use Theorem 3.2.

Corollary 7.4. There is an arrow $T_{x} \longrightarrow T_{\mathfrak{s}_{i} x}$ in the quiver $Q\left(\right.$ tilt $\left.^{\bullet} \Lambda\right)$ for all $x \in \mathcal{B}_{+}$and $1 \leq i<n$.

Proof. Use Lemma 7.3 and [AI12, Theorem 2.35].
For $x \in \mathcal{B}_{+}$and $1 \leq i \leq n$ it makes sense to refer to $e_{i} T_{x}$ as the i-th summand of T_{x}, since by Theorem 3.2

$$
\operatorname{dim}_{K} \operatorname{End}_{\mathcal{D}(\Lambda)}\left(e_{i} T_{x}\right)=\operatorname{dim}_{K} \operatorname{End}_{\Lambda}\left(e_{i} \Lambda\right)=i
$$

We write $T_{x} \xrightarrow{i} T_{\mathfrak{s}_{i} x}$ for an arrow $T_{x} \rightarrow T_{\mathfrak{s}_{i} x}$ in $Q\left(\right.$ tilt $\left.{ }^{\bullet} \Lambda\right)$ to emphasize the fact that it corresponds to mutating the i-th summand.

We close this section with an interesting observation that will enable us to determine the possible dimension vectors of tilting modules for Λ. For this purpose, let $V=K_{0}(\Lambda)$ be the Grothendieck group of $\mathcal{D}(\Lambda)$. The symmetric group \mathcal{S} acts on V^{n} via

$$
s_{i} \cdot\left(\ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots\right)=\left(\ldots, v_{i-1}, v_{i-1}-v_{i}+v_{i+1}, v_{i+1}, \ldots\right)
$$

with $v_{0}:=0$. For each $x \in \mathcal{B}_{+}$we define $d\left(T_{x}\right)$ as the element in V^{n} whose i-th component is the equivalence class of the i-th summand $e_{i} T_{x}$. It can be computed by the following formula:

Lemma 7.5. $d\left(T_{x}\right)=\bar{x} \cdot d(\Lambda)$ for all $x \in \mathcal{B}_{+}$.
Proof. The case $x=1$ is trivial. Otherwise we write $x=\mathfrak{s}_{i} y$ for some i and $y \in \mathcal{B}_{+}$. Let $u:=d\left(T_{x}\right)$. By induction we have $v:=d\left(T_{y}\right)=\bar{y} \cdot d(\Lambda)$. With Lemma 7.3 we get $u_{i}=v_{i-1}-v_{i}+v_{i+1}$ and $u_{j}=v_{j}$ for all $j \neq i$. We conclude $u=s_{i} \cdot v=\overline{\mathfrak{s}_{i}} \cdot(\bar{y} \cdot d(\Lambda))=\bar{x} \cdot d(\Lambda)$.

Corollary 7.6. The set $\left\{d\left(T_{x}\right) \mid x \in \mathcal{B}_{+}\right\}=\left\{d\left(I_{w}\right) \mid w \in \mathcal{S}\right\}$ is finite.

8. Tilting modules

In this section we finally classify the tilting modules for the Auslander algebra Λ and determine the poset structure of tilt Λ. We begin with four lemmata that serve as the main steps of the classification's proof.
Lemma 8.1. $T_{\underline{v} \underline{w}}=I_{v} \otimes_{\Lambda}^{\mathbb{L}} I_{w} \cong I_{v} \otimes_{\Lambda} I_{w} \in$ tilt Λ for all $v, w \in \mathcal{S}$.

Proof. The short exact sequence $0 \rightarrow I_{w} \rightarrow \Lambda \rightarrow \Lambda / I_{w} \rightarrow 0$ shows that $\operatorname{Tor}_{q}^{\Lambda}\left(I_{v}, I_{w}\right) \cong \operatorname{Tor}_{q+1}^{\Lambda}\left(I_{v}, \Lambda / I_{w}\right)$ for all $q>0$. Since proj. $\operatorname{dim}\left(I_{v}\right)_{\Lambda} \leq 1$, we see that $I_{v} \otimes_{\Lambda}^{\mathbb{L}} I_{w} \cong I_{v} \otimes_{\Lambda} I_{w}$ is a module.

We use the notation $[a, b]_{L}$ for the interval $\left\{x \in \mathcal{B} \mid a \leq_{L} x \leq_{L} b\right\}$ and define the interval $[a, b]_{R}$ similarly. Let $\mathcal{S}_{-}:=\left(\mathcal{S}_{+}\right)^{-1}$ and $w_{-}:=\left(w_{+}\right)^{-1}$. The elements of

$$
\left[w_{-}, w_{+}\right]:=\left[w_{-}, w_{+}\right]_{L}=\left[w_{-}, w_{+}\right]_{R}=\mathcal{S}_{+} \mathcal{S}_{-}=\mathcal{S}_{-} \mathcal{S}_{+}
$$

are the rational permutation braids studied in [DG17, Proposition 4.3].
It is not hard to see that for $x \in\left[w_{-}, w_{+}\right]$the module $T_{w_{+} x} \in \operatorname{tilt} \Lambda^{\text {op }}$ corresponds to $T_{x^{-1} w_{+}} \in$ tilt Λ under the isomorphism from Lemma 3.6. We prove a special case:
Lemma 8.2. $T_{w_{+}^{2}}=D(\Lambda)$ in tilt Λ.
Proof. Let $\left(i_{1}, \ldots, i_{\ell}\right)$ be a reduced expression for w_{0}. By Theorem 5.1 there are paths

$$
\begin{array}{ll}
\Lambda_{\Lambda} \xrightarrow{i_{\ell}} \cdots \xrightarrow{i_{1}}\left(I_{w_{0}}\right)_{\Lambda} & \text { in } Q(\operatorname{tilt} \Lambda) \text { and } \\
\Lambda \Lambda \xrightarrow{i_{1}} \cdots \xrightarrow{i_{\ell}}\left(I_{w_{0}}\right) & \text { in } Q\left(\operatorname{tilt} \Lambda^{\mathrm{op}}\right) .
\end{array}
$$

Now, $\left(I_{w_{0}}\right)_{\Lambda}$ is the unique module $T_{\Lambda} \in$ tilt Λ with proj. $\operatorname{dim} T_{\Lambda} \leq 1$ and inj. dim $T_{\Lambda} \leq 1$ (see [BHRR99]). Similarly, ${ }_{\Lambda}\left(I_{w_{0}}\right)$ is the unique module ${ }_{\Lambda} T \in \operatorname{tilt} \Lambda^{\mathrm{op}}$ with proj. $\operatorname{dim}{ }_{\Lambda} T \leq 1$ and inj. $\operatorname{dim}{ }_{\Lambda} T \leq 1$. Because of Lemma 3.6 we must have $\left(I_{w_{0}}\right)_{\Lambda} \cong D\left({ }_{\Lambda}\left(I_{w_{0}}\right)\right)$ such that there is a path

$$
\Lambda \xrightarrow{i_{\ell}} \cdots \xrightarrow{i_{1}} I_{w_{0}} \xrightarrow{i_{\ell}} \cdots \xrightarrow{i_{1}} D(\Lambda)
$$

in $Q($ tilt $\Lambda)$. Corollary 7.4 now implies $T_{w_{+}^{2}}=D(\Lambda)$ in tilt Λ.
The next insight is a consequence of Voigt's lemma.
Lemma 8.3. The set $\mathbb{T}=\left\{T_{x} \mid x \in \mathcal{B}_{+}\right\} \cap$ tilt Λ is finite.
Proof. Let $X=\left\{\operatorname{dim}_{K} T_{x} \mid T_{x} \in \mathbb{T}\right\}$. On the one hand, for each $d \in X$ the set $\left\{T_{x} \in \mathbb{T} \mid \operatorname{dim}_{K} T_{x}=d\right\}$ is finite because of [HS01, Corollary 9]. On the other hand, Corollary 7.6 implies $X \subseteq\left\{\operatorname{dim}_{K} I_{w} \mid w \in \mathcal{S}\right\}$, so X is finite, too. This proves the claim.

We formulate one last lemma before turning to the classification.
Lemma 8.4. Let Q^{\prime} be the full subquiver of $Q=Q(\operatorname{tilt} \Lambda)$ spanned by \mathbb{T}. Then $Q^{\prime}=Q$ and every arrow in this quiver is of the form $T_{x} \xrightarrow{i} T_{\mathfrak{s}_{i} x}$ for some $x \in \mathcal{B}_{+}$and $1 \leq i<n$.
Proof. We show that Q^{\prime} is a successor-closed subquiver of Q so that, using Lemma 8.3, Corollary 3.5 is applicable: Let $T_{x} \rightarrow T$ be an arrow in Q for some $x \in \mathcal{B}_{+}$. According to [HU05b, § 1], there exist $1 \leq i \leq n$, an indecomposable Λ-module Y such that $T=\left(1-e_{i}\right) T_{x} \oplus Y$ and a
short exact sequence $0 \rightarrow e_{i} T_{x} \xrightarrow{\iota} E \rightarrow Y \rightarrow 0$ in which ι is a minimal left add $\left(\left(1-e_{i}\right) T_{x}\right)$-approximation. Given that the projective-injective module $e_{n} \Lambda$ appears as a summand of every tilting module, we have $e_{n} T_{x} \cong e_{n} \Lambda$, so $i \neq n$. Thus $Y \cong e_{i} T_{\mathfrak{s}_{i} x}$ and $T=T_{\mathfrak{s}_{i} x}$ by Lemma 7.3.

Now we are ready to prove our main result.
Theorem 8.5. There is a poset isomorphism:

$$
\begin{aligned}
{\left[1, w_{+}^{2}\right]_{L} } & \longrightarrow(\text { tilt } \Lambda)^{\mathrm{op}} \\
x & \longmapsto T_{x}
\end{aligned}
$$

Proof. The map is well-defined by Lemma 8.1 because $\left[1, w_{+}^{2}\right]_{L}=\mathcal{S}_{+} \mathcal{S}_{+}$. According to Proposition 7.1 it is a morphism of posets.
(1) For all $T_{x}, T_{y} \in$ tilt Λ with $x, y \in \mathcal{B}_{+}$and $T_{x} \geq T_{y}$ there is $z \in \mathcal{B}_{+}$ with $T_{z x}=T_{y}$: Given a path $T_{x}=T_{x_{0}} \rightarrow \cdots \rightarrow T_{x_{\ell}}$ in Q with $T_{x_{\ell}} \geq T_{y}$ and $x_{k}=\mathfrak{s}_{i_{k}} \cdots \mathfrak{s}_{i_{1}} x$ for all $0 \leq k \leq \ell$, either $T_{x_{\ell}}=T_{y}$ or by Theorem 3.4 and Lemma 8.4 there is an arrow $T_{x_{\ell}} \rightarrow T_{x_{\ell+1}}$ in Q with $T_{x_{\ell+1}} \geq T_{y}$ and $x_{\ell+1}=\mathfrak{s}_{i_{\ell+1}} x_{\ell}$ for some $i_{\ell+1}$. If our claim were false, we would get an infinite path $T_{x_{0}} \rightarrow \cdots \rightarrow T_{x_{\ell}} \rightarrow \cdots$ in contradiction to Lemma 8.3.
(2) For all $T \in \operatorname{tilt} \Lambda$ and $x, y \in \mathcal{B}_{+}$with $T_{x}=T=T_{y}$ we have $x=y$: Our argument uses induction on $\ell=\min \{\ell(x), \ell(y)\}$ and follows [AM17, Lemma 6.4]. If $\ell=0$, we have $T=\Lambda$, so $x=1=y$ by Proposition 7.1. Otherwise we can write $x=x^{\prime} \mathfrak{s}_{i}, y=y^{\prime} \mathfrak{s}_{j}$ for some i, j and $x^{\prime}, y^{\prime} \in \mathcal{B}_{+}$. Let $\mathfrak{s}_{i j}$ be the join of the elements \mathfrak{s}_{i} and \mathfrak{s}_{j} in the lattice $\left(\mathcal{S}_{+}, \geq_{L}\right)$, i.e.

$$
\mathfrak{s}_{i j}=\left\{\begin{aligned}
\mathfrak{s}_{i} & =\mathfrak{s}_{j} & & \text { if } i=j, \\
\mathfrak{s}_{i} \mathfrak{s}_{j} & =\mathfrak{s}_{j} \mathfrak{s}_{j} & & \text { if }|i-j|>1, \\
\mathfrak{s}_{i} \mathfrak{s}_{j} \mathfrak{s}_{i} & =\mathfrak{s}_{j} \mathfrak{s}_{i} \mathfrak{s}_{j} & & \text { if }|i-j|=1 .
\end{aligned}\right.
$$

Then $T_{\mathfrak{s}_{i j}}^{\perp}=T_{\mathfrak{s}_{i}}^{\perp} \cap T_{\mathbf{s}_{j}}^{\perp}$ with [IZ16, Theorem 4.12], [IRTT15, Remark 1.13] and [AIR14]. Now $T_{\mathfrak{s}_{i}} \geq T$ and $T_{\mathfrak{s}_{j}} \geq T$ because of $x \geq_{L} \mathfrak{s}_{i}$ and $y \geq_{L} \mathfrak{s}_{j}$. Hence, $T_{\mathfrak{s}_{i j}} \geq T$ by Remark 3.1. So by (1) there is $z \in \mathcal{B}_{+}$with $T_{z \mathfrak{s}_{i j}}=T$. Consequently, $T_{z_{i}}=T_{x^{\prime}}$ and $T_{z_{j}}=T_{y^{\prime}}$ for $z_{i}=z \mathfrak{s}_{i j} \mathfrak{s}_{i}^{-1}$ and $z_{j}=z \mathfrak{s}_{i j} \mathfrak{s}_{j}^{-1}$ by Proposition 6.3. Without loss of generality we may assume $\ell(x)=\ell$ so that $z_{i}=x^{\prime}$ by induction. Because of $\ell\left(z_{j}\right)=\ell\left(z_{i}\right)=\ell-1$ induction also gives $z_{j}=y^{\prime}$. Thus $x=z \mathfrak{s}_{i j}=y$.
(3) Injectivity: Follows immediately from (2).
(4) Surjectivity: By Lemma 8.4 it suffices to check for each $x \in \mathcal{B}_{+}$ with $T_{x} \in$ tilt Λ that $x \in\left[1, w_{+}^{2}\right]_{L}$. Firstly, we have $T_{x} \geq D(\Lambda)=T_{w_{+}^{2}}$ due to Lemma 8.2. Secondly, there exists $z \in \mathcal{B}_{+}$with $T_{z x}=T_{w_{+}^{2}}$ by (1). Finally, we conclude $z x=w_{+}^{2}$ with (2), so $x \in\left[1, w_{+}^{2}\right]_{L}$.
Corollary 8.6. The tensor products $I_{v} \otimes_{\Lambda} I_{w}$ with $v, w \in \mathcal{S}$ are the basic tilting modules for Λ.

Recall that a Λ-module E is called exceptional if it is self-orthogonal and $\operatorname{End}_{\Lambda}(E)=K$.
Corollary 8.7. The modules $e_{1}\left(I_{v} \otimes_{\Lambda} I_{w}\right)$ with $v, w \in \mathcal{S}$ are the exceptional modules for Λ.
Proof. Use $\operatorname{dim}_{K} \operatorname{End}_{\Lambda}\left(e_{i}\left(I_{v} \otimes_{\Lambda} I_{w}\right)\right)=i$ and Corollaries 3.9 and 8.6.
Corollary 8.8. There is a poset isomorphism:

$$
\begin{aligned}
{\left[w_{-}, w_{+}\right]_{R} } & \longrightarrow \text { tilt } \Lambda \\
x & \longmapsto T_{x^{-1} w_{+}}
\end{aligned}
$$

Proof. Use Theorem 8.5 and the fact that $x \mapsto x^{-1} w_{+}$defines an antiisomorphism $\left[w_{-}, w_{+}\right]_{R} \rightarrow\left[1, w_{+}^{2}\right]_{L}$ of posets.
Remark 8.9. The poset isomorphism from Corollary 8.8 restricts to an isomorphism $\left[1, w_{+}\right]_{R} \rightarrow \operatorname{tilt}_{1} \Lambda$.
Next, we strengthen Theorem 8.5 by describing the simplicial complex of tilting modules $\Sigma(\Lambda)$ combinatorially. Recall from [Ung07] that $\Sigma(\Lambda)$ is by definition the abstract simplicial complex whose r-dimensional faces are the sets $\left\{M_{0}, \ldots, M_{r}\right\}$ of isomorphism classes of indecomposable Λ-modules with the property that $M_{0} \oplus \cdots \oplus M_{r}$ is a direct summand of a tilting module for Λ. The vertex set of $\Sigma(\Lambda)$ is by Corollary 3.9 the set of isomorphism classes of indecomposable self-orthogonal Λ-modules.
We define $\mathcal{V}=\mathcal{V}_{n}$ as the set $\left[1, w_{+}^{2}\right]_{L} \times\{1, \ldots, n\}$ modulo the equivalence relation \sim generated by $\left(\mathfrak{s}_{j} x, i\right) \sim(x, i)$ for $\mathfrak{s}_{j} x>_{L} x$ and $j \neq i$. Let $\Sigma=\Sigma_{n}$ be the ($n-1$)-dimensional abstract simplicial complex with

$$
\left\{\left\{\left(x, i_{0}\right), \ldots,\left(x, i_{r}\right)\right\} \in \mathcal{V}^{r+1} \mid 1 \leq i_{0}<\cdots<i_{r} \leq n\right\}
$$

as its set of r-dimensional faces.
Theorem 8.10. There is an isomorphism $\Sigma \rightarrow \Sigma(\Lambda)$ of abstract simplicial complexes given by the assignment $(x, i) \mapsto e_{i} T_{x}$.
Proof. The assignment defines a surjective simplicial map by Lemma 7.3 and Theorem 8.5. To prove that it yields an isomorphism, it is enough to check its injectivity. For this, assume $e_{i} T_{x} \cong U \cong e_{i} T_{y}$ for some vertex U of $\Sigma(\Lambda)$. We will show $(x, i) \sim(y, i)$. Let $T_{x} \wedge T_{y}$ be the meet of T_{x} and T_{y} in tilt Λ. By (1) in the proof of Theorem 8.5 we can choose $x^{\prime}=\mathfrak{s}_{j_{\ell}} \cdots \mathfrak{s}_{j_{1}}$ with $T_{x^{\prime} x}=T_{x} \wedge T_{y}$. Then $T_{x} \geq T_{x_{r}} \geq T_{x} \wedge T_{y}$ for every $x_{r}=\mathfrak{s}_{j_{r}} \cdots \mathfrak{s}_{j_{1}} x$ with $0 \leq r \leq \ell$. Using Remark 3.1 and Corollary 3.10 we conclude $T_{x}^{\perp} \supseteq T_{x_{r}}^{\perp} \supseteq T_{x}^{\perp} \cap T_{y}^{\perp}$ and then also ${ }^{\perp}\left(T_{x}^{\perp}\right) \subseteq{ }^{\perp}\left(T_{x_{r}}^{\perp}\right)$. Thus

$$
U \in \operatorname{add}\left(T_{x}\right) \cap \operatorname{add}\left(T_{y}\right) \subseteq\left(T_{x}^{\perp} \cap T_{y}^{\perp}\right) \cap^{\perp}\left(T_{x}^{\perp}\right) \subseteq \operatorname{add}\left(T_{x_{r}}\right)
$$

by Theorem 3.7, so $e_{i} T_{x_{r}} \cong U$ for all $0 \leq r \leq \ell$. It follows $i \notin\left\{j_{1}, \ldots, j_{\ell}\right\}$ by Lemma 7.3 and therefore $(x, i) \sim\left(x^{\prime} x, i\right)$. Analogously, there is y^{\prime} with $T_{x} \wedge T_{y}=T_{y^{\prime} y}$ and $(y, i) \sim\left(y^{\prime} y, i\right)$. But then $x^{\prime} x=y^{\prime} y$ because of $T_{x^{\prime} x}=T_{x} \wedge T_{y}=T_{y^{\prime} y}$ and Theorem 8.5. Consequently, $(x, i) \sim(y, i)$.

The boundary $\partial \Delta$ of a pure-dimensional abstract simplicial complex Δ is the subcomplex spanned by all its faces of codimension one that are contained in precisely one facet of Δ. Note that

$$
\Sigma=\partial \Sigma \dot{\cup}\{(1, n)\} \dot{\cup}\{F \cup\{(1, n)\} \mid F \in \partial \Sigma\}
$$

Therefore Σ is completely determined by its boundary.
Example 8.11. The geometric realization of $\partial \Sigma\left(\Lambda_{3}\right)$ looks as follows:

Its vertices are the following self-orthogonal modules where $\otimes=\otimes_{\Lambda_{3}}$:

$$
\begin{array}{ccccc}
P_{1}=e_{1} \Lambda_{3} & M_{1}=e_{1} I_{s_{1}} & C_{1}=e_{1} I_{w_{0}} & N_{1}=D\left(I_{s_{1}} e_{1}\right) & J_{1}=D\left(\Lambda_{3} e_{1}\right) \\
P_{2}=e_{2} \Lambda_{3} & M_{2}=e_{2} I_{s_{2}} & C_{2}=e_{2} I_{w_{0}} & N_{2}=D\left(I_{s_{2}} e_{2}\right) & J_{2}=D\left(\Lambda_{3} e_{2}\right) \\
X_{1}=e_{1} I_{s_{1}} \otimes I_{s_{1}} & Y_{1}=D\left(I_{s_{1}} \otimes I_{s_{1}} e_{1}\right) \\
X_{2}=e_{2} I_{s_{2}} \otimes I_{s_{2}} & Y_{2}=D\left(I_{s_{2}} \otimes I_{s_{2}} e_{2}\right)
\end{array}
$$

Returning to the general case, let $p_{n, i}$ be the number of isomorphism classes of modules occurring as i-th summand of some tilting module T_{x} for Λ_{n}. By Theorem 8.10 we have

$$
p_{n, i}=\#\left\{(x, i) \in \mathcal{V}_{n}\right\} .
$$

Remark 8.12. Computations for small n suggest that $p_{n, i}$ is the integer $a_{n+1, i+1}$ in OEIS:A046802 such that $p_{n}:=\sum_{1 \leq i \leq n} p_{n, i}$ would be one less than the number of arrangements of an n-element set (OEIS:A000522):

n	$p_{n, 1}$	$p_{n, 2}$	$p_{n, 3}$	$p_{n, 4}$	$p_{n, 5}$	p_{n}
1	1	-	-	-	-	1
2	3	1	-	-	-	4
3	7	7	1	-	-	15
4	15	33	15	1	-	64
5	31	131	131	31	1	325

Since the first summands of the tilting modules T_{x} are the exceptional modules, this would be in line with [HP17] who proved that the number of isomorphism classes of exceptional modules for Λ_{n} is $2^{n}-1$. In fact, checking $p_{n, 1}=2^{n}-1$ would give an alternative proof of their result.

9. Exceptional sequences

In this final section we will relate the action of the braid group on full exceptional sequences in $\mathcal{D}(\Lambda)$, which was studied in [HP17], to its action on $\operatorname{DPic}(\Lambda)$ by left multiplication (via the map in Proposition 6.3). For simplicity, we only consider full exceptional sequences of modules.

The set of all sequences $\left(E_{1}, \ldots, E_{n}\right)$ of isomorphism classes of exceptional Λ-modules with $\operatorname{Ext}_{\Lambda}^{q}\left(E_{j}, E_{i}\right)=0$ for all $q \geq 0$ and $i<j$ will be denoted by exs Λ in what follows.
Remark 9.1. For $0 \leq i<n$ and $i^{*}:=n-i$ let $\Delta_{i^{*}}$ be the standard module given by the short exact sequence
(Δ)

$$
0 \longrightarrow e_{i} \Lambda \xrightarrow{\beta_{i+1}^{\cdot}} e_{i+1} \Lambda \longrightarrow \Delta_{i^{*}} \longrightarrow 0
$$

Applying the functor $-\otimes_{\Lambda}^{\mathbb{L}} I_{w}$ for $w \in \mathcal{S}$ yields a short exact sequence

$$
0 \longrightarrow e_{i} I_{w} \longrightarrow e_{i+1} I_{w} \longrightarrow \mathcal{E}_{w, i^{*}} \longrightarrow 0
$$

with $\mathcal{E}_{w, i^{*}}:=\Delta_{i^{*}} \otimes_{\Lambda} I_{w} \cong \Delta_{i^{*}} \otimes_{\Lambda}^{\mathbb{L}} I_{w}$ (compare the proof of Lemma 8.1).
Then $\mathcal{E}_{w}:=\left(\mathcal{E}_{w, 1}, \ldots, \mathcal{E}_{w, n}\right) \in \operatorname{exs} \Lambda$ because of $\left(\Delta_{1}, \ldots, \Delta_{n}\right) \in \operatorname{exs} \Lambda$ and Theorem 3.2. In view of Theorem 5.1 and [HP17, Proposition 3.4] we have a commutative diagram of bijections:

Let us prove that Φ and Ψ commute with mutation, i.e. $L_{i^{*}}\left(\mathcal{E}_{w}\right)=\mathcal{E}_{s_{i} w}$ whenever $s_{i} w>_{L} w$. By Theorem 3.2 and Proposition 6.3 it suffices to check this for $w=1$. Then the left mutation

$$
\mathrm{L}_{i^{*}}\left(\mathcal{E}_{1}\right)=\left(\ldots, \Delta_{i^{*}-1}, \mathrm{~L}_{\Delta_{i^{*}}}\left(\Delta_{i^{*}+1}\right), \Delta_{i^{*}}, \Delta_{i^{*}+2}, \ldots\right)
$$

is given by the canonical triangle

$$
\mathbb{R} \operatorname{Hom}_{\Lambda}\left(\Delta_{i^{*}}, \Delta_{i^{*}+1}\right) \otimes_{K} \Delta_{i^{*}} \longrightarrow \Delta_{i^{*}+1} \longrightarrow \mathrm{~L}_{\Delta_{i^{*}}}\left(\Delta_{i^{*}+1}\right) \longrightarrow \cdot
$$

Taking cohomology, $\mathrm{L}_{\Delta_{i^{*}}}\left(\Delta_{i^{*}+1}\right)$ is seen to be the middle term of a short exact sequence $0 \rightarrow S_{i} \rightarrow \mathrm{~L}_{\Delta_{i^{*}}}\left(\Delta_{i^{*}+1}\right) \rightarrow \Delta_{i^{*}} \rightarrow 0$ that corresponds to a non-zero element of the one-dimensional vector space $\operatorname{Ext}_{\Lambda}^{1}\left(\Delta_{i^{*}}, S_{i}\right)$. An easy calculation that uses $e_{i} I_{i}=\operatorname{rad}\left(e_{i} \Lambda\right)$ and $e_{j} I_{i}=e_{j} \Lambda$ for $j \neq i$ now shows $\mathcal{E}_{s_{i}}=\mathrm{L}_{i^{*}}\left(\mathcal{E}_{1}\right)$.
Remark 9.2. Every tilting module $T=I_{v} \otimes_{\Lambda} I_{w}$ with $v, w \in \mathcal{S}$ gives rise to an exceptional sequence $\mathcal{E}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right)$ in $\mathcal{D}(\Lambda)$ where

$$
\mathcal{E}_{i^{*}}:=\cdots \longrightarrow{ }_{-2}^{0} \longrightarrow e_{i} T \xrightarrow{\beta_{i+1}} \underset{0}{e} e_{i+1} T \longrightarrow{ }_{1} \longrightarrow \cdots .
$$

This follows by applying $-\otimes_{\Lambda}^{\mathbb{L}} T$ to the triangle induced by (Δ).

Acknowledgments

First of all, I would like to thank Julia Sauter for raising the question of whether the tilting modules for the Auslander algebra Λ_{n} can be classified. I am grateful to Baptiste Rognerud for pointing me to [DG17]. I thank both of them and Biao Ma for interesting discussions.

References

[AIR14] T. Adachi, O. Iyama, and I. Reiten, " τ-tilting theory," Compos. Math., vol. 150, no. 3, pp. 415-452, 2014. DOI: 10.1112/S0010437X13007422. arXiv: 1210.1036 [math.RT].
[AI12] T. Aihara and O. Iyama, "Silting mutation in triangulated categories," J. Lond. Math. Soc. (2), vol. 85, no. 3, pp. 633-668, 2012. DOI: $10.1112 / \mathrm{jlms} / \mathrm{jdr055}$. arXiv: 1009.3370 [math.RT].
[AM17] T. Aihara and Y. Mizuno, "Classifying tilting complexes over preprojective algebras of Dynkin type," Algebra Number Theory, vol. 11, no. 6, pp. 1287-1315, 2017. DOI: 10.2140/ant.2017.11.1287. arXiv: 1509.07387 [math.RT].
[AR91] M. Auslander and I. Reiten, "Applications of contravariantly finite subcategories," Adv. Math., vol. 86, no. 1, pp. 111-152, 1991. DOI: 10.1016/0001-8708(91) 90037-8.
[BHRR99] T. Brüstle, L. Hille, C. M. Ringel, and G. Röhrle, "The Δ-filtered modules without self-extensions for the Auslander algebra of $k[T] /\left(T^{n}\right)$," Algebr. Represent. Theory, vol. 2, no. 3, pp. 295-312, 1999. DOI: 10.1023/A:1009999006899.
[DG17] F. Digne and T. Gobet, "Dual braid monoids, Mikado braids and positivity in Hecke algebras," Math. Z., vol. 285, no. 1-2, pp. 215-238, 2017.

DOI: $10.1007 /$ s00209-016-1704-z. arXiv: 1508.06817 [math.GR].
[HU96] D. Happel and L. Unger, "Modules of finite projective dimension and cocovers," Math. Ann., vol. 306, no. 3, pp. 445-457, 1996. DOI: $10.1007 /$ BF01445260.
[HU05a] D. Happel and L. Unger, "On a partial order of tilting modules," Algebr. Represent. Theory, vol. 8, no. 2, pp. 147-156, 2005. DOI: $10.1007 / \mathrm{s} 10468-005-3595-2$.
[HU05b] D. Happel and L. Unger, "On the quiver of tilting modules," J. Algebra, vol. 284, no. 2, pp. 857-868, 2005. DOI: 10.1016/j.jalgebra.2004.11.007.
[HP17] L. Hille and D. Ploog, "Exceptional sequences and spherical modules for the Auslander algebra of $k[x] /\left(x^{t}\right)$," version 2, 2017. arXiv: 1709.03618 [math.RT].
[HS01] B. Huisgen-Zimmermann and M. Saorín, "Geometry of chain complexes and outer automorphisms under derived equivalence," Trans. Amer. Math. Soc., vol. 353, no. 12, pp. 4757-4777, 2001.
DOI: $10.1090 / \mathrm{S} 0002-9947-01-02815-\mathrm{X}$.

REFERENCES

[IRTT15] O. Iyama, I. Reiten, H. Thomas, and G. Todorov, "Lattice structure of torsion classes for path algebras," Bull. Lond. Math. Soc., vol. 47, no. 4, pp. 639-650, 2015. DOI: $10.1112 / \mathrm{blms} / \mathrm{bdv} 041$. arXiv: 1312.3659 [math.RT].
[IZ16] O. Iyama and X. Zhang, "Classifying τ-tilting modules over the Auslander algebra of $K[x] /\left(x^{n}\right)$," version 1, 2016. arXiv: 1602.05037 [math.RT].
[IZ18] O. Iyama and X. Zhang, "Tilting modules over Auslander-Gorenstein algebras," version 2, 2018. arXiv: 1801.04738 [math.RT].
[KT08] C. Kassel and V. Turaev, Braid groups. Springer, New York, 2008, vol. 247, pp. xii+340. DOI: 10.1007/978-0-387-68548-9.
[KS03] H. Krause and Ø. Solberg, "Applications of cotorsion pairs," J. London Math. Soc. (2), vol. 68, no. 3, pp. 631-650, 2003. DOI: 10.1112/S0024610703004757.
[Miy03] J.-I. Miyachi, "Recollement and tilting complexes," J. Pure Appl. Algebra, vol. 183, no. 1-3, pp. 245-273, 2003. DOI: $10.1016 /$ S0022-4049 (03)00072-0.
[OEIS] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences. Online: https://oeis.org/.
[Ric91] J. Rickard, "Derived equivalences as derived functors," J. London Math. Soc. (2), vol. 43, no. 1, pp. 37-48, 1991. DOI: $10.1112 / \mathrm{jlms} / \mathrm{s} 2-43.1 .37$.
[QPA17] The QPA-team, QPA - quivers, path algebras and representations $-a$ GAP package, version 1.27, 2017. Online: https://folk.ntnu.no/oyvinso/QPA/.
[Ung07] L. Unger, "Combinatorial aspects of the set of tilting modules," in Handbook of tilting theory, vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 259-277. DOI: $10.1017 /$ CB09780511735134.010.
[Yek99] A. Yekutieli, "Dualizing complexes, Morita equivalence and the derived Picard group of a ring," J. London Math. Soc. (2), vol. 60, no. 3, pp. 723-746, 1999. DOI: $10.1112 /$ S0024610799008108. arXiv: math/9810134 [math.RA].
[Yek92] A. Yekutieli, "Dualizing complexes over noncommutative graded algebras," J. Algebra, vol. 153, no. 1, pp. 41-84, 1992. DOI: $10.1016 / 0021-8693(92) 90148-\mathrm{F}$.

Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld
E-mail address: jan.geuenich@math.uni-bielefeld.de

