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Abstract

Trying to enumerate all of the walks in a 2D lattice is a fun combinatorial problem and there
are numerous applications, from polymers to sports. Computers provide a wonderful tool for
analyzing these walks; we provide a Maple package for automatically describing generating
functions of walks restricted to any step set in a 2D lattice. We always obtain a closed system of
relations for generating functions of walks that are bounded, semi-bounded, or unbounded. For
bounded walks, this leads to explicit rational solutions! For semi-bounded or unbounded walks,
we may get lucky and obtain algebraic solutions; if not, we still have a short self-referential

description of the generating function.

1 Introduction

We consider walks in the two-dimensional square lattice with an “arbitrary” set of integral steps
(x,y) subject to x > 0. In addition to unbounded walks, we also separately constrain the walks

to lie in regions bounded above and below as well as bounded only below.

One would then like to count all possible walks of a certain length possibly with a specific
total change in y value. Rather than a brute-force search of the entire space, looking for 1 value,
one could use generating function relations. As a bonus, one would obtain not only the initial

generating function of desire, but also many related ones that may be of interest.

Studies of this kind have been done in the literature with simple step sets such as Dyck

paths ({[1,1], [1, —1]}) [DR71, BORWO05] and old-time basketball games [AZ07]. Philippe Duchon
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analyzed the case of nonnegative bridges with step set {[1,—-2],[1,3]}; see OEI sequence
A060941 [OEIa]. For further developments on the subject, see [vR00] and the references therein.

The accompanying Maple package is able to extend and inform on old sequences and
create many new sequences. Much of the analysis, thus far, has been on steps with x-value
exactly equal to 1. One of the aspects of this paper that sets it apart is the ease with which it can

analyze more generic cases.

1.1 Motivation

We want to enumerate walking paths constrained to specific allowable steps. Most of the time we

are looking for paths that begin and end on the x-axis.

An earlier motivation for bounded walks came from Physics: analyzing polymers con-
strained between plates [BORWO05]. Ayyer and Zeilberger gave one solution in an earlier paper

[AZ07] that provided the main motivation for this research.

The kernel method has received attention lately for analyzing specific cases of walks
[BKKT17]. There are several advantages to describing walks using the method of this paper.
The main idea is the same: writing functional equations to describe possible steps in a walk. The
difference is that this method then describes “new” components of the functional equation in
an iterative manner. The kernel method uses analytical number theory on the roots and can be
reliant on very case-specific techniques. Compared to the kernel method, we believe our method

is a lot easier to understand combinatorially, is more insightful, faster, and easier to produce.

Trying to picture an entire walk at once can be difficult. This is where the awesome powers
of dynamical programming come into play. Instead of trying to think about the entirety of a
walk, think about a part: either the beginning step, end step, or the middle step across the x-
axis. Break the walk down into different parts (irreducible versus reducible). This is what the

generating function equations accomplish.

Originally, we wrote out a single equation to describe the initial walk of interest, then the
next, then the next, until it eventually became a closed system. (And the wonderful part is that

our descriptions ALWAYS lead to closed systems.) Finally, we solved the system we created.

1Online Encyclopedia of Integer Sequences [Nei].
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Since this is a very algorithmic approach to answering the question, why not have a computer

work for us?

1.2 Definitions

I will generically use the term walk to indicate any sequence of points {(xo,yo), ..., (xs,¥s)} in
the xy-plane. Though the walk will not necessarily start at the origin, if the starting point is
not given, it is assumed to begin at (0,0). The steps of a walk are {(x1 — xo,1 — ¥0),- .., (Xs —
Xs_1,Ys — Ys—1) } and are built from some step set S, a set of ordered pairs. I exclusively consider
walks that are monotonically weakly increasing: x;;1 — x; > 0. A walk is nonnegative (nonpositive)
if the walk never crosses below (above) the x-axis. I will sometimes refer to the y-value as the
altitude of the walk.

Definition 1 (Walks). A bridge is an unbounded walk that begins at the origin and ends on the
x-axis. I say bounded bridge for a bounded walk that begins at the origin and ends on the x-axis.
An excursion is a semi-bounded (not necessarily nonnegative) walk that begins at the origin and
ends on the x-axis.

A free walk can end anywhere (not ending at any specific altitude). A meander is a semi-bounded
free walk.

The length of a walk is n = }_;_, x;. The size of a walk is s.

See Figure [Tl for examples of the different types of walks.



Figure 1: Walk Examples

Nonnegative Excursion of size 8 | ‘ ‘ . Nonnegative Meander of size 9

Free walk of size 7

All of the example walks are of length 8 and are considered to have begun at the origin. They are
all built from the same step set S = {[0,—1],[1,0],[1,1],[1,2],[2, —1]}. Note the vertical line in

the excursion is actually 2 steps. The excursion happens to be irreducible while the rest are not.

Banderier, et al. [BKK™17] uses walk/path to reference any sequence of steps that start at the
origin. The only difference in definitions is that they always count excursions and meanders as
nonnegative. I will mostly consider them as nonnegative and explicitly say when I am not.
Definition 2. The interior of a walk consists of every point other than the endpoints: {(x1,y1),..., (¥s_1,¥s—1) }-
An irreducible walk is one in which the interior has a strictly higher altitude than the lower end-
point: min{yy,...,ys—1} > min{yp,ys}. For purposes of this paper and Maple package, the
stationary walkd and walks that are direct steps to the right are NOT considered to be irreducible

walks

Irreducible is also used to refer to walks that do not exactly hit the final altitude until the

final step.

2 A single point.
3 As the interior (the edge between points) is not strictly higher than the endpoints.



1.3

Paper Organization

I will exclusively use f as the variable in generating functions. I also abbreviate generating

function(s) as g.f.(s). This paper is organized in the following sections:

Section 2:

Section 3:

Section 4:

Section 5:

Section 6:

Section 7:

Section 8:

Section 9:

Bounded: This is the section in which a computer does the best; it can give an exact g.f.
solution since we have a “linear” system of equations. Computers are very good at solving

these quickly and efficiently.

Semi-bounded: An algebraic expression for the g.f. is no longer guaranteed. However, we

can always find a polynomial in Z[t] for which the g.f. is a root

Guess-and-check: Finding a minimal polynomial is guaranteed so why not just guess? This

section gives a time and memory comparison showing why that would be a poor decision.

Algebraic-to-Recursive: Using the minimal polynomial of the g.f. is not always the fastest
for enumerating. This section introduces another Maple package that converts the polyno-

mial into a 1D recurrence.

Unbounded: We find minimal polynomials for g.f.s of unbounded walks and show an

alternative method of producing recurrences in specific cases.

Asymptotics: We discover asymptotic results for several step sets to show relationships

between the number of excursions, bridges, and, to a lesser degree, meanders.

Applications: We use the Maple package to find some extended results and talk about
probabilistic behavior. We also express minimal polynomials for excursions of small step

sets.

Conclusions and Future Work: A brief recap of what we can do with the ScoringPaths

Maple package and how we can extend the work.

This paper is produced in conjunction with the Maple package ScoringPaths. It is downloadable

from

math.rutgers.edu/~btel4/Code/ScoringPaths/ScoringPaths.txt.

I will mention various functions of the package in bold. All functions mentioned in this paper are

included in the accompanying Maple package. Some functions have been borrowed from other

packages with credit and included in ScoringPaths for completeness. All comparisons of time

#In the formal power series sense.



and memory are done with Maple 17’s CodeTools[Usage] on Linux version 3.10.0-514.el7.x86_64
with 8GB of RAM. All values are averages of at least 30 trials unless otherwise specified. Pay

careful attention to the units in some examples.

We are considering discrete walks. As such, we can consider steps with only integral
values. If the x-steps are fractional, there will likely not be any issues. If the y-steps are fractional,
many functions will not work as intended. If all of the steps share a common factor in the y-value,
it should be factored out leaving an equivalent problem. The bounds will need to be factored and

truncated as well. Leaving the common factor may cause problems with some functions.

The g.f. may produce non-zero coefficients only every m!" value. It may be desirable to
make the substitution t — 1/ for ease of reading. I commonly use B(n), and occasionally C(n)
as the number of walks of length n. The step set and walk restrictions will be obvious from

context or given explicitly.

A few functions to create sets of random steps have been included for quick demonstra-
tions; RandomStepSet produces a generic set, RandomZeroStepSet parses for walks that begin
and end on the x-axis, RandomSemiBoundedStepSet parses for walks bounded below, and Ran-

domUnBoundedStepSet produces a step set without any [0, y] steps.

There are several “paper” functions that automatically produce an article with information

about a given step set. See the “Paper-Producing Functions” section of the Help function.

The package gfun by Salvy and Zimmermann [SZ94], a staple included with recent Maple
versions, is also very useful for manipulating g.f.s. It contains many functions for translating

between algebraic expressions, recurrences, and differential equations satisfied by g.f.s.

2 Bounded

The first case is walks that are bounded above and below. Consider an arbitrary set of steps
S = {(x1,¥1),.--, (xn,yn)}. The goal is to find the g.f., denoted f,;, for walks with step set S,
starting at (0,0), and bounded above and below by a > 0 and b < 0, respectively. All walks/paths

in this section are constrained to a step set S and bounded above and below.



2.1 Walking “Anywhere”

First assume that the walk can end anywhere between the lines ¥ = a and y = b. A walk either
never goes anywhere, +1, or it takes a step (') and continues as if it is a walk starting at a new

point: f, . The following relation accomplishes that.

fa,h =1+ Z txfafy,bfy

(x,y)eS

This by itself gets us nowhere. Butifa —y <Oorb—y >0, then f, ,, , = 0 since it is already

starting in a prohibited region. Now write out all (a — b) equations:

fO,bfa =1+ Z txfofy,hfafyr
(x,y)eS

fl,b—a+1 =1+ Z txfl—y,b—a+l—yr
(x,y)eS

fafh,O =1+ Z txfafhfy,Ofy'
(x,y)eS

This is a (linear!) system of a — b equations with a — b variables, after discarding the constant 0
g.f.s, for which Maple’s solve function can easily find the solution. As a bonus, we not only have

fap, but also every f;; , such that m —n=a —b (and m > 0, n <0).

The function BoundedScoringPathsEqsVars will produce all of the equations and vari-
ables for this system extremely quickly. BoundedScoringPaths will output only the g.f. f,,.
Again, this is very fast since it is solving a linear system of only (a — b) equations. To verify
the values, one can use BoundedScoringPathsNumber, which computes the number of walks by

recursion.

Allowable steps are any as long as there is nota (0, —) AND a (0, +) such that they can sum
to 0 within the bounds. Specifically, if (0,m) and (0, —n) are steps, then it is allowable (will not

produce infinite values) as long as the width is small enough: a — b < n+m — gcd(m, n).

Proof. Let S = {[0,m],[0, —n]} and assume m > n. Also assume gcd(m,n) = 1. Iff a—b >
n+m — 1, then we can always take at least one of the S steps. Since there is a finite number of

altitudes, then must be acollision at some point: a loop.

If gcd(m,n) = g > 1, then reconsider the same problem after factoring g out of everything:
) {gJ,b/: [g],s/:{[o,m/g], 0,—n/g]). .



This bound only works for two 0-steps. For more than two 0-steps, the width must be even
shorter. For some combinations (e.g., {[0,u — v], [0, —u], [0, u + v]}), there is no allowable width

that includes all steps

2.1.1 Examples

Example 3 (Close (American) Football Games). Consider trying to enumerate the number of
American football games in which the teams are never separated by more than 1 score. On a
given playl] it is possible for one team to score 2,3,6,7, or 8 points. It is also possible for one
team to score 6 points and the opposing team to score 1 or 2 points, though these are pretty rare
occurrences. What if we want to enumerate the number of games with n scoring plays that end

separated by no more than 1 score? We can use the step set

S=1[1,2],[1,3],[1,6],[1,7],(1,8],[1,5],(1,4],
[1,~2],[1,-3], [1, ~6], [1, 7], [1, ~8], [1, 5], [1, ~4]}.

Each step represents 1 scoring play and how many points the home team gained relative to the
away team. Since the maximum scoring play is 8 points, we make the bounds y = —8, 8. The g.f.
is then found with BoundedScoringPaths(S,8,-8,t):

14 10t + 1312 — 3713 — 40t* + 281° + 2610 — 247
1 — 4t — 5912 — 7783 + 17044 + 23445 — 9216 — 14247 — 418 + 649~

This sequence is new in the OEIS:|A301379 [OEIDb].
Example 4 (Speed Enumeration - Bounded 1). Consider finding the first 1000 coefficients of the
g.f. found in Example Bl above. We could use brute-force recursion in BoundedScoringPath-

sNumber or take a taylor series expansion since we have an explicit form for the g.f. from

BoundedScoringPaths.
Table 1: Bounded Walk Enumeration
Method Memory Used | Memory Allocation | CPU Time | Real Time
Brute-Force Recursion 60.23MiB 24MiB 309.53ms | 308.90ms
G.E. Construction 3.27MiB 0 bytes 30.17ms 33.50ms
Taylor Enumeration 4.86MiB 0 bytes 4.93ms 5.07ms
Total 8.13MiB 0 bytes 35.10ms 38.57ms

5 Assuming that one can get to the edges of the boundary. (1 + v) + (—u) + (4 — v) + (—u) = 0: a loop.
6Counting untimed downs as part of the previous play.
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Using the g.f. method of enumeration is about 8 times as fast and uses a much smaller

amount of memory: (1/8th).

2.2 Returning to the x-axis

The above equations are for g.f.s of walks that are able to end ANYWHERE. What if we want a
g.f. for walks that must end back at the x-axis? Ayyer and Zeilberger solved the bounded bridge
case (but not the bounded free walk case) using different relations but the same general method
[AZO08]; they also use the equivalent problem of walks between parallel lines of positive slope

instead of between horizontal lines.

Let f,, now denote the g.f. for walks that begin at (0,0) and end on the x-axis. Again,
we either never get moving, +1, or we take a step and then must take a path back to the x-axis.
Let e, }, - denote the g.f. for paths that start at (0, c), end on the x-axis and never touch the x-axis

beforehand. Now that ¢, j . is introduced, we can write the relation for f, ;:

fa,b =1+ Z t* fa,h + Z txea,b,y fa,b' (2.1)

(x,0)eS (xy)€eS;y#0
There is also the possibility of just moving along the x-axis to start. After returning to the x-axis,
we can now take any walk as before. Hence the multiplication by f, ;. We now need the equations
for e, for a > ¢ > b. If any step would return to the x-axis, then we are done. Otherwise, it
must continue as a new e, j, path.
Cape= 3y, '+ Y teq b ety
(x,—c)eS (xy)eSy#—c

We now have a set of linear equations to solve for the e, .. To produce all of the equations and
variables, use EqualBoundedScoringPathsEqsVars. Once the ¢, } . system is solved, Eqn. (2.1) is
linear in f,, so we (or rather a computer) will find a rational g.f. solution! Use EqualBounded-
ScoringPaths for the single solution. To verify the result, one can check using the enumeration
in EqualBoundedScoringPathsNumber. The irreducible g.f.s can be checked with Specificlrre-
ducibleBoundedScoringPathsNumber.

2.2.1 Old-Time Basketball

The methods of relating generating functions were inspired by Ayyer and Zeilberger’s work

[AZ07]. They found the following relation.



Theorem 5. Let F, denote the generating function for the number of walks subject to step set S =

{[3,1], [}, —1],[1,2], [1, 2]}, that start at (0,0), end at (n,0), and never go below the x-axis or above

the line y = w. Then Fy, satisfies the following recurrence relation:

Fo =1 — tFy 4 2tFyFy_q + 2t*FyFEyy_1Fop_

- (t3 + t4)Fwalew—2Fw—3 + tSFwalew—ZFw—Bwa&

Proposition 6. The initial conditions are given as follows:

1 1—¢
0=~ =1y 27 1T 2t 432
1— 2t + 3¢2 1—3t—5:2 23 44
By +3 F - 3t—5 +

T 1-3t—52 281+ 1—4f — 6124213

If we compute EqualBoundedScoringPaths({[1/2,1],[1/2,-1],[1,2],[1,-21},w,0,t) for w = 0, ..., 4,

then the initial conditions match. And we can verify Theorem [Blempirically for any fixed w.

2.2.2 Examples

Example 7 (Tied (American) Football Games). Consider the similar Example [3 but this time we
want the teams to be tied at the end of the game. Our step set is the same. The only difference is
in which method we use: EqualBoundedScoringPaths(S,8,-8,t):

1 — 4t — 4512 — 4313 + 98t* + 1081° — 241° — 307
1 — 4t — 5912 — 7713 + 17044 + 234145 — 9216 — 14247 — 418 + 649°

This sequence is new in the OEIS:|A301380 [OEIc].
Example 8 (Speed Enumeration - Bounded 2). Once again let us find the first 1000 coefficients of

a g.f.: this time the one found in Example [/]above.

Table 2: Bounded Bridge Enumeration 1000 terms

Method Memory Used | Memory Allocation | CPU Time | Real Time
Brute-Force Recursion 55.98MiB 24MiB 278.93ms | 279.03ms
G.E. Construction 10.13MiB 8MiB 102.43ms | 103.20ms
Taylor Enumeration 4.85MiB 0 bytes 5.20ms 5.10ms
______ Totl | 1498MiB |  8MiB | 107.63ms | 108.30ms |

Again, the g.f. method is faster: this time, about 2.5 times as fast and 1/4th the memory.

10
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3 Semi-bounded

We now remove the restriction of bounding walks from aboveH Ayyer and Zeilberger also pro-
vided relations for describing excursions that are similar to those included here [AZ08]. Duchon
had previously tackled the case of excursions using much different language, but the same overall

method [Duc00].

Let S denote the set of steps as in the previous section. Let f now denote the g.f. for
nonnegative excursions with step set S that begin at (0,0) and end on the x-axis. How will we

describe f in an equation? We could try to use the same method as Section [2.2land write

f=1+ Y | f+ Y Fe | f.

(x,00e8 (x,y)€S;y#0

where ey is the g.f. for walks that start at (0,y), end at (1,0) and never hit the x-axis beforehand.
However, to describe e, as in Section 2.2 (by looking at the first step) would require writing equa-
tions for all ¢;( since a walk could get arbitrarily far from the x-axis before returning!q At some
point, all of the e; equations would look essentially the same and it may be possible to take limits

of their form to find a solution for e,. However, there is an easier method.

Ayyer and Zeilberger [AZ07] used a standard idea in combinatorics of “irreducible” walks
to describe Fy in Section 2.2.11 We will use them as well. Let f, , denote the g.f. for nonnegative
walks that start at (0,4) and end at (n,b). Note that foo = f is what we are typically looking
for. Let g, denote the g.f. for walks that start at (0,a), end at (n,b), and stay above the line
y = min(a,b) except at the respective endpoint. Note then that g,, = g,-p0 (Or = gop_, if
b > a)ll Then

foo=1+[g00+ Y. | foo (3.1)
(x,0)eS
Either the walk is stationary (+1) or it returns to the x-axis (80,0 + L (x,0)es t*) and then continues
as if it were new (multiplication by fo ).

go,o = Z 2 txlfylfllfyzfltxz. (32)

(x1,y1)€Sy1>0 (x2,y2) €S5y2<0

7To look at walks solely bounded above, simply change the sign of the y-value of every step. Or note that every

nonnegative excursion is in bijection with a nonpositive excursion by reversing the order of steps.
8We could instead look at the final step, but that is essentially the method described in the next paragraph.
°In this definition, goo does not include stationary walks or walks that are solely a step directly to the right. If this is

what one desires, then use g = goo + 1 + (2(.1‘,0)65 t").
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An irreducible (0,0)-walk can be characterized by how it departs from the x-axis (#*1) and how it
returns (¢*2). There must be an intermediate walk between these two steps (fy, -1,—,-1) that does

not touch the x-axis: hence the shift. Now we need to describe each new f, .

b

a>b  fop =Y &a—iofop—ir (3.3)
i=0
b1

a=>b faa = Z Sa—iofop—i + foo (3.4)
i=0
a—1

a<b  fop=Y_ 8a-iofop—i+ f0,080b—a- (3.5)
i=0

We can characterize a walk by how close it gets to the x-axis. An f,}, walk can go i levels below
the level of y = min(a,b). In this case, we have an irreducible walk down to the lowest point
(8a—i0), and then an arbitrary walk to the final level that does not go any lower (fy;_;). If a = b,
then a walk that does not go below level y = a is equivalent to fy. If 2 < b, then a walk that does
not go below level y = a consists of an arbitrary walk back to the same level without going lower
(fo,0), followed by an irreducible walk to the final level of y = b (¢ 5—,). Now we must describe

the irreducible walks that have not been covered.

0= Y. fai,-yt’ (3.6)
(x,y)€S;y<0

80,0 = Z txfy—l,a—L (37)
(x,y)€S;y>0

An irreducible walk can be characterized by how it reaches () the lowest point. The rest of the

walk is arbitrary as long as it does not hit the x-axis: again, hence the shift.

We need to show that this iterated process does eventually terminate. This can easily be
justified because the largest index of either g or f will be < max(, e s [y|: the maximum step size.
Thus, there is a finite number of g, f that we need to describe in order to have a closed system.

Use EqualSemiBoundedScoringPathsEqsVars to generate these variables and their equations.

The equations are no longer linear and so Maple’s built-in solve function does not work as
nicely. Instead, we use the Basis procedure in the Groebner package to find
Definition 9 (Minimal Polynomial). the (minimal) algebraic equation satisfied by the generating
function: p such that p(f) = 0 in terms of formal power series. We refer to p as the minimal
polynomial. When discussing the degree of the minimal polynomial, we are considering the degree

of f in p unless explicitly stated that we are considering ¢.

12



To produce this polynomial, use EqualSemiBoundedScoringPaths. To produce an “ideal”
polynomial for each g, f, use AllEqualSemiBoundedScoringPaths If you want the minimal
polynomial for only a single variable, use SpecificEqualSemiBoundedScoringPaths. The mini-
mal polynomial is typically found when the Groebner basis receives the desired variable as the
lowest order lexicographically. Occasionally the Groebner basis will not produce the minimal
polynomial, but instead a product of it and another polynomial. One can recover the minimal
polynomial by factoring the output and testing which factor satisfies p(f) = 0 in terms of formal
power series

Every function that outputs an algebraic expression has had FindProperRoot

appended to the end to properly parse the minimal polynomial.

Example 10 (Semi-bounded Example). Let S = {[0, —3],[1, —2],[2,0],[3,1]}. The g.f., F, for the
number of excursions that do not go below y = —1 and have step set S is found to satisfy, using

EqualSemiBoundedScoringPaths(S,-1,t,F),
HI8Fs | 414 (t2 - 1) F3 428 (t2 - 1)2P2 + (tz - 1)5P + (t2 - 1)4 = 0.

This is actually a fairly simple answer. If we change [0, —3] — [0, 3], then the minimal polynomial

is degree 10 in F and takes 4 lines to write.

This polynomial can then be used to discover the enumeration hidden in the coefficients
of the taylor series expansion by setting fo = 1 and then iterating fo — p(fo) + fo to find a
fixed point solution Finding the coefficients in this manner requires finding p: use EqualSemi-

BoundedScoringPathsCoefficients.

Finding the minimal polynomial can be a time-consuming process. An alternative method
is to iterate a fixed-point solution of a vector of all g, f and then pick out fj . Initialize {f;, =1}
and every other g.f. to 0 Now iterate all of the g, f into their respective equations, truncating
to the desired coefficient. Eventually we will reach a fixed-point for the vector of solutions. To do
this, use EqualSemiBoundedScoringPathsSeries. However, for most reasonable calculations of
the coefficients (< 1000 terms), finding the values via brute-force recursion (with SpecificEqual-
BoundedScoringPathsNumber) is faster than either iterating technique.

Example 11 (Speed Enumeration - Excursions). We want to obtain the number of nonnegative

10This can be slow as it requires finding a Groebner basis for every variable.
1By checking a truncated version of f. In most cases f = 1 is sufficient to see which factor works. In general, enu-

merate m terms first using the proper enumerating function and see if the corresponding polynomial is O(#"), signifying

a root.
12This glosses over why the convergence works. It becomes an issue in the unbounded case.
13Staying stationary is only valid for general walks that begin and end at the same level.

13



excursions with step set S = {[1,—-2],[1,—1],[1,0],[1,1],[1,2]}. Let F denote the corresponding
g.f,; the
HEY — P+ )PP+ H(t+2)F2 — (t+1)F+1=0. (3.8)

A truncated solution in formal power series, and the one that makes sense in terms of our prob-

lem, is
F=1+4t+3t2 + 9 + 32#* + 120> + 473t° + 1925¢” + 80343 + 34188¢° + 14778710,

We compare and contrast the amount of time and memory to enumerate the first 500 and 1000

coefficients of F in the following tables.

1. Set up the g.f. equations and then iterate a vector of solutions using EqualSemiBounded-

ScoringPathsSeries.

2. Solve for the minimal polynomial (Eqn. (3.8)) and iterate a single solution with EqualSemi-

BoundedScoringPaths.
3. Use Maple’s taylor function on the minimal polynomial

4. Use brute-force recursion and Maple’s option remember: SpecificEqualSemiBoundedScor-

ingPathsNumber.
Table 3: 500 term Excursion Enumeration
Method Memory Used Memory Allocation CPU Time Real Time
Vector Set-Up 16.58KiB 0 bytes 300us 766s
Iterating 100.04GiB 55.64MiB 4.45m 4.09m
o Totl | 100.04GiB  55.64MiB 445m  409m |
Polynomial 2.63MiB 0 bytes 19.23ms 18.63ms
Iterating 23.61GiB 20.84MiB 64.52s 58.56s
- Total | 2361GiB  2084MiB 64545 58.58s |
Polynomial 2.63MiB 0 bytes 19.23ms 18.63ms
taylor 328.97MiB 53.85MiB 3.20s 3.18s
o Toal | 33160MiB  5385MiB 3225 320s |
Brute-Force Recursion 186.60MiB 328MiB 1.569s 1.472s

14Using EqualSemiBoundedScoringPaths(S,0,t,F).
15Requires replacing F by _Z and using RootOf(p).
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Finding the polynomials takes negligible time and memory in comparison to actually enumerat-

ing the coefficients beyond the first few terms.

Table 4: 1000 term Excursion Enumeration

Method Memory Used Memory Allocation CPU Time Real Time
Vector Iterating 1.31TiB 159.26MiB 63.84m 51.86m
Single Iterating 300.84GiB 15.32MiB 14.50m 11.93m
taylor 1.82GiB 489.68MiB 12.20s 11.12s
Brute-Force Recursion 0.85GiB 508MiB 7.53s 7.13s

So using recursion is the fastest, but also must reserve the most memory. The other meth-
ods use more memory in total but can recycle much of what they used. We can best all of the

methods with another recursion that is faster and uses less memory; see Example [16l

Before implementing FindProperRoot, the Groebner basis output a degree 5 polynomial
that took over 5 times as long to iterate as the degree 4 minimal polynomial. Whether iterating a
single polynomial or the entire vector of solutions is faster depends on the degree of the minimal
polynomial and the number of variables in the closed system. And the number of terms to
enumerate. An interesting question would be to look at the time-complexity of this method
of enumeration. The vector and single polynomial iteration could potentially be optimized to
pick out coefficients from each monomial instead of expanding everything and then picking only
relatively few terms. This would help the minimal polynomial iteration much more as the vector

iteration only relies on degree 2 expressions.

3.1 Arbitrary Lower Limit

What if we want to consider walks that stay above an arbitrary lower bound y = —c as in Example
[[OP This is actually very easy. By shifting the walk to be nonnegative, we are now looking for
fe,c. Describe f; . using Eqn. (3.4). Again, iterating on all new g, f will eventually yield a closed

system since the indices are bounded by max(max, ,)es|y| —1,¢).

This shifting technique is what the Maple package utilizes when it is given a lower limit
other than 0 for semi-bounded walks. The Maple functions are always focused on obtaining g.f.s

for walks that begin at the origin: other produced g.f. are purely bonus. To obtain a g.f. that
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starts at (0,c), input a lower limit of —c, and take the g.f. that corresponds to starting at the

origin.

3.2 Meanders

What if we do not care where the walk ends, as long as it stays above y = —c? Neither Ayyer
and Zeilberger [AZ08] nor Duchon [Duc00] investigated semi-bounded free walks. In this case,
we can actually utilize the irreducible walks we have just created. Recall the irreducible g.f.s in
Egns. and (3.7).

Let k, denote the g.f. for nonnegative meanders that begin at (0, ), restricted to step set S.
Then
ko=1+|goo+ Y. t|ko+ Y.tk
(x,0)eS (x,y)eS;y>0
The walk can be stationary (+1), it can return to the x-axis (80,0 + L(x0)est") and continue as a
new meander (kg), or we take the first step (#*) and continue as a new meander that never returns
to the x-axis (k,_1). o0, the g.f. for irreducible walks that return to the x-axis, already has a

description from our previous work. We need only describe the new ki

a—1 a
ko =Y &aiko+ko = (Zgi,o + 1) ko.

i=0 i=1
The meander can drop down to any lower altitude (g,; = g,—i0) and then continue as a new me-
ander (kg), never dropping further. Or the meander will never go below y = a so it is equivalent

to a meander from the origin (ko).

And since we have already described the irreducible walks earlier, we now have a closed
system that we can use to solve for ky. To produce the entire system of equations, use Semi-
BoundedScoringPathsEqsVars. Again, we use Groebner[Basis] to find a minimal polynomial:
SemiBoundedScoringPaths. To find the minimal polynomials for AL of the variables, use
AllSemiBoundedScoringPaths, though this will likely take a while. For a specific k,, use Specific-
SemiBoundedScoringPaths. For any g, ;, f, 5, it is besl@ to use SpecificEqualSemiBoundedScor-
ingPaths.
Example 12. For comparison, we use the same step set as in Example[I0t S = {[0, —3], [1, —2],[2,0], [3,1]}.
The g.f., K, for the number of meanders that do not go below y = —1 and have step set S is found

161f they exist.
Including all of the irreducible and specific altitude walks from the previous section.
18 And necessary. Compatibility was removed for ease of use.
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to satisfy, using SemiBoundedScoringPaths(S,-1,t,K),
£19 (t2+t+1) K4 4 112 (4t6+t4+3t3+6t2+t—3) K3
1 3¢6 (2t9 o8 7 a6 425 2 B 32 1) K2
+ (4t12 8t 7H0 1140 78 37 176 165 — 6t — 213 1 4s® — 1) K

+17 =38 4t 421 — 6P + 4 + 32 -3+ 1 =0.

Sadly, the coefficients do not factor as nicely as in Example

Now that we have a method of describing the g.f. for meanders, let us compare how fast
it is for enumeration.
Example 13 (Speed Enumeration - Meanders). We use the simpler step set S = {[1, i, [1,-1],[1,0],[1,1],[1,2]}

and let K be the g.f. for the number of nonnegative meanders with step set S. Then"®
t2(5t — 1)2K* + t(5t — 1)?K3 4-3t(5t — 1)K> + (5t — 1)K +1 = 0. (3.9)
A truncated solution is

K =143t + 122 + 51 + 226t* + 1025t + 4724+° + 22022+ + 10355018,

We repeat our analysis of differing methods of enumeration from Example [I1]
1. Iterating a vector of solutions using SemiBoundedScoringPathsSeries.

2. Iterating a fixed point solution after solving for the polynomial (Eqn. (3.9)) with Semi-
BoundedScoringPaths

3. Using Maple’s taylor function on the minimal polynomial

4. Enumerating using brute-force recursion and Maple’s option remember: SpecificSemi-

BoundedScoringPathsNumber.

19Using SemiBoundedScoringPaths(S,0,t,K).
20 All of this can be accomplished with the one function SemiBoundedScoringPathsCoefficients.
2IRequires replacing K by _Z and using RootOf(p).
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Table 5: 1000 term Meander Enumeration

Method Memory Used Memory Allocation CPU Time Real Time
Vector Set-Up 21.07KiB 0 bytes 233us 233us
Vector Iterating 2.18TiB 15.29MiB 102.64m 84.48m
o Total | 218TB  1529MiB 102.64m  8448m |
Polynomial 6.37MiB 0 bytes 43.00ms 43.03ms
Single Iterating 304.99GiB 30.58MiB 13.88m 11.64m
- Total | 30500GB  3058MiB 1388m  1164m |
Polynomial 6.37MiB 0 bytes 43.00ms 43.03ms
taylor 1.85GiB 490MiB 11.33 10.62s
o Total | 1L86GB 490MiB 11375 10665 |
Brute-Force Recursion 1.08GiB 0.52GiB 7.93s 7.465s

Again, there is an even faster recursive formula. See Example 17

4 Guess-and-Check Method

Zeilberger provided a guess-and-check method and Maple package, W1D [EZ15], for finding
algebraic expressions. In the semi-bounded case where all steps have x-step 1, Phillippe Duchon
guaranteed that the results are algebraic. Thus, the guess-and-check method WILL work, eventu-
ally, if you set the search parameter high enough. For semi-bounded cases with differing x-steps
and unbounded cases, there is no guarantee that guessing will eventually work [MR09]. Though
you may get lucky and produce an algebraic equation that has the minimal polynomial as a

root.

Another advantage of this paper’s method over guess-and-check is that this method is
typically much much faster. Setting up the equations takes a set amount of time that is linear
in the maximum step size, |S|, and the lower limit. The time sink comes in finding a Groebner

basis, but this is still typically faster.

Empir will take a list of the first few coefficients of the g.f. F and attempt to find an al-

gebraic equation that F satisfies by guessing the degree and trying to solve for the coefficients.
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EmpirF will do this faste by utilizing the gfun package. Both Empir and EmpirF require enu-

merating the first few terms.

Example 14 (Excursion Time Comparison). Consider looking for an algebraic equation for the g.f.

for nonnegative excursions with step set S = {[1,-2],[1,—1],[1,0],[1,1],[1,2]}. It take

Table 6: Finding Excursion Minimal Polynomial S = {[1, -2],[1,-1],[1,0],[1,1],[1,2]}

Method | Memory Used Memory Allocation CPU Time Real Time
ESBSP 2.63MiB 0 bytes 19.23ms 18.63ms
Empir 91.61MiB 5.60MiB 734ms 735ms
EmpirF 4.33MiB 0 bytes 33.87ms 35.90ms

EqualSemiBoundedScoringPaths (ESBSP) takes about 3% of the time and memory that
Empir requires and 60% of the time and memory as EmpirF.
Example 15 (Meander Time Comparison). Now try to find an algebraic equation satisfied by the

g.f. for nonnegative meanders with step set S = {[1, —2],[1, —1],[1,0],[1,1], [1,2] }

Table 7: Finding Meander Minimal Polynomial S = {[1, -2],[1,-1],[1,0],[1,1],[1,2]}

Method | Memory Used Memory Allocation CPU Time Real Time
SBSP 6.37MiB 0 bytes 43.00ms 43.03ms
Empir 91.68MiB 5.45MiB 749ms 770ms

EmpirF 4.74MiB 0 bytes 36.53ms 38.63ms

SBSP=SemiBoundedScoringPaths.

As expected, this package is still much faster than Empir. Interestingly, EmpirF appears to
be as fast, if not a little faster. EmpirF is still handicapped in its range of applications and so the

slight speed-up is sacrificed for versatility.

In fact, adding [1, 3] to the step set already makes EmpirF fail for the preset search bound.
The minimal polynomial has degree and order 10 in that case: easily found by SemiBounded-

ScoringPaths in 1/4s.

22 Almost always.
23The actual minimal polynomial is shown in Example [T}
24The minimal polynomial is shown in Example T3]
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The other bonus is that this paper’s method allows for any size x-step. W2D could poten-

tially be used to solve this problem once it has been restricted to look for the coefficient of x" - 0.

However, this would make the already slow guessing method even slower.

5 Algebraic to Recursive

5.1 Conversion

There is a classical method for deducing from the algebraic function satisfying the g.f. a linear
recurrence with polynomial coefficients satisfied by the coefficients of the g.f. in question. See

Chapter 6 of “The Concrete Tetrahedron” by Kauers and Paule [KP11].

The method is implemented in the Maple package gfun [SZ94] and also in Zeilberger’s
Maple package SCHUTZENBERGER, that is used here. The SCHUTZENBERGER package also
contains EmpirF for obtaining the minimal polynomial, but we now have a much better method
of producing the minimal polynomial. To convert an algebraic formula to a recurrence formula,
use algtorec. Let B(n) denote the number of walks of length n.

Interestingly, sometimes a larger (non-minimal) polynomial produces a better (lower-order) re-

currence.

Example 16 (Better Excursion Recursiori. Let S = {[1,-2],[1,-1],[1,0],[1,1],[1,2]}. Let F de-

note the g.f. for nonnegative excursions{s Then its coefficients satisfy

0=3125(n+1)(n+2)(n+3)(n+4)B(n)
—250(n+4)(n+3)(n+2)(27n+122)B(n+1)
+25(n +4)(n + 3)(107n* + 14571 + 4316)B(n + 2)
+10(n + 4) (304n> + 323312 4 98641 + 6513) B(n + 3)
— (2821n* 4- 5679413 4- 42577112 + 1407974n — 1731540)B(n + 4)
+2(n +7)(413n° 4 69861n° 4 393561 + 73830)B(1 + 5)
— (n+8)(n+7)(99n* + 1241n + 3900)B(n + 6)
+2(2n+15)(n+9)(n+8)(n+7)B(n+7). (5.1)

2The minimal polynomial is given in Example [T}
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The following are the time and memory requirements for various stages of enumerating. We
need to create the minimal polynomial with EqualSemiBoundedScoringPaths, convert it to an
improved recursive formula, Eqn. (5.1)), for the coefficients of F with algtorec, and then enumerate

with SeqFromRec.

Table 8: Enumerating Excursions More Efficiently

Method Memory Used Memory Allocation CPU Time Real Time
ESBSP 2.63MiB 0 bytes 19.23ms 18.63ms
algtorec 35.84MiB 3.12MiB 267.93ms  262.40ms
SeqFromRec 123.05MiB 24MiB 375.27ms  375.37ms
ol | 161.52MiB 27.12MiB ¢ 66243ms  656.40ms |

ESBSP=EqualSemiBoundedScoringPaths

As expected, this streamlined recurrence is much faster and less memory-intensive than
the basic recurrence in Example[I1l There is an up-front cost for creating the improved recurrence,

but if the goal is to enumerate enough terms, it can be worth it. In this case, enough is less than

500.

Before FindProperRoot was implemented to automatically parse the minimal polynomial,

we converted a larger polynomial into a sixth-order recurrence in about 2.4 seconds.

Example 17 (Better Meander Recursion). Let S = {[1,-2],[1,—1],[1,0],[1,1],[1,2]} and K denote

the g.f. for nonnegative meanders. The coefficients now satisfy

0=625(n+1)(n+2)(n+3)(n+4)B(n)
—250(5n421)(n+4)(n+3)(n+2)B(n+1)
+50(n +4) (n 4 3)(7n* + 951 + 270) B(n + 2)

+20(n +4)(32n° 4 367n> 4 13651 + 1620) B(n + 3)

— (n 4 5)(4631° + 6691n? 4 324421 + 52704)B(n + 4)
+2(n+5)(n+6)(53n% + 5931 + 1674) B(n + 5)
—4(n+5)(2n+13)(n+7)(n+6)B(n+6).

Oddly it is a lower order recurrence despite the slightly higher complexity of describing mean-

ders. The following are the time and memory requirements for various stages of enumerating.

26The minimal polynomial is given in Example I3
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Table 9: Enumerating Meanders More Efficiently

Method Memory Used Memory Allocation CPU Time Real Time
SBSP 6.37MiB 0 bytes 43.00ms 43.03ms
algtorec 110.77MiB 29.39MiB 659.73ms  633.10ms
SeqFromRec 89.58MiB 4MiB 284.57ms  257.23ms
. Total | 20672MiB 3339MiB 987.30ms  933.36ms |

SBSP=SemiBoundedScoringPaths

This improved recurrence is about 8 times as fast as the basic recurrence in Example[13] It

is not quite as much of a savings as the case of excursions, but it is still extremely good.

5.2 Searching

There is an alternative to converting the minimal polynomial into a linear recurrence. Since
we know that this will be possible, we could simply guess at the form of the recurrence and
use a suitable number of starting values to determine the coefficients. Findrec will accomplish
this guessing method. The problem is that we do not know an upper bound for the order and
degree. Setting the bound extremely high (or searching until a recurrence is found) would suffice.
However, this is not ideal.

Example 18. Let S = {[1, 2], [1, —3]}. The minimal polynomial is given later in Section Let
B(n) denote the number of nonnegative excursions of length 5. B(n) was found to satisfy a 4!
order, degree 11 recurrence relation using Findrec and a 7! order, degree 9 recurrence relation
using algtorec Both relation@ are fairly large and so are not included here We compare

and contrast the methods in the table below.

Table 10: Alternative Recurrence Step Set {[1,2],[1, 3]}

Method | Degree Order Memory Used Allocated CPU Time Real Time

algtorec 9 7 165.84GiB 2.46GiB 46.99h 12.06h
Findrec 11 4 0.50GiB 388.01MiB 4.47s 4.31s
272 trials.

2The Findrec recurrence matches with Andrew Lohr’s calculation as expected since they are computing the same

result.
PThey are available at math.rutgers.edu/~bte14/Articles/ScoringPaths/23Recurrence.txt.
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Simply guessing at the form appears to be the MUCH better choice here.
Example 19. Let S = {[1,-2],[1,—1],[1,0],[1,1],[1,2]}. See Example [Tl for the minimal polyno-

mial. Let B(n) denote the number of nonnegative excursions of length n. Then
0=2n+4)2n+11)(n+7)(n+6)B(n+5)
— (n+6) (43n° 45970 + 2738n + 4142) B(n + 4)
+ (124n4 + 211013 + 1330512 4 368151 + 37686) B(n+3)
—5(n+3) (2n® — 2207 — 3051 — 726) B(n +2)
—25(n+3) (n+2) (81 +72n+159) B(n +1)
+125(n+5)(n+3)(n+2)(n+1)B(n).
This was found with Findrec while algtorec found
0=22n+15)(n+9)(n+8) (n+7)B(n+7)
— (n+8) (n+7) (99112 +1241n + 3900) B(n+6)
+2 (n+7) (41307 + 6986n> + 393561 + 73830 ) B(n + 5)
- (2821n4 + 5679413 + 42577112 + 1407974n + 1731540) B(n +4)
+10 (n+4) (304n3 +3233n2 4 98641 + 6513) B(n+3)
425 (n+4) (n+3) (1o7n2 + 14570 + 4316) B(n+2)
—250(n+4) (n+3) (n+2)(27n+122) B(n + 1)
+3125(n+1) (n+2) (n+3) (n+4) B(n).

The comparison in methods is given below.

Table 11: Alternative Recurrence Step Set {[1, —2],[1,—1],[1,0],[1,1],[1,2]}

Method | Degree Order Memory Used Allocated CPU Time Real Time
algtorec 4 7 38.32MiB 42.61MiB  355.60ms  354.44ms
Findrec 4 5 62.38MiB 28.00MiB  618.07ms  630.87ms

Conversion is actually more efficient, though not ideal, in this case. Though the difference

is not as extreme as that shown in Table

With smaller step sizes, conversion appears to be “better”. This is likely due to the inten-

sive task of converting higher degree polynomials, while guessing avoids that hurdle. For small
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enough examples, guessing is a larger search space than conversion.

Because of the way Findrec is programmed, it is guaranteed that a found recurrence has
order less than or equal to that of algtorec. Depending on the goal when enumerating, lower

degree (save computation) or lower order (save memory) is optimal.

One can use algotrec’s order and degree as a proper bound for use in Findrec. But instead
of directly converting the minimal polynomial, it may be possible to find a bound on the order
and degree of a recurrence based on the degrees of the g.f. and ¢ in the minimal polynomial. We
may also be able to derive an upper bound based on the number of variables in the closed system

we created.

I was unable to prove any useful bounds, and these examples are evidence against bound-
ing the order and degree directly by the degrees of the g.f. and ¢. All three examples have minimal
polynomials with smaller degree (and total degree) than the order of the found recurrences. In
fact, we know that the sum of the degree and order of any recurrence has to be greater than the

total degree of the minimal polynomial in these cases since we searched everything lower.

The first example showed that Findrec can be an EXTREME improvement over algtorec
and the second example showed when algtorec can just edge out Findrec. The following example
demonstrates that algtorec can be the significantly better choice.

Example 20. Let S = {[1,-1],[3,—1],[1,0],[3,0],[2,1],[1,2],(2,2]}. The minimal polynomial,
letting K denote the g.f. of meanders with step set S, is

T+ (84562 +4f — 1)K + (4t +3) (283 + 22 + 3t — 1)K> + +(t + 1) (28> + 22 + 3t — 1) K°.

The recurrences found by conversions and searching are much too large to include here. For their
information, see

math.rutgers.edu/~btel4/Articles/ScoringPaths/RecurrenceOutputFile.
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Table 12: Alternative Recurrence Step Set {[1, —1],[3, —1],[1,0],[3,0],[2,1],[1,2],[2,2]}

Method Degree Order Memory Used Allocated CPU Time Real Time
Polynomial 2.55MiB 24.00MiB  20.80ms 24.50ms
algtorec 3 31 73.92MiB 11.39MiB  491.03ms  475.13ms
C Total | 7647MiB  3539MiB  51183ms  499.63ms |
161 terms 24.11MiB 0 bytes 190.00ms  193.00ms
Findrec 5 15 2.46GiB 504MiB 23.30s 21.20s
 Total | 248GiB  504MiB 23495 2139 |

Conversion is surprisingly 43 times faster and has roughly 1/32"% of the memory require-

ments!

We chose to enumerate 161 terms of the sequence because that was sufficient, once we
knew the degree and order of the converted recurrence, to guarantee Findrec would encounter a
solution. Typically, we do not use both Findrec and algtorec; we should simply find a set large
bound of numbers. But enumerating was a small portion of Findrec’s time so it does not matter

too much to this example.

We have used meanders instead of excursions for our 3" example, but they are similar
enough to compare. The important facets of the problem are the degree of the minimal polyno-

mial and the number of steps.

It would appear that increasing the number of steps does not affect the runtime of algtorec
as much as the runtime of Findrec. The runtime of algtorec is highly dependent on the degree
of the minimal polynomial The degree of the minimal polynomial is generally correlated with
the number of variables in the system, though not necessarily equal or bounded one way or the
other. Example [T has 7 variables in the closed system and a minimal polynomial of degree only
4. Section [8.3] shows that a step set of {[1,3],[1, —5]} for nonnegative excursions yields a closed

system with 18 variables yet the minimal polynomial has degree 56!

The most important aspects of the step set to algtorec runtime are then the maximum and

minimum®] y-steps since these dictate how many other walks we must consider.

Findrec is much weaker with larger step sets. Inherently, the recurrences will become more

30The degree of ¢ is much less relevant.
3Most negative.
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complicated, which means Findrec must consider many more terms in its guesses. The worst case
(most number of terms to address) will occur when the order and degree of our search are the

same.

Since algtorec works better with minimal polynomials of lower degree, and finding the
minimal polynomial is generally very fast (see Example[13), I have chosen to have programs such
as PaperSemiBounded and BookEqualSemiBounded use Findrec when the minimal polynomial
has degree > 8 and algtorec otherwise. The cutoff was arbitrarily chosen based on a few random

examples. A rigorous cutoff would be useful for more widespread implementation.

6 Unbounded

We remove the lower bound in this section and transition from analyzing excursions to analyzing
bridges. I was unable to find any current literature that analyzes the unbounded case with
generating functions; thus, I am led to believe that this section is novel work. Again, all walks

are assumed to be constructed from a step set S.

6.1 Walking “Anywhere”

Enumerating walks that go anywhere can be a trivial task. First off, the y-values do not matter
except for describing multiple steps with the same x-step. If all of the steps have x-value m > 0,
then the number of walks of length m - n is simply |S|". If we have steps with varying x-values,
then the problem becomes finding combinations of the x-values that sum to n. In general, the g f.

will be
1

This g.f. is produced by UnBoundedScoringPaths. The terms are generated by (using Taylor
series) UnBoundedScoringPathsCoefficients or (via recursion) UnBoundedScoringPathsNum-
ber. Using Maple’s taylor series expansion is typically faster, but both are extremely quick at

enumerating the first 1000 terms

32By utilizing Maple’s option remember in the recursive case.
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6.2 Returning to the x-axis

A lot of the work we have done in the semi-bounded case will prove useful here. We cannot use
the exact same method as in semi-bounded Section[3l Suppose we tried describing a walk with a
negative change in altitude. The first and last steps could both be positive. Then we would need

to describe a walk that has a larger negative change in altitude. And so on.

We try a slightly different method. Let G denote the g.f. for walks with step set S that
begin at (0,0) and end on the x-axis: a bridge. We choose to introduce another g.f., which we
denote h;, for the number of walks from (0,7) to (n,0) that do not touch the x-axis beforehand,
with the exception of hg starting on the x—axis Recall the definitions of g,, and f, ;. The first
equation is similar to fo:

G=1+|ho+ ) |G
(x,0)eS
A walk can be stationary, or it returns to the x-axis after some number of steps, at which point it
can take another G-walk.
y-1

y—1
ho =200+ ), Y g0ty + Y Y g0ty
(vy)eSy<—2 i=1 (x,y)ES;y>2i=1

An hp-walk can be purely positive (g90) or purely negative (go,o) Note that walks below the
x-axis are in bijection with walks above the x-axis by reversing the order of steps We can
then use g9, = gs0 and f_, _ = fp,. Itis also possible for the h-walk to cross the x-axis
without touching it. This would involve an irreducible walk (gp;), a step across the x-axis (t*),
and another walk (h;,) to return to the x-axis. The previous sentence described crossing the
x-axis from above to below. We could instead cross from below to above. This would consist of
an irreducible walk (g0, = §,-i,0), a step across the x-axis (t), and another walk (%;) to return

to the x-axis.

We already have equations to describe the irreducible walks. We now need to describe the

311y does NOT include stationary walks nor walks that are steps directly to the right. For that, one will want to use

h=hy+1+ E(X,O)GS .
34This is also partially why irreducible walks do not include steps to the right. If g did, then I would have to write

ho = 2800 — L(x0)es t*, which is less elegant.
35Equivalent to rotating the walk 180°.
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other h-walks.
—y-1

i>0  hi=gjo+ ) Y ficvic1thisy,
(xy)eSy<-2 i=1

y—1
j<O0  hi=go-j+ Y, ) fy-ici-jt'hi
(xy)eSy=2i=1

An hjo-walk can either be a walk “directly” to the x-axis (gj,) or it consists of an arbitrary walk
that does not touch the x-axis (f;_1,i-1), followed by a step across (t), and another walk (h; ) to
return to the x-axis. Similarly an h;g-walk can either be a walk “directly” to the x-axis (g0 =
§o0,—j) or it consists of an arbitrary walk that does not touch the x-axis (fj11,i—y+1 = fy—i-1,-j-1),

followed by a step across (t*), and another walk (k;) to return to the x-axis.

A brief lapse in concentration allowed me to write the alternative (and much simpler)

relation:

hy = 2g0,0 + 2 txhy.
(xy)E€S;y#0

The reason for shunning this “simpler” description is that the h, may be irreducible walks di-

rectly back to the x-axis, and thus double-count a walk from gg o.

The system of equations will be closed since the index of h;-walks is bounded by max, ,yes [y| —
1. All of the equations and variables are produced in EqualUnBoundedScoringPathsEqsVars.
Again, we use the Basis procedure in the Groebner package to find a polynomial p such that
p(G) = 0 in terms of formal power series. To produce this polynomial, use EqualUnBounded-

ScoringPaths. To produce the minimal polynomial for /;, use SpecificUnBoundedScoringPaths.

We can try to produce the coefficients of the taylor series using the iteration Gy — p(Gp) +
Go. However, because of convergence issues, this will typically not work. It is also potentially
not ideal because it requires finding a Groebner basis, which can be time-consuming. However,
iterating a vector of solutions a la the semi-bounded Section [3] does work. To check these values,
use SpecificUnBoundedScoringPathsNumber to verify G and SpecificIrreducibleUnBounded-
ScoringPathsNumber to verify /;.
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6.3 Alternative Method

There is an alternative method for enumerating unbounded walks in the specific case that all
of the steps have x-step 1 [AZ90]. The functions themselves are taken from the Maple package
EKHAD by Zeilberger. I will start with an example.

Example 21. Consider the function G(t,n) = (t~2+t~1+t+1?)". This represents a possible
step set of S = {[1,-2],[1,—1],[1,1],[1,2]}. A specific monomial in the expansion of G(t,n)
comes from all the ways of picking a power of f from each term; this is equivalent to picking

which step to take and in which order.
1. G(t,0) = 1. There is only 1 walk: the stationary walk.

2. G(t,1) = t72 4+t +t + 12, There are 4 possible steps each leading to a different final
altitude.

3. G(t,2) = 74+ 2t73 + 72+ 2671 + 4+ 2t + #2 + 23 + t*. There are 4 ways to return to the

x-axis after 2 steps.

G(t,n) enumerates all the ways to change altitude by c in the coefficient of the t© monomial.
n
In general, for a step set S, let G(t,n) = (Z( ry)est! ) . The procedure AZd(A,t,n,N) from

package EKHAD will give a recurrence for the (contour around 0) integral of A (with respect to
t) under hypergeometric assumptions, i.e., AZd returns the residue. And if we represent A as a
power series, that means we extract the t~1 term. So to find a recurrence for the number of walks
that return to the x-axis, we will use A = G(t,n)/t.
Example 22. The input AZd((t 2+t 1+t + tz)n,t,n,N) yields as output:

18(2n+1)(5n+8)(n+1) + (n+ 1)(35n* +91n + 54)N — 2(n +2)(2n + 3) (51 + 3) N>,

This translates as, if we let B(n) denote the number of walks that return to the x-axis after n steps,

18(2n+1)(5n+8)(n +1)B(n) + (n +1)(35n* + 91n + 54)B(n + 1)
—2(n+2)(2n+3)(5n+3)B(n+2) = 0. (6.1)

We can find a recursion for any change in altitude, not just bridges. If we are interested in

walks that change in elevation by ¢, then we should use A = G(t, 1)/ttt

29



6.4 Selected Step Sets

The following examples are all produced by the one call:

EqualUnBoundedScoringPaths(S,t,G).
Example 23 (Old-Time Basketball). We will follow up the previous example by using this paper’s
g.f. method of dynamical programming with the same step set. Let S = {[1, -2],[1, —1],[1,1],[1,2]}.
Let G denote the g.f. for the number of unbounded bridges subject to step set S. Then G satisfies

(9t +4) (4t —1)2G* —2(3t — 2) (4t — 1)G*> +t = 0.
And the coefficients satisfy (using algtorec)

108(n + 1)(2n + 1)B(n) + (781> + 2461 4 216)B(n + 1)
—(n+2)(17n—9)B(n+2) —2(n+3)(2n+5)B(n+3) = 0.

Interestingly, we have obtained a different recurrence than what was found with the AZd method:
Eqn. (6.I). Both recurrences are correct. Typically, AZd will produce a lower order recurrence but

with higher degree polynomial coefficients.

The simple alteration of the step set to S’ = {[2,—2],[1,—1],[1,1],[2,2]} makes the alter-
native method in Section ineffectual. However, the method presented in this paper is not
bothered in the slightest. Let G’ denote the g.f. for the number of unbounded bridges subject to
step set S’. Then G’ satisfies

(822 +5) (4t 8 + 1)2 G +2 (42 —3) (4 ~824+1) G2 +1=0.
Now we only have the option of conversion or guessing to find a recurrence for the coefficients
of G'. Using algtorec took only 69ms and produced:
32(n+43)(n +2)B(n) +4(51% + 1101 + 356) B(n 4 2) — 8(15n> + 160n + 439) B(n-+4)
—(59n +438)(n+6)B(n+6)+10(n+8)(n+6)B(n+8) = 0.

The reason to have x-step as all 1s versus having x-step equal to y-step is that the choice changes
what G counts. If all x-steps are 1, G will count the number of ways to be tied after n total baskets.
If x-step equals |y|-step, then G’ counts the number of ways to be tied at a score of 5 to 5. Note
that this interpretation means G’ has coefficient 0 for all odd powers of t; teams cannot be tied
after an odd number of points have been scored. We could make the substitution t — +/t in G’

and then G’ would count the number of ways to be tied at a score of n — n.
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Example 24 (Current Basketball). Let S = {[1, 3], [1,-2],[1, 1], [1,1],[1,2],[1,3]}. Let G denote
the g.f. for the number of unbounded bridges subject to step set S. Then G satisfies
2
(8t2 — 68t — 27) (6t —1)* (2t +1)*G?

+4 (68 + 10t — 9) (8 — 68t - 27) (6t — 1)° (2t +1)° G°

+2 (9120t4 + 374413 — 126412 — 212t + 135) (6t —1)* (2t +1)*G*

+4 (1216t4 + 83263 + 412 — 46t + 7) (6t —1) (2t +1) G2

2

+ (162 +8t 1) = 0.

EqualUnBoundedScoringPaths(S,t,G) originally gave a much larger polynomial that G satisfies.

After FindProperRoot was added to parse the output, the smaller polynomial above was the

result. The coefficients satisfy (using algtorec)

36864 (n+1) (n+2) (n+3)B(n)
—3072 (n+3) (n+2)(97n+142) B(n+ 1)
— 64 (n+3) (4031n2 +17601n + 19504) B(n+2)

(
(

+4 (467n3 + 701112 + 35842n + 62490) B(n+5)

(
— 16 (1684n° + 13491n° + 311781 + 15240) B(n+3)

424 (663n> + 7222n* + 286281 + 41563) B(n+4)

—2(n+6) (115n2 +1080 + 2273) B(n +6)

—3(3n420) (3n+19) (n+7) B(n+7) = 0.
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or, using AZd,
96 (n+1) (n+2) (n+3) (2058n3 +20335n2 + 668571 + 73300) B(n)
~8(n+2)(n+3) (201684n4 4 22953567°
+ 954005512 + 169983807 -+ 10742400) B(n+1)
—4 (n+3) (310758n5 +4313617n* + 236114697°
+ 6371259812 + 848045081 + 44608800> B(n+2)
—2(n+3) (4116On5 +591920n* + 33612811°

+ 945384712 + 132622921 + 7512000) B(n + 3)

43 (3n+11) (3n+10) (n +4) (2058n3 +14161n% + 323611 + 24720) B(n+4)=0.

Let 8" = {[3,-3],2,—-2],[1,-1],(1,1],(2,2],[3,3]}. Let G’ denote the g.f. for the number
of unbounded bridges subject to step set S’. Then G’ satisfies

(108t — 99¢* — 526 — 44)2 (410 + 4t 822 1)4 G’
+4 (3610 +29¢* 242~ 20) (1081° — 99" — 5267 — 44 (41° 4 414 4- 812 - 1)3 G’
+2 (2160112 4 4248110 + 43475 + 9921° — 16t — 118412 1976 ) (416 + 4t + 8 - 1)2 G
+4 (112612 4288110 + 665¢° + 412° + 552t — 112> 196 ) (416 + 44 + 812 1) G2
+ (4043t + 1202 +4)2 =0.
Again, EqualUnBoundedScoringPaths(S’,t,G’) originally gave a more complicated polynomial
before FindProperRoot was added. We cannot use AZd for this case. However, we can still

obtain a recurrence using algtorec. The conversion only took about 13 seconds but produced a

recurrence of order 66 and degree 3 and as such is not included here.

6.5 Time Comparison

To reiterate the benefits of this paper and Maple package over guessing for the polynomial, the

following examples illustrate the time savings.
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Example 25 (Finding a Polynomial). Let S = {[1,—-2],[1,—1],[1,0],[1,1]}. Let G be the g.f. for
bridges subject to step set S. Then

(16t° + 8t + 11t —4)G*> + (3 —2t)G +1 = 0.
This takes

Table 13: Finding Minimal Polynomial S = {[1,-2],[1,—1],[1,0],[1,1]}

Method | Memory Used Memory Allocation CPU Time Real Time
EUSP 2.10MiB 0 bytes 18.27ms 21.53ms
Empir 34.94MiB 0.73MiB 294.93ms  295.63ms

EmpirF 1.44MiB 0 bytes 14.27ms 16.23ms

In this case, EmpirF appears to be (25%) faster than EqualUnBoundedScoringPaths (EUSP)
but the time is so small the difference is likely to go unnoticed. The next example shows why the
ScoringPaths package is superior to using EmpirF.

Example 26 (Finding a Polynomial 2). Let S = {[1,-2],[1,-1],[1,0],[1,1],[1,2]}. Let G be the
g.f. for bridges subject to step set S. Then

(5t +4)(5t —1)2(t —1)2G* + 2(t — 1) (5t — 2)(5t — 1)G* + t = 0.
This takes

Table 14: Finding Minimal Polynomial S = {[1,-2],[1,-1],[1,0],[1,1],[1,2]}

Method | Memory Used Memory Allocation Change CPU Time Real Time
EUSP 7.70MiB 0 bytes 58.33ms 61.43ms
Empir 377.91MiB 31.29MiB 2.89s 2.75s

EmpirF Failed

EmpirF happened to fail for this S while EqualUnBoundedScoringPaths (EUSP) only
tripled in time and memory usage. The only difference between this example and Example [25is

the second step with positive y-value.

Eventually guessing should work, but we have no way of knowing what the upper bound
of search space is before blindly investigating. Expressing the g.f. equations is a set amount
of time that is guaranteed to produce the solution. The time complexity to find the minimal

polynomial with Groebner bases is an interesting question we leave to the reader.
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We have many different ways to enumerate the number of bridges with step set S. We will
compare their speed and memory usage here.
Example 27 (Speed Enumeration - Unbounded). As with most previous examples, we use the
benchmark step set S = {[1,-2],[1,—-1],[1,0],[1,1],[1,2]}. The following are time and memory
requirements for enumerating 1000 terms of the sequence of bridges with step set S. The different

methods are

1. Iterating the single polynomial found with EqualUnBoundedScoringPaths does not work

due to convergence issues beyond the scope of this paper.

2. taylor cannot be used. It gives the error: “does not have series solution”. taylor tends to

work only if the minimal polynomial contains a G! term. See Example
3. Iterating a vector solution with EqualUnBoundedScoringPathsSeries.
4. Brute force recursion using SpecificUnBoundedScoringPathsNumber.
5. Converting minimal polynomial to recurrence:
(a) Obtain the polynomial with EqualUnBoundedScoringPaths.
(b) Convert to recurrence with algtorec. The coefficients satisfy
0=125(n+1)(n+2)B(n) —25(n+2)(n—1)B(n+1)
—5(21n* + 891 + 96)B(n +2) + (n* — 43n — 140)B(n + 3)
+2(n+4)(n+7)B(n+4).

(c) Enumerate using SeqFromRec.

6. Using AZd and then enumerating with SeqFromRec.

0=253n+8)(n+2)(n+1)B(n)—50B8n+5)(2n+5)(n+2)B(n+1)
— (3n +8)(19n* + 761 + 75)B(n +2) +2(3n +5)(2n +5) (n + 3)B(n + 3).
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Table 15: 1000 term Unbounded Enumeration

Method Memory Used Memory Allocation CPU Time Real Time
Vector Set-Up 20.47KiB 0 bytes 200us 200us
Vector Iterating 2.79TiB 30.54MiB 2.27h 110.54m
Polynomial 7.76MiB 0 bytes 59.40ms 63.03ms
Conversion 5.97MiB 8KiB 49.03ms 51.97ms
Enumeration 20.64MiB 2.16MiB 84.87ms 81.50ms
______ Total | 3437MiB  217MiB  19330ms 19650ms |
Azd 2.45MiB 0 bytes 25.77ms 30.53ms
SeqFromRec 19.34MiB 3.59MiB 74.40ms 74.43ms
______ Total | 2179MiB  359MiB  10017ms 10496ms |
Brute-Force Recursion 1.41GiB 4.29MiB 12.69s 11.91s

The alternate method is the fastest in this case. It is about half of the time as converting, but the
actual enumeration after the preliminary set-up is very similar; the memory usage is similarly
low. However, AZd is only appropriate for specific cases with constant x-step. The key take-away
is that enumerating by combining ScoringPaths and algtorec is much faster and leaner than

brute-force recursion and applicable in a wide-range of cases.

If we change the step set back to S = {[1, —2],[1, —1],[1,0], [1,1]}, then we can use taylor
on the minimal polynomial, as well as iterating the single solution (after an appropriate change
of iteration). The difference is that Example 25 had a G! term in its minimal polynomial while
Example 26] did not. This allows one to write G as copies of itself, which is what the iterative

method is effectively accomplishing.

7 Asymptotics

For determining asymptotic behavior, I avoided analyzing the bounded cases as those resulted
in explicit rational solutions, which can already be handled very easily. The asymptotic behavior
of unbounded general walks is simply finding the number of combinations of x-steps to yield a

length of #; the actual walk altitude does not matter.
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For semi-bounded and unbounded cases, once we have recurrences for the coefficients, we
can derive asymptotic expressions. Because of the nature of these quantities, the number of walks
of length n will always follow b" for some base b [FS09]. Wimp and Zeilberger [WZ85] created a
method for automatically determining asymptotics for a linear recurrence, including the constant
of the leading term! Their package AsyRec provides Asy, which attempts to determine the ex-
ponential power with which a recurrence grows. AsyC, along with suitable starting values, will

also give the correct constant.

One task we can use this for is finding what proportion of walks are nonnegative. Let
S={[1/2,-1],[1/2,1] } Let F denote the g.f. for nonnegative excursions, and B(#) denote the

number of nonnegative excursions of length n. The

0=1-—F+tF?

0= (4n+2)B(n) - (n+2)B(n+1),
(9 M5 1155 36939 295911
Vrn3/2 Sn ' 128n  1024n3 ' 32768n*  262144n5’

Because the minimal polynomial is simple, we could use the Lagrange Inversion Formula to

B(n) ~

compute exact values of B(n) But for most step sets with |S| > 2, this will not work, so the
LIF is not considered here. Let G denote the g.f. for bridges and C(n) the number of bridges of
length n. The

0=1+ (4t —1)G?

0=4n+2)C(n)— (n+1)C(n+1),
NL.<_l+ 1 n 5 21 39 )
Vy/n 8n  128n%  1024n3  32768n*  262144n°
Then the proportion of binary bridges that are Dyck paths is asymptotically

B(n) 1

Cn) ~n

C(n)

1

This matches with the known exact proportion of ;1.

The above example was not exactly revolutionary, but the method allows for “quick” anal-

ysis of walks with any step set.

36x-step is 1/2 so that excursions and bridges do not all have even length, producing a bunch of extraneous Os.
37 All of this can be produced by the one command EqualSemiBoundedPaper(S,20,true, true).

38This is what Duchon used for several simple cases [Duc00].

This can be produced by UnBoundedPaper(S,20,true,true).
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Dyck paths have been studied quite extensively. The typical result is for walks with step
set {[1,0],]0,1]} from (0,0) to (n,n) that stay below the line y = x. This is equivalent to
enumerating nonnegative excursions with step set {[1,—1],[1,1]}. Changing the slope of the
upper bound to rational § is equivalent to using a step set {[1, —a],[1,b]}; this is called Ra-
tional Catalan Combinatorics. For a general conversion from walks below a line with slope
m, reflect the walk across the line through the origin with slope %. This produces an equiva-
lent nonnegative walk in the right hand plane. Andrew Lohr studied the field of paths below

rational slope with the goal of obtaining asymptotic constants [LZ17]. For his results, go to

http://sites.math.rutgers.edu/~ajl213/DrZ/RSP.pdf.

Lohr states a result by Duchon in 2000 [Duc00] that for any slope £, the number of paths

(a+b)n
an

below a line of that slope is asymptotically © (%( )) Are we able to say anything about
step sets of size > 2? Intuition would say the growth rate should be larger, but how much

larger?

First we need to tackle the scenario if we have steps with x-step 0. Recall we can only have
steps directly up OR down. The maximum number of up-steps we could have in an excursion or

bridge of length 7 is
—min{%: (x,y) € S,x # 0}
min{y : (0,y) € S}

Replace the mins with maxs for down-steps@ We can only take so many steps in one direction

before we have to start returning in order to make it to the x-axis before length n. Let ¢ denote

the fraction above (c = 0 for step sets without vertical steps). The “worst case” scenari is that

n—+cn

the remaining steps all have x-step 1. Then we have ("7

) ways to place the vertical steps. Let
S denote the size of S with the 0-steps removed. Then the number of walks is upper bounded

(usually very poorly) by

(n(1n+6)> S \/E[S(lJrC)(lJrl/c)c}”.

So the number of every type of walk is O (%) for some b The bound may seem to contradict

the Dyck path example, but remember that we cut the steps in half to avoid extraneous 0s. A

good goal would be to improve this bound to something more meaningful.

“0We technically do not need the x # 0 since we assumed there were no steps directly down.
41Largest number of walks.
“Which matches with the earlier mentioned asymptotic.
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Example 28. Let S = {[1, —1],[1,0],[1,2]}. Then, assuming F, B, G, C are as before,

0=1+(t—1)F+3F3,
0=31(n+1)(n+2)B(n)—6(2n+5)(n+2)B(n+1)

+2(6n + 361 +53)B(n+2) —2(2n+9)(n+3)B(n +3),

2.889881575" (1 ~ 1.7475722  2.6532889 n 4.0131981>

B(n) ~ 0.8001188640- ~— . e e

and

0=1-3(t—1)G+ (3113 — 12> +- 12t — 4)G?,
0=381(n+1)(n+2)C(n) —6(n+2)2n+3)C(n+1)

+2(6n% 4 24n +23)C(n +2) — 2(n +3)(2n +3)C(n + 3),
2.889881575" 0.24757219  0.03549572  0.046925761
" (1~ — + :
Vn n n? n3

The exponential bound is simply |S|" = 3": fairly close to the actual asymptotic base. And the

C(n) ~ 0.3488331868 -

proportion of excursions to bridges is

B(n)  2.293700526

1

also just a constant times .
Finding the asymptotic behavior does not work in every case, e.g., meanders with step set

{[0,-1],[1,-1],[2,-1],[2,0],[2,1]}. If the asymptotic does not match with empirical data, then

AsyC will notify the user of this.

Is the ratio of nonnegative excursions to bridges always some constant times %? The following

example is more experimental evidence for this conjecture.

Example 29. Let S = {[1,-2],[3,0],(0,1],[2,1],[2,—2]} and F, B, G, C as before. Then

0=14 (t—1)(P+t+1)F+t(1+1) (> +1)2F,
4 7.898354145"
15 13/2 ’

0=1-3(t—1)(2+t+1)G+ (4° +15t° + 271> + 54t* 4 661> + 271> 4 27t — 4)G5,
15v/3 7.898354145"
58 N )

The actual recurrences obtained from conversion (algtorec) are not listed here due to size. They

B(n) ~

C(n)

are degree 2 order 18 and degree 2 order 16, respectively. The base of the exponential is exactly
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the same for B and C; they are the same root of the same polynomial And once again,

B(n) 232V3 1

~

C(n) ~ ~675

N

To compute the ratio for any step set, use the shorthand RatioOfWalks(S).

We can also try to reason the ratio heuristically. Suppose we start with an excursion, E. We
can reorder the steps cyclically (or in any order) and still have a bridge. Consider the set of such
walks; there are size of E such walks. The reason for reordering cyclically would be to maintain
the “unique” excursion in the set, while the rest are bridges. Actually, E is only unique if it was

an irreducible excursion but potentially there is not much overlap.

Similarly, from a bridge B we could reorder the steps cyclically and we must obtain at least
1 excursion: starting from the step after the minimum altitude of B. We actually have the same

number of excursions in this cyclic set as points of minimum altitude.

We have a relation between excursions and bridges that appears to be roughly linear. Some
issues may be that an excursion of length 7 does not necessarily have size n. We still have a linear
relationship between the two bounded by max{x, (x,y) € S}. And even steps with x-step 0
do not mess this up too horribly because we are considering excursions and bridges; the walk
returns to the x-axis so can only go so far away before it must start returning since the return rate
Z is finite (we do not have steps directly up AND down). This again leads to a linear number of

x-step 0 allowed steps.

7.1 Discriminant

Another interesting result from analyzing asymptotic behavior is what the base of the exponent
appears to be. For all three of our examples, the base can be found by taking the reciprocal of the

smallest modulus of the roots of the coefficient of the leading term in the minimal polynomial of

#The polynomial in question is 4x° — 27x8 — 27x7 — 66x° — 54x% — 27x* — 15x% — 4 and the root has index=1 in Maple

notation.
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the bridges g.f., i.e.,

(min{|z| : 4z —1=0})"" =4,

3

-1
(min{\z| 13123 — 1222 + 12z — 4 = 0}) = 573

+1~2.89,

-1
(min{ 2|+ 42° + 1525 + 2725 + 5424 + 662° + 2722 + 272 — 4 = 0}) = 7.90.

This is the first estimate of the asymptotics from the inverse of the radius of convergence. Actually,
the polynomial whose root modulus we need can be taken to be the discriminant of the minimal

polynomial, which in the step sets given is the same for excursions and bridges.

In general, one method that appears to find the base b for the exponential asymptotic

behavior is
1. Find the discriminant of the minimal polynomial.
2. Take the smallest positive real root.

3. Take the reciprocal of that root.

This will miss the possible sub-exponential factors of n~3/2

, etc. The shorthand for this computa-
tion is implemented as AsymptoticBase. A more detailed analysis of singularities and the asso-

ciated asymptotics is available in Analytic Combinatorics by Flajolet and Sedgewick [FS09].

7.2 Meanders

We have yet to analyze the asymptotic behavior of meanders. Let K denote the g.f. and D(n)
the number of nonnegative meanders of length n. For the case of Dyck paths with a step set of

{[1,1],[1, —1]} (since we can have odd length walks now), meanders satisfy

14 (2t —1)K+ (2t —1)K® =0,

4(n+1)D(n)+2D(n+1) — (n+3)D(n+2) =0,
0.797
TV

D(n) 2",

This says there are roughly 2.283 nonnegative meanders for each bridge of the same length. All
of the asymptotic behavior in this section was found using the conversion to recurrence and ex-

tracting the asymptotics from there.
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It turns out that meanders can follow very different asymptotic behavior depending on the
step set.
Example 30. For S = {[1,-1],[1,0],[1,2]},

0=1+ (4t — 1)K +3t(3t — 1)K2 + £(3t — 1)2K5,
0=93(n+1)(n+2)(n+3)D(n)—2(80n+293)(n+3)(n+2)D(n+1)

+ (n 4 3) (11512 4 793n + 1318) D(n + 2)

— 4(18n> + 2101 + 8201 4 1071) D (n + 3)

+4(n44)(7n* + 651 +152)D(n +4) — 2(n +5)(n +4)(2n +11)D(n +5),

D(n) ~ 3%63".

The base of the exponent happens to match the inverse of the smallest modulus of the roots of

the discriminant of the minimal polynomial.

So meanders can, by virtue of their endpoint flexibility, greatly outnumber excursions and

bridges.

Finally, meanders do not always follow |S|". Let S = {[1, —1],[1,0],[1,1], [2,2]}. Then

0=1+ (3t2 43t — 1)K+ (3t 4+ 1) (+> + 3t — 1)K + 2(t* + 3t — 1)?K5,

n
D(n) ~ 0.307 <3+T ”13> ~ 0.307 - 3.303".

1" order and 3" degree so is not included here@ It was produced in

The recurrence found was 1
less than one second using algtorec. And S = {[1,-2], (2, —1],[1,0], [1,2],[2,1]}, yields relations

of

0=1+ (2> +3t — 1)K + t(t +2)(2t* + 3t — 1)K?
+ (262 + 3t — 1)2K3 + (28> + 3t — 1)22K4,

D) 7V2 <3+\/ﬁ> 07615

~ 2 -3.562".
13y/n 2 Vn

The recurrence for this step set was 25 order and of 4" degree.

44The 0.307 is actually a root of 169x* — 1014x> + 507x% — 78x + 4. Maple’s identify command was used on experimental
data.
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The behavior of meanders appears to be a lot harder to peg down than the anticipated %
for bridges and % for excursions. Though it appears that meanders are always at least as large

as bridges asymptotically.

8 Applications

8.1 Combining Solutions

After obtaining all of these g.f.s, we can produce much more. Sports are always a subject of
interest for a good portion of the population. Sports statistics are an integral part of many a fan
base. So a question of interest beyond the number of ways to be tied, may be the number of ways
to win by at least X. The task at hand then is how to describe a walk such as that. We have spent
the majority of this paper breaking down walks into smaller components. We can now use those
components to build other types of walks. The important step is making sure that we count all

of our walks, and do not double count any walks.

Suppose we want to win by > 2 and never trail by more than 3. f35 will count walks
that drop by no more than 3, and we will have a 2 point lead at the end. Then any walk that
stays above that line (ko) will produce what we want. So does f35 - kg count what we want? Not
necessarily. f35 ensures that at some point we are exactly 2 points ahead of where we began. But
depending on the step set, we may skip over this lead and never actually hit the altitude 2 steps
higher than our beginning. In addition, f35 may finish with a step up and then down, while kg
could start that way; effectively tracing the same walk in “different” ways. Thus, f35 - kg double

counts some walks and misses others.

There is at least one way, though not as elegant, of describing these walks. Let L de-
note the g.f. of interest. Then L = k3 — f30 — f31 — f32 — f33 — f34. We count all meanders
that never drop more than 3 points, and then remove those that change in altitude by exactly

-3,-2,-1,0,1.
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Example 31. Let S = {[0,—1],[1,0],[1,1],[1,2]}. Then L satisfies
0= t(3t12 — 6311 + 555110 — 2673¢° + 767118 — 13371+
4 13745t° — 7554t 4+ 1615¢* + 17913 — 138¢% 4 21t — 1>
+ (9t14 — 216t13 + 2286112 — 13986111 4 5455810 — 141402¢° + 24668715
— 28827017 +221709t% — 109548° + 33981* — 6448> + 715t — 42t + 1> L
— 33 (3t7 — 3615 + 153t% — 261#* + 126£> + 5012 — 26t + 2) L% +9¢°L3,
and has truncated expansion

L =t + 21#2 + 305 + 4064t* + 52431t + 666657t°

+ 8420130¢” + 1060702293 + 1335635352¢° + 1683221245210,

The minimal polynomial was derived by finding a Groebner basis. We had to describe all of
{k3, f30, 31, f3.2, 33, f34} as well, which included a chain of describing further walks. But those

methods are already set and have been shown to be closed.

8.2 Weighted Walks

One extension that would be fairly easy to implement is adding a weight to each step; [x, y] has
an associated weight w. Then, for example, we would writ

fa,b =1+ Z w- txfa—y,b—y'
(x,yw)eS

Simply multiply by the weight whenever we take a certain step. Now we can accomplish more
with the weights in place. If } , , 4)esw = 1 (and all x = 1), then w represents the probability
of taking a specific step. And then f,} is the g.f. for the probability that a given walk of length
n maintains altitude a > y > b. If we want to know the probability of a bounded walk being a
bounded bridge, use weights to describe f, , the g.f. for probability of a general walk being a
bounded bridge, and divide its coefficients by the appropriate coefficient of f,,, the probability

of a general walk being bounded. This is an explicit description of using Pr[A|B] = PrIEf[g]B}. If all

of the weights are the same, then simply enumerate each one to get the probabilities; it is much

easier.

45Taken from general walks in Bounded Section 2]
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Example 32. Let us try finding the probability of a general walk with step set S = {[1,2,1/3],[1,—1,1/6],[1,—-2,1/2]}
being bounded above by y = 3 and below by y = —2. Then the g.f. is explicitly

3888 + 3888t — 75612 — 97213 — 124 — ¢°
11664 — 77762 — 43243 + 12964 + t6 /

which has taylor expansion

it 368+ 108" T3t Tasss! 132t 30002 419904 1259712

17, 49 5 77, 811 5 53 , 3407 , 26483 4 58247 t9+o(t10).

We need the steps to all have the same x-value, otherwise we aren’t representing the prob-
ability that a given walk of length n has some property. We would somehow be combining the
probability that a walk has length n and the probability that it satisfies our desired property(ies)

in a way I cannot currently describe.

8.3 2-step Examples

With all of the tools at our disposal, let’s now use them to produce more information about many

sequences.

8.3.1 Bridges with S = {[1,1],[1, —k|}

It is well know that the g.f. for nonnegative excursions, denoted f, satisfies
f =1 + tk+lfk+1.

We would like to show something about bridges with this step set. The g.f. for the firstk =0, ...,7

step sets have minimal polynomials

(t—1)G+1,

(42 —1)G*+1,

(273 — 4)G® +3G +1,

(256t — 27)G* + 118G +8G + 1,

(3125t° — 256)G° + 160G> + 80G? + 15G + 1,

(46656t° — 3125)G® + 1875G* 4- 1000G> + 225G + 24G + 1,

(823543t — 46656) G’ + 27216G> + 15120G* 4 3780G> + 504G? + 35G + 1.

46Try proving it for yourself. Or prove it for any finite k with this package.
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The general form appears to have leading term ([(k + 1)t]**1 — k¥)G¥*1. The G! term is fairly
easy to see have coefficient (k + 1)(k — 1). The G? term, after some manipulations, has coeffi-
cients that follow % (k+1)(k —2). The computer could only obtain up to k = 9 before memory
requirements became too large (> 3GB allocated). From that limited data, I found that the G3
term has coefficient that follows k—; (k+1)(k—1)(k—3). Does this generalize? And if so, how?

These results are not groundbreaking as we can already enumerate the number of bridges
of length (a + b)n with step set {[1, 4], [1, —b]} with the simple ((”Zf )"). They do allow a different

view of the walks by considering how they can be built from copies of themselves.

8.3.2 Duchon Numbers

The Duchon number@ are one of the cases that Lohr analyzed for asymptotic behavior [LZ17].
We can derive more information for the g.f., which we will denote f, of the Duchon numbers.
The sequence is defined as the number of paths of length 57 from (0,0) to the line y = 2x/3 with
unit North and East steps that stay below the line or touch it. It is equivalent to enumerating
excursions with step set {[1/5,2],[1/5, —3]}. To find the minimal polynomial for its g.f., all we
have to do is type EqualSemiBoundedScoringPaths(S,0,t,f) and hit return.

0=1—f+2tf5 —tfo 4 tf7 + 1210,

We can also produce the minimal polynomial for the related g.f. of irreducible walks (those that

only touch at the endpoints). We almost accomplish this with the call SpecificEqualSemiBoundedScoringPaths(S,0,t,1
But to match OEIS |A293946 [OEId|], we must allow the stationary walk. Simply substitute

¢[0,0] = g — 1 and we are done.

0=g'" —19¢° + 162¢% — 816g” + 2688¢° — (2t + 6048) ¢° + (19t + 9408) g*
— (73t +9984) ¢° + (142t + 6912) g* — (140t 4 2816) g + > + 56t + 512.

8.3.3 Excursions with S = {[1,2],[1, —k|}

We have some information for this family in the Duchon numbers: k = 3. But what do they look

like in general? We will assume gcd(2,k) = 1 otherwise we could reduce the steps for an equiv-

47QFEIS [A060941] [OFTal.
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alent problem. The first few g.f. have minimal polynomial (we have made the transformation

t — t1/ (%K) for ease of reading)

A001764: k=1 fPt—f+1,
A060941: k=3 O 4 7t — for 2/t — f+1,
A300386: k=5 FHB p2f16p2 1542 4 31442
+ e — O 2% 28 4 37— f 4+ 1,
A300387: k=7 O 1321 — 2813 L af?73 1 32242 2 f242 4 6202

_ 3f19t2 + 6f18t2 +f15t _ f14t + 2f13t _ qut
+3f1t —3f10 paft — f 41,
A300388: k=9 O apiort — pt L5 1 6 355643 1 12353

. 4f34t3 + 10f33t3 + 4f28t2 . 3f27t2 + 9f26t2 . 6f25t2
+ 12f24t2 _ 6f23t2 T 10f22t2 +f19f _ flst +2f17t
—2f10t 30— 31+ 4B — 4+ 5 — f 1,

A300389: k=11 F7B0 4 571 — 905 1 65 4 10£°01* — 41t + 204
— 53 L1592 11091 — 644413 42418313 — 127428
+30fH —10£90F + 2078 + 5734 — 4P 11224
— 92 + 1808 — 1271 + 202 — 107+
+ 15f26t2 —|—f23t _fzzt + 2f21t . 2f20t + 3f19t . 3f18t
+4f 7t —aflor 45t — 54+ 6t — f+ 1.

The degree is simply 3 (k + 1) (k +2). If one looks closer they may recognize that the degrees then
decrease at a consistent rate. The degree drops by k and then by 1 twice to create a “group” of 3
terms. The degree then drops again by k — 2 and then by 1 to create a group of 5 terms. It can be
seen that each polynomial follows this 1,3,5,7, ... pattern, with the power of  decreasing by 1 in

each successive group. There is always a —f + 1 included.

We have empirically shown the general form of the minimal polynomial, but were unable

to describe what the coefficients themselves are.

A001764 [OEIe] and A060941 [OEIa] are sequences currently in the OEIS. A300386 [OEIf],
A300387 [OEIg], |/A300388| [OEIh], and /A300389 [OEIi] are new and have been recently submitted

and accepted.
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8.3.4 Excursions with S = {[1,3],[1, —k|}

Let us push our computers further. What does this family look like? We cannot derive a lot
of information empirically as the {[1,3], [1, —5]} case already takes 28 seconds to run. The case
k = 7 ran for over one day and had used 3GiB of allocated memory before it was terminated.

Again, we made the transformation t — t1/3+k) for compact reading.

A002293: k=1  f*—f+1,
A060941: k=2  fOP 4+ Tt — fry2ft— f41,
A300390: k—4 f35t5 . f31t4 JrJe)otzl . f29t4 Jr5f28t4 —f25t3 Jrf24te, +3f23t3
o 4f22t3 T 10f21t3 —|—f19t2 o f18t2 + 5f17t2 —|—3f16t2 o 6f15t2
+ 1042 4 B — 24 3f 0% 4+ Pt —afSt 4 5f7t— f 41,
A300391: k=5 fOF =20 4 00— fB40 L 786 4 f16p5 _ 55 300
4 5f42t5 _ 6f41t5 4 21f40t5 _ 3f37t4 _ 3f36t4 + 8f35t4 + 10f34t4
. 15f33t4 i 35f32t4 . 2f31t3 + 2f30t3 . 9f28t3 + 22f27t3
+ 10f26t3 o 20f25t3 T 35f24t3 T 3f22t2 + 5f21t2 o 9f20t2
+ 182 + 5182 — 151742 4 f16 (21t + 1) t — f1o1 + 313

— 312 4514 f10 6t 4 7f8 — f 4 1.

A002293 [OEIj] and |A060941 [OEIa| are already in the OEIS while /A300390 [OEIK] and |/A300391
[OEIl] are new. There appears to be some pattern again in the degree of f, though it is not
discernible at first with so few datum. The degree happens to follow (*1¥).

Conjecture 33. Let S = {[1,4], [1, —b]} with gcd(a,b) = 1. Let f denote the g.f. for excursions (or

LH—b)'

meanders or bridges) with step set S. Then the minimal polynomial of f has degree (]

The above conjecture is supported by all of the examples in this Section 8.3 as well as
several other quick tests of accuracy. Though what does this mean in terms of deconstructing a
walk with step set S§?

This is somewhat intuitive for the unbounded case since there are (”Zb) ways to have a
bridge of smallest length: 4 +b. And we have provided ample evidence that the asymptotic

behavior is only off by & for these excursions.
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9 Conclusion and Future Work

To analyze walks, we began by examining the first step (Bounded Section ), the last step

(Semi-bounded Section [3), and finally a middle step that crosses the x-axis (Unbounded Section
[6).

The way we dissected the g.f. equations is not unique. You could describe them in slightly
different ways that may be more optimal. However, the minimal polynomial is called that for a
reason; there is no “better” way to describe the g.f. except for an exact solution in special cases.
It is important to make sure you do not double count or miss any walks in your descriptions.

Define your various types of walks in a very particular manner.

For bounded cases we produced the new OEIS sequences /A301379 [OEIb] and [A301380
[OEId] as well as /A301381 [OEIm] and A300998 [OEIn], which are not included in this thesis,
though they were produced in conjunction. Enumerating some semi-bounded and unbounded
examples may be much faster by actually solving the polynomial for the g.f. in cases where

deg(p) < 4 or p has “nice” roots.

One interesting note that appears in the semi-bounded case is that, no matter what we have
chosen as our step set, the minimal polynomial has had terms —F + 1. This seems to indicate that
there is always a way to write semi-bounded excursions and meanders as some combination (and
deductions) of copies of ONLY ITSELF. Though it may be that the self-description is extremely
complicated seemingly without (but it must be there) any combinatorial interpretation: see Ex-
ample[I0] We cannot necessarily do that with unbounded cases because there is not always a —F

term.

Another trick we can use the minimal polynomial for is a bijective proof. All of the walks
counted by terms with positive coefficients are also equally counted by those terms with negative
coefficients. The trouble with this is that the two sides are very artificial and rarely something of

interest by themselves.

In Section [7] we tried looking at the asymptotics of excursions and bridges. One note that
came up was the relationship between the number of excursions and bridges. It is known that the

number of Dyck paths is %H of the total number of bridges. With a different looking step set, we
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still obtained a 5, asymptotic relationship (for a constant c). Is this always the case? We provided
some heuristics and examples in support of the relationship but no found definitive proof. The

relationship to meanders of the same step set appears to be much harder to state exactly.

A little further in Section 8.3] we examined many 2-step cases. I contributed the new se-
quences A300386 [OEIf], A300387 [OEIg], A300388 [OEIh], A300389 [OEIil], /A300390 [OEIK], and
A300391 [OEIL] to the OEIS. These are equivalent to walks that stay below certain lines of rational
slope. A further question: how does one translate walks with general step sets bounded by lines
into bridges, excursions, or meanders? What about bounded by something other than straight

lines?

An extension that would be fairly easy, though laborious to implement, would be general-

izing from 2D walks to 3D walks. Or to n-dimensional walks.

Beyond simply enumerating walks, we might want to know more about them: how many
peaks or valleys do they contain? what is the area beneath the curve? how many times does
the walk hit its maximal/minimal altitude? We can try to answer these questions by adding
in a catalytic variable to count this new measurement. The generating function relations are
very similar, but the g.f.s themselves are now functions of 2 (or more) variables. This can lead to
systems that are not closed (under current descriptions). However, the system can still be iterated

to enumerate terms.

Ayyer and Zeilberger analyzed how many times a bounded bridge or excursion hits its
boundaries [AZ0§] in the bounded and semi-bounded cases. The extension to measuring the
area under the curve has been started. The bounded case still yields explicit solutions but the
semi-bounded and unbounded cases are now left as a system of equations rather than a minimal

polynomial.

Thank you for reading this paper. I hope you have enjoyed it and can make use of this

package.
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