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THE GEOMETRY OF SOME FIBONACCI IDENTITIES IN THE HOSOYA
TRIANGLE

RIGOBERTO FL �OREZ, ROBINSON A. HIGUITA, AND ANTARA MUKHERJEE

Abstract. In this paper we explore some Fibonacci identities that are i nterpreted geometrically
in the Hosoya triangle. Speci�cally we explore a generalization of the Cassini and Catalan identities
from a geometric point of view. We also extend some properties present in the Pascal triangle to
the Hosoya triangle.

1. Introduction

In 1976 Hosoya [5] introduced his triangle, then called the Fibonacci triangle. It is a triangular
array where the entries are products of Fibonacci numbers. Later Koshy [7] changed the name
of this triangle from the Fibonacci triangle to the Hosoya tr iangle. Since then several geometric
properties of the Hosoya triangle have already been discovered and published. See for example
articles by Fl�orez et al., Hosoya, and Koshy, [2,3,5,7].

Some properties of Fibonacci numbers that were known algebraically, now have a geometric
interpretation. The classical proofs of most well-known identities that we study here are based on
mathematical induction, however in this paper, we provide geometrical proofs of those identities
using the properties of the Hosoya triangle (with some inductive steps in certain cases), therefore
making the proofs more visual. The tools here can be extendedto prove other classic identities.
In addition, we extend some properties that are well-known in the Pascal triangle to the Hosoya
triangle (see the book by Green and Hamburg [4]). The hockey stick property is one of the well-
known properties that we successfully extend to the Hosoya triangle. The T-stick property in Pascal
triangle gives rise to a triangular property here. This is due to the de�nition of the Hosoya triangle.

The Hosoya triangle is a great tool to represent Fibonacci identities geometrically. In this paper
we also study some other geometric properties that the Hosoya triangle has. For example we give
a geometric proof of the Cassini, Catalan, and Johnson identities.

We have found that if a rectangle is given in a Hosoya triangle, then the di�erences of two of its
corners is equal to the di�erence of the remaining corners. This fundamental property allows us to
have geometrical proofs of several identities.

The symmetry present in the Hosoya triangle helps us exploreseveral patterns, and many iden-
tities. The rectangle property gives rise to other geometrical con�gurations and therefore, more
identities associated with those con�gurations.

2. The Hosoya triangle and its coordinate system

The construction presented in this section can be found in articles by Fl�orez et al. and Hosoya
[2, 5]. A similar construction is also present in a book by Koshy [7]. The Hosoya sequence
f H (r; k )gr;k � 0 is de�ned using the double recursion

H (r; k ) = H (r � 1; k) + H (r � 2; k) and H (r; k ) = H (r � 1; k � 1) + H (r � 2; k � 2)

with initial conditions H (0; 0) = 0; H (1; 0) = 0; H (1; 1) = 0; H (2; 1) = 1 ; where r > 1 and
0 � k � r � 1. This sequence gives rise to theHosoya triangle, where the entry in position k (taken
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H (0; 0)
H (1; 0) H (1; 1)

H (2; 0) H (2; 1) H (2; 2)
H (3; 0) H (3; 1) H (3; 2) H (3; 3)

H (4; 0) H (4; 1) H (4; 2) H (4; 3) H (4; 4)
H (5; 0) H (5; 1) H (5; 2) H (5; 3) H (5; 4) H (5; 5)

H (6; 0) H (6; 1) H (6; 2) H (6; 3) H (6; 4) H (6; 5) H (6; 6)
Table 1. Hosoya triangle H .

from left to right) of the r th row is equal to H (r; k ) (see Tables1 and 7, and Sloane [8] at A058071).
For simplicity in this paper we use H to denote the Hosoya triangle.

Proposition 1 ( [5,7]). H (r; k ) = FkFr � k .

Proposition 1 gives rise to another coordinate system (see also Fl�orezet al., [2, 3]). If P is a
point in H , then it is clear that there are two unique positive integers r and k such that P =
H (r; k ) with k � r . From H (r; k ) = FkFr � k it is easy to see that annth diagonal in H is the
collection of all Fibonacci numbers multiplied by Fn (x). For example, from Table 1 we can see
that the diagonal H (3; 0), H (4; 1), H (5; 2), H (6; 3), H (7; 4), H (8; 5); : : : is equal to the diagonal
0; 2; 2; 4; 6; 10; 16; 26; 42; : : : in Table 7 which results from multiplying the Fibonacci sequences by
F3 = 2.

3. Geometric properties in the Hosoya triangle

A parallel con�guration of points in the Hosoya triangle is called a ladder con�guration , for
simplicity we are going to refer to this as a ladder. Arung is the set of points on a line intersecting
both parallel con�gurations of the ladder. See Figures1(a), 2, 6, and 12. The length of rung is the
di�erence of its end points. The absolute lengthof a rung is the absolute value of its length.

In this section we use the ladder con�guration to explore geometric and algebraic properties
in the Hosoya triangle. The properties here in this paper canbe easily extended to the Hosoya
polynomial triangle (see Fl�orez et al. [1]).

We �rst prove a lemma that will be helpful in proving several r esults in this paper.
If L is a horizontal ladder in H where its rungs have exactly two points, then a rung sum is a

Fibonacci number and it is the same for every rung.

Lemma 2. In H , for every k; j � 0 and j + i + 1 � k it holds that

Fj Fk� j + Fj +1 Fk� j +1 = Fj + i Fk� j � i + Fj + i +1 Fk� j � i +1 = Fk+1 ;

or equivalently, H (k; j ) + H (k + 2 ; j + 1) = H (k; j + i ) + H (k + 2 ; j + i + 1) = Fk+1 :

Proof. First, we take two consecutive rungs ofL forming a square (see Figure1(a)). Observe that
each diagonal (slash and backslash) of this square has threepoints {two corner points and one
inner point{. Those two diagonals intersect in the inner point p. From the recursive de�nition of
the entries of H and the point p, it is easy to see that the di�erence of the two corner points ofthe
backslash diagonal of the square is equal to the di�erence of the corner points of the slash diagonal
of the square. This implies that sum of the points in any two consecutive rungs have the same
value. Using an inductive argument we can extend the result for any two arbitrary rungs. Since
this is true for any rung of L , it is true for the �rst rung on the left where one of the two poi nts is
zero and the other is the Fibonacci numberFk+1 = H (k + 2 ; 1). �

An alternate (technical) proof can be found using the recursive de�nition of the Hosoya triangle
and �rst proving that H (r; k ) + H (r + 2 ; k + 1) = H (r; k + 1) + H (r + 2 ; k + 2).

All horizontal rung in a vertical ladder in H have the same length except by the order of their
measure (see Figures1(b) and 2). This result is formally stated as Proposition 3.

2

http://oeis.org/A058071


H(k,j) H(k,j+i )H(k+2,j+1) H(k+2,j+i+1 )

H(k,j+i )H(k,j)

H(k+2r,j+r ) H(k+2r,j+i+r )

 2
r R

ow
s

i columns

Figure 1. Rectangle property and the rung sum of a ladder.

Proposition 3 (Rectangle Property). In H it holds that

Fj Fk� j � Fj + i Fk� j � i = ( � 1)r +1 (Fj + r Fk+ r � j � Fj + i + r Fk+ r � j � i ) = ( � 1)r +1 Fi Fk� 2j � i ;

or equivalently,

H (k; j ) � H (k; j + i ) = ( � 1)r +1 (H (k + 2 r; j + r ) � H (k + 2 r; j + i + r )) = ( � 1)r +1 H (k � 2j; i ):

Proof. From Figure 2 and Lemma 2 we can observe that

ja0 � b0j = ja1 � b1j = ja2 � b2j = � � � = jai � bi j:

From Figure 2 we can see that, in particular, if we takea0 = 0, then b0 = H (k � 2j; i ). �

ak

Figure 2. Every rung in any vertical ladder in H have the same length.

The following result provides several identities in the Hosoya triangle. In particular it shows that
the alternating sum of the points in a horizontal rung of a vertical ladder and the sum of the points
in the vertical rungs of horizontal ladder is a constant provided that the rung has even number of
points in each case. We also see that the absolute length of each rung in a horizontal ladder is the
same if there are odd number of points in the rungs. Finally, if the ladders are oblique (see Figure
6), then the absolute length of each rung is the absolute length of the �rst rung multiplied by a
Fibonacci number and the sum of the points in the oblique rungs equals the sum of the points in
the second rung multiplied by a Fibonacci number.

We may also use Proposition1 to give an algebraic reinterpretation of the results mentioned
above in terms of Fibonacci numbers.

Theorem 4. In the Hosoya triangle H these hold,
3



(1) If r; k > 0, j � 0 and 0 < 2n � 1 � k for some n, then
�
�
�
�
�

2n� 1X

t=0

(� 1)t H (k; j + t)

�
�
�
�
�

=

�
�
�
�
�

2n� 1X

t=0

(� 1)i H (k + 2r; j + t + r )

�
�
�
�
�
:

Equivalently,
�
�
�
P 2n� 1

t=0 (� 1)t Fj + tFk� j � t

�
�
� =

�
�
�
P 2n� 1

t=0 (� 1)i Fj + r + tFk+ r � j � t

�
�
� :

(2) If m; k > 0, j � 0 and 0 < 2n � 1 � k for some n, then

2n� 1X

t=0

H (k + 2 t; j + t) =
2n� 1X

t=0

H (k + 2 t; j + m + t):

Equivalently,
P 2n� 1

t=0 Fj + tFk+ t� j =
P 2n� 1

t=0 Fj + m+ t Fk+ t� j � m :
(3) If i a positive odd number, then

H (k + 2 i; j + i ) � H (k; j ) = H (k + 2 i; j + n + i ) � H (k; j + n) = H (k + 2 i; i );

Equivalently, det
�

Fj + i Fj
Fk� j Fk+ i � j

�
= det

�
Fj + n+ i Fj + n
Fk� j � n Fk+ i � j � n

�
= det

�
Fi 0
0 Fk+ i

�
:

(4) If r; k , and j are positive integers withr � j , then

H (r + k; j ) � H (r; j ) = Fj (H (r + k � j + 1 ; 1) � H (r � j + 1 ; 1)):

Equivalently, det
�

Fj Fr � j
Fr + k� j Fj

�
= Fj (Fr + k� j � Fr � j ) :

(5) If i; j , and k are positive integers, then
mX

i =0

H (k + i; j + i ) = Fk� j

mX

i =0

H (j + i + 1 ; 1):

Proof. We prove part (1) for two consecutive rungs. The general casefollows easily using an
inductive argument, so we omit it. From Figure 3 and Lemma 2 we have

c0 + d0 = c1 � d1 = c2 � d2 = � � � = c2n� 1 � d2n� 1:

This implies that j
P 2n� 1

i =0 (� 1)i ci j = j
P 2i � 1

i =0 (� 1)i di j.

ak

Figure 3. The alternating sum of the points in a rung is the same.
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Proof of part (2). From Figure 4 and Lemma 2 we have

c0 + c1 = d0 � d1; c2 � c3 = d2 � d3; : : : c2i � 2 � c2i � 1 = d2i � 2 � d2i � 1:

This leads to the conclusion.

Figure 4. Rungs with even number of points have the same sum.

Proof of part (3). Using Figure 5 we de�ne x as the sum of all points betweenc0 and d0, including
both of them, and let y be the sum of all points betweenc1 and d1, including both of them. Note
that z1 and z2 in Figure 5 represent sets with an even number of points. Now we havea0 + x,
a1 + y, b0 + x, and b1 + y are sums of an even number of points. Therefore, by part (2) wehave

a0 + x = a1 + y and b0 + x = b1 + y:

From this it is easy to see that b0 � a0 = b1 � a1. If in particular we take a0 = H (k; 0), we have
b0 = H (k + 2 i; i ).

Figure 5. Rungs with odd number of points have the same length.

Proof of parts (4) and (5). Using the coordinate system described in Section 2 and Figure 6 we
can see that the points in the �rst right-up of the ladder are of the form FkFi whereFk is �xed and
the points in the second right-up are of the formFk+ j Fi whereFk+ j is �xed. Therefore, the points
in the r -th rungs are FkFr , Fk+1 Fr , Fk+2 Fr ; : : : , Fk+ j Fr . To prove part (4) we �rst note that the
length of any rung is given by Fk+ j Fr � FkFr = Fr (Fk+ j � Fk ) where Fk+ j � Fk is the length of
the �rst rung. The proof of part (5) follows by adding the poin ts of a rung. Thus,

FkFr + Fk+1 Fr + Fk+2 Fr + � � � + Fk+ j Fr = Fr (Fk + Fk+1 + Fk+2 � � � + Fk+ j ) :

Note that ( Fk + Fk+1 + Fk+2 � � � + Fk+ j ) is the sum of points of the second rung. �
5



Figure 6. The sum of the points of the rungs are proportionally related.

In the next part we give a geometric interpretation in the Hosoya triangle of the Cassini, Catalan,
and Johnson identities (see [6]).

1

1 1

2 1 2

3 2 2 3

5 3 4 3 5

8 5 6 6 5 8

13 8 10 9 10 8 13

21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34

55 34 42 39 40 40 39 42 34 55

89 55 68 63 65 64 65 63 68 55 89

144 89 110 102 105 104 104 105 102 110 89 144

233 144 178 165 170 168 169 168 170 165 178 144 233

377 233 288 267 275 272 273 273 272 275 267 288 233 377

610 377 466 432 445 440 442 441 442 440 445 432 466 377 610

987 610 754 699 720 712 715 714 714 715 712 720 699 754 610 987

1597 987 1220 1131 1165 1152 1157 1155 1156 1155 1157 1152 1165 1131 1220 987 1597

2584 1597 1974 1830 1885 1864 1872 1869 1870 1870 1869 1872 1864 1885 1830 1974 1597 2584

 Catalan identity

 Cassini identity

Figure 7. Geometry of the Cassini and Catalan identities.

The length of a rung in a vertical ladder in H gives rise to the Cassini identity, if one of the
uprights is located in a central vertical line of H and the rung has exactly two points (see Figure
7). Thus,

H (2k; k) � H (2k; k � 1) = ( � 1)k� 1:
The same type of ladder as above also gives rise to the Catalanidentity. Thus,

H (2k; k) � H (2k; k � j ) = ( � 1)k� j H (2j; j ):

The length of a rung in a vertical ladder in H gives rise to the d'Ocagne identity if one of them
is located on the top of the ladder, and the coordinates of theend points of the second rung are
H (k + j + 1 ; j ) and H (k + j + 1 ; k). Thus,

H (k + j + 1 ; k) � H (k + j + 1 ; j ) = ( � 1)j H (k � j + 1 ; k � j ):

The length of a rung in a vertical ladder in H gives rise to the Johnson identity. Thus, if k+ j = r + i
and i < j , then for every l � i it holds that

H (k + j; j ) � H (r + i; i ) = ( � 1)l (H (k + j � 2l; j � l ) � H (r + i � 2l; i � l ))

= ( � 1)i H (k + j � 2i; j � i ):

As a corollary of Theorem 4 part 3 we have that if the points ai and bi in the Hosoya triangle
are as in Figure8 (e), then (aj + aj +1 ) � (bj + bj +1 ) is a constant. This property is analogous to a
property in Pascal's triangle that yields the Catalan numbers (see [9]).
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Proposition 5. Let a; b; j be positive integers withj � minf a; bg. If A(Fa� j ; Fa+ j ), B (Fb� j ; Fb+ j )
and C(Fa; Fb) are points in the Cartesian plane, then

(1) the line passing throughA and B is parallel to the line passing through(0; 0) and C. Thus,
Fa

Fb
=

Fa� j � Fa+ j

Fb� j � Fb+ j
:

(2) The triangle with base Fa+ j � Fa� j and height Fb has same area as the triangle with base
Fb+ j � Fb� j and heightFa.

The proof of Proposition 5 is easy using Proposition3, therefore we omit it.
The con�guration depicted in Figure 8 part (a) is called a zigzag. The con�guration depicted in

Figure 8 part (b) is called a left zigzag. The con�guration depicted in Figure 8 part (c) is called a
right zigzag. The con�guration depicted in Figure 8 part (d) is called a long zigzag. There should
be a �nite number of points in any zigzag con�guration.

The con�guration depicted in Figure 11 part (a) is called a braid. The con�guration depicted in
Figure 11 part (b) is called a left braid. The con�guration depicted in Figure 11 part (c) is called
a right braid. There should be a �nite number of points in any braid con�gur ation.

(a) ( b ) ( c) ( d )

Figure 8. Zigzag con�gurations.

Corollary 6. The sum of alternating points of a long zigzag con�guration inH starting from its
second point is equal to the di�erence of the last point and the �rst point of the zigzag con�guration.
Moreover, any column of points forming a rectangle with the column of alternating points has the
same sum (see Figure9(a) and Figure 8 part (d)). More precisely, if a; b; c, and d are positive
integers such thata + c = b+ d, then for every positive integerk it holds that

2k� 1X

j =0

Fa+ j Fc+ j =
2k� 1X

j =0

Fb+ j Fd+ j =

(
F 2

k+ ne
� F 2

ne
if a + b is odd

Fne+ kFne+ k� 1 � Fne Fne � 1 if a + b is even;

where ne = b(a + b)=2c.

Proof. We prove that the sum of alternating points of a long zigzag con�guration in H starting
from its second point is equal to the di�erence of the last point with the �rst point of the long
zigzag. The last part of this corollary follows from Theorem4 part (2).
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Supposep1; p2; p3; : : : ; pn� 2; pn� 1; pn are the points of the long zigzag ordered from top to bottom
where p1 is the �rst point on the top and pn is the last point in the bottom (see Figure 9(a)). We
want to show that p2 + p4 + p6 + � � � + pn� 1 = pn � p1. From de�nition of H on page1 we know that
H (r; k ) = H (r � 1; k) + H (r � 2; k) and H (r; k ) = H (r � 1; k � 1) + H (r � 2; k � 2). This implies
that

p3 = p1 + p2; (1)

p5 = p3 + p4; (2)

p7 = p5 + p6; (3)
...

...

pn = pn� 2 + pn� 1: (4)

Substituting Equation ( 1) into p2 + p4 + p6 + � � � + pn� 1 we obtain

p2 + p4 + p6 + � � � + pn� 1 = � p1 + p3 + p4 + p6 + � � � + pn� 1:

Substituting Equation ( 2) into the right side of this equality, we obtain

p2 + p4 + p6 + � � � + pn� 1 = � p1 + p5 + p6 + � � � + pn� 1:

Substituting Equation ( 3) into the right side side of this equality, we obtain

p2 + p4 + p6 + � � � + pn� 1 = � p1 + p7 + p8 + � � � + pn� 1:

We systematically keep making these substitutions to obtain

p2 + p4 + p6 + � � � + pn� 1 = � p1 + pn :

This completes the proof of the corollary. �

Figure 9. Zigzag Con�gurations.

Theorem 7 (Zigzag property). If a zigzag con�guration with 6k + 5 points holds in H , then the
sum of all points in its left zigzag is equal to the sum of all points in its right zigzag (see Figure8
and Figure 9(b)).

Proof. From Figure 9(b) and de�nition of H on page1 it is easy to see thatp1 + p2 = p3 + p4 = p5.
Since the zigzag con�guration has 6k + 5 points, there are remaining 6k points distributed in three
vertical equal sets (see Figure9(b) for the labeling of points). So, every set has an even number of
points. This and Theorem 4 part 2 imply that q1 + q1 + � � � + qn = t1 + t1 + � � � + tn . This completes
the proof. �
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As a corollary of Theorem7 we can see that the Hockey Stick property seen in Figure10(a) and
originally found in the Pascal triangle (see [9]), also holds in H . Thus, the sum of all points in the
shaft of a hockey stick is equal to the point on the blade of thehockey stick. The blade of the
hockey stick is going to the left or to the right depending on the numbers of points that are on the
shaft. If we consider the hockey stick con�guration on one side of the Hosoya triangle (H ), then (by
the symmetry of H ) when the same con�guration is represented on the other sideof H , the blade
of the hockey stick changes direction (from left to right or from right to left). We use s1; s2; � � � ; si
to represent the points on the shaft of the hockey stick. We use bL and bR to represent the point
on the blade of the hockey stick. We usebL to indicate that it is on the left side of the hockey stick
and bR indicates that it is on right side of the hockey stick. (See Figure 10(a).)

Corollary 8 (Hockey Stick property). Let s1; s2; � � � ; si be the points on the shaft of the hockey
stick wheres1 is a point on one of the edges ofH . If bt is the point on the blade of the hockey stick,
with t 2 f L; R g (see Figure 10(a)), then

(1) s1 + s2 + � � � + s2n = bL , if the hockey stick is on the left side ofH ,
(2) s1 + s2 + � � � + s2n = bR , if the hockey stick is on the right side ofH ,
(3) s1 + s2 + � � � + s2n+1 = bR , if the hockey stick is on the left side ofH ,
(4) s1 + s2 + � � � + s2n+1 = bL , if the hockey stick is on the right side ofH ,
(5) s1 + s2 + � � � + si = bL = bR for every i , if the hockey stick is in the center ofH .

Figure 10. Hockey Stick and Braid con�gurations.

Proposition 9 (Braid property) . If the braid con�guration holds in H , then the sum of all points
in the left braid is equal to the sum of all points in the right braid (see Figure 11 and Figure 10(b))

Proof. In the Figure 10(b) we observe that the left braid con�guration is formed by all left corner
points of the squares of even side length and all corner points in backslash diagonal in the squares
of odd length (see for exampleS2; S3; S4, and S5 in Figure 10(b)). The right braid con�guration is
formed, similarly, by all right corner points of the squaresof even side length and all points in the
slash diagonal in the squares of odd side length.

From Proposition 3 it is easy to deduce that in a square con�guration in H with even side
length, it holds that sum of two vertical corner points is equal to the sum of the remaining corner
points. If the square con�guration has odd side length, thenit holds that the sum of two corner
points in a diagonal of the square is equal to the sum of the remaining corner points in the other
diagonal. Using this property and Figure 10(b) we can see that the sum of left corner points of
the innermost squareS2 is equal to the sum of its right corner points. We now observe that the
squareS3 has odd side length. Therefore, the sum of the corner points in the slash diagonal equals
the corner points in the backslash diagonal. The squareS4 satis�es the property that the sum of
the vertical left corner points equals the right corner points. The squareS5 satis�es the property

9



that the sum of the corner points in the slash diagonal equalsthe remaining corner points in the
backslash diagonal. We can continue this process inductively as long as it is required by the braid
con�guration embedded in H . From this, the Figure 10(b), and the observation given in the �rst
paragraph it is easy to obtain the conclusion of the proposition. �

(a) (b) (c)

Figure 11. Braid con�gurations.

For any squareS in Figure 10(b) it holds that the sum of the corner points in one diagonal of S
is the additive inverse of the sum of the corner points in the remaining diagonal ofS. Therefore,
using all squares in Figure10(b) it holds that

lX

k=0

H (n � k; m � k) +
lX

k=1

(� 1)kH (n + k; m + k) =
lX

k=0

H (n � k; m) +
lX

k=1

(� 1)kH (n + k; m):

If in Figure 10(b) we eliminate the common point {the point that is the inter section of left braid
and right braid{ we obtain

Fn� m

lX

k=1

(Fm� k + ( � 1)kFm+ k ) = Fm

lX

k=1

(Fn� m� k + ( � 1)kFn� m+ k ):

This with r = n � m implies
lX

k=1

Fm� k + ( � 1)kFm+ k

Fm
=

lX

k=1

Fr � k + ( � 1)kFr + k

Fr
:

So,
lX

k=1

Fm� k + ( � 1)kFm+ k

Fm
=

(
Fl + Fl � 2 + 1 if l is odd
5Fl0� 1Fl0 + 1 + ( � 1)l0

if l = 2 l0:

4. Properties of the Pascal triangle in the Hosoya triangle

In this section we extend a few properties from the Pascal triangle to the Hosoya triangle. These
properties of the Pascal triangle may be found in [4].

If we construct an oblique (backslash) ladder with horizontal rungs of length two (see Figure12),
then the ladder gives rise to generalized Fibonacci numbers. Thus, adding the two points of each
rung of the ladder gives rise to a sequence of second order which is a generalized Fibonacci sequence.
Recall that the generalized Fibonacci sequence is given byGn = Gn� 1 + Gn� 2 with G1 = a and
G2 = b. Here we note that a and b are the points in the �rst rung of the oblique ladder, (see
Figure12). In particular, a and b are consecutive Fibonacci numbers witha > b. Some of the
ladders give rise to certain sequences found in Sloane [8]. In particular, with a = 1 and b = 1 we
obtain the Fibonacci number sequenceA000045. If a = 2 and b = 1, we obtain the Lucas number
sequenceA000032. With a = 3, b = 2, we obtain sequenceA013655which is a sequence where each
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Figure 12. Generalized Fibonacci.

term is obtained by adding a Fibonacci and a Lucas number. ThesequenceA206610 is obtained
with a = 13 and b = 8.

If we consider two consecutive rungs of an oblique ladder {that has horizontal rungs{ we obtain
a rhombus property (see Figure13(b)). This property is an extension of a similar property found
in Pascal's triangle (see [4]).

Let us take two consecutive rungs of the ladder, for example the (2n � 1)-th and (2n)-th rungs.
Then, di�erences of a cross multiplication is always a constant. In reality, the cross multiplication
is the determinant of the numbers present in the rungs of the oblique ladder (see Figure13(b)). In
particular, here the determinant is the product of consecutive Fibonacci numbers.

Algebraically, using the de�nition of coordinates (see Section 2) for each point in the rungs of
the oblique ladder, we obtain that for n; r > 0

�
�
�
�

H (n; r ) H (n; r + 1)
H (n + 1 ; r ) H (n + 1 ; r + 1)

�
�
�
� = ( � 1)n� r +1 Fr Fr +1 :

An additional con�guration that yields a geometry and an identity we can explore is a triangle
con�guration as seen in Figure13(a).

If we take the triangle con�guration as in Figure 13 part (a) then a+ b� c is a Fibonacci number.
Note that a and b are points constituting the top oblique side of the triangle and the points b and
c are points along the same vertical line at a distance two fromeach other. The triangle may be
oriented to the left or to the right, the orientation does not change this result. In particular, if
a = H (n + 1 ; r � 1), b = H (n; r ), and c = H (n + 2 ; r + 1) then a + b� c = F2r � n+1 .

The algebraic proof of this property is easy using the de�nition of the coordinates of each entry
H (r; k ) of the Hosoya triangle.

 

1

� �

2 � 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55

89 55 68 63 65 64 65 63 68 55 89

0
0 0

0 0
0 0

00
0 0

00
0 0

0 0
00

0 0
00

0 0

b
a

c

Figure 13. Triangle and rhombus properties.
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