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GASPER’S DETERMINANT THEOREM, REVISITED

MARKUS SIGG

Abstract. Let n ≥ 2 be a natural number, M a real n×n matrix, s the sum of the entries
of M and q the sum of their squares. With α := s/n and β := q/n, Gasper’s determinant
bound says that | detM | ≤ βn/2, and in case of α2 ≥ β:

| detM | ≤ |α|
(

nβ − α2

n− 1

)

n−1

2

This article gives a corrected proof of Gasper’s theorem and lists some more applications.
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1. Introduction

The present article is primarily a revised version of [6], ironing out a flaw in the proof of
[6], Theorem 1, adding statements about complex matrices and about infinite determinants
and mentioning a few more applications. We do not repeat the numerical results concerning
determinants of matrices whose entries are a permutation of the numbers 1, . . . , n2. See [13]
for these.

Throughout, let n > 1 be a natural number and N := {1, . . . , n}. Whenever not stated
otherwise, matrix means a real n× n matrix, the set of which we denote by M.

For M ∈ M and i, j ∈ N we denote by Mi the i-th row of M , by M j the j-th column of
M , and by Mi,j the entry of M at position (i, j). If M is a matrix or a row or column of a
matrix, then by s(M) we denote the sum of the entries of M and by q(M) the sum of their
squares.

The identity matrix is denoted by I. By J we name the matrix which has 1 as all of its
entries, while e is the column vector in R

n with all entries being 1. Matrices of the structure
xI + yJ will play an important role, so we state some of their properties:

Lemma 1. Let x, y ∈ R and M := xI + yJ . Then we have:

(1) detM = xn−1(x+ ny)
(2) M is invertible if and only if x 6∈ {0,−ny}.
(3) If M is invertible, then M−1 = 1

x
I − y

x(x+ny)
J .

Proof. Because J = eeT , it holds that

Me = (xI + yeeT )e = (x+ yeTe)e = (x+ ny)e and Mv = (xI + yeeT )v = xv

for all v ∈ R
n with v ⊥ e. Hence M has the eigenvalue x with multiplicity n − 1 and the

simple eigenvalue x + ny. This shows (1). (2) is an immediate consequence of (1). (3) can
be verified by a straight calculation. �
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2. Matrices with given entry sum and square sum

Let α, β ∈ R with β > 0. We inspect the following set of matrices:

Mα,β := {M ∈ M : s(M) = nα, q(M) = nβ}
Lemma 2.

(1) If α2 > nβ, then Mα,β = ∅.
(2) If α2 = nβ, then detM = 0 for all M ∈ Mα,β.

(3) If α2 ≤ nβ, then there exists an M ∈ Mα,β with

detM = α

(

nβ − α2

n− 1

)
n−1

2

.

(4) If α2 ≤ β, then there exists an M ∈ Mα,β with detM = β
n
2 .

Proof. (1) Suppose Mα,β 6= ∅, say M ∈ Mα,β . Reading M and J as elements of Rn2

, Cauchy’s
inequality gives:

α2 =
1

n2

(

n
∑

i,j=1

Mi,j

)2

=
1

n2
〈M,J〉2 ≤ 1

n2
‖M‖22 ‖J‖

2
2 =

n
∑

i,j=1

M2
i,j = nβ

(2) For α2 = nβ and M ∈ Mα,β, the calculation in (1) shows | 〈M,J〉 | = ‖M‖2 ‖J‖2. But
this holds only if M is a scalar multiple of J , so we have detM = 0 because of det J = 0.

(3) Suppose α2 ≤ nβ. With γ :=
(

nβ−α2

n−1

)
1

2

set M := γI + 1
n
(α− γ)J . Then M ∈ Mα,β, and

by Lemma 1:

detM = γn−1
(

γ + n 1
n
(α− γ)

)

= αγn−1

(4) Suppose α2 ≤ β. In case of α ≥ 0, set γ := 1
2

(

3α√
β
− 1
)

, so γ2 ≤ 1. Set

A :=

(

α
√

β − α2

−
√

β − α2 α

)

and B :=
√

β





γ
√

1− γ2 0

−
√

1− γ2 γ 0
0 0 1



 .

Then s(A) = 2α, q(A) = 2β, detA = β, s(B) = 3α, q(B) = 3β, detB = β
3

2 . In case of
n = 2k with k ∈ N, use k copies of A to build the block matrix

M :=





A
. . .

A



 ,

which has the required properties. In case of n = 2k + 1 with k ∈ N, use k − 1 copies of A
to build the block matrix

M :=









A
. . .

A
B









,

which again satisfies the requirements.

In case of α < 0, an M ′ ∈ M−α,β with detM ′ = β
n
2 exists. For even n, M := −M ′ ∈ Mα,β

has the requested determinant, while for odd n swapping two rows of −M ′ gives the desired
matrix M . �



GASPER’S DETERMINANT THEOREM, REVISITED 3

In the proofs of (3) and (4) of Lemma 2 we have specified matrices whose determinants will
below turn out to be the greatest possible. The determinant values relate like following:

Lemma 3. For α2 ≤ nβ the inequality

|α|
(

nβ − α2

n− 1

)
n−1

2

≤ β
n
2

holds, with equality if and only if α2 = β.

Proof. With f(x) := x
(

n−x
n−1

)n−1
for x ∈ [0, n] we have

|α|
(

nβ − α2

n− 1

)
n−1

2

β−n
2 =

√

f
(

α2

β

)

.

The proof is completed by applying the AM-GM inequality to f(x)1/n:

f(x)
1

n =
(

x
(

n−x
n−1

)n−1
)

1

n ≤ 1
n

(

x+ (n− 1)n−x
n−1

)

= 1

with equality if and only if x = n−x
n−1

, i. e. if and only if x = 1. �

3. Main results

Let α, β ∈ R with β > 0. By Lemma 2 there exists an M ∈ Mα,β with detM 6= 0 if and
only if α2 < nβ. By possibly swapping two rows of M , detM > 0 can be achieved. As Mα,β

is compact, the determinant function assumes a maximum value on Mα,β . Gasper’s theorem
provides insight into the properties of the matrices with maximal determinant:

Theorem 1 (O. Gasper, 2009). Let α2 < nβ and M ∈ Mα,β with maximal determinant.

Then

if α2 ≤ β :

{

(A) MMT = βI

(B) detM = β
n
2

if α2 ≥ β :















(C) s(Mi) = α and s(M j) = α for all i, j ∈ N

(D) MMT = (β − δ)I + δJ with δ := α2−β
n−1

, so β − δ = nβ−α2

n−1
.

(E) detM = |α| (β − δ)
n−1

2

Proof. From Lemma 2 we know that detM > 0. The matrix M solves an extremum problem
with equality contraints

(P)











detX −→ max

s(X) = nα

q(X) = nβ

(X ∈ M
∗),

where M
∗ is the set of invertible matrices. The Lagrange function of (P) is given by

L(X, λ, µ) = detX − λ(s(X)− nα)− µ(q(X)− nβ),

so there exist λ, µ ∈ R with d
dMi,j

L(M,λ, µ) = 0 for all i, j ∈ N . By Jacobi’s formula

( d

dMi,j
detM

)

i,j
= (detM) (MT )

−1
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we get1 (detM) (MT )
−1 − λJ − 2µM = 0, i. e.

(detM)I = λJMT + 2µMMT . (1)

Suppose µ = 0. Then applying the determinant function to (1) and using det J = 0 would
give (detM)n = det(λJMT ) = det(J) det(λM) = 0, a contradiction to detM > 0. Hence

µ 6= 0. (2)

As JMT has the diagonal elements s(M1), . . . , s(Mn), and MMT has the diagonal elements
q(M1), . . . , q(Mn), we get n detM = λs(M) + 2µq(M) = λnα+ 2µnβ by applying the trace
function to (1), consequently

detM = λα + 2µβ. (3)

The symmetry of (detM)I and the symmetry of 2µMMT in (1) show that λJMT is sym-
metric. As all rows of JMT are identical, namely equal to (s(M1), . . . , s(Mn)), we obtain

λs(M1) = · · · = λs(Mn). (4)

In the following, we inspect the cases λ = 0 and λ 6= 0 and prove:
{

λ = 0 =⇒ α2 ≤ β ∧ (A) ∧ (B)

λ 6= 0 =⇒ α2 ≥ β ∧ (C) ∧ (D) ∧ (E)
(5)

Case λ = 0: Then (3) reads detM = 2µβ, so taking (2) into account and dividing (1) by
2µ gives βI = MMT , i. e. (A). From this, (B) follows by applying the determinant function.
Using the inequality between arithmetic mean and root mean square and the fact that the
matrix (1/

√
β)M is orthogonal and thus an isometry w.r.t. the euclidean norm ‖ ‖2, we get

α2 =
(1

n

n
∑

i=1

s(Mi)
)2

≤ 1

n

n
∑

i=1

s(Mi)
2 =

1

n
‖Me‖22 =

1

n
β‖e‖22 =

1

n
βn = β. (6)

Case λ 6= 0: Then s(M1) = · · · = s(Mn) by (4). With s(M1) + · · · + s(Mn) = s(M) = nα
this shows s(Mi) = α for all i ∈ N . Using (detM)I = λMTJ + 2µMTM instead of (1)
yields s(M j) = α for all j ∈ N , so (C) is done. Furthermore, JMT = αJ , and (1) becomes

2µMMT = (detM)I − λαJ, (7)

hence q(Mi) = (MMT )i,i = (detM−λα)/(2µ) for all i ∈ N , so q(M1) = · · · = q(Mn). Using
q(M1) + · · ·+ q(Mn) = q(M) = nβ shows

(MMT )i,i = q(Mi) = β for all i ∈ N . (8)

Let i, j ∈ N with i 6= j. Then (7) gives (MMT )i,k = −λα/(2µ) for all k ∈ N \ {i}. With

n
∑

k=1

(MMT )i,k =

n
∑

k=1

n
∑

p=1

Mi,pMk,p =

n
∑

p=1

Mi,p s(M
p) =

n
∑

p=1

Mi,p α = s(Mi)α = α2

and (8) we get

(MMT )i,j =
1

n− 1

∑

k 6=i

(MMT )i,k =
1

n− 1

(

n
∑

k=1

(MMT )i,k − (MMT )i,i

)

=
α2 − β

n− 1
= δ,

which, again with (8), proves (D). With Lemma 1 this yields

(detM)2 = det(MMT ) = (β − δ)n−1(β − δ + nδ) = (β − δ)n−1α2,

1This is where a clerical mistake happened in [6]. Here we have corrected −λM − 2µJ by −λJ − 2µM
and adapted the remainder of the proof accordingly.
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and taking the square root gives (E). Suppose α2 < β. Then by Lemma 2 there would exist
an M ′ ∈ Mα,β with detM ′ = β

n
2 , and by Lemma 3

detM = |α|(β − δ)
n−1

2 < β
n
2 = detM ′,

which contradicts the maximality of detM . Hence α2 ≥ β.

We have now proved (5) and are ready to deduce the statements of the theorem: If α2 < β,
then (5) shows that λ = 0 and thus (A) and (B). If α2 > β, then (5) shows that λ 6= 0
and thus (C), (D) and (E). Finally suppose α2 = β. Then δ = 0, hence (A) ⇐⇒ (D) and
(B) ⇐⇒ (E). If λ 6= 0, then (5) shows (C), (D) and (E), from which (A) and (B) follow. If
λ = 0, then (5) shows (A) and (B), from which (D) and (E) follow. It remains to prove (C)
in the case of α2 = β and λ = 0. To this purpose, look at (6) again, where α2 = β shows
that s(M1) = · · · = s(Mn), and (C) follows as in the case λ 6= 0. �

For calculating upper bounds for the determinants of given matrices, we note this handy
consequence of Theorem 1:

Proposition 1. Let M ∈ M, α := 1
n
s(M), β := 1

n
q(M), κ := nβ−α2

n−1
. Then

if α2 < β : | detM | ≤ β
n
2

if α2 = β : | detM | ≤ |α|κn−1

2 = β
n
2

if α2 > β : | detM | ≤ |α|κn−1

2 < β
n
2

Proof. This is trivial if detM = 0. In case of detM 6= 0 we get α2 < nβ by Lemma 2, and
the stated inequalities are true by Lemma 3 and Theorem 1. �

Note that Lemma 3 says that |α|κn−1

2 < β
n
2 is true in case of α2 < β, too. However, as the

following examples demonstrates, | detM | is not necessarily bounded by the left hand side
in this situation:

M :=

(

1 0
0 −1

)

, | detM | = 1 , |α|κn−1

2 = 0

Proposition 1 can be used to derive bounds for the determinants of complex matrices also:

Corollary 1. Let A,B ∈ M, M := A+ iB, α := 1
n
s(A), β := 1

n
(q(A) + q(B)), κ := 2nβ−α2

2n−1
.

Then

if α2 < β : | detM | ≤ β
n
2

if α2 = β : | detM | ≤ |α| 12κ 2n−1

4 = β
n
2

if α2 > β : | detM | ≤ |α| 12κ 2n−1

4 < β
n
2

Proof. For the real 2n× 2n-matrix

M ′ :=

(

A B
−B A

)

we have s(M ′) = 2s(A) and q(M ′) = 2q(A) + 2q(B)), hence α′ := 1
2n
s(M ′) = 1

n
s(A) = α

and β ′ := 1
2n
q(M ′) = 1

n
(q(A) + q(B)) = β, and Proposition 1 applied to M ′ gives

if α2 < β : | detM ′| ≤ β
2n
2

if α2 = β : | detM ′| ≤ |α|κ 2n−1

2 = β
2n
2

if α2 > β : | detM ′| ≤ |α|κ 2n−1

2 < β
2n
2

The claimed inequalities follow by using detM ′ = | detM |2, see [1], Fact 3.24.7 vii). �
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To get the more attractive case of α2 > β in Corollary 1, it can help to recall the equality
| det(A+iB)| = | det(B+iA)| and apply Corollary 1 to the latter matrix. As an example take
A := ( 0 0

0 0 ) and B := ( 1 1
1 1 ). For A+iB we get α = 0, β = 2 and the bound | det(A+iB)| ≤ 2.

But B + iA gives α = 2, β = 2 and the bound | det(B + iA)| ≤ 4 · 27− 1

4 ≈ 1.75.

For a real matrix M , i. e. B = 0, Corollary 1 can yield a larger bound than Proposition 1,
and it can give different bounds for M and for iM . For example the matrix M := ( 1 1

0 1 ) gets

the bound 3
4

√
3 ≈ 1.30 from Proposition 1 and the bound 1

4
125

1

4

√
3 ≈ 1.45 from Corollary

1, while Corollary 1 applied to iM gives the bound 1.5. This unhappy situation prompts for

Question 1. Is there a better way to transfer Proposition 1 to complex matrices?

4. Applications

The bounds for detM in Proposition 1 and Corollary 1 refer only to s(M) and q(M) and
so do not use any positional information. As sections 4.1–4.6 show, they can still serve for
deducing interesting inequalities. But the strength of Proposition 1 manifests better when
it is applied to problems like in sections 4.7 and 4.8.

4.1. Hadamard’s inequality. For a complex n × n matrix M with |Mi,j| ≤ 1 for all
i, j ∈ N , Corollary 1 shows:

| detM | ≤ β
n
2 =

(

1

n

n
∑

i,j=1

|Mi,j |2
)

n
2

≤
(

1

n

n
∑

i,j=1

1

)
n
2

= n
n
2

This is Hadamard’s inequality, see [8]. For γ ≥ 0 and |Mi,j| ≤ γ for all i, j ∈ N we get in
the same way the inequality | detM | ≤ γn nn/2. However, Hadamard’s more general bound

| detM | ≤
n
∏

i=1

(

n
∑

j=1

|Mi,j |2
)

1

2

cannot be derived from the β
n
2 bound. The AM-GM inequality shows that this bound is

less than or equal to the β
n
2 bound, and there are cases where it is strictly smaller. But

matrices exist where the case α2 > β in Proposition 1 applies and yields a bound that is
better than Hadamard’s. As an example, Hadamard’s bound for the matrix ( 1 2

2 3 ) is
√
65

while Proposition 1 gives the bound
√
32.

4.2. Best’s inequality. If Mi,j ∈ {−1, 1} for all i, j ∈ N and | detM | = nn/2, i. e. M is
a Hadamard matrix, then Proposition 1 shows that α2 ≤ β must hold. The value s(M) is
called the excess of M . Because q(M) = n2 in case of Mi,j ∈ {−1, 1}, Proposition 1 yields
an upper bound for the excess:

M is a Hadamard matrix =⇒ s(M) ≤ n
√
n

This is known as Best’s inequality, see [2].

4.3. Inequality of determinant and trace. For a positive integer m and positive definite
matrices A and B, Theorem 2.8 in [5] says

(detAB)
m
n ≤ 1

n
tr(AmBm),

which for m = 1 and B = AT reads (detA)
2

n ≤ 1
n
tr(AAT ). As tr(AAT ) = q(A), Proposition

1 shows that, for the latter inequality, A does not need to be positive definite.
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4.4. Ryser’s inequality. If Mi,j ∈ {0, 1} for all i, j ∈ N and t := s(M) is the number of
1’s in M , then in Proposition 1 with k := t/n we have α = β = k and get

if t < n : | detM | ≤ k
n
2

if t = n : | detM | ≤ 1

if t > n : | detM | ≤ k
n+1

2

(

n− k

n− 1

)
n−1

2

The inequality for the case t > n is Ryser’s determinant bound [12], Theorem 3. For the
case of t = 2n this was improved by Bruhn and Rautenbach, see [4], Theorem 3, and [10].

4.5. The inequalities of Brent, Osborne and Smith. Let ε > 0, E ∈ M with |Ei,j| ≤ ε
for all i, j ∈ N and M := I − E. Then

β ≤ 1

n

(

n(1 + ε)2 + (n2 − n)ε2
)

= 1 + 2ε+ nε2

in Proposition 1 gives

| detM | ≤
(

1 + 2ε+ nε2
)

n
2 .

This is [3], Theorem 3 (8). In case of Ei,i = 0 for all i ∈ N we have

β ≤ 1

n

(

n+ (n2 − n)ε2
)

= 1 + (n− 1)ε2

and so

| detM | ≤
(

1 + (n− 1)ε2
)

n
2 ,

which is [3], Theorem 3 (9). While, as is demonstrated in [3], both inequalities follow from
Hadamard’s inequality, the above reasoning shows that these bounds do not depend on the
arrangement of the dominant entries, and it can also be used to derive bounds if the number
of dominant entries is different from n.

4.6. Determinants of von Koch matrices. Let A := (Ai,j : i, j = 1 . . .∞) be an infinite
matrix of real numbers Ai,j with

∞
∑

i=1

|Ai,i| < ∞ and

∞
∑

i,j=1

|Ai,j|2 < ∞

and A(n) := (Ai,j : i, j = 1 . . . n) for n ∈ N be the n×n finite submatrix. Then by [9] or [7],
page 170, the infinite determinant

det(I − A) := lim
n→∞

det(I − A(n)),

is well-defined, where I is the suitable finite or infinite identity matrix. By Proposition 1

| det(I −A(n))| ≤
(

1

n

n
∑

i,j=1

(δi,j − Ai,j)
2

)
n
2

=

(

1 +
1

n

n
∑

i,j=1

A2
i,j −

2

n

n
∑

i=1

Ai,i

)
n
2

,

and as
(

1 + xn

n

)
n
2 → e

x
2 for n → ∞ for a real sequence (xn) with limit x:

| det(I − A)| ≤ exp

(

1

2

∞
∑

i,j=1

A2
i,j −

∞
∑

i=1

Ai,i

)

(9)

One might want to apply the better bound of Proposition 1’s case α2 > β, but an evaluation
reveals that for n → ∞ this gives the identical inequality (9).
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4.7. Matrices whose entries are a permutation of an arithmetic progression.

Proposition 2. Let p, q be real numbers with q > 0 and M a matrix whose entries are a

permutation of the numbers p, p+ q, . . . , p+ (n2 − 1)q. Set

r :=
p

q
+

n2 − 1

2
, ̺ :=

n3 + n2 + n+ 1

12
and σ := nq2

(

r2 +
n4 − 1

12

)

.

Then

if r2 < ̺ : | detM | ≤ σ
n
2

if r2 = ̺ : | detM | ≤ nnqn |r|̺n−1

2 = σ
n
2

if r2 > ̺ : | detM | ≤ nnqn |r|̺n−1

2 < σ
n
2

Proof. With α and β as in Proposition 1 a calculation shows α2 − β = n(n − 1)q2(r2 − ̺),
hence sgn(α2 − β) = sgn(r2 − ̺), and the bounds noted in Proposition 1 yield the asserted
inequalities for | detM |. �

Corollary 2. If M is a matrix whose entries are a permutation of 0, . . . , n2 − 1, then

| detM | ≤ nn n2 − 1

2

(

n3 + n2 + n + 1

12

)
n−1

2

.

If M is a matrix whose entries are a permutation of 1, . . . , n2, then

| detM | ≤ nn n2 + 1

2

(

n3 + n2 + n + 1

12

)
n−1

2

.

Proof. Apply Proposition 2 to (p, q) := (0, 1) and to (p, q) := (1, 1), respectively. In both
applications it is easy to see that r2 > ̺, which yields the stated bound. �

Actual maximal determinants for this kind of matrices suggest

Question 2. Let b(n) be the upper bound given in Corollary 2 for matrices with entries

1, . . . , n2. Regarding [13], do we have

lim
n→∞

A085000(n)

b(n)
= 1?

4.8. A variation of the previous theme.

Proposition 3. Let p, q be real numbers with q > 0 and M a matrix such that each of the

numbers p, p+ q, . . . , p+ (n− 1)q appears n times in M . Set

r :=
p

q
+

n− 1

2
, ̺ :=

n + 1

12
and σ := nq2

(

r2 +
n2 − 1

12

)

.

Then

if r2 < ̺ : | detM | ≤ σ
n
2

if r2 = ̺ : | detM | ≤ nnqn|r|̺n−1

2 = σ
n
2

if r2 > ̺ : | detM | ≤ nnqn|r|̺n−1

2 < σ
n
2

Proof. We have again α2 − β = n(n− 1)q2(r2 − ̺) and can apply Proposition 1. �
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Corollary 3. If M is a matrix such that each of the numbers 0, . . . , n− 1 appears n times

in M, then

| detM | ≤ nn n− 1

2

(

n+ 1

12

)
n−1

2

.

If M is a matrix such that each of the numbers 1, . . . , n appears n times in M, then

| detM | ≤ nn n+ 1

2

(

n+ 1

12

)
n−1

2

.

Proof. Apply Proposition 3 to (p, q) := (0, 1) and to (p, q) := (1, 1). �

Again we would like to pose the

Question 3. Let b(n) be the upper bound given in Corollary 3 for matrices with entries

1, . . . , n. Regarding [11], do we have

lim
n→∞

A301371(n)

b(n)
= 1?
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