arXiv:1804.03679v2 [math.CO] 12 Apr 2018

COUNTING GRADED LATTICES OF RANK THREE
THAT HAVE FEW COATOMS

JUKKA KOHONEN

ABSTRACT. We consider the problem of computing R(c,a), the number of
unlabeled graded lattices of rank 3 that contain ¢ coatoms and a atoms. More
specifically we do this when c is fairly small, but @ may be large. We describe a
computational method that, for a fixed ¢, combines direct enumeration of the
connection graphs of ¢ coatoms, and Redfield-Pélya counting for distributing
atoms between the coatoms. Using this method we compute R(c,a) for ¢ <9
and a < 1000. With the help of these computations we also derive R(c,a) in
closed form for ¢ < 7.

1. INTRODUCTION

Let R(c,a) denote the number of unlabeled graded lattices of rank 3 that contain
¢ coatoms and a atoms, with ¢;a > 1. If ¢ and a are very small, R(c,a) can
be determined by actually generating the lattices, for example by the nauty one-
liner genbg -Z1 -d1 -u ${c} ${a}. This takes time at least linear in R(c,a), so
this approach is limited to very small instances. By this method the author has
computed R(c,a) for ¢ + a < 21 (OEIS sequence A300260 [10]).

In this work we seek exact values of R(c¢, a) when ¢ is small, but a may be be large.
The converse case is handled by duality since R(c,a) = R(a,c). Throughout this
paper we treat c as a small constant. As a warm-up, and to illustrate the underlying
ideas, we manually derive closed form expressions for R(c,a) when ¢ < 3. We then
present a computational method that, for a given value of ¢, uses nauty [I7] to
enumerate the ways how ¢ coatoms can be connected, and then employs the cycle
index theorem to count distributions of atoms among the ¢ coatoms. The method
has been implemented using the computer algebra system GAP [7]. With this
program we compute R(c,a) for ¢ < 9 and a < 1000. Then, by doing an exact
polynomial fit on residue classes of the results, we derive R(c,a) in closed form for
also4 <e¢<7.

2. RELATED WORK

Although lattices have their algebraic aspect as commutative, idempotent alge-
bras, in the context of counting and enumeration a lattice is usually seen as a kind
of a directed graph, defined by its covering relation (or “Hasse graph”). This places
the problem in the realm of graph enumeration.

Exact counts of lattices are often determined by complete enumeration, that
is, by generating all lattices [8, @, [T}, I5] or those in some specific class [6l [1T].
Counting of rank-3 lattices does not seem to have been addressed directly, although
some asymptotics are known. The total number of rank-3 graded lattices of n + 2
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FIGURE 1. A rank-3 lattice (loners shown as small dots) and its
connection graph (coatoms shown as boxes with numbers of lon-
ers).

elements is R(n) = >." ! R(c, n—c). From the results of Klotz and Lucht [I3] and

c=1
Kleitman and Winston [12] we have

1.27777*+0n*%) < R(n) < 1.6994™" *Holn

Of course, any algorithm that generates all lattices can be adapted to the spe-
cial case of rank-3 lattices. However, the structure of rank-3 lattices makes them
amenable to non-generative methods. The present work combines both approaches:
it genmerates a large number of basic cases, and for each case counts further lattices
without generating them. Both are done by computation, but with quite different
tools. Thus the work has connections both to graph generating methods and to
counting theory. Such connections have been seen in graph counting (for example,
when labeled graphs are treated as unlabeled objects decorated by labels), but not
so much with lattices.

3/2)

3. CONNECTION GRAPHS

A graded lattice of rank 3, or a rank-3 lattice has elements on four levels: top,
coatoms, atoms, and bottom. From now on we ignore the top and the bottom,
since the structure of a rank-3 lattice is determined by its two central levels. These
levels form a bipartite graph with two distinct color classes (coatoms and atoms).
Furthermore, there are no isolated elements (as the lattice is graded), and any
two elements have at most one common neighbor. This characterization (cf. [12])
gives rise to the nauty one-liner mentioned in the introduction, which generates the
bipartite graphs one by one, and outputs the count.

For counting purposes it is better to simplify the representation of a rank-3 lat-
tice. Let us divide the atoms into connectors, which are covered by two or more
coatoms, and loners, which are covered by one coatom only. In lattice theory lon-
ers are known as meet-irreducible atoms, but we want a shorter name here. The
connection graph is the bicolored graph spanned by the coatoms and the connec-
tors. Any rank-3 lattice is uniquely represented by (1) its connection graph and
(2) for each coatom u, an integer ¢(u) indicating how many loners it covers. This
is illustrated in Figure [

With any given value of ¢ there is only a finite collection of connection graphs.
Let r be the number of connectors. Because in a lattice the upper covers of two
atoms cannot contain two common elements, we must have r < (;), the maximum
is reached when every pair of coatoms has its own connector. With ¢ = 2 there
are two graphs, one with a connector and one without. With ¢ = 3, the number of
connectors is r € [0,3], and if » = 1, either two or three coatoms are connected. So
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FIGURE 2. The five connection graphs of three coatoms.
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FI1GURE 3. The sixteen connection graphs of four coatoms.

there are five connection graphs, which are shown in Figure 2l With ¢ = 4 there
are sixteen graphs, shown in Figure
Now all rank-3 lattices of ¢ coatoms and a atoms can be counted in two phases:

(1) List all nonisomorphic connection graphs of ¢ coatoms.
(2) For each connection graph, calculate the number of ways to distribute a —r
loners among the ¢ coatoms.

The first phase is straightforward using tools from nauty, although the list is
long if ¢ is large. It is similar to listing all rank-3 lattices, except that elements in
the first color class (coatoms) can have zero neighbors, and elements in the second
color class (connectors) must have at least two neighbors. Since r < (;), iterating
genbg -Z1 -d0:2 ${c} ${r} for r=0,1,...,(5) lists the connection graphs.

The second phase is like distributing a — r identical balls into ¢ boxes. However,
a couple of issues must be observed. A simple thing is to ensure that every coatom
covers at least one atom. If there are s coatoms that do not cover a connector,
simply allocate one loner to each, and distribute the remaining n = a — r — s balls
into ¢ boxes, with empty boxes allowed.

Somewhat more complicated is to handle the symmetries of each connection
graph, so that we correctly count the nonisomorphic lattices. In Figure 2 graphs
(1), (3), (5) have all coatoms in symmetric position, so we are putting & balls into
three identical boxes. But in graphs (2) and (4), two coatoms are in symmetric
position (two identical boxes) and the third is not (a distinct box). Dealing with
symmetry comprises the bulk of this work. We do it manually for ¢ < 3, but for
¢ > 4 we turn to computational solutions.

4. LATTICES OF AT MOST THREE COATOMS

With ¢ < 3 there are few connection graphs, and we can treat them by hand.
Clearly R(1,a) = 1. Before going further we recall some elementary results on
occupancy. Let px(n) be the number of ways to distribute n identical balls into &
identical boxes, empty boxes allowed. For all n > 0 we have [I, Theorem 6.4]

(1) p2(n) = [n/2+1],
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(2) p3(n) = [n?/12 +n/2 +1].

Also let pa1(n) be the number of ways to distribute n identical balls into two
identical boxes and one distinct box, empty boxes allowed. For all n > 0 we have

(3) p2a(n) =3 pa(i) = [n*/4+n+1].
1=0

This may be recognized as the quarter-squares sequence A002620 [10]. We adopt
the convention that px(n) = p21(n) = 0 when n < 0, and note that Egs. (I)-(@3)
are then valid also for pa(—1), p3(—2), p3(—1), and pa1(—1).

Theorem 1. For any a > 1, we have R(2,a) = a.

Proof. Either there is a connector or not. In either case the two coatoms are in
symmetric position. In the connected case we have r = 1 and s = 0, and the
remaining a — 1 atoms can be distributed in p2(a — 1) ways. In the disconnected
case we have r = 0 and s = 2, and the remaining a — 2 atoms can be distributed in
p2(a — 2) ways; this is zero if a = 1.

Adding up and simplifying, we get R(2,a) = pa(a — 1) + pa(a — 2) = a. O

Theorem 2. For any a > 1, we have R(3,a) = [(3/4)a® + (1/3)a + 1/4].

Proof. We consider the five possible connection graphs (see Figure [2)).

Graph (1): No connectors, » + s = 3. The remaining a — 3 atoms can be
distributed among the three symmetric coatoms in p3(a — 3) ways.

Graph (2): One atom connects two coatoms, r + s = 2. The two connected
coatoms are in symmetric position, so the remaining a — 2 atoms can be distributed
in pe1(a — 2) ways.

Graph (3): One atom connects three coatoms, r + s = 1. All coatoms are
symmetric, so the remaining a — 1 atoms can be distributed in p3(a — 1) ways.
Graph (4): Two connectors, 7 + s = 2. The two coatoms at the ends are

symmetric, so the remaining a — 2 atoms can be distributed in p 1(a — 2) ways.
Graph (5): Three connectors, r + s = 3. All coatoms are symmetric, so the
remaining a — 3 atoms can be distributed in ps(a — 3) ways.
In all five cases, if a < 7+ s, then ps or py ; has a negative argument, and a zero
value by our convention. Adding up we get

R(3,a) = 2ps(a —3) + p3(a—1) + 2pza1(a — 2).

Substituting (@) and (@), observing that they are valid for all @ > 1 even if the
arguments become negative, and simplifying, we obtain the stated result. O

For ¢ = 4 one could continue in the same manner. But the sixteen connec-
tion graphs exhibit various kinds of symmetry, and manual case-by-case analysis
becomes tedious and error-prone. We now turn to a computational method that
analyzes the symmetries of the connection graphs, and also provides a numerical
solution to our counting problem. In fact, the method will also help us to derive
closed form expressions for R(4,a), R(5,a), R(6,a), and R(7,a).

5. BALLS INTO BOXES WITH SYMMETRY

We now address the second phase of our task: given a bicolored connection
graph I', and an integer n, count the ways of distributing n identical balls (the
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loners) among the vertices in the first color class (the coatoms). By saying “bi-
colored” we keep the connectors distinct from the coatoms. Otherwise, in graph 5
of Figure [ there would be an automorphism that swaps them. We could as well
orient the edges from atoms to coatoms.

The count is affected by the automorphism group Aut(I), or in fact by its action
on the coatoms, since that is where we place the balls. Indeed, although graphs (1),
(3), (5) in Figure 2 are different as graphs, they have the same symmetry between
the coatoms. For us they have the same kind of solution, namely p3(n) as we saw
in the previous section (but with different values of n).

Our counting problem is solved by an application of the cycle index theorem from
the Redfield-Pdlya counting theory. For a general introduction to this theory see
Cameron’s textbook [4]. The particular application to the balls-into-boxes problem
can be found in Lisonék’s thesis [16, Chapter 4], where a distribution of a number
of balls under permutation group G is called a G-partition of that number. (Beware
that Lisonék’s symbols are the reverse of ours: he puts ¢ balls into n boxes.) Other
mentions of the problem include [2 [5]. For completeness of exposition, we describe
the calculation here, without any claim of originality.

Consider G = Aut(I') as a permutation group on the ¢ coatoms. For each
group element g € G, let m;(g) be the number of cycles of length j in the disjoint
cycle representation of g, and define the cycle index monomial in ¢ indeterminates
t1,...,t. as follows:

2g(ty, ... te) = 7O g20) L yme(e)

The cycle index of G is the average of the cycle index monomials,

1
ZG(tlv s 7tC) = @ Z Zg(tlv s 7tC)'

geqG

A distribution of balls (loners) into ¢ boxes (coatoms) is described by a function
¢:{1,2,...,¢} = N, with £(¢) telling how many balls are in the ith box. Using
terminology from counting theory, the nonnegative integers £(¢) are figures attached
to each coatom. Each figure has a weight, which is here simply the integer itself.
The weight of a function ¢ is > ¢ ; £(i). This is the total number of balls in the
distribution, so we want to count functions of weight n.

We further define a figure-counting series

(4) Alz)=1+z+2+...=1/(1 - ),

which says that there exists one figure of each nonnegative weight (the integer
itself). We want the function-counting series

B(z) = Z bpz™,
n>0

whose coefficient b,, counts, up to symmetry, the functions ¢ of weight n. By the
cycle index theorem [4, Theorem 7.3] the function-counting series is

(5) B(x) = Zg(A(z), A(z?), ..., A(z°)).

Thus, as soon as we know the cycle index Zg, Eq. (B) gives a series whose coefficients
are the counts we desire (for all n > 0). This amounts to a very short piece
of GAP code (Program[I). As an implementation detail, if we are content with
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Program 1 Count distributions of 0,...,n balls into ¢ boxes, whose permutation
group has cycle index Zg. Counts returned as a vector.

GroupBalls := function(ZG, c, n)

local i,x,A,Axi,B;

# Cycle index may use indeterminates 1..c, take next for x.

x := Indeterminate(Rationals, c+1);

# Figure-counting polynomial up to n, and substitute x71i.

A= (1-x"(n+1)) / (1-x);

Axi := [];

for i in [1..c] do

Axi[i] := Value(4d, [x], [x"i]);

od;

# Function-counting polynomial

B := Value(ZG, [1..c], Axi);

# Pick the coefficients for x”0, ..., x"n

return CoefficientsOfUnivariatePolynomial (B){[1..n+1]13};
end;

a finite sequence of results, we may replace the series A(z) with the polynomial
14+ x4 ...+ 2™ without affecting the coefficients of B(z) up to a™.

6. IMPLEMENTATION AND NUMERICAL RESULTS

The first phase, generating the connection graphs, was done for ¢ = 2,3,...,9
with genbg as previously described. The second phase, calculating R(c,a), was
implemented as a GAP program, here summarized as Algorithm [I] and run with
Gmax = 1000.

Certain aspects of the computation are illustrated in Table[ll For ¢ = 9 the most
time-consuming parts were generating the connection graphs and analyzing their
symmetries. We observe that even though are many graphs, they have few different
cycle indices. GroupBalls is called only once for each cycle index (we keep a table
of cycle indices already seen).

The computation times should be taken as indicative only. They are the elapsed
times when running on a single Intel Xeon E5-2680 core, with a nominal clock
frequency of 2.4 GHz. The implementation was certainly not fully optimized and
there may be plenty of room for improvement. We used the following program
versions: genbg 1.4, GAP 4.8.10 [7], and Digraphs 0.11.0 [3].

Some of the numbers for ¢ < 9 and a < 1000 are listed in Tables [Tl and [T1
Full listings of the results and the programs are available separately [I4]. Since
R(9,1000) =~ 1.775 x 10%7, it would not have been practical to count the lattices by
generating them.

7. OBTAINING FUNCTIONAL FORMS

In this section we show that for any ¢ > 1, the function R(c,a) has a repre-
sentation as a quasipolynomial in a (an existence result). Furthermore we find an
explicit quasipolynomial when ¢ < 7.

For each connection graph I', let G = G(I") be the permutation group of the
¢ connectors defined by the action of Aut(I"). The function-counting series (B is a
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Algorithm 1 Given ¢, amax, calculate R(c,a) for a =0,1,2, ..., dmax-
1: N+ (0,...,0) > Vector of amax+1 zeros
2: B+ () > Lookup table for results by cycle index
3: for I' € all connection graphs do
4: ¢ < number of coatoms in I’
5: r <= number of connectors in I’
6: s < number of coatoms not covering atoms in I’
7 G + AutomorphismGroup(I") > In Digraphs package
8: Zg < CyclelIndex(G,{1,...,c}) > GAP builtin function
9: if B(Zg) exists then > Look up
10: B+ B(Zg) > Use the memorized result
11: else
12: B < GroupBalls(Zy, ¢, Gmax) > Compute
13: B(Zg) «+ B > Memorize result

14: Shift P up by r + s positions, prepending zeros, truncating after amax + 1.
15: N+ N+ B
16: return N

different different time/s
¢ | connection graphs | cycle indices | genbg aut+cyc count
2 2 1 0.0 0.0 0.1
3 5 2 0.0 0.0 0.7
4 16 6 0.0 0.0 4.0
5 72 11 0.0 0.1 13.0
6 592 26 0.0 0.5 49.6
7 10808 38 0.7 7.7 1220
8 552251 87 61.4 284.5  459.6
9 82856695 142 | 19200.7 44211.1 1297.7

TABLE I. Some details of the computations for ¢ < 9 coatoms.
Times are in seconds: genbg = generating the connection graphs,
aut+cyc = finding their automorphism groups and cycle indices,
count = calculating the counts.

generating function whose coeflicients are the numbers of ways to distribute n > 0
balls to the ¢ coatoms. The series has a special form, a rational function whose
denominator consists of factors of the form (1—z"). From this observation it follows
(Lisonék’s Theorem 4.3.5 [16]) that the coefficients are quasipolynomials of n.

A function f : N — C is a quasipolynomial of quasiperiod N, if there are poly-
nomials Py, Py, ..., Py_1 such that for all n > 0,

f(n) = Px(n) when n =% (mod N).

This definition is from Stanley [18]. (Note that N need not be minimal.) Lisonék
uses a slightly different definition that only requires the function to agree with the
polynomials from some point ng onwards. We shall use Stanley’s definition here.
Quasipolynomials, also known as polynomials on residue classes (PORC), are
extremely versatile for expressing combinatorial quantities, which often depend on
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the parity of the argument, or its residue modulo some integer V. Typical examples
are floors of polynomials, such as [I)-(B]). We recall the following from Stanley:

Proposition 1 (Part of Proposition 4.4.1 [I§]). A function f : N — C is a
quasipolynomial of quasiperiod N, if it has a rational generating function

n_ P(2)
2 S =50y

where P, Q are polynomials; every root a of Q satisfies o™ = 1; and deg P < deg Q.

Next we re-state Lisonék’s result using Stanley’s definition and with explicit
mention of a quasiperiod. If G is a permutation group acting on ¢ boxes, we
denote by Pg(n) the number of distributions of n > 0 balls in the ¢ boxes, when
distributions related by an element of G are not distinguished. (Lisonék calls them
G-partitions of the integer n.)

Proposition 2 (cf. Theorem 4.3.5 [16]). The function n — Pg(n) is a quasipoly-

nomial of quasiperiod N =lem(1,2,...,¢).
Proof. The generating function of Pg(n) is B(x) as defined in [@). Now Zg is
a polynomial in ¢ indeterminates ti,...,t., and B(z) issues from it by the Pdlya

substitutions t; = 1/(1 — 2*) for i = 1,2,...,c. With this substitution, each cycle
index monomial z, becomes a rational function R4(x) = 1/Q,(z), where (1) the
denominator is a nonempty product of binomials of the form (1 — ), and (2) the
degree of the numerator is strictly smaller than the degree of the denominator.
Clearly both conditions are retained when all R,(x) are expanded to have a common
denominator; call it Q(z).

Taking the sum of the expanded rational functions and dividing by the constant
|G|, we obtain B(x) as a rational function P(x)/Q(x) with deg P < deg @, and Q(x)
consisting of a product of binomials of the form (1 — %), with i € {1,2,...,c}.

Let N = lem(1,2,...,¢). Every root a of @ is a root of (1 — %) for some
i€{1,2,...,c}, thus o’ = 1 and also o™ = 1.

The conditions of Proposition [I] are satisfied, so the claim follows. O

A similar result follows for R(c,a), the number of rank-3 lattices, seen as a
function of a with ¢ fixed. But we have to careful with the initial terms of the
sequence. We say that two functions f and g agree from ng if f(n) = g(n) for all
n > ng. If I' is a connection graph and a > 0, we write R(I",a) for the number of
rank-3 lattices with the connection graph I' and a atoms in total.

Proposition 3. For any fized ¢ > 1, the function a — R(c,a) agrees from (5) with
a quasipolynomial in a, of quasiperiod N =lem(1,2,...,¢).
Proof. Let N =lem(1,2,...,¢) and ng = (;)

Let I' be any connection graph of ¢ connectors, and let it have r connectors and
s coatoms lacking a connector. It is clear that r + s < ng. For a < r + s, we
have R(I",a) = 0, and for a > r + s we have R(I',a) = Pg(a —r — s). Clearly
R(I',a) agrees with a quasipolynomial of quasiperiod N from r + s, thus also from
ng > 1+ s.

Let then G be the set of all connection graphs of ¢ coatoms. Then

R(c,a) =Y R(I',a).

reg
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Since every R(I',a) agrees with a quasipolynomial of quasiperiod N from ng, so
does their sum, as the family of quasipolynomials is closed under finite addition. [

This (like Lisonék’s Theorem 4.3.5) is an existence result, and does not tell
us what the quasipolynomial is. There are many ways how one may seek the
exact form. One could inspect the generating function itself, perhaps prove some
recurrence relations, and so on. Here we take the low road: for each residue class k,
if we know that the constituent polynomial P, has degree at most d, fit a polynomial
of degree d to at least d + 1 known values. If done in rational (not floating-point)
arithmetic, this identifies the polynomial coefficients exactly. But first we need to
have an upper bound on d, so that we know how many points we need. Fortunately
we can do this by an elementary argument.

Proposition 4. For any ¢ > 1, there is a constant K such that R(c,a) < Kact!
foralla>1.

Proof. Let I' be any connection graph with ¢ coatoms. Suppose first that Aut(I")
fixes all coatoms, that is, we have ¢ distinct boxes. At least one atom is used by
the connection graph, so the number of balls to distribute is n < a — 1. There are
at most a~! ways to put a — 1 balls to ¢ distinct boxes, since the numbers of balls
in the first ¢ — 1 boxes are a (¢ — 1)-tuple of integers between 0 and @ — 1. Then
observe that if Aut(I") does not fix all coatoms, this can only decrease the number
of distributions. So for all connection graphs we have R(I",a) < a“~!. For a fixed
value of ¢, there is a finite collection G of connection graphs, so R(c,a) < |G| a®~ 1.
Take K = |G]. O

Now, by Propositions [l and Ml we know in particular:

e R(4,a) agrees with a quasipolynomial with N = lem(1,2,3,4) = 12 and
degree at most 3, from ny = (;1) = 6. For the fit we need 12 x 4 = 48 known
values.

e R(5,a) agrees with a quasipolynomial with N = lem(1,...,5) = 60 and
degree at most 4, from ng = (g) = 10. For the fit we need 60 x 5 = 300
known values.

e R(6,a) agrees with a quasipolynomial with N = lem(1,...,6) = 60 and
degree at most 5, from ng = (g) = 15. For the fit we need 60 x 6 = 360
known values.

e R(7,a) agrees with a quasipolynomial with N = lem(1,...,7) = 420 and
degree at most 6, from ng = (;) = 21. For the fit we need 420 x 7 = 2940
known values.

The values of ng are as guaranteed by Proposition[8l Once a quasipolynomial is
available, one can check if it happens to agree with some of the initial terms, and
extend the range accordingly.

As we already computed the values up to a = 1000 before, we have enough
values to fit the polynomials up to ¢ = 6. For ¢ = 7 we reran Algorithm [I] with
amax = 3000, which took about 1100 seconds.

From the polynomial fits we obtain the following quasipolynomials. Leading
terms that are common to all residue classes are collected together. For the
terms that depend on residue class, we use this shorthand notation: the quantity
[co,c1,- .., car—1] takes the value ¢, when a = k (mod M). For example, [3,—3]
means 3 if a is even, and —3 if a is odd. Note that M may be smaller than N.
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Theorem 3. For any a > 0, we have

R(4,a) = (97/144)a® — (5/6)a* + [44/48,47 /48] a
+[0,13,8, —45,40, —19,0, —5,8, =27, 40, —37] / 72.

Theorem 4. For any a > 3, we have

R(5,a) = (175/192)a* — (3079/480)a® + (11771/480)a?
+ [~7268/160, —7273/160] a + h(a),

where

h(a) = [33600, 34019, 34072, 33627, 33152, 34915, 33624, 33947, 33472, 33507,
34520, 34459, 32832, 33827, 34072, 34395, 33344, 34147, 33432, 33947,
34240, 33699, 33752, 34267, 32832, 34595, 34264, 33627, 33152, 34147,
34200, 34139, 33472, 33507, 33752, 35035, 33024, 33827, 34072, 33627,
33920, 34339, 33432, 33047, 33472, 34275, 33944, 34267, 32832, 33827,

34840, 33819, 33152, 34147, 33432, 34715, 33664, 33507, 33752, 34267] / 960.

It was indeed necessary to be careful with initial terms. The quasipolynomial
in Theorem M does not agree with R(5,a) at a = 0,1,2. At those points, the
quasipolynomial yields 35,9, 6, while the true values of R(5,a) are 0,1, 5.

There does not seem to be much structure in the “quasiconstant” h(a) term of
R(5,a). Tt has the full period 60. Perhaps this was to be expected: from Table [
we recall that R(5,a) ensues as a sum over 72 graphs having 11 different cycle
indices. If the graphs have residue-dependent contributions with different periods,
their joint effect will easily end up with the full period. If desired, one may try to
manipulate h(a) into a form that is more pleasant to human eyes.

It would have been quite tedious to derive R(5,a) manually, even if to find
just the leading terms. By the help of computations we can readily see the three
leading terms, which do not depend on residue class, and which provide a fairly
precise picture of the growth rate of R(5,a). And if we want the fine details, they
are there. With the explicit formula one can easily calculate, say, R(5,1000000) =
911451918774522871241702.

For reasons of clarity, for ¢ = 6 and ¢ = 7 we show here just the leading terms
that are common to all residue classes, and hide the lower order terms behind an
O notation. The full explicit quasipolynomials are available separately [14].

Theorem 5.
R(6,a) = (185521/86400)a® — (266581/6912)a* + (4268287/12960)a>® + O(a?).

Theorem 6.

R(7,a) = (35406319/3628800)a’® — (205303771/604800)a”
+ (986460817/181440)a* — (908874965 /18144)a>® + O(a?).
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As a redundancy check, for all available values of a, we compared the quanti-
ties evaluated with the quasipolynomials against the values directly obtained from
Algorithm [II and observed that they agree.

Finally, let us see what the computations have to say about simple cases. By
the same polynomial-fit method as above, for all a > 0 we obtain

R(2,a) = a,
R(3,a) = (3/4)a® + (1/3)a+[0,—1,-8,3,—4, 5] / 12,

giving an alternative derivation of our first basic results in Section @l

8. CLOSING REMARKS

The computations in this work were facilited by the availability of several tools.
For the first phase, where the connection graphs were generated, a tool of isomorph-
free graph generation (genbg from the nauty package) was essential. The second
phase required the mathematical machinery of counting theory; but for actually
computing the automorphism groups and cycle indices of thousands of graphs, it
was convenient that those tools were available in GAP and Digraphs. Easy-to-use
arithmetic on large integers, rationals, and polynomials was also helpful.

The method of converting the generating functions to functional forms by com-
puting initial terms and then doing a polynomial fit has a certain “snake oil” appeal.
It is easy to do, provided that one has a suitable existence result that the quasipoly-
nomial actually is there to be found. However, it may require rather long sequences
to be computed. Perhaps a computational method that inspects the structure of
the generating function directly would be more efficient here.

Here we considered only one kind of lattices, the rank-3 lattices. Some of the
methods used here may be applicable to other low-rank lattices as well. A natural
next question would be that of rank-4 lattices. What is R(c,m, a), the number of
graded lattices of ¢ coatoms, m elements in the middle level, and a atoms? Can
one simply “glue” two rank-3 lattices on top of each other? Perhaps, but with two
considerations: that of isomorphism, and that of ensuring that the glued results
are indeed lattices.
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a c=3 4 5 6 7

1 1 1 1 1 1

2 3 4 5 6 7

3 8 13 20 29 39

4 13 34 68 121 197

5 20 68 190 441 907

6 29 121 441 1384 3736

7 39 197 907 3736 13530

8 50 299 1690 8934 42931

9 64 432 2916 19298 120892
10 78 600 4734 38268 306120
11 94 806 7310 70685 706642
12 112 1055 10836 123057 1506016
13 131 1352 15528 203764 2996398
14 151 1698 21619 323383 5618515
15 174 2100 29365 494925 10008899
16 197 2561 39045 734034 17053898
17 222 3085 50961 1059330 27950691
18 249 3675 65434 1492653 44275741
19 277 4338 82809 2059229 68059684
20 306 5074 103453 2788044 101869637
21 338 5891 127751 3712081 148898469
22 370 6790 156117 4868468 213061109
23 404 7T 188980 6298878 299097442
24 440 8854 226794 8049751 412683316
25 477 10029 270037 10172443 560547117
26 515 11300 319204 12723627 750594650
27 556 12677 374813 15765529 992040210
28 597 14160 437409 19366035 1295545409
29 640 15756 507553 23599151 1673363704
30 685 17465 585831 28545198 2139494240
100 7533 665370 84971972 17929736129 6858729229937
200 | 30066 5355739 1407988534 627979574932 524132826147936
300 | 67600 18112775 7211812220 4914131994972 6330705903535897
400 | 120133 42978145 22926705532 21021167741959 36624782962133435
500 | 187666 83993514 56170430969 64731346381612  142179199873933941
600 | 270200 145200550 116748251030 162041086855752  429521796157985802
700 | 367733 230640920 216652928217  351737648034289 1092140851049830127
800 | 480266 344356289 370064725029  687975809274792 2448715582864593496
900 | 607800 490388325 593351403965 1242854550978032 4988371711653746757
1000 | 750333 672778695 905068227527 2108993735138119 9422962085155489652

TABLE II. Some values of R(c,a) for ¢ =3,...,7 coatoms.
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a c=38 9

1 1 1

2 8 9

3 50 64

4 299 432

5 1690 2916

6 8934 19298

7 42931 120892

8 183303 690896

9 690896 3517049
10 2310366 15818049
11 6920971 63028260
12 18783412 224257964
13 46705657 719521493
14 107510169 2102741467
15 231227596 5650968147
16 468463678 14088437189
17 900399211 32842695865
18 1651885113 72096705250
19 2908101609 149972933224
20 4935241680 297260914919
21 8105691264 564176756133
22 12928165761 1029721046925
23 20083274851 1814279741924
24 30464974385 3096191012173
25 45228381098 5133079209599
26 65844403276 8288835750730
27 94161667324 13067204701747
28 132476193092 20153009591032
29 183609295480 30462135974619
30 250994166078 45201463018088
100 5078592962561811 7626564586350129874
200 880085483053191106 3142649707966986066096
300 16609587584876364182 94045317769328410172825
400 130737521692628355615 1014377064737641167135036
500 642112898798336927353 6329853496024443260170625
600 | 2346516577212608845729 28059449401711567076441545
700 | 7000760472426076825846 98420943238637719981239097
800 | 18015850571650533933600  291130542533101026907632456
900 | 41425805120978743606026  756477905666369353284138046

87178719353101913391613 1775181449515604936706800068

TABLE III. Some values of R(c,a) for ¢ = 8,9 coatoms.
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