
ar
X

iv
:1

80
4.

03
82

2v
1

 [
cs

.D
S]

 1
1

A
pr

 2
01

8

Enumerating All Subgraphs without Forbidden

Induced Subgraphs via Multivalued Decision

Diagrams

Jun Kawahara1, Toshiki Saitoh2, Hirofumi Suzuki3, and Ryo

Yoshinaka4

1Nara Institute of Science and Technology
2Kyushu Institute of Technology

3Hokkaido University
4Tohoku University

Abstract

We propose a general method performed over multivalued decision diagrams

that enumerates all subgraphs of an input graph that are characterized by input

forbidden induced subgraphs. Our method combines elaborations of classical set

operations and the developing construction technique, called the frontier based

search, for multivalued decision diagrams. Using the algorithm, we enumerated

all the chordal graphs of size at most 10 on multivalued decision diagrams.

1 Introduction

Enumeration is a fundamental topic in computer science. Especially, subgraph enu-

meration problem is a well-studied topic. Given a graph and constraints, the problem

is to output all the subgraphs satisfying the constraints in the graph. Several well-

known techniques for enumeration have been proposed [9, 1] and applied to several

graph classes. For example, [6] enumerates all subgraphs belonging to the class of

chordal graphs based on reverse search [1]. These traditional algorithms enumerate

subgraphs one by one explicitly and take time depending on the number of output sub-

graphs. Unfortunately, the number of output subgraphs is exponentially huge in the

size of the input graph.

On the other hand, to approach the subgraph enumeration problem by implicit enu-

meration, techniques constructing a compressed representation such as Zero-suppressed

Binary Decision Diagram (ZDD) [8] are well-studied. Computation time of such tech-

niques does not depend on the number of subgraphs but the size of the constructed

ZDDs. A classical technique such as the one proposed in [2] is to use apply operation

and family algebra that are useful function of ZDD. Moreover, a novel algorithm named

1

http://arxiv.org/abs/1804.03822v1

frontier-based search (FBS) [5] has been developed recently. FBS has been applied for

enumerating various classes of subgraphs such as paths, cycles, forests, partitions, and

so on. However, graph classes handled by ZDD based techniques are limited to rather

simple ones only.

In this paper, we propose a general technique that enumerates subgraphs belonging

to graph classes characterized by forbidden induced subgraphs. Several graph classes

such as chordal, interval, split, and threshold graphs are characterized by rather simple

forbidden induced subgraphs, like cycles, paths, and their complements. For example,

a graph is called chordal if and only if it has no cycles of size at least 4 as a vertex

induced subgraph. The proposed method needs to be given a ZDD representing for-

bidden induced subgraphs, which we assume to be computed by an existing method or

some way. Our technique consists of the following three steps, which involve FBS and

family algebra over multivalued decision diagrams (MDD) [4]:

1. Enumerating forbidden induced subgraphs on a ZDD (in some way);

2. Adding edges induced by the forbidden induced subgraphs as an MDD by FBS;

3. Constructing a ZDD enumerating subgraphs that avoid forbidden subgraphs as

induced ones by a novel operation of family algebra.

The frist step depends on the target graph class but the last two steps do not. This paper

describes those two steps.

As a demonstration of our method, we enumerated chordal graphs by experiments.

We succeeded in enumerating all the 215,488,096,587 chordal graphs of size 10 as a

ZDD.

2 Preliminaries

2.1 Forbidden induced subgraphs

Let G = (V,E) be a graph with a vertex set V and an edge set E ⊆ {{u, v} | u, v ∈
V }. For any vertex subset U ⊆ V , E[U] denotes the set of edges whose end points

are both included in U , i.e., E[U] = { e ∈ E | e ⊆ U }, called induced edges (by U).

For any edge subset D ⊆ E,
⋃
D denotes the set of the end points of each edge in

D, i.e.,
⋃
D =

⋃
{u,v}∈D{u, v}, called induced vertices (by D). We call (U,E[U])

the (vertex) induced subgraph (by U). Let G[D] = (
⋃
D,D), called the edge induced

subgraph (by D). This paper often identifies an edge induced subgraphG′ = (
⋃

D,D)
and the edge set D.

Some graph classes are characterized by forbidden subgraphs. We say that a graph

class G is FIS-characterized by a graph class F if G consists of graphs G = (V,E)
such that none of the vertex subsets of V induces a graph belonging to F , i.e.,

(V,E) ∈ G ⇐⇒ ∀U ⊆ V, (U,E[U]) /∈ F .

For example, the class of chordal graphs is FIS-characterized by the class of cycles of

size at least 4.

2

2.2 Multi-valued Decision Diagrams

A k-colored subset of a finite set E is a k-tuple ~D = (D1, . . . , Dk) of subsets Di ⊆ E
such that Di ∩Dj = ∅ for any distinct i and j. To represent and manipulate sets of k-

colored subsets, we use k-valued decision diagrams (k-DDs), which are special types

of multi-valued decision diagram with lack of a reduction rule.

A k-DD over a finite set E = {e1, . . . , em} is a labeled rooted directed acyclic

graph Z = (N,A, ℓ) with a node set N , an arc set A and a labeling function ℓ. The

node set N has exactly one root node ρ and exactly two terminal nodes⊥ and⊤. Each

non-terminal node α ∈ N \ {⊤,⊥} has a label ℓ(α) ∈ {1, . . . ,m} and has exactly

k+1 outgoing arcs called 0-arc, 1-arc, . . . , and k-arc. The node pointed at by the j-arc

of α is called the j-child and denoted by αj for each j ∈ {0, 1, . . . , k}. It is satisfied

that ℓ(αj) = ℓ(α) + 1 if αj is not a terminal.

Each path π in a k-DD represents a k-colored subset [[π]] = (D1, . . . , Dk) of E
defined by

Dj = { eℓ(β) | π includes the j-arc of β } ,

for j ∈ {1, . . . , k}. The k-DD Z itself represents a set of k-colored subsets

[[Z]] = { [[π]] | π is a path from the root ρ to the terminal⊤} .

We call a k-DD reduced if there are no distinct nodesα and β such that ℓ(α) = ℓ(β)
and αj = βj for all j ∈ {0, . . . , k}. If a k-DD has nodes that violate this condition,

those can be merged repeatedly until it becomes reduced. This reduction does not

change the semantics of the k-DD.

We remark that k-DDs, 2-DDs, and 3-DDs are almost identical to MDDs, binary

decision diagrams as well as zero-suppressed binary decision diagrams, and ternary

decision diagrams, respectively, except a reduction rule that eliminates nodes so that

the obtained data structure will be more compact. It is possible for our algorithm with

slight modification to handle “zero-suppress” k-DDs, where a node can be eliminated

if all the j-children for 1 ≤ j ≤ k point at the terminal ⊥. However, for simplicity,

we have defined k-DDs without employing such a reduction rule, where the label of a

child node is always bigger than the parent’s by one.

3 Proposed Algorithm

Suppose that a graph class G is FIS-characterized by F . In this section, we present

an algorithm that enumerates all the subgraphs of an input graph G belonging to G
provided that all the forbidden induced subgraphs of G belonging to F is also given

as an input. Hereafter we fix an input graph G = (V,E) and restrict G and F to be

the subgraphs of G. Here by a subgraph of G we mean a graph G′ = (V,D) for some

D ⊆ E. Therefore, we may identify a graph and its edge set. That is, G and F are

represented as sets of subsets of E. The set F is given as a 2-DD.

Recall the definition of FIS-characterization:

D ∈ G ⇐⇒ ∀U ⊆
⋃

D, D[U] /∈ F .

3

In other words, if a graph D ∈ G contains a subgraph D′ belonging to F , then D′ must

induce edges with which it does not belong to F . Our proposed method can be divided

into two phases. In the first phase, as its details will be described in Section 3.1, we

construct a 3-DD I for the set of 2-colored subsets (F1, F2) of E such that F1 ∈ F and

F2 = E[
⋃
F1] \ F1. Then we construct a 2-DD Z for the set of edge sets D such that

∀(F1, F2) ∈ [[I]], (F1 ⊆ D =⇒ F2 ∩D 6= ∅) ,

as described in Section 3.2. The following lemma ensures that our method indeed gives

the desired subgraphs.

Lemma 1. Let D ⊆ E. The following conditions are equivalent:

1. ∀U ⊆
⋃
D, D[U] /∈ F ,

2. ∀F ∈ F , (F ⊆ D =⇒ (E[
⋃

F] \ F) ∩D 6= ∅).

Proof. (⇐) Suppose that D does not satisfy the first condition. There is U ⊆
⋃
D

such that (U,D[U]) ∈ F . Let F = D[U]. By definition F ⊆ D and E[
⋃
F] \ F ⊆

E[U] \D[U] ⊆ E \D. We have E[
⋃
F] \ F ∩D = ∅.

(⇒) Suppose that D does not satisfy the second condition. There is F ∈ F such

that F ⊆ D and (E[
⋃

F] \ F) ∩ D = ∅. We will show that U =
⋃
F disproves the

first statement. Since F ⊆ D, clearly U ⊆
⋃
D. It suffices to show that F = D[U],

which implies D[U] ∈ F . Clearly

F = F [
⋃

F] ⊆ D[
⋃

F] = D[U] .

By assumption,

D[U] \ F = (E[U] ∩D) \ F = (E[U] \ F) ∩D = ∅

and thus D[U] ⊆ F .

3.1 Edge induction

This subsection presents an algorithm that gives a 3-DD I representing [[I]] = { (F,
E[

⋃
F] \ F) | F ∈ [[F]] } from an input 2-DD F representing a set [[F]] of edge sets.

That is, we “color” the edges induced by
⋃
F with the second color for each F ∈ F .

Our algorithm can be seen as an instance of the so-called frontier-based search, which

is a generic framework for enumerating all the subgraphs with a specific property from

an input graph. Algorithm 1 constructs a 3-DD in a top-down manner, where the initial

3-DD has only the root node ρI with ℓ(ρI) = 1. By giving children to already con-

structed nodes, we expand the diagram. Each node α of the diagram under construction

has auxiliary information called configuration, which is a pair (nα, fα) of a node nα

of the input 2-DD F and a map fα from a subset E〈ℓ(α)〉 =
⋃
E≥ℓ(α) ∩

⋃
E<ℓ(α) of

V to {−1, 0, 1, 2}, where E≥i = {ei, . . . , em} and E<i = {e1, . . . , ei−1}. No distinct

nonterminal nodes have the same configuration. The first component nα satisfies the

property that for any path π from the root ρI to α in I, there is a path θ from the root

ρF to nα in F such that [[π]] = ([[θ]], F2) for some F2 ⊆ E (but not vice versa). The

default value of fα is set to fα(u) = 0 for all u ∈ E〈i〉. If it has non-zero value,

4

• fα(u) = −1 means that u must not occur in [[π]],

• fα(u) = 1 means that there is no v′ such that {u, v′} is colored 1 in [[π′]] but

there must be v such that {u, v} is colored 1 in [[π]],

• fα(u) = 2 means that there is v′ such that {u, v′} ∈ E<i is colored 1 in [[π′]],

for any path π from the root ρI to the terminal ⊤ passing through α and any path π′

from ρI to α. The algorithm starts with the root node ρI with configuration (ρF, ∅).

Algorithm 1: Inducing edges

input : a 2-DD F (representing forbidden induced subgraphs)

output: a 3-DD I (coloring the edges induced by the forbidden graphs)

let N1 ← {(ρF, ∅)}, Ni ← ∅ for i = 2, . . . ,m and Nm+1 ← {⊤,⊥};
for i = 1, . . . ,m do

for each α ∈ Ni do

for j = 0, 1, 2 do

let αj ← Child(α, j);
if αj /∈ Ni+1 then add a new node αj with label i+ 1 to Ni+1;

let αj be the j-child of α;

return the 3-DD consisting of nodes of N1, . . . , Nm+1;

Algorithm 2 gives the configuration of the j-child of a node α ∈ Ni, unless the

child must be a terminal. Let the configuration of α be (β, f) and ei = {u1, u2}.
Choosing the 0-arc of α means that we do not include the edge ei in a 2-colored

graph under consideration. Recall that if both u1 and u2 are used in a graph, then the

edge ei must be colored 1 or 2. Lines 6–9 reflect this restriction.

Choosing the j-arc with j ≥ 1 means that the edge ei is colored j in the resultant 2-

colored graph. This case is handled on Lines 10–18. This clearly contradicts f(uk) =
−1 for any of k ∈ {1, 2}, which means that uk must not be used. If f(uk) = 0, this

means that so far all edges {uk, v} ∈ E<i are colored 0, i.e., they do not occur in 2-

colored subgraphs under consideration. On the other hand, if f(v) ≥ 1, this means that

v will occur together with u. This contradicts that the edge {uk, v} remains colored

0. If ei = {u1, u2} is colored 1, this means that it is in a forbidden graph, so we let

fj(uk) = 2. If ei = {u1, u2} is colored 2, this means that it is induced by an vertex in

a forbidden graph, so we let fj(uk) = 1 unless fj(uk) = 2.

In addition, if f(uk) = 1 and uk /∈
⋃
E≥i+1, this means that uk is supposed to

have an edge colored with 1 but we have decided not to color any edges connecting uk

with 1. This restriction is checked on Line 19.

Since we do not need to remember the values of fj(v) for v /∈ E〈i+1〉 in the further

computation, we restrict the domain of fj to be E〈i+1〉 on Line 20.

5

Algorithm 2: Child(α, j)

input : node α with configuration (β, f) and a child number j
output: configuration of the j-th child αj of α

1 let i← ℓ(α) and {u1, u2} ← ei;
2 if j = 1 then let nj ← β1;

3 else let nj ← β0;

4 for all v ∈ E〈i〉 do let fj(v)← f(v);

5 for all v ∈ E〈i+1〉 \ E〈i〉 do let fj(v)← 0;

6 if j = 0 then

7 if n0 = ⊥ or f(u1)f(u2) ≥ 1 then let α0 ← ⊥;

8 else if f(u1) ≥ 1 then let f0(u2)← −1;

9 else if f(u2) ≥ 1 then let f0(u1)← −1;

10 else

11 if nj = ⊥ or f(u1) = −1 or f(u2) = −1 then let αj ← ⊥;

12 else

13 for k = 1, 2 do

14 if f(uk) = 0 then

15 for all v ∈ E〈i〉 such that {uk, v} ∈ E<i do

16 if f(v) ≥ 1 then let αj ← ⊥;

17 else let fj(v)← −1;

18 let fj(uk)← max{f(uk), 3− j};

19 if uk /∈
⋃
E≥i+1 and fj(uk) = 1 for some k ∈ {1, 2} then let αj ← ⊥;

20 if αj 6= ⊥ then let αj ← (nj , fj ↾ E
〈i+1〉);

21 return αj ;

3.2 Enumeration of subgraphs with no forbidden induced subgraphs

We now give an operation that computes a 2-DD D for

[[D]] = χ([[I]]) = {D ⊆ E | ∀(F1, F2) ∈ [[I]], (F1 ⊆ D =⇒ F2 ∩D 6= ∅) }

from a 3-DD I. Note that the domain of χ is 2-colored subsets of E and the codomain

is (1-colored) subsets of E. When I represents [[I]] = { (F,E[
⋃
F] \ F) | F ∈ [[F]] }

for a set [[F]] of forbidden graphs, we obtain the FIS-characterized set, by Lemma 1.

We compute D from a 3-DD I in a bottom-up recursive manner.

Here we give a semantics of a node α of a k-DD by

[[α]] = { [[π]] | π is a path from α to ⊤} .

Clearly [[D]] = [[ρD]] for any k-DD D and its root ρD. For a set I of 2-colored subsets

of E≥i, define

χi(I) = {D ⊆ E≥i | ∀(F1, F2) ∈ I, (F1 ⊆ D =⇒ F2 ∩D 6= ∅) } .

6

According to this definition, the base of the recursion is given by

• χm+1([[⊥]]) = χm+1(∅) = {∅},

• χm+1([[⊤]]) = χm+1({∅, ∅}) = ∅.

For i ≤ m, it holds that

χi(I) = (χi+1(I0) ∩ χi+1(I2)) ∪ (ei ∗ (χi+1(I0) ∩ χi+1(I1))) , (1)

where

e ∗ D = { {e} ∪D | D ∈ D } for any family D of (1-colored) subsets of E,

I0 = { (F1, F2) ∈ I | ei /∈ F1 ∪ F2 },

I1 = { (F1 \ {ei}, F2) | ei ∈ F1, (F1, F2) ∈ I },

I2 = { (F1, F2 \ {ei}) | ei ∈ F2, (F1, F2) ∈ I }.

That is, if I = [[α]], then I0 = [[α0]], I1 = [[α1]] and I2 = [[α2]]. If a 2-DD has a

node β with label ei such that [[β]] = χi(I), then [[β0]] = χi+1(I0) ∩ χi+1(I2) and

[[β1]] = χi+1(I0) ∩ χi+1(I1).
Equation (1) is justified by the following observation. Let us partition χi(I) into

two depending on whether a set contains ei, i.e., χi(I) = D0 ∪ (ei ∗D1) where no sets

in D0 ∪ D1 contain ei. Then by definition,

D0 = {D ⊆ E≥i | ei /∈ D ∧ ∀(F1, F2) ∈ I, (F1 ⊆ D =⇒ F2 ∩D 6= ∅) }

= {D ⊆ E≥i+1 | ∀(F1, F2) ∈ I0, (F1 ⊆ D =⇒ F2 ∩D 6= ∅)

∧ ∀(F1, F2) ∈ I1, ({ei} ∪ F1 ⊆ D =⇒ F2 ∩D 6= ∅)

∧ ∀(F1, F2) ∈ I2, (F1 ⊆ D =⇒ ({ei} ∪ F2) ∩D 6= ∅) }.

For D ⊆ E≥i+1, the condition {ei} ∪ F1 ⊆ D can never be true. In addition, ({ei} ∪
F2) ∩D 6= ∅ if and only if F2 ∩D 6= ∅. Hence,

D0 = {D ⊆ E≥i+1 | ∀(F1, F2) ∈ I0 ∪ I2, (F1 ⊆ D =⇒ F2 ∩D 6= ∅) }

= χi+1(I0) ∩ χi+1(I2) .

On the other hand,

D1 = {D ⊆ E≥i+1 | ∀(F1, F2) ∈ I, (F1 ⊆ {ei} ∪D =⇒ F2 ∩ ({ei} ∪D) 6= ∅) }

= {D ⊆ E≥i+1 | ∀(F1, F2) ∈ I0, (F1 ⊆ {ei} ∪D =⇒ F2 ∩ ({ei} ∪D) 6= ∅)

∧ ∀(F1, F2) ∈ I1, ({ei} ∪ F1 ⊆ {ei} ∪D =⇒ F2 ∩ ({ei} ∪D) 6= ∅)

∧ ∀(F1, F2) ∈ I2, (F1 ⊆ {ei} ∪D =⇒ ({ei} ∪ F2) ∩ ({ei} ∪D) 6= ∅) }.

Obviously, the condition ({ei} ∪ F2) ∩ ({ei} ∪ D) 6= ∅ is always true. Recall that

ei /∈ F1 ∪F2 for (F1, F2) ∈ I0 and that ei /∈ F2 for (F1, F2) ∈ I1. By simplifying the

formula, we obtain

D1 = {D ⊆ E≥i+1 | ∀(F1, F2) ∈ I0, (F1 ⊆ D =⇒ F2 ∩D 6= ∅)

∧ ∀(F1, F2) ∈ I1, (F1 ⊆ D =⇒ F2 ∩D 6= ∅) }

= χi+1(I0) ∩ χi+1(I1) .

7

Algorithm 3: Computing a 2-DD for χ([[I]]) from a 3-DD I

input : node α of a 3-DD

output: node β of a 2-DD such that [[β]] = χ([[α]])
if α = ⊥ then return⊤;

else if α = ⊤ then return⊥;

else return a node with label eℓ(α) whose 0-child represents χ([[α0]]) ∩ χ([[α2]])
and 1-child represents χ([[α0]]) ∩ χ([[α1]]);

Algorithm 3 computes a 2-DD for χ([[I]]) from (the root of) a 3-DD I based on

Equation (1).

4 Experiments

In this section, we show experimental results of constructing 2-DDs and 3-DDs for

chordal graphs to confirm the performance of our algorithm. For a given graph G,

the 2-DD for all the cycles on G can be constructed by conventional frontier-based

search [7]. The 2-DD for all the subgraphs of G that have a specified number of edges

can be constructed by the method by Kawahara et al. [5]. Since both methods can be

easily combined [5], we can obtain the 2-DD Fcho representing all the cycles with size

at least four on G. By applying the algorithm in Sec. 3.1 with F = Fcho, we obtain the

3-DD, say Icho, and by applying the algorithm in Sec. 3.2 with I = Icho, we have the

2-DD, say Zcho, for χ([[Icho]]), which represents the set of all the chordal subgraphs of

G.

To see the scalability and bottleneck of our algorithm, we run it for complete

(vertex-labeled) graphs with n vertices. Giving a complete graph as the input means

that we obtain the set of all the chordal labeled (not necessarily connected) graphs with

at most n vertices as a 2-DD. We implemented our algorithm in the C++ language

using the TdZdd library [3] for the construction of DDs in a top-down manner. Our

implementation was complied by g++ with the -O3 optimization option and run on a

machine with Intel Xeon E5-2630 (2.30GHz) CPU and 128GB memory (Linux Centos

7.4).

Table 1 shows the running time and memory usage of algorithms. “Const. X time”

in the table indicates the time (in seconds) for constructing the (2- or 3-) DD X . “Mem

1” shows the maximum memory usage (in MB) during constructing Fcho and Icho (ob-

tained by calling getmaxrss() function after their construction finishes). “Mem 2”

shows the maximum memory usage during constructing Zcho measured by a program

whose input is Icho (that is, the usage does not include that of “Mem 1”). “OOM”

means out of memory (i.e., the memory usage exceeds 128GB). We can confirm that

our algorithm spent most of the time constructing Zcho.

Table 2 shows the number of non-terminal nodes of Fcho, Icho and Zcho and that

of graphs (i.e., the cardinality of the family of sets represented by DDs) in Fcho and

Zcho. Note that the cardinality of the family represented by Fcho is the same as Icho.

The cardinality of a family represented by a DD can be easily computed by a simple

8

Table 1: Running time (sec.) and memory usage (MB) for complete graphs with n vertices.

Const. Fcho Const. Icho Const. Zcho

n time time time Mem 1 Mem 2

2 0.000 0.000 0.000 28 28

3 0.000 0.000 0.000 28 28

4 0.001 0.000 0.001 28 28

5 0.001 0.001 0.001 28 28

6 0.002 0.003 0.004 28 28

7 0.005 0.011 0.030 29 28

8 0.014 0.041 0.333 29 32

9 0.040 0.123 14.664 32 508

10 0.109 0.496 692.666 45 15738

11 0.323 1.574 OOM 92 OOM

Table 2: Number of nodes of 2-DDs and 3-DDs and that of graphs represented by the 2-DDs. “#

cycles” means that the number of cycles with length at least four.

Const. Fcho Const. Icho Const. Zcho # Chordal

n # node # node # node # cycles labeled graphs

2 0 1 1 0 2

3 0 4 3 0 8

4 12 23 17 3 61

5 54 176 106 27 822

6 202 921 849 177 18154

7 717 4883 8768 1137 617675

8 2483 21959 111520 7962 30888596

9 8569 119624 1736915 62730 2192816760

10 29884 498703 32470737 555894 215488096587

11 105789 2324022 OOM 5487894 OOM

dynamic programming-based algorithm [7] in time proportional to the number of nodes

in the DD. The numbers appearing in the column “# Chordal labeled Graphs” coincide

those in the sequence A058862 in OEIS [10].

References

[1] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied

Mathematics, 65(1-3):21–46, 1996.

[2] Olivier Coudert. Solving graph optimization problems with ZBDDs. In Proc. of

European Design and Test Conference, pages 224–228, 1997.

9

[3] Hiroaki Iwashita and Shin-ichi Minato. Efficient top-down ZDD construction

techniques using recursive specifications. TCS Technical Reports, TCS-TR-A-

13-69, 2013.

[4] Timothy Kam, Tiziano Villa, and R.K. Brayton. Multi-valued decision diagrams:

Theory and applications,” multiple-valued logic. 4, Jan 1998.

[5] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-

based search for enumerating all constrained subgraphs with compressed repre-

sentation. IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, E100-A(9):1773–1784, 2017.

[6] Masashi Kiyomi and Takeaki Uno. Generating chordal graphs included in given

graphs. IEICE Transactions on Information and Systems, E89-D(2):763–770,

2006.

[7] Donald E. Knuth. The art of computer programming, Vol. 4A, Combinatorial

algorithms, Part 1. Addison-Wesley, 2011.

[8] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial

problems. In Proc. of the 30th ACM/IEEE design automation conference, pages

272–277, 1993.

[9] Robert. C. Read and Robert. E. Tarjan. Bounds on backtrack algorithms for listing

cycles, paths, and spanning trees. Networks, 5:237–252, 1975.

[10] Neil J. A. Sloane. The encyclopedia of integer sequences,

http://oeis.org/A058862 (accessed 11 Apr. 2018).

10

http://oeis.org/A058862

	1 Introduction
	2 Preliminaries
	2.1 Forbidden induced subgraphs
	2.2 Multi-valued Decision Diagrams

	3 Proposed Algorithm
	3.1 Edge induction
	3.2 Enumeration of subgraphs with no forbidden induced subgraphs

	4 Experiments

