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CURIOUS CONJECTURES ON THE DISTRIBUTION OF PRIMES

AMONG THE SUMS OF THE FIRST 2n PRIMES

ROMEO MEŠTROVIĆ

ABSTRACT. Let pn be nth prime, and let (Sn)
∞

n=1
:= (Sn) be the sequence of the sums

of the first 2n consecutive primes, that is, Sn =
∑

2n

k=1
pk with n = 1, 2, . . .. Heuristic

arguments supported by the corresponding computational results suggest that the primes

are distributed among sequence (Sn) in the same way that they are distributed among

positive integers. In other words, taking into account the Prime Number Theorem, this

assertion is equivalent to

#{p : p is a prime and p = Sk for some k with 1 ≤ k ≤ n}

∼#{p : p is a prime and p = k for some k with 1 ≤ k ≤ n} ∼ logn

n
as n→ ∞,

where |S| denotes the cardinality of a set S. Under the assumption that this assertion is

true (Conjecture 3.3), we say that (Sn) satisfies the Restricted Prime Number Theorem.

Motivated by this, in Sections 1 and 2 we give some definitions, results and examples

concerning the generalization of the prime counting function π(x) to increasing positive

integer sequences.

The remainder of the paper (Sections 3-7) is devoted to the study of mentioned se-

quence (Sn). Namely, we propose several conjectures and we prove their consequences

concerning the distribution of primes in the sequence (Sn). These conjectures are

mainly motivated by the Prime Number Theorem, some heuristic arguments and related

computational results. Several consequences of these conjectures are also established.

1. INTRODUCTION, MOTIVATION AND PRELIMINARIES

An extremely difficult problem in number theory is the distribution of the primes

among the natural numbers. This problem involves the study of the asymptotic behavior

of the counting function π(x) which is one of the more intriguing functions in number

theory. The function π(x) is defined as the number of primes ≤ x. For elementary

methods in the study of the distribution of prime numbers, see [12].

Although questions in number theory were not always mathematically en vogue, by

the middle of the nineteenth century the problem of counting primes had attracted the at-

tention of well-respected mathematicians such as Legendre, Tchébychev, and the prodi-

gious Gauss.

A query about the frequency with which primes occur elicited the following response:

I pondered this problem as a boy, and determined that, at around x, the primes occur

with density 1/ log x–C. F. Gauss (letter to Encke, 24 December 1849). Gauss wrote:

This remark of Gauss can be interpreted as predicting that

#{primes ≤ x} ≈
⌊x⌋
∑

n=2

1

log n
≈
∫ x

2

dt

log t
= Li(x).
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Studying tables of primes, C. F. Gauss in the late 1700s and A.-M. Legendre in the early

1800s conjectured the celebrated Prime Number Theorem:

π(x) = |{p ≤ x : p prime}| ∼ x

log x

(here, as always in the sequel, |S| denotes the cardinality of a set S).

This theorem was proved much later ([8, p. 10, Theorem 1.1.4]; for its simple analytic

proof see [31] and [46], and for its history see [3], [21], [22] and [28, p. 21]. Briefly,

π(x) ∼ x/ log x as x → ∞, or in other words, the density of primes p ≤ x is 1/ log x;

that is, the ratio π(x) : (x/ log x) converges to 1 as x grows without bound. Using

L’Hôpital’s rule, Gauss showed that the logarithmic integral
∫ x

2
dt/ log t, denoted by

Li(x), is asymptotically equivalent to x/ log x. Recall that Gauss felt that Li(x) gave

better approximations to π(x) than x/ log x for large values of x.

Though unable to prove the Prime Number Theorem, several significant contribu-

tions to the proof of Prime Number Theorem were given by P. L. Chebyshev in his two

important 1851–1852 papers ([6] and [7]). Chebyshev proved that there exist positive

constants c1 and c2 and a real number x0 such that c1x/ log x ≤ π(x) ≤ c1x/ log x for

x > x0. In other words, π(x) increases as x log x. Using methods of complex analysis

and the ingenious ideas of Riemann (forty years prior), this theorem was first proved in

1896, independently by J. Hadamard and C. de la Vallée-Poussin (see e.g., [33, Section

4.1]).

A generalized prime system (or g-prime system) G is a sequence of positive real num-

bers q1, q2, q3, . . . satisfying 1 < q1 ≤ q2 ≤ · · · ≤ qn ≤ qn+1 ≤ · · · and qn → ∞ as

n → ∞. From these can be formed the system N of generalized integers or Beurling

integers; that is, the numbers of the form qk11 qkl2 · · · qkll , where l ∈ N and k1, k2, . . . , kl ∈
N0 := N

⋃{0}. Notice that N denotes the multiplicative semigroup generated by G, and

it consists of the unit 1 together with all finite power-products of g-primes, arranged in

increasing order and counted with multiplicity.

Clearly, this system generalizes the notion of primes and positive integers obtained

from them. Such systems were first introduced by A. Beurling [5] and have been studied

by many authors since then (see in particular [4], [2], [11], [13], [25], [32] and [47]). In

particular, Nyman [32] and Malliavin [25] sharpened Beurling’s results in various ways.

Much of the theory concerns connecting the asymptotic behaviour of g-prime counting

function and g- counting function πG(x) and NG(x), defined on [1,∞) respectively by

πG(x) =
∑

q∈G,q≤x

1 and NG(x) =
∑

n∈N ,n≤x

1,

where in the first sum the summation is taken over all g-primes, counting multiplicities.

Similarly, for the second sum
∑

n∈N ,n≤x 1. Accordingly, we have

πG(x) = #{i : qi ∈ G and gi ≤ x} and NG(x) = #{i : ni ∈ N and ni ≤ x}.
If G = {a1, a2, . . . , an, an+1, . . .} = (an)

∞
n=1 is a sequence such that a1 ≤ a2 ≤ · · · ≤

an ≤ an+1 ≤ · · · , then obviously, we have πG(an) = n for each n ∈ N.

In 1937 Beurling proved [5, Théorème IV] that if NG satisfies the asymptotic relation

NG(x) = Ax+O(x/ logγ x) with some constants A > 0 and γ > 3/2, then the number

of qn’s such that qn ≤ x is equal to x/ log x+ o(x/ log x), i.e.,

πG(x) =
x

log x
+ o

(

x

log x

)

.
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In other words, the conclusion of the Prime Number Theorem (in the sequel, shortly writ-

ten as PNT) is valid for such a system G (from this reason often called a Beurling prime

number system). Beurling also gave an example in which NG(x) = Ax+O(x/ log3/2 x)
but PNT is not valid. This result was refined in 1969 by H. G. Diamond [9, Theorem

(B)]. In 1970 Diamond [10] also proved that Beurling’s condition is sharp, namely, the

PNT does not necessarily hold if γ = 3/2.

In particular, if G is a set P := {p1, p2, p3, . . .} of all primes 2 = p1 < p2 < p3 < · · ·
with the associated multiplicative semigroup N = N = {1, 2, 3, . . .}, then PNT states

that

π(x) ∼ x

log x
, as x → ∞,

where π(x) is the usual prime counting function, that is,

π(x) =
∑

p prime, p<x

1.

As observed in [4, Introduction], the additive structure of the positive integers is not

particularly relevant to the distribution of primes. Therefore, for a given g-prime sys-

tem G defined above, it can be of interest to consider the distribution of g-primes (the

elements in G) with respect to certain associated system of generalized integers without

any algebraic (multiplicative) structure. This means that the associated system N to G
defined above may be some subset of [1,+∞) which is not a multiplicative semigroup

(generated by G).

In particular, here we mainly consider the case when G is an infinite set of primes

and the associated system N to G is an increasing integer sequence (an)
∞
n=1. We focus

our attention when G is a set of all primes whose associated system N is the sequence

(an)
∞
n=1 := (

∑2n
i=1 pi)

∞
n=1 where 2 = p1 < p2 < · · · < pn < · · · are all the primes.

Let (G,N := (ak)
∞
k=1) be a pair defined above. Then we define its counting function

NG,(ak)(x) as

NG,(ak)(x) = #{i : i ∈ N and ai ≤ x}.
Furthermore, the prime counting function for (G,N := (ak)

∞
k=1) is the function x 7→

πG,(ak)(x) defined on [1,∞) as

(1) πG,(ak)(x) = #{q : q ∈ G and q = ai for some i with ai ≤ x}.
Heuristic and computational results show that for many “natural pairs” (G,N := (ak)

∞
k=1)

the associated counting function NG,(ak)(x) has certain asymptotic growth as x → ∞.

Notice that for each n ∈ N we have

(2) πG,(ak)(an) = #{q : q ∈ G and q = ai for some i with 1 ≤ i ≤ n}.
The normalizable prime counting function for (G,N = (ak)

∞
k=1) is the function (n, x) 7→

pG,(ak)(n, x) defined for (n, x) ∈ N× [1,+∞) as

(3) pG,(ak)(n, x) =
log an
an

πG,(ak)(x).

The above expression induces the companion sequence (bn)
∞
n=1 of (ak)

∞
k=1 defined as

(4) bn = pG,(ak)(an) =
log an
an

πG,(ak)(an), n = 1, 2, . . . .
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We also define another “companion” sequence (cn)
∞
n=1 of (ak)

∞
k=1 defined as

(5) cn =
an

(logn)(log an)
=

πG,(ak)(an)

bn log n
, n = 1, 2, . . . .

Here as always in the sequel, we will suppose that G is a set of all primes whose

associated system N is a sequence (ak)
∞
k=1. For brevity, in the sequel the functions

defined by (1), (2), (3) and (4) will be denoted by p(ak)(x), π(ak)(an), p(ak)(n, x) and

p(ak)(an), respectively.

Definition 1.1. Let Ω be a set of all nonnegative continuous real functions defined on

(1,+∞) and let (ak)
∞
k=1 := (ak) be an increasing sequence of positive integers. We say

that (ak) is a prime-like sequence if there exists the function ω(ak) = ω ∈ Ω such that the

function n 7→ π(ak)(an) defined by (2) is asymptotically equivalent to ω(n) as n → ∞.

Then we say that a sequence (ak) satisfies the ω-Restricted Prime Number Theorem.

In particular, if ω(x) ∼ x/ log x as x → ∞, then we say that a sequence (ak) satisfies

the Restricted Prime Number Theorem (RPNT).

Proposition 1.2. Let (ak)
∞
k=1 be a positive integer sequence, and let (bn)

∞
n=1 be its com-

panion sequence defined by (4). Then

(6) lim sup
n→∞

bn ≤ 1.

Proof. Taking the obvious inequality π(ak)(an) ≤ π(an) with n = 1, 2, . . . into (4) we

get

bn ≤ π(an) log an
an

, n = 1, 2, . . . ,

which by the Prime Number Theorem immediately yields

lim sup
n→∞

bn ≤ lim
n→∞

π(an) log an
an

= 1,

as desired. �

Proposition 1.3. Let (an) be a prime-like sequence with the associated function ω(x).
Then

(7) lim sup
n→∞

ω(n)

π(an)
≤ 1.

This means that ω(n) grows slowly than π(an) as n → ∞.

Proof. Notice that the inequality (7) is equivalent to

(8) lim sup
n→∞

log an
an

π(ak)(an) ≤ 1.

Since by the assumption, ω(n) ∼ π(ak)(an), the inequality (8) yields

lim sup
n→∞

log an
an

ω(n) ≤ 1,

whence, in view of the fact that log an/an ∼ 1/π(an), immediately follows (7). �

Remark 1.4. The inequality (6) is sharp since by the Prime Number Theorem (see Ex-

ample 2.1), equality in (6) holds for the sequences ak = k with k = 1, 2, . . ..
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Remark 1.5. If a sequence (ak) satisfies the ω-Restricted Prime Number Theorem, then

by (4) we have

(9) ω(n) ∼ π(ak)(an) =
anbn
log an

as n → ∞.

Remark 1.6. Let (ak) be a sequence satisfying the ω- Restricted Prime Number Theorem.

Then clearly, ω(ak)(n) ≤ n for all sufficiently large n. Moreover, ω(ak)(n) ∼ n as

n → ∞ if and only if the density of primes in a sequence (ak) is equal to 1.

Notice also that by the Prime Number Theorem, ωN(x) = x/ log x for the sequence

of all positive integers N = {1, 2, . . . n, . . .}, that is, N satisfies the Restricted Prime

Number Theorem (cf. Conjecture 3.3).

Here, as always in the sequel, P = (pn) := {p1, p2, . . . pn, . . .} will denote the set of

all primes, where 2 = p1 < 3 = p2 < p3 < · · · < pn < · · · . Moreover, (an) will always

denotes an infinite strictly increasing sequence of positive integers. Hence, for such a

sequence must be an ≥ n for each n ∈ N.

The remainder of the paper is organized as follows. In Section 2 we present five

examples concerning the determination of the function ω(ak)(x) and a sequence (bn)
associated to a given sequence (ak). In particular, we consider the sequence (ak)

∞
k=1

with ak = a + (k − 1)d, where a ≥ 1 and d > 1 are relatively prime integers.

In Section 3 we consider the distribution of primes in the sequence (Sn)
∞
n=1 whose

terms are given by Sn =
∑2n

i=1 pi, where pi is the ith prime. Heuristic arguments sup-

ported by related computational results suggest the curious conjecture that the sequence

(Sn) satisfies the Restricted Prime Number Theorem (Conjecture 3.3). In other words,

this means that the primes are distributed amongst all the terms of the sequence (Sn) in

the same way that they are distributed amongst all the positive integers. Under this con-

jecture, we prove that if qk is the kth prime in (Sn)
∞
n=1, then qk ∼ 2k2 log3 k ∼ 2p2k log k

as k → ∞ (Corollaries 3.6 and 3.7).

Assuming that Conjecture 3.3 is true, in Section 4 we give the asymptotic expression

for the kth prime in the sequence (Sn) (Corollary 4.2); namely, qk ∼ 2k2 log3 k as

k → ∞. This result is refined by Theorem 4.4. We also conjecture that ⌊k log k⌋+1 ≤ m
for each pair (k,m) of positive integers with k ≥ 1 and qk = Sm (Conjecture 4.6). Some

consequences of Conjectures 3.3 and 4.6 are also presented.

Section 5 is devoted to the estimations of the values Mk (k = 1, 2, . . .) involving

in the expression for qk from Theorem 4.4. We also propose some other conjectures

concerning the sequences (Sk) and (Mk). Related consequences are also established.

The conjectures presented in this paper, as well as some their consequences, are

mainly supported by some computational results given in Section 6. In particular, the

number πn := k of primes in the set Sn := {S1, S2, . . . , Sn} for 38 values of n up to

109 + 5 · 108 are presented in Table 1. For such values k and the associated indices m
such that qk = Sm, the corresponding approximate values of qk, Mk (together with lower

and upper bounds of Mk), (k log k)/m and Sm

√
k log k/(2m5/2 logm) are also given in

this table. Under the previous notations, related numerical results for qk/(2k
2 log3 k),

qk/(2m
2 logm) and two estimates involving qk which are discussed in Section 4, are

given in Table 3. Some additional computational results, the conjectures and their con-

sequences are also given in Section 6.
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In the last Section 7 we propose the stroner (asymptotic) version of Conjecture 3.3

which coincides with well known form of Prime Number Theorem involving the function

li(x).
Notice that similar considerations to those for the sequence (Sn) concerning alternat-

ing sums of consecutive primes are given in [29].

2. EXAMPLES

Example 2.1. For the sequence (ak) with ak = k (k = 1, 2, . . .), we clearly have

π(k)(n) = π(n), and hence

(10) bn =
π(n) logn

n
, n = 1, 2, . . . .

By the Prime Number Theorem, from (10) we find that

(11) lim
n→∞

bn = lim
n→∞

π(n) logn

n
= 1.

Example 2.2. Let (ak) be a sequence of all primes, that is, ak = pk with k ∈ N :=
{1, 2, . . .}, where pk is the kth prime. Since by (1), π(pk)(pn) = π(pn) = n, substituting

this into (4) yields

(12) bn =
n log pn

pn
, n = 1, 2, . . . .

Now applying to (12) the well known fact that pn ∼ n log n as n → ∞ (see, e.g., [30]),

we find that

(13) lim
n→∞

bn = 1.

Notice also that the known inequality pn > n logn with n ≥ 1 (see, e.g., [38, (3.10) in

Theorem 3]) implies that bn < 1 for all n ≥ 1.

Example 2.3. Suppose that a and d are relatively prime positive integers. Then concern-

ing Dirichlet’s theorem de la Vallée Poussin established (see, e.g., [35, p. 205]) that the

number of primes p < x with p ≡ a(mod d) is approximately

(14)
π(x)

ϕ(d)
∼ 1

ϕ(d)
· x

log x
.

Here ϕ(n) is the Euler totient function defined as the number of positive integers not

exceeding n and relatively prime to n. Note that the right hand side of (14) is the same

for any a such that gcd(a, d) = 1. This shows that primes are in a certain sense uniformly

distributed in reduced residue classes with respect to a fixed modulus. Notice that for a

sequence (ak)
∞
k=1 given by ak = a+ (k − 1)d, (14) can be written as

(15) π(ak)(an) ∼
π(an)

ϕ(d)
as n → ∞.

Inserting (15) together with π(ak) ∼ ak/ log ak into (4) immediately gives

(16) lim
n→∞

bn =
1

ϕ(d)
lim
n→∞

π(an) log an
an

=
1

ϕ(d)
.
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Then substituting (16) into (9), we obtain that for the associated function ωa,d(x) := ω(ak

of the sequence (ak) there holds

(17)

ωa,d(n) ∼ π(ak)(an)
anbn

ϕ(d) log an
=

a+ (n− 1)d

ϕ(d) log(a+ (n− 1)d)
∼ dn

ϕ(d) logn
as n → ∞.

It follows that ωa,d(x) = dx/(ϕ(d) logx) for x ∈ (1,+∞).

Example 2.4. Let (an) be a sequence defined as an = 2pn−1, where pn is the nth prime.

The numbers an are called Mersene numbers. A prime that appears in the sequence (an)
is called Mersenne prime. Namely, it is easy to show (see, e.g., [36, p. 28]) that if 2n−1
is prime, then so is n. The greatest known Mersenne prime is 243112609 − 1 with the

exponent 43112609 (12978169 digit number), and it is discovered in August 2008. This

is in fact one between 45 known Mersenne primes, and so a45 ≤ 243112609 − 1.

In 1980 H. Lenstra and C. Pomerance, working independently, came the conclusion

that the probability that a Mersenne number 2p − 1 is prime is eγ log(ap)/(p log 2) with

γ = 0.577216 . . . (the Euler-Mascheroni constant), where a = 2 if p ≡ 3(mod 4) and

a = 6 if p ≡ 1(mod 4). Recall that the constant eγ = 1.781072 . . . is important in num-

ber theory; namely, eγ = limn→∞
1

log pn

∏n
k=1

pk
pk−1

which restates the third of Mertens’

theorems ([27], also see [23, pp. 351–353, Theorem 428]). Then notice that the distri-

bution of the log of the Mersenne primes is a Poisson Process (see [45]).

Accordingly to the above assumption given by Lenstra and Pomerance, if ak = 2qk−1,

where (qk)
∞
k=1 is a sequence of all primes ≡ 3(mod 4) (q1 = 3, q2 = 7, q3 = 11, . . .), for

the associated function ω(3,4)(x) to (ak) we have that “the expected number” of primes

between the first n terms of the sequence (qk) is

(18) ∼ ω(3,4)(n) ∼
n
∑

k=1

eγ log(2qk)

qk log 2
as n → ∞.

Since qk ∼ p2k ∼ 2k log k, substituting this into (18) and using the well known asymp-

totic formula
∑n

k=1 1/k ∼ γ + logn as n → ∞, we get

ω(3,4)(n) ∼ eγ

2 log 2

n
∑

k=2

log(4k log k)

k log k
=

eγ

2 log 2

n
∑

k=2

log k + log 4 + log log k

k log k

∼ eγ

2 log 2

(

n
∑

k=2

1

k
+

n
∑

k=2

log 4

k log k
+

n
∑

k=2

log log k

k log k

)

∼ eγ

2 log 2

(

(γ + log n) + log 4

∫ n

2

dx

x log x
+

∫ n

2

log log x

x log x
dx

)

(the changes log x = s and log log x = t

=
eγ

2 log 2

(

log n+

∫ logn

log 2

ds

s
+

∫ log logn

log log 2

t dt

)

∼ eγ

2 log 2

(

log n+ log logn +
(log log n)2

2

)

as n → ∞.

(19)

This shows that ω(3,4)(x) = eγ (log x+ log log x+ (log log x)2/2) /(2 log 2), and hence

π(ak)(an) ∼ eγ/(2 log 2) (logn + log log n+ (log logn)2/2). Substituting this in (4),
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where (bn) is the companion’ sequence of (ak), and using the fact that qn ∼ 2n logn,

we find that

(20) bn ∼ eγn(log n)2

4n logn
as n → ∞.

Similarly, under the above assumptions attributed by Lenstra and Pomerance, if a′k =
2rk − 1, where (rk)

∞
k=1 is a sequence of all primes ≡ 1(mod 4) (r1 = 5, r2 = 13, r3 =

17, . . .), then for the associated function ω(1,4)(x) to (a′k) and the companion sequence

(b′n) of (a′k) the same relations (18)–(20) are satisfied.

Example 2.5. Let (ak)
∞
k=1 be an increasing sequence of positive integers satisfying

(21)
log ak
ak

= o(k−1).

Then from (4) and the obvious fact that π(ak)(an) ≤ n for each n ∈ N, we find that

(22) lim
n→∞

bn = 0.

In particular, (22) holds for any sequence (ak) satisfying one of the following asymp-

totics: an ∼ an with a fixed a > 1; an ∼ n logα n with α > 1; an ∼ nα with α > 1; or

an ∼ nα logβ n with α ≥ 1 and β > 1.

Accordingly, we ask the following question.

Question 2.6. For what real numbers α ∈ (0, 1) there exists a sequence (ak) whose

companion sequence (bn) defined by (4) satisfies the limit relation

lim sup
n→∞

bn = α?

3. DISTRIBUTION OF PRIMES IN THE SEQUENCE (Sn) WITH Sn =
∑2n

i=1 pi

Here, as always in the sequel, we consider the distribution of primes in the sequence

(Sn)
∞
n=1 whose terms are given by Sn =

∑2n
i=1 pi, where pi is the ith prime. Recall that

the prime counting function π(x) is defined as the number of primes ≤ x.

Proposition 3.1. Let (Sn) be the sequence defined as Sn =
∑2n

i=1 pi. Then as n → ∞,

(23) Sn ∼ 2n2 log n

and

(24) π(Sn) ∼ n2.

Furthermore, if x is a real number such that Sn ≤ x < Sn+1, then

(25) n ∼
√

x

log x
as n → ∞.

Proof. Let (S ′
n) be the sequence defined as S ′

n =
∑n

i=1 pi (this is Sloane’s sequence

A007504 in [42]). By the Prime Number Theorem, we have (see, e.g., [43, page 5]),

S ′
n :=

n
∑

i=1

pn ∼
n
∑

k=1

k log k ∼
∫ n

1

x log x dx =
x2

2
log x

∣

∣

∣

n

1
−
∫ n

1

x2

2
(log x)′ dx

∼n2 log n

2
as n → ∞.

(26)
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It follows from (26) that

(27) Sn = S ′
2n ∼ 2n2 log n,

which implies (23). By the Prime Number Theorem, from (27) we have

(28) π(Sn) ∼
2n2 logn

log(2n2 logn)
∼ 2n2 log n

log 2 + 2 logn+ log logn
∼ n2.

Finally, (25) immediately follows from (23). �

Remark 3.2. For refinements of the estimate (23), see [15], [39] and [41, Theorem 2.3]).

We see from (23) that there are ∼ n2 primes less than Sn. Using this fact, Z.-W. Sun [43,

Remark 1.6] conjectured that the number of primes in the interval (
∑n

i=1 pi,
∑n+1

i=1 pi) is

asymptotically equivalent to n/2 as n → ∞. Under the validity of this conjecture, in

particular it follows that the number of primes in the interval (Sn, Sn+1) is asymptotically

equivalent to n as n → ∞. Moreover, we also believe that the “probability” that
∑2n

i=1 pi
is a prime is 2n/p2n, which is ∼ 1/ logn because of p2n ∼ 2n log 2n. Notice that the

“probability” of a large integer n being a prime is also asymptotically equal to 1/ logn.

Furthermore, some computational results and heuristic arguments show that between

these ∼ n2 primes which are less than Sn there are ∼ 2n/ logSn ∼ n/ log n primes

that belong to the set Sn := {S1, S2, . . . , Sn}. For example, if n = 108 then n/ logn =
108/ log 108 = 5428681.02, while from the second column of Table 1 of Section 6 we

see that there are 5212720 primes in the set S108 (cf. Table 2 of Section 6). Accordingly,

we propose the following curious conjecture which is basic in this paper.

Conjecture 3.3. The sequence (Sn) with Sn =
∑2n

i=1 pi satisfies the Restricted Prime

Number Theorem. In other words,

πn : = π(Sk)(Sn) = #{p : p is a prime and p = Si for some i with 1 ≤ i ≤ n}
∼ n

logn
as n → ∞.

(29)

Let us recall that in all results of this section (Corollaries 3.4, 3.6, 3.7, 3.8 and 3.13)

we assume the truth of Conjecture 3.3. In particular, Conjecture 3.3 implies Euclid’s

theorem (on the infinitude of primes) for (Sn) as follows.

Corollary 3.4 (Euclid’s theorem for the sequence (Sn)). The sequence (Sn) contains

infinitely many primes.

Remark 3.5. Notice that the sequence (Sn) is closely related to the Sloane’s sequence

A013918 [42] containing all primes (in increasing order) equal to the sum of the first m
primes for some m ∈ N (A013918 is in fact the intersection of A000040-the sequence

of all primes and A007504-sum of first n primes). The first few terms of the sequence

A013918 are: 2, 5, 17, 41, 197, 281, 7699, 8893, 22039; see the related link by T. D. Noe

[42, A013918] which gives the table of the first 10000 terms of this sequence (10000th

term is 402638678093). Notice also that the Sloane’s sequence A013916 in [42] asso-

ciated to the sequence A013918 gives numbers n such that the sum of the first n primes

is prime. The first few terms of this sequence are: 1, 2, 4, 6, 12, 14, 60, 64, 96 (see the

related link by D. W. Wilson [42, A013918] which gives table of the first 10000 terms

of this sequence (10000th term is 244906). Similarly, the second Sloane’s sequence

A013917 ((an)) associated to A013918, is defined as: an is prime and sum of all primes

≤ an is prime. The first few terms of this sequence are: 2, 3, 7, 13, 37, 43, 281.
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As a further application of Conjecture 3.3, here we obtain the asymptotic expression

for the kth prime in the sequence (Sn).

Corollary 3.6 (The asymptotic expression for the kth prime in the sequence (Sn)). Let

qk (k = 1, 2, . . .) be the kth prime in the sequence (Sn). Then

(30) qk ∼ 2k2 log3 k as k → ∞.

Proof. If for a pair (k, n) there holds qk = Sn, then by Conjecture 3.3, we have

(31) k ∼ n

log n
as n → ∞,

so that n ∼ k logn, and hence logn ∼ log k as n → ∞. Inserting this into (23), we find

that

qk = Sn ∼ 2n2 log n ∼ 2(k log n)2 log n = 2k2 log3 n ∼ 2k2 log3 k,

as desired. �

Corollary 3.7. Let qk (k = 1, 2, . . .) be the kth prime in the sequence (Sn). Then

(32) qk ∼ 2p2k log k as k → ∞
and

(33) qk ∼ pk2 log
2 k as k → ∞.

Proof. From (30) and the fact that pk ∼ k log k we find that

qk ∼ 2(k log k)2 log k ∼ 2p2k log k,

which proves (32).

Similarly, from (30) and pk2 ∼ k2 log k2 = 2k2 log k we find that

qk ∼ (k2 log k2) log2 k ∼ pk2 log
2 k,

which implies (33). �

Furthermore, we have the following result.

Corollary 3.8. Let qk be the kth prime in the sequence (Sn) with qk = Sn. Then

(34) lim
k→∞

k log k

n
= 1.

Proof. The asymptotic relation (31) implies that log n/ log k ∼ 1, which substituting in

(31) immediately gives (34). �

Motivated by some heuristic arguments and computations for some small integer val-

ues d, we propose the following generalization of Conjecture 3.3.

Conjecture 3.9. For any fixed nonnegative integer d the sequence (S
(d)
n )∞n=1 defined as

S(d)
n = 2d+ Sn = 2d+

2n
∑

i=1

pi, n = 1, 2, . . .

satisfies the Restricted Prime Number Theorem. In other words, as n → ∞,

π(d)
n :=π(2d+Sk)(2d+ Sn) = #{p : p is a prime and p = 2d+ Si

for some i with 1 ≤ i ≤ n} ∼ n

log n
.

(35)
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For d = 0 this conjecture is in fact Conjecture 3.3 (cf. Sloane’s sequence A013918

mentioned above).

Remark 3.10. Conjecture 3.3 and the fact that by (23) Sn ∼ 2n2 log n imply that the

average difference between consecutive primes in the sequence (Sn) near to 2n2 is ap-

proximately log(2n2) ∼ 2 logn.

Remark 3.11. Numerous computational results concerning the sums of the first n primes

(partial sums of consecutive primes) given by the Sloane’s sequence A007504 (here

denoted as S ′
n), and certain their curious arithmetical properties are presented in the

following Sloane’s sequences in OEIS [42]: A051838, A116536, A067110, A067111,

A045345, A114216, A024011, A077023, A033997, A071089, A083186, A166448,

A196527, A065595, A165906, A061568, A066039, A077022, A110997, A112997,

A156778, A167214, A038346, A038347, A054972, A072476, A076570, A076873,

A077354, A110996, A123119, A189072, A196528, A022094, A024447, A121756,

A143121, A117842, A118219, A131740, A143215, A161436, A161490, A013918 etc.

Since the sequence (Sn) is a subsequence of the sequence (S ′
n) with S ′

n =
∑n

k=1 pk
whose all terms with odd indices n are even integers, it follows that in accordance to

Definition 1.1, Conjecture 3.3 is equivalent to

ω(S′

k)
(n) ∼ n

2 logn
.

Therefore, Conjecture 3.3 is equivalent with the following one.

Conjecture 3.3’. Let (S ′
n) be a sequence defined as S ′

n =
∑n

k=1 pk, n = 1, 2, . . .. Then

(36) ω(S′

k)
(x) =

x

2 log x
for x ∈ (1,∞).

Proposition 3.12. For each n ≥ 3 we have

(37) 1 ≤ Sn

2n2 log n
< 1 +

log 2

log n
+

log log(2n)

logn
.

Proof. By Mandl’s inequality (see, e.g., [39], [15]), for each n ≥ 9 there holds

(38) S ′
n <

n

2
pn

(for a refinement of (38), see [17, the inequality 2.4]). Mandl’s inequality (38) with 2n
instead of n becomes Sn < np2n with n ≥ 5. This inequality together with the known

inequality (see, e.g., [38, p. 69])

p2n < 2n(log n+ log 2 + log log(2n)) for all n ≥ 3

immediately yields

(39) Sn < 2n2(log n+ log 2 + log log(2n)) for all n ≥ 5.

On the other hand, a lower bound for S ′
n can be obtained by using Robin’s inequality

(see, e.g., [15, p. 51]) which asserts that for every n ≥ 2

(40) np[n/2] ≤ S ′
n.

The inequality (40) with 2n instead of n and the inequality n log n ≤ pn with n ≥ 3
(see, e.g., [38, p. 69]) yield

(41) 2n2 log n ≤ Sn for n ≥ 3.
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The inequalities (39) and (41) immediately yield

log n ≤ Sn

2n2
< logn + log 2 + log log(2n) for all n ≥ 5,

or equivalently,

(42) 1 ≤ Sn

2n2 logn
< 1 +

log 2

logn
+

log log(2n)

logn
for all n ≥ 5.

The inequalities given by (42) coincide with these of (37) for n ≥ 5. A direct calculation

chows that (37) is also satisified for n = 3 and n = 4. This completes the proof. �

Corollary 3.13. Let qk = Sm be the kth prime in the sequence (Sn)
∞
n=1. Then for all

k ≥ 3 there holds

(43) 2m2 logm < qk < 2m2(logm+ log(log(2m) + log 2).

Proof. The above inequalities coincide with (37) of Proposition 3.12 with n = m and

qk = Sm. �

Remark 3.14. Z.-W. Sun [44, the case α = 1 in Lemma 3.1] showed that for all n ≥ 2

S ′
n > 2 +

n2 logn

2

(

1− 1

2 logn

)

,

which with 2n instead of n becomes

Sn > 2 + 2n2

(

log n+ log
2√
e

)

≈ 2 + 2n2(log n+ 0.193147),

whence it follows that
Sn

2n2 logn
> 1 +

0.193147

n
.

The above inequality is stronger that the left hand side of the inequality (37). Accord-

ingly, if qk = Sm, then the first inequality of (43) can be refined in the form

qk > 2 + 2m2(logm+ 0.193147) for all k ≥ 3.

On the other hand, combining the inequalities (46) and (47) from the next section

with the inequalities Sn > 2npn and Sn < np2n (given in proof of Proposition 3.12),

respectively, we immediately obtain the following refinement of Proposition 3.12.

Proposition 3.15. For each n ≥ 3 there holds

Sn

2n2 log n
≥ 1 +

log log n− 1

log n
+

log log n− 2.2

log2 n
,

and for each n ≥ 344192, we have

Sn

2n2 log n
≤ 1 +

log log(2n) + log 2− 1

log n
+

log log(2n)− 2

(log n) log(2n)
.

Remark 3.16. If qk = Sm, then in view of the first inequality of Proposition 3.15, the

first inequality of (43) may be replaced by the following one:

qk > 2m2

(

logm+ log logm− 1 +
log logm− 2.2

logm

)

for all k ≥ 3.



CURIOUS CONJECTURES ON THE DISTRIBUTION OF PRIMES. . . 13

Remark 3.17. The inequalities (38) and (40) and the asymptotic expression pn ∼ n logn
show that the average of the first n primes is asymptotically equal to (n logn)/2 (cf.

Sloane’s sequence A060620 in [42]), that is,

S ′
n

n
∼ n log n

2
as n → ∞.

Conjecture 3.3 suggests the fact that for the sequence (Sn) would be valid the ana-

logues of some other classical results and conjectures closely related to the Prime Num-

ber Theorem and Riemann Hypothesis. In particular, if Q = {q1, q2, . . . , qk, . . .} is a set

of all primes q1 < q2 < . . . < qk < · · · in the sequence (Sn), it can be of interest to

establish the asymptotic expression for qk as k → ∞.

Finally, heuristic arguments, some computational results and Conjecture 3.3 lead to

the follwing its generalization (cf. Sloane’s sequence A143121 - triangle read by rows,

T (n, k) =
∑n

j=k pj , 1 ≤ k ≤ n; see the columns in Example of this sequence).

Conjecture 3.18. For any fixed positive integer k, let (S
(k)
n ) := (S

(k)
n )∞n=1 be the se-

quence whose nth term is defined as

S(k)
n =

2n+1
∑

i=1

pi+k, n ∈ N.

Then the sequence (S
(k)
n ) satisfies the Restricted Prime Number Theorem.

For example, there are 78498 (resp. 664579) primes less than 106 (resp. 107), while

the computations show that among the first 106 (resp. 107) terms of the sequences (Sn),

(S
(k)
n ) with k = 1, 2, . . . , 12 there are 69251 (resp. 594851), 69581 (resp. 594377),

68844 (resp. 593632), 68883 (resp. 595733), 69602 (resp. 596609), 69540 (resp.

596558), 69414 (resp. 595539), 69317 (resp. 594626), 69455 (resp. 595474), 69268

(resp. 594542), 68891 (resp. 593807), 69251 (resp. 594383), 69564 (resp. 595270)

primes, respectively.

4. THE ASYMPTOTIC EXPRESSION FOR THE kTH PRIME IN THE SEQUENCE (Sn)

As an easy consequence of the Prime Number Theorem, it can be deduced that pn ∼
n log n as n → ∞ (see, e.g., [26]). Furthermore, a particular asymptotic expansion for

pn (see [26] or [34, the equality (66) of Section 6]; also see Sloane’s sequence A200265)

yields

(44) pn = n

(

log n+ log logn +O

(

log logn

log n

))

.

It is also known that (see [16] and [38, p. 69])

(45) n(log n+ log logn− 1) < pn < n(log n+ log log n).

A more precise work about this can be found in [37] and [40] where related results are

as follows:

(46) n

(

log n+ log logn− 1 +
log log n− 2.2

logn

)

≤ pn for n ≥ 3

and
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(47) pn ≤ n

(

log n+ log logn− 1 +
log logn− 2

logn

)

for n ≥ 688383.

The inequalities (46) and (47) immediately yield the following result.

Corollary 4.1. For each n ≥ 688383 the interval

(48)
[

n

(

logn + log log n− 1 +
log log n− 2.2

log n

)

, n

(

log n+ log log n− 1 +
log log n− 2

log n

)]

contains at least one prime. Furthermore, the lenght ln of this interval is

(49) ln =
0.2n

log n
∼ 0.2pn

log2 n
.

As an application of Conjecture 3.3, we obtain the following result.

Corollary 4.2. Let qk be the kth prime in the sequence (Sn) with Sn =
∑2n

k=1 pk. If

qk = Sm, then under Conjecture 3.3 there holds

(50) qk ∼ 2k2 log3 k ∼ 2m2 logm ∼ p⌊k2 log2 k⌋ as k → ∞,

and

(51) lim
k→∞

k log k

m
= 1.

Proof. The first asymptotic relation of (50) coincides with (30) of Corollary 3.6. Further,

by (37) of Proposition 3.12, we have

(52) qk = Sm ∼ 2m2 logm.

Moreover, we have

(53) p[k2 log2 k] ∼ k2(log2 k) log(k2 log2 k) ∼ 2k2 log3 k as k → ∞.

The last two asymptotic expressions of (50) follow from (52) and (53).

It remains to prove (51). If we suppose that (51) is not satisfied, then there exists ε > 0
and an infinite subsequence (kj, mj)

∞
j=1 of the sequence (k,m)∞k=1 such that kj log kj ≥

(1 + ε)mj for all j ∈ N or kj log kj ≤ (1 − ε)mj for all j ∈ N. In the first case, using

(50) for all sufficiently large j, we find that

m2
j logmj ∼ k2

j log
3 kj ≥ (1 + ε)2m2

j log kj,

whence we immediately get logmj ≥ (1 + ε)2 log kj , or equivalently, mj ≥ kt
j with

t = (1 + ε)2 > 1. From the previous inequality and the fact that t > 2 we have

m2
j logmj > m2

j ≥ k2t
j ≫ k2

j log
3 kj,

which contradicts the fact that by (50) 2k2 log3 k ∼ 2m2 logm. In a similar way as in

the first case, in the second case we find that mj ≤ ks
j for a constant s = (1 − ε)2 < 1.

Then choosing a sufficiently large j0 such that logmj < m
1/s−1
j for all j > j0, in view

of the fact that s+ 1 < 2 we get

m2
j logmj < m

1+1/s
j ≤ ks+1

j ≪ k2
j log

3 kj.

A contradiction, and therefore, (51) is true. �
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Remark 4.3. From (50) and pk ∼ k log k we see that

(54)
qk

2k log2 k
∼ k log k ∼ pk as k → ∞.

The above asymptotic expression together with the assumption that Conjecture 3.3 is true

suggests the fact that for the sequence
(

qk/(k log
2 k
)

) would be satisfied the asymptotic

expansion similar to (44), i.e.,

(55)
qk

2k log2 k
= k(log k + log log k +Qk),

with some sequence (Qk). Motivated by (55), we establish the following asymptotic

expression for the kth prime in the sequence (Sn).

Theorem 4.4 (The asymptotic expression for the kth prime in the sequence (Sn)). Let qk
be the kth prime in the sequence (Sn) (k = 2, 3, . . .). Then under Conjecture 3.3 there

exists a sequence (Mk) of positive rael numbers such that limk→∞Mk = 1 and

(56) qk = 2M5
kk

2 log2 k(log k + log log k + 2 logMk).

For the proof of Theorem 4.4 we will need the following result.

Lemma 4.5. Let Sm = qk be the kth prime in the sequence (Sn). Then under Conjecture

(3, 3) we have

(57) qk ∼
2m2

√
m logm√

k log k
as k → ∞.

Proof. First notice that, under notations of Lemma 4.5, Conjecture 3.3 yields (cf. (51)

of Corollary 4.2)

(58) k ∼ m

logm
as k → ∞.

Using (58), we find that

(59)
2m2

√
m logm√

k log k
∼ 2m2

√
m logm

√

m
(

1− log logm
logm

)

∼ 2m2 logm as k → ∞.

The asymptotic relation (59) and the fact that by (50) of Corollary 4.2, qk = Sm ∼
2m2 logm immediately yield (57). �

Proof of Theorem 4.4. Let (Ck)
∞
k=2 be a sequence of positive real numbers such that

m(k) = m = Ckk log k with k ≥ 2 and qk = Sm. Then by (51) of Corollary 4.2,

we have Ck → 1 as k → ∞. Taking m = Ckk log k into (57) of Lemma 4.5, as k → ∞
we obtain that

qk ∼
2
√

C5
kk

5 log5 k(log k + log log k + logCk)√
k log k

= 2C2
k

√

Ckk
2 log2 k(log k + log log k + logCk) =: f(k, Ck).

(60)

Let (δk) be a positive real sequence such that

(61) qk = δkf(k, Ck) for each k ≥ 2.
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Then from (60) we see that δk → 1 as k → ∞. For a fixed k ≥ 2 consider the equation

fk(x) = δkf(k, Ck) which can be written in the form

(62) x2
√
x(log k + log log k + log x) = δkC

2
k

√

Ck(log k + log log k + logCk).

Notice that for any fixed integer k ≥ 2, the real function fk(x) defined as

fk(x) = 2x2
√
x(log k + log log k + log x), x > 0,

satisfies the limit relations limx→+∞ fk(x) = +∞ and limx→+0 fk(x) = 0. From this

it can be easily shown that for each integer k ≥ 2 the equation (62) has a positive real

solution xk. Using the facts that limx→+∞Ck = limx→+∞ δk=1, it can be easily show

that limk→∞ xk = 1. Then taking xk = M2
k (k = 2, 3, . . .), then limk→∞Mk = 1 and by

(62) we find that fk(M
2
k ) = δkf(k, Ck) = qk, whence it follows that

qk = 2M5
kk

2 log2 k(log k + log log k + 2 logMk).

This proves (56) and the proof is completed. �

Computational results (cf. the eighth column of Table 1 of Section 6) suggest the

additional relationship between k’s and m’s as follows.

Conjecture 4.6. For each pair (k,m) with k ≥ 1 and qk = Sm we have

(63) ⌊k log k⌋+ 1 ≤ m,

or equivalently,

(64) qk ≥ S⌊k log k⌋+1.

Furthermore, for each k ≥ 104,

(65) m ≤ ⌊1.4k log k⌋,
or equivalently,

(66) qk ≤ S⌊1.4k log k⌋.

Corollary 4.7. If the inequality (63) of Conjecture 4.6 is true, then for each k ≥ 1 there

holds

(67) qk > 2k2(log2 k)(log k + log log k).

Proof. Combining the inequality (63) with the inequality on the left hand side of (37) of

Proposition 3.12, we find that

qk = Sm ≥ S⌊k log k⌋+1 ≥ 2(⌊k log k⌋+ 1)2 log(⌊k log k⌋+ 1)

> 2k2(log2 k) log(k log k) = 2k2(log2 k)(log k + log log k),
(68)

as desired. �

Corollary 4.8. If the inequality (63) of Conjecture 4.6 is true, then Mk > 1 for each

k ≥ 1, where (Mk) is the sequence defined by (56) of Theorem 4.4.

Proof. The assertion follows immediately from the inequality (67) and the expression

(56) for qk given by Theorem 4.4. �

Finally, in view of the data of the last column in Table 1 of Section 6 and some con-

siderations presented above, we propose the following conjecture which is stronger than

Corollary 4.7.
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Conjecture 4.9. For every k ≥ 252028 with qk = Sm there holds

(69) qk >
2m2

√
m logm√

k log k
.

In view of the well known inequality pk > k(log k + log log k), the following conjec-

ture is also stronger than Corollary 4.7.

Conjecture 4.10. There exists k0 ∈ N such that for every k ≥ k0 there holds

qk > 2kpk log
2 k,

where pk is the kth prime.

Remark 4.11. The last column of Table 1 presented in Section 6 shows that

qk ≈
2m2

√
m logm√

k log k

is a “good” approximation for the kth prime sum qk. Notice that this approximation can

be written as

qk ≈ 2m2 logm ·
√

m

k log k
,

where the values
√

m/(k log k) slowly tend to 1 as k grows. In particular, from the last

row of Table 1 of Section 6 we see that for m = 109−2 (i.e., for k = 46388006) we have
√

m/(k log k) ≈ 1.105079. Hence, in view of the above approximation, we believe that

for all values m up to 109 there holds

qk > 2.2m2 logm.

Notice that some values of the sequences (Q′
k) such that

Q′
k =

qk − 2k2(log2 k)(log k + log log k)

2k2 log2 k log log k

and the sequence (Q′′
k) such that

Q′′
k =

qk − 2(pk)
2 log k

2k2 log2 k log log k

are given in Table 3 of Section 6. Table 3 also shows that for almost all values m up to

109 (i.e., for k ≤ 46388006) there holds

kpk > 1.1m2 logm.

Finally, Table 2 of Section 6 leads to the following conjecture whose both parts are

obviously stronger than Conjecture 4.6.

Conjecture 4.12. Let π(x) be the prime counting function, and let πn be the number of

primes in the set {S1, S2, . . . , Sn}. Then

πn < π(n)

for for each n ≥ 104 and

πn <
n

logn

for each n ≥ 105.
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5. ESTIMATIONS OF VALUES Mk FROM THEOREM 4.4

The computational results related to the search of primes in the sequence (Sn) given

in the following section (Table 1) and some heuristic arguments suggest the fact that

the sequence (Sn/(2n
2 log n))∞n=2 plays an important role for estimating the values Mk

(k = 1, 2, . . .) in the expression (56) for the kth prime qk in the sequence (Sn).
Here we first consider the sequence (Sn/(2n

2)).

Proposition 5.1. The sequence (vn) defined as

(70) vn =
Sn

2n2
, n ∈ N,

is increasing for n ≥ 2.

Proof. Since Sn+1 = Sn + p2n+1 + p2n+2, an easy calculation shows that rn < rn+1 is

equivalent with

Sn

2n2
<

p2n+1 + p2n+2

2(2n+ 1)
,

which can be written as

(71)
p2n+1 + p2n+2

2
> Sn

(

1

n
+

1

2n2

)

.

By a refinement of Mandl’s inequality due to Hassani [17], for every n ≥ 10 we have

(72)
n

2
pn −

n
∑

i=1

pi > 0.01659n2.

Replacing n by 2n into (72) it becomes

(73) p2n −
Sn

n
> 0.06636n2 for all n ≥ 5.

Further, by the inequality (37) of Proposition 3.12 we have

(74) log(2n) + log log(2n) >
Sn

2n2
for all n ≥ 5.

By using Mathematica 8, it is easy to to prove the inequality

(75) 0.06636n2 > log(2n) + log log(2n) for all n ≥ 8.

Finally, combining the inequalities (73), (74), (75) and the obvious inequality (p2n+1 +
p2n+2)/2 > p2n immediately gives (71) for all n ≥ 8. This together with a direct

verification that vn < vn+1 for 2 ≤ n ≤ 8 concludes the proof. �

Remark 5.2. Notice that the sequence (vn) defined by (70) is a subsequence of the se-

quence (v′n) defined as

v′n =
2S ′

n

n2
:=

2
∑n

i=1 pi
n2

, n ∈ N;

namely, vn = v′2n for all n = 1, 2, . . .. Similarly as in the proof of Proposition 5.1, it can

be shown that the sequence (v′n) is increasing for n ≥ 4.

Contrary to Proposition 5.1, we propose the following conjecture.
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Conjecture 5.3. The sequence (tn) defined as

(76) tn =
Sn

2n2 logn
, n ∈ N \ {1},

is decreasing on the range {n ∈ N : n ≥ 1100} (m = 1099 is a maximal value between

total 40 values up to n = 200000 for which tm+1 > tm).

Remark 5.4. Notice that the sequence (tn) defined by (76) is a subsequence of the se-

quence (t′n) defined as

(77) t′n =
2S ′

n

n2 log(n/2)
:=

2
∑n

i=1 pi
n2 log(n/2)

, n ∈ N;

namely, tn = t′2n for all n = 1, 2, . . .. We conjecture that the sequence (t′n) is decreasing

on the range {n ∈ N : n ≥ 2199} (m = 2198 is a maximal value up to n = 106 for

which t′m+1 > t′m).

Corollary 5.5. Let (tn) be the sequence defined in Conjecture 5.3. Then under Conjec-

ture 5.3, for each n ≥ 1100 there holds

(78) tn+1 < tn < tn+1

(

1 +
1

n log n

)

.

Proof. Proposition 5.1, Conjecture 5.3 and the well known inequality (1 + 1/n)n < e
with n ≥ 1 immediately imply that for all n ≥ 1100 there holds

0 < tn − tn+1 =
Sn

2n2 logn
− Sn+1

2(n+ 1)2 log(n+ 1)

<
Sn+1

2(n + 1)2 log n
− Sn+1

2(n+ 1)2 log(n+ 1)

=
Sn+1

2(n + 1)2
· log

(

1 + 1
n

)n

n(logn)(log(n + 1))

<
Sn+1

2(n + 1)2 log(n + 1)
· 1

n log n

=
tn+1

n log n
.

(79)

From (79) we immediately get (78). �

Corollary 5.6. Let (tn) be the sequence defined in Conjecture 5.3. Then under Conjec-

ture 5.3, for each n ≥ 1101 we have

(80) tn >
17

8 log 2

((

1 +
1

2 log 2

)(

1 +
1

3 log 3

)

· · ·
(

1 +
1

(n− 1) log(n− 1)

))−1

and

(81)

Sn >
17n2 log n

4 log 2

((

1 +
1

2 log 2

)(

1 +
1

3 log 3

)

· · ·
(

1 +
1

(n− 1) log(n− 1)

))−1

.

Proof. By the right hand side of the inequality (78), we obtain that for each n ≥ 1101

(82) tn > tn−1

(

1 +
1

(n− 1) log(n− 1)

)−1

.
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By iterating the inequality (82) (n − 2) times and taking S2 = 17 in (n − 2)th step, we

immediately obtain the inequality (80). Substituting tn = Sn/(2n
2 log n) into (80) gives

the inequality (81). �

Notice that under Conjecture 5.3, the sequence (tn) defined by (76) as

tn =
Sn

2n2 logn
, n ∈ N \ {1},

is decreasing on the range {n ∈ N : n ≥ 1100}. As noticed above, the computational

results for “prime sums” given in Table 1 of Section 6 suggest the fact that the sequence

(tn)
∞
n=2 plays an important role for estimating the values Mk (k = 1, 2, . . .) in the ex-

pression (56) for the kth prime qk in the sequence (Sn). Accordingly, we propose the

following two conjectures concerning the upper and lower bounds of the sequence (Mk).

Conjecture 5.7 (The upper bound of the sequence (Mk)). Let (Mk)
∞
k=1 be the sequence

defined by by the expression (56) of Theorem 4.4. Then

(83) Mk ≤ tk =
Sk

2k2 log k
:= M

(u)
k for all k ≥ 2.

Corollary 5.8. Let (Mk)
∞
k=1 be the sequence defined by the expression (56) of Theorem

4.4. Then under Conjecture 5.7 there holds

(84) Mk ≤ 1 +
log 2 + log log(2k)

log k
for all k ≥ 2.

Proof. Combining the inequality on the right hand side of (37) from Proposition 3.12

with the inequality (83), we immediately obtain (84). �

Corollary 5.9. Let qk be the kth prime in the sequence (Sn) (k = 1, 2, . . .). Then under

Conjectures 3.3 and 5.7 for all k ≥ 2 there holds

(85)

qk < 2k2 log3 k

(

1 +
log 2 + log log(2k)

log k

)5(

1 +
log log k

log k
+

2 log 2 + 2 log log(2k)

log2 k

)

.

Proof. Applying the inequality log(1 + x) < x with x > 0 to (84), we find that

(86) logMk ≤ log 2 + log log(2k)

log k
for all k ≥ 2.

Inserting the inequalities (84) and (86) into the expression (56) of Theorem 4.4 for qk,

we immediately obtain (85). �

Corollary 5.10. Let qk be the kth prime in the sequence (Sn) (k = 1, 2, . . .). Then under

Conjectures 3.3 and 5.7 there holds

(87) qk = 2k2 log2 k(log k +O (log log k)) ,

or equivalently,

(88)
qk

2k2 log3 k
= 1 +O

(

log log k

log k

)

.

Proof. The inequality (85) immediately yields the asymptotic expression (87). �

Corollary 5.10 can be refined as follows.
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Corollary 5.11. Let qk be the kth prime in the sequence (Sn) (k = 1, 2, . . .). Then under

Conjectures 3.3 and 5.7 there exists an absolute positive constant C with 1 ≤ C ≤ 6
such that

qk = 2k2 log2 k(log k + C log log k + o(log log k)).

Proof. Using the binomial expansion, we find that
(

1 +
log 2 + log log(2k)

log k

)5

= 1 +
5 log log k

log k
+ o

(

log log k

log k

)

,

which substituting in (85) immediately yields the estimation from Corollary 5.11. �

Remark 5.12. The determination of a constanst C from Corollary 5.11 is closely related

to the sequence (Qk) with Qk = (qk − 2k2 log3 k)/(2k2(log2 k) log log k), whose values

are presented in Table 3 of Section 6. Related data from Table 3 and the additional

computations suggest that

qk < 2k2 log2 k(log k + 6 log log k) for all k ≥ 5 · 106.
Conjecture 5.13 (A refined upper bound of the sequence (Mk)). Let (Mk)

∞
k=1 be the

sequence defined by the expression (56) of Theorem 4.4. Then

(89) Mk ≤ t⌊k log k⌋ =
S⌊k log k⌋

2(⌊k log k⌋)2 log⌊k log k⌋ := M
(l)
k for all k ≥ 5× 107,

where ⌊k log k⌋ is the greatest integer not exceeding k log k.

Corollary 5.14. Let (tn) be the sequence defined by (76). Then under the inequality (63)

of Conjecture 4.6 and Conjecture 5.13, for all k ≥ 2 the interval
[

2k2(log2 k)(log k + log log k), 2k2(log2 k)
(

1 +
log(2 log(2k))

log k

)5

×

× (log k + log log k + 2 log
(

1 +
log(2 log(2k))

log k

))]

(90)

contains at least one prime that belongs to the sequence (Sn). In particular, the prime

qk belongs to the interval given by (90).

Furthermore, for all k ≥ 2 the length lk of the interval (90) satisfies the inequality

(91)

lk < 62k2(log k) log(k log k) log(2 log(2k))+4k2(log k+31 log(2 log(2k)) log(2 log(2k)).

Proof. The first assertion immediately follows from the inequality (67) of Corollary 4.7

and the inequality (83) of Conjecture 5.7. Notice that by the inequality on the right hand

side of (37) from Proposition 3.12, we find that

(92) tk < 1 +
log(2 log(2k))

log k
for all k ≥ 5.

Then the inequality (83) of Conjecture 5.7 and the inequality (92) immediately yield

qk = 2M5
kk

2(log2 k)(log k + log log k + 2 logMk)

≤ 2t5kk
2(log2 k)(log k + log log k + 2 log tk)

≤ 2k2(log2 k)
(

1 +
log(2 log(2k))

log k

)5

(log k + log log k + 2 log
(

1 +
log(2 log(2k))

log k

)

).

(93)
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The inequalities (93) and (67) of Corollary 4.7 show that the interval defined by (90)

contains the prime sum qk.

Further, using the inequality (1+x)5 ≤ 1+31x for 0 ≤ x := log(2 log(2k))/ log k ≤
1 and the inequality log(1 + x) < x for x := log(2 log(2k))/ log k > 0, the length lk of

interval defined by (90) can be estimated as follows.

lk ≤
(

(

1 +
log(2 log(2k))

log k

)5

− 1

)

2k2(log2 k)(log k + log log k)

+ 4

(

1 +
log(2 log(2k))

log k

)5

k2(log2 k) log

(

1 +
log(2 log(2k))

log k

)

≤31 log(2 log(2k))

log k
2k2(log2 k)(log k + log log k)

+ 4

(

1 + 31 · log(2 log(2k))
log k

)

k2(log2 k)
log(2 log(2k))

log k

=62k2(log k) log(k log k) log(2 log(2k)) + 4k2(log k + 31 log(2 log(2k)) log(2 log(2k)).

(94)

This completes the proof. �

Nevertheless the fact that M
(l)
k is probably the upper bound of Mk for all n > 5 · 107

(see Table 1), we propose the following conjecture.

Conjecture 5.15. Let (tn) be the sequence defined by (76). Then for all k ≥ 2 the

interval

(95)

[2t5⌊k log k⌋k
2(log2 k)(log k+log log k+2 log t⌊k log k⌋), 2t

5
kk

2(log2 k)(log k+log log k+2 log tk)]

contains at least one prime sum qi from the sequence (Sn).

As an application of Corollary 5.14, we obtain the following (Sn)-analogue of the

well known fact that the series
∑∞

n=1 1/pn diverges.

Corollary 5.16. The series

(96)

∞
∑

k=1

k log2 k

qk

diverges.

Proof. It is easy to see that for each k ≥ 2 the right bound of the interval given by (90) is

less than 288k2 log3 k, and hence, by Corollary 5.14, qk < 288k2 log3 k for each k ≥ 2.

Therefore, k log2 k/qk > 1/(288k log k), and hence,

n
∑

k=1

k log2 k

qk
>

1

288

n
∑

k=2

1

k log k
∼
∫ n

2

d x

x log x

= log log x
∣

∣

∣

n

2
= log log n− log log 2 → ∞ as n → ∞.

Therefore, the series (96) diverges. �

On the other hand, we have the following consequence of of Corollary 5.14.
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Corollary 5.17. For every ε > 0 the series

(97)

∞
∑

k=1

k log2−ε k

qk

converges.

Proof. By Corollary 5.14 (see the interval (90)), qk > 2k2 log3 k for each k ≥ 2. There-

fore, k log2−ε /qk < 1/(2k log1+ε k), and hence,
n
∑

k=1

k log2−ε k

qk
<

1

2

n
∑

k=2

1

k log1+ε k
∼
∫ n

2

d x

x log1+ε x

= − 1

ε logε x

∣

∣

∣

n

2
=

1

ε logε 2
− 1

ε logε n
→ 1

ε logε 2
as n → ∞.

Therefore, the series (97) converges. �

6. COMPUTATIONAL RESULTS

By using Mathematica 8, here we present our computational results concerning

the the number of expression “prime sums” qk (under Conjecture 3.3) and related ex-

pression (the equality (56) of Theorem 4.4). The notion πn := k in the second column of

Tables 1, 3 and 4 presents the number of primes in a set Sn := {S1, S2, . . . , Sn}, where

n is a related value given in the first column of this table. Hence, under notations of

Section 1 and Conjecture 3.3,

k := πn := π(Sk)(Sn) = #{p : p is a prime and p = Si for some i with 1 ≤ i ≤ n}.
Accordingly, the value k in the second column of Table 1 presents the number of primes

in a set Sn, where n is a related value given in the first column of this table. The appro-

priate rounded value of the greatest prime qk in Sn is given in the third column (related

exact values are given in Table 3), while in the next column it is written the values n−m,

where m are related indices such that qk = Sm. In the fifth column of Table 1 we present

the corresponding values of Mk obtained as solutions of the equation (56) in Theorem

4.4. The refined upper bound M
(l)
k and the upper bound M

(u)
k of Mk given in Conjec-

tures 5.13 and 5.7, respectively, are given in the next two columns of Table 1. Notice

taht the data from the last two columns of this table are closely related to Conjecture 4.6

and Conjecture 4.9, respectively.

For example, a computation gives the following exact values: q59129 = S849995 =
22420773979207, q62297 = S899999 = 25235697805141, q2707378 = 99262810294692679
q5212720 = S108 = 411680592327546713.
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Table 1. Distribution of primes in the sequence (Sn) in the range 1 ≤ n ≤ 109+5 ·108

n k := πn ≈ qk n−m Mk M
(l)
k M

(u)
k (k log k)/m Sm

√
k log k/

(2m5/2 logm)

100 23 107934 1 1.17894 1.22166 1.27421 0.737366 1.034203

1000 141 15501706 22 1.18281 1.18140 1.20278 0.713472 0.995174

10000 1098 2.12 · 1010 17 1.14356 1.16216 1.17714 0.770046 1.018392

100000 8350 2.64 · 1011 10 1.15163 1.14863 1.16175 0.752577 0.995122

155000 12379 6.57 · 1011 3 1.15259 1.14628 1.15912 0.752638 0.993165

185000 14482 9.49 · 1011 6 1.15241 1.14536 1.15821 0.750009 0.990628

200000 15504 1.1 · 1011 18 1.15241 1.14495 1.15768 0.750177 0.990392

220000 16954 1.36 · 1012 17 1.15090 1.14446 1.15714 0.752476 0.991502

296000 22327 2.51 · 1012 3 1.15773 1.14302 1.15565 0.741044 0.982660

300000 22595 2.59 · 1012 5 1.15774 1.14295 1.15556 0.740997 0.982557

350000 26038 3.56 · 1012 4 1.15675 1.14216 1.15469 0.742338 0.982816

400000 29495 4.7 · 1012 49 1.15398 1.14147 1.15399 0.746555 0.985037

450000 32928 6.00 · 1012 39 1.15169 1.14087 1.15336 0.750052 0.986842

500000 36302 7.47 · 1012 14 1.15027 1.14035 1.15274 0.752199 0.987819

550000 39788 9.10 · 1012 1 1.14730 1.13984 1.15221 0.756907 0.990517

600000 43119 1.09 · 1013 8 1.14633 1.13941 1.15179 0.758358 0.991099

650000 46488 1.28 · 1013 13 1.14485 1.13902 1.15136 0.760670 0.992278

700000 49834 1.50 · 1013 6 1.14361 1.13866 1.15094 0.762604 0.993234

800000 56419 1.97 · 1013 27 1.14232 1.13801 1.15025 0.764538 0.993953

850000 59602 2.24 · 1013 5 1.14239 1.13772 1.14992 0.764332 0.993576

900000 62770 2.52 · 1013 1 1.14245 1.13746 1.14964 0.764154 0.993230

950000 66064 2.82 · 1013 45 1.14140 1.37190 1.14937 0.765800 0.994084

106 69251 3.13 · 1013 5 1.14093 1.13692 1.14910 0.771847 0.950112

2 · 106 131841 1.31 · 1014 23 1.13400 1.13373 1.14563 0.777169 0.998482

3 · 106 192655 3.03 · 1013 14 1.13116 1.13193 1.14366 0.781454 0.999694

4 · 106 252028 5.49 · 1014 23 1.12965 1.13069 1.14232 0.783641 1.0000075

5 · 106 310756 8.70 · 1014 22 1.12809 1.12973 1.14127 0.786405 1.0007040

107 594851 3.62 · 1015 6 1.12473 1.12686 1.13814 0.790918 1.001331

5 · 107 2707378 9.92 · 1016 10 1.11727 1.12067 1.131310 0.802006 1.002899

108 5212720 4.11 · 1017 13 1.11444 1.11819 1.12856 0.806231 1.003355

108 + 5 · 107 7650550 9.45 · 1017 13 1.11295 1.116783 1.126996 0.808423 1.003481

2 · 108 10047823 1.70 · 1018 8 1.11189 1.11581 1.12591 0.809999 1.003599

3 · 108 14763858 3.91 · 1018 4 1.11032 1.11446 1.12441 0.812391 1.003890

4 · 108 19404439 7.05 · 1018 1 1.10922 1.11353 1.12336 0.814065 1.004097

5 · 108 23985388 1.11 · 1019 13 1.10848 1.11281 1.12256 0.815165 1.004142

7 · 108 33031264 2.21 · 1019 18 1.10730 1.11176 1.12138 0.816956 1.004305

109 46388006 4.60 · 1019 2 1.10605 1.11066 1.12014 0.818867 1.004501

109 + 5 · 108 68259534 1.05 · 1020 35 1.10473 1.10957 1.11877 0.820881 1.004650

Recall that π(x) denotes the number of primes less or equal to x. Then Table 2 present

the quotients πn
n

log n
and πn

π(n)
.

Table 2. Distribution of primes in the sequence (Sn) in the range 1 ≤ n ≤ 109+5 ·108

n πn
n

log n

πn

π(n)
n πn

n

log n

πn

π(n)

102 1.059190 0.920000 107 0.958787 0.895079

103 0.973993 1.011300 5 · 107 0.959903 0.902118

104 1.011300 0.893409 108 0.960219 0.904758

105 0.961329 0.870517 5 · 108 0.960860 0.910059

106 0.956738 0.882201 109 0.961311 0.912296

5 · 106 0.958679 0.891663 109 + 5 · 108 0.961492 0.913458

Notice that from Table 1 we see that M
(l)
k is probably the upper bound of Mk for

n > 5 · 107 (Conjecture 5.13) which is better estimate than M
(u)
k (Conjecture 5.7).

The values of first three columns of Table 3 are defined in the same way as these of

Table 1 (with exact values of qk), and the related values of ratios qk/(2k
2 log3 k) are given

in fourth column of this table. The asymptotic relation (87) of Corollary 5.10 shows that
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it can be of interest to analyze the sequence (Qk)
∞
k=2 whose kth term is defined by the

equality

(98) qk = 2k2 log3 k + 2Qkk
2(log2 k)(log log k), k = 2, 3, . . . ,

or equivalently,

(99)
qk

2k2 log3 k
= 1 +Qk ·

log log k

log k
k = 2, 3, . . . .

We also consider two similar sequences (Q′
k) and (Q′′

k) which are closely related to

Corollary 4.7 and Theorem 4.4, respectively (cf. Remark 4.11), and they are defined as

(100) Q′
k =

qk − 2k2(log2 k)(log k + log log k)

2k2(log2 k) log log k
, k = 2, 3, . . . ,

and

(101) Q′′
k =

qk − 2(pk)
2 log k

2k2(log2 k) log log k
, k = 2, 3, . . . .

Some values of these sequences are given in the last three columns of Table 3.

Table 3. Some “prime sums” qk’s in the sequence (Sn) with n ≤ 109 + 5 · 108 and

related values qk/(2k
2 log3 k), qk/(2m

2 logm), Qk, Q′
k and Q′′

k

n k := πn qk
qk

2k2 log3 k
qk

2m2 logm
Qk Q′

k Q′′

k

10 5 281 1.34807 1.47352 2.35436 0.17772 -1.76013

100 23 107934 3.30944 1.19829 6.33647 5.33647 5.44583

1000 141 15501706 3.21679 1.17689 6.86016 5.86016 5.77437

100000 8350 264074170741 2.58273 1.14710 6.49405 5.49405 5.28293

200000 15504 1116374522657 2.56968 1.14347 6.68238 5.68238 5.44027

300000 22595 2591079720139 2.61956 1.14145 7.03697 6.03697 5.79201

400000 29495 4704619172003 2.56741 1.14004 6.91365 5.91365 5.66455

500000 36302 7472533368077 2.51877 1.15867 6.77736 5.77736 5.51158

600000 43119 10901967324637 2.46956 1.13810 6.62021 5.62021 5.35079

700000 49834 15001269948023 2.43548 1.13737 6.51781 5.51781 5.24772

800000 56419 19776121232971 2.41801 1.13675 6.48149 5.48149 5.2025

900000 62770 25235697805141 2.41648 1.13621 6.51155 5.51155 5.22977

106 69251 31380813002879 2.40459 1.13572 6.30126 5.30126 5.02105

4 · 106 252028 549524547523421 2.24844 1.12966 6.15989 5.15989 4.84045

5 · 106 310756 870522520170287 2.22830 1.12873 6.12200 5.12200 4.79728

107 594851 3629567501866919 2.181921 1.12593 6.07346 5.07346 4.7374

5 · 107 2707378 99262810294692679 2.083831 1.11987 5.95575 4.95575 4.58936

7 · 107 3720648 198036667738658321 2.065440 1.11868 5.93361 4.93361 4.56144

8 · 107 4220531 260463664887226043 2.059235 1.11821 5.93009 4.93009 4.55643

108 5212720 411680592327546713 2.047463 1.11744 5.91551 4.91551 4.53769

2 · 108 10047823 1705122556732581169 2.014906 1.11511 5.88554 4.88554 4.49873

3 · 108 14763858 3913274710820657161 1.995499 1.11379 5.86106 4.86106 4.46806

4 · 108 19404439 7053651472078078383 1.982108 1.11287 5.84373 4.84373 4.44675

5 · 108 23985388 11138479445180255153 1.972857 1.11217 5.83583 4.83583 4.43625

7 · 108 33031264 22177401605086098829 1.958466 1.11113 5.81944 4.81944 4.41565

109 46388006 46007864234123508181 1.943427 1.11005 5.80097 4.80097 4.39275

109 + 5 · 108 68259534 105428905479616558423 1.927428 1.10885 5.78377 4.78377 4.37116

It is easy to prove the folowing result.

Proposition 6.1. Let (Qk), (Q
′
k) and (Q′′

k) be the sequnces defined by (99), (100) and

(101), respectively. Then

lim
k→∞

(Qk −Q′
k) = lim

k→∞
(Q′

k −Q′′
k) = 0.

We also propose the following conjecture.
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Conjecture 6.2. The all sequences (Qk), (Q
′
k) and (Q′′

k) converge to 1.

Remark 6.3. In view of the above conjecture, it can be of interest to consider the se-

quence (Q′′′
k ) defined as

Q′′′
k =

qk − 2k2(log2 k)(log k + log log k)

2k2(log2 k) log log log k
, k = 2, 3, . . . ,

The values of Q′′′
10s for s = 3, 5, 6, 7, 8, 9 are equals to 19.961, 15.329 14.524 13.809

13.621, 13.069, respectively.

Remark 6.4. The values Vk := qk/(2m
2 logm) = Sm/(2m

2 logm) presented in the

fourth column of Table 3 are in fact terms of the sequence tn := Sn/(2n
2 log n) with n =

2, 3, . . . , which is decreasing under Conjecture 5.3 on the range {n ∈ N : n ≥ 1100}.

Accordingly, under Conjectures 4.6 and 5.3 and the fact that q151 = S1100 = 19949537,

we immedately get

Vk = tm ≤ t⌊k log k⌋+1 < t⌊k log k⌋ := M
(l)
k for all k ≥ 151,

that is,

(102) Vk < M
(l)
k for all k ≥ 151,

where M
(l)
k are approximative values for Mk given by (89) and presented in Table 1.

Moreover, the comparison of values of Mk with those of Vk from Tables 1 and 2,

respectively, leads to the following conjecture.

Conjecture 6.5. Let (Mk)
∞
k=2 be the sequence defined by (56) of Theorem 4.4, and let

m(k) = m be defined as Sm = qk. Then

(103) Mk <
qk

2m2 logm
for all k ≥ 4× 106.

Consequently, we obtain the following “weak version” of Conjecture 6.5.

Corollary 6.6. Let (Mk)
∞
k=2 be the sequence defined by (56) of Theorem 4.4, and let

m(k) = m be defined as Sm = qk. Then under Conjectures 4.6, 5.3 and 6.5 we have

Mk < t⌊k log k⌋+1 :=
S⌊k log k⌋+1

2(⌊k log k⌋+ 1)2 log(⌊k log k⌋+ 1)
for all k ≥ 4× 106.

Proof. Combining Conjectures 4.6, 5.3 and 6.5, we find that for all k ≥ 4 × 106 with

qk = Sm

Mk <
qk

2m2 logm
=

Sm

2m2 logm
= tm ≤ t⌊k log k⌋+1 =

S⌊k log k⌋+1

2(⌊k log k⌋ + 1)2 log(⌊k log k⌋+ 1)
,

as desired. �

Remark 6.7. The ratios Lk := qk/(2k
2 log2 k(log k + log log k)) are closely related to

Corollary 4.7. Of course, the values Lk are small than the related values qk/(2k
2 log3 k)

presented in the fourth column of Table 3. For example, Lk is equal to 1.762999, 1.696920
for k = 2707378, 19404439, respectively. However, the sequence (Lk) slowly tends to

1 as k grows. This is directly connected with the fact that the sequence (k log k/m(k))
converges very slowly to 1 as k grows (see the eighth column of Table 1).
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Remark 6.8. A good approximation from Remark 4.11 arising from the last column of

Table 1 can be written as

(104)
√

k log k ≈ 2m2
√
m logm

Sm

,

where qk = Sm. The approximation (104) allows us for given n to determine the index

k = k(n) such that the prime sum qk is “very close” to Sn; especially, for each n ≥
4 × 106 (i.e., for k ≥ 252028), assuming that Conjecture 4.9 is true, then qk(n) < Sn.

Accordingly, for given n we assume that k0(n) = ⌊x0⌋, where x0 = x0(n) is a root of

the equation

(105)
√

x log x =
2n2

√
n log n

Sn

.

For some values n from Table 1 Table 4 presents the exact largest values k(n) such that

qk(n) ≤ Sn (these values are in fact, given in the second column of Table 1) and related

differences k(n)− k0(n).

Table 4. The values k = k0(n) and k(n)− k0(n) = k − k0 for some values n ≤ 109

n k := πn k − k0 n k k − k0 n k k − k0
10 5 3 102 23 1 103 141 -3

104 1098 -33 105 8350 -59 2 · 105 15504 -315

3 · 105 22595 -338 4 · 105 29495 -371 5 · 105 36302 -812

6 · 105 43119 -263 7 · 105 49834 -177 8 · 105 56419 -627

9 · 105 62770 -308 106 69251 -283 2 · 106 131841 -368

3 · 106 192655 -110 4 · 106 252028 5 5 · 106 310756 404

107 594851 1469 2 · 107 1141478 4638 3 · 107 1671839 7462

4 · 107 2193083 10997 5 · 107 2707378 14644 6 · 107 3216515 18621

7 · 107 3720648 22061 8 · 107 4220531 25021 9 · 107 4717545 28357

108 5212720 32696 108 + 107 5703356 35030 108 + 2 · 107 6191655 37303

108 + 3 · 107 6679364 41059 108 + 4 · 107 7165567 45196 108 + 5 · 107 7650550 49854

108 + 6 · 107 8132623 53221 2 · 108 10047823 67743 3 · 108 14763858 107704

4 · 108 19404439 149159 5 · 108 23985388 186542 7 · 108 33031264 267196

8 · 108 37508452 309262 9 · 108 41960355 351779 109 46388006 392660

In view of the above considerations and computational results given in Table 4, we

propose the following conjecture.

Conjecture 6.9. Let n ≥ 4 × 106 be a positive integer, and let x0(n) be a real root of

the equation

(106)
√

x log x =
2n2

√
n log n

Sn
.

Then the set {S1, S2, . . . , Sn} contains at least ⌊x0(n)⌋ primes.

The inequality on right hand side of (37) of Proposition 3.12 immediately gives the

following weak version of Conjecture 6.9.

Conjecture 6.10. Let n ≥ 4 × 106 be a positive integer, and let y0(n) be a real root of

the equation

(107)

(

1 +
log 2 + log log(2n)

log n

)

√

y log y =
√
n.

Then the set {S1, S2, . . . , Sn} contains at least ⌊y0(n)⌋ primes.
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It can be also of interest to compare the values k0(n) and k1(n) := ⌊y0(n)⌋ with the

values k2(n) := ⌊z0(n)⌋, where z0(n) is a real root of the equation

(108) x log x = n.

Corollary 6.11. Let n ≥ 4× 106 be a positive integer. Then under Conjecture 6.10 and

its notations, the sequence (Si)
∞
i=1 contains at least k0(n) := ⌊y0(n)⌋ primes which are

less than 2n2(log n+ log log(2n) + log 2). In other words,

(109) qk0(n) < 2n2(logn + log log(2n) + log 2).

Proof. The assertion immediately follows from Conjecture 6.10 and the right hand side

of the inequalities (37) from Proposition 3.12. �

The values k0(n) (derived from Table 4 as the differences k0(n) = k(n) − (k(n) −
k0(n))), k1(n) and k2(n) concerning the values of n from Table 4, are presented in Table

5.

Table 5. The values ki(n), i = 0, 1, 2, the ratios δj(n) := (k(n) − kj(n))/k(n) with

j = 1, 2, the ratios η(n) := k0(n)/
√

k1(n)k2(n) and ξ(n) := k(n)/
√

k1(n)k2(n)

n k0(n) δ0(n) k1(n) δ1(n) k2(n) δ2(n) η(n) ξ(n)

10 2 0.60000 2 0.60000 5 1.00000 0.63246 1.58114

102 22 0.04348 15 0.34783 29 -0.26087 1.05482 1.10277

103 144 -0.00213 109 0.22695 190 -0.347552 1.00063 0.97978

104 1131 -0.03005 846 0.22951 1382 -0.25865 1.04598 1.01546

105 8409 -0.0071 6928 0.17030 10770 -0.28982 0.97345 0.96666

5 · 105 37114 -0.02237 30816 0.15112 46521 -0.28150 0.98022 0.95878

106 69534 -0.00409 58857 0.15009 87845 -0.26850 0.96703 0.96309

4 · 106 252023 0.00002 216103 0.14254 315878 -0.25334 0.96461 0.96463

5 · 106 310352 0.00130 266622 0.14202 388499 -0.25017 0.96430 0.96555

107 593382 0.00247 512630 0.13822 739955 -0.24393 0.96345 0.96584

5 · 107 2692734 0.00541 2353142 0.13084 3329279 -0.22971 0.962043 0.96728

108 5180024 0.0063 4546674 0.12778 6382029 -0.22432 0.96162 0.96769

5 · 108 23798846 0.00778 21080800 0.12110 29093410 -0.21296 0.96098 0.96851

109 45995346 0.00846 40886757 0.11859 56048389 -0.20825 0.96082 0.96902

The last column of Table 5 suggests that ξ(n) < 1 for all n ≥ 105, which is obviously

equivalent with the following conjecture.

Conjecture 6.12. Let n ≥ 105 be a positive integer, and let k1(n) = ⌊y0(n)⌋ and

k2(n) = ⌊z0(n)⌋, where y0(n) and z0(n) are real roots of the equations (107) and (108),

respectively. Then the set {S1, S2, . . . , Sn} contains less than ⌊
√

k1(n) · k2(n)⌋ primes.

As an immediate consequence, we obtain the following statement.

Corollary 6.13. Let n ≥ 105 be a positive integer. Then under Conjecture 6.12 and its

notations the sequence (Si)
∞
i=1 contains at most ⌊

√

k1(n) · k2(n)⌋ primes which are less

than 2n2 log n. In other words,

(110) q⌊
√

k1(n)·k2(n)⌋ > 2n2 logn.

Proof. The assertion immediately follows from Conjecture 6.12 and left hand side of the

inequalities of (37) from Proposition 3.12. �

Remark 6.14. Conjecture 6.6 may be considered as the “prime sums analogue” of the

well known fact that pk ≥ k log k for all k ≥ 3, where pk is the kth prime (see e.g., [38,

p. 69])
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Remark 6.15. The approximation (105) can be written as

(111)

√

m

k log k
≈ Sm

2m2 logm
,

which in view of Conjecture 5.3 asserts that the sequence (m/(k log k))∞k=k1
is decreas-

ing for a fixed large integer k1.
On the other hand, if we write the estimate (111) in the form

(112)

√

m log2m

k log k
≈ Sm

2m2
,

then Proposition 5.1 suggests that the sequence (m log2m/(k log k))∞k=k2
is increasing

for some fixed large integer k2.

7. THE STRONGER FORM OF CONJECTURE 3.3

Around 1800, young C. F. Gauss conjectured that for large n the the number of primes

not exceeding n is nearly

li(n) :=

∫ n

2

dt

log t
.

Heuristic and computational arguments give the impression that Restricted Prime Num-

ber Theorem (RPNT) for the sequence (Sn) (i.e., Conjecture 3.3) probably holds in its

stronger form which in fact presents the well known form of Prime Number Theorem

(PNT) for primes (see e.g., [18, Chapter 12]). Accordingly, we propose the following

conjecture.

Conjecture 7.1. Let π(Sk)(Sn) = πn be the number of primes p in the sequence (Sk)
such that p = Si for some i with 1 ≤ i ≤ n. Then

(113) πn = li(n) +R(n),

where

(114) li(n) :=

∫ n

2

dt

log t
=

n

logn
+O

(

1

log2 n

)

as n → ∞.

is the logarithmic integral and

(115) R(n) ≪ ne(−Cδ(n)) with δ(n) := (log n)3/5(log log n)−1/5.

Assuming the above conjecture, and following related “PNT result” of A. Ivić and

J.-M. De Koninck [20, Theorem 9.1] (see also [19, Theorem]), it can be proved the

following result.

Corollary 7.2. Under the truth and notations of Conjecture 7.1, we have

(116)

n
∑

i=1

1

πi

=
1

2
log2 n+O(logn) as n → ∞.

Similarly, using Conjecture 7.1 it can be proved the following result.

Corollary 7.3. Let qk be the kth prime in (Sn). Then under Conjecture 7.1,

(117)

n
∑

k=1

k log2 k

qk
= log log n+ o

(

1

log n

)

.
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Finally, we propose the following conjecture.

Conjecture 7.4 (Chebyshev inequalities for (Sn)). There exist positive constants c1, c2
and a positive positive integer n0 such that

(118)
c1n

log n
≤ π(Sn)(Sn) ≤

c2n

log n
for all n > n0.

Remark 7.5. We also believe that for the sequence (Sn) are valid the analogues of some

other classical results and conjectures closely related to the Prime Number Theorem.

Remark 7.6. Numerous computational results involving sums of the first n primes (the

Sloane’s sequence A007504 sequence here denoted as S ′
n) and certain their curious arith-

metical properties are presented in Sloane’s sequences A051838 (numbers n such that

sum of first n primes divides product of first n primes), A116536, A067110, A067111,

A045345, A114216 (sum of first n primes divided by maximal power of 2), A024011

(numbers n such that nth prime divides sum of first n primes), A036439 (a(n) = 2+
the sum of the first n − 1 primes), A014284 (partial sums of primes, if 1 is regarded

as a prime; 1, 3, 611, 18, 29, . . .), A134125 (integral quotients of partial sums of primes

divided by the number of summations; 5, 5, 7, 11, 16, 107, . . .), A134126 (indices k such

that the (k+1)th partial sum of primes divided by k is integer; 1, 2, 4, 7, 10, 50, 130, . . .),
A134127 (largest prime in the partial sums of primes in A134125 which have integer av-

erages), A134129 (prime partial sums A007504(k + 1) such that A007504(k + 1)/k is

integer; 5, 10, 28, 77, 160, . . .), A077023, A033997, A071089, A083186 (sum of first n
primes whose indices are primes), A166448 (sum of first n primes minus next prime),

A196527, A065595 (square of first n primes minus sum of squares of first n primes),

A165906 (sum of first n primes divided by the nth prime), A061568 (number of primes

≤ sum of first n primes), A066039 (largest prime less than or equal to the sum of first

n primes), A077022, A110997, A112997 (sum of first n primes minus sum of their in-

dices), A156778 (sum of first n primes multiplied by n/2), A167214 (sum of first n
primes multiplied by n), A038346 (sum of first n primes ≡ 1(mod 4), A038347 (sum

of first n primes ≡ 3(mod 4), A054972 (product of sum of first n primes and product

of first n primes), A072476, A076570 (greatest prime divisor of sum of first n primes),

A076873 (smallest prime not less than sum of first n primes), A077354 (sum of second

string of n primes-sum of first n primes, or 2nth partial sum of primes; this is in fact

our sequence (Sn)), A110996, A123119 (number of digits in sum of first n primes),

A189072 (semiprimes in the sum of first n primes), A196528, A022094 (sum of first

pn primes, where pn is the nth prime), A024447, A121756, A143121 (triangle read by

rows, T (n, k) =
∑n

j=k pj , 1 ≤ k ≤ n), A117842 (partial sum of smallest prime ≥ n),

A118219, A131740 (sum of n successive primes after nth prime), A143215 (the se-

quence whose nth term is pn · S ′
n = pn ·

∑n
i=1 pi), A161436 (sum of all primes from nth

prime to (2n− 1)th prime), A161490, A013918 (numbers n such that n is prime and is

equal to the sum of the first k primes for some k; 2, 5, 17, 41, 197, 281, 7699, 8893, . . .)
etc.
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divers Savants 6 (1851), 141–157.
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[29] R. Meštrović, On the distribution of primes in the alternating sums of primes and some other se-

quences.

http://arxiv.org/abs/math/0606765
http://arxiv.org/abs/math/0311498
http://arxiv.org/abs/1202.3670


32 ROMEO MEŠTROVIĆ
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