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1 Introduction

The representation of combinatorial sequences as moment sequences is a fasci-
nating subject that lies at the interface between combinatorics and analysis. For

instance, the Apéry numbers
n 2 2
n n+k
A = 1.1

k=0

play a key role in Apéry’s celebrated proof [6] of the irrationality of ¢(3) [31L47,[73,80];
they also arise in Ramanujan-like series for 1/7 [20] and 1/7? [79]. As such, they have
elicited much interest, both combinatorial [21,62,[72] and number-theoretic [1,1423],
30158]. A few years ago I conjectured [25], based on extensive numerical computations,
that the Apéry numbers are a Stieltjes moment sequence, i.e. A, = [2"du(zx) for
some positive measure p on [0,00). Very recently this conjecture has been proven by
Edgar [26], in a tour de force of special-functions work; he gives an explicit formula, in
terms of Heun functions, for the (unique) representing measure p. The more general
conjecture [66] that the Apéry polynomials

An(z) = i (”Zky(Z)ka (1.2)

k=0

are a Stieltjes moment sequence for all x > 1 remains open.

In this paper I propose to study the moment problem for two less recondite com-
binatorial sequences: the Euler numbers and the Springer numbers. Many of the
results given here are well known; others are known but perhaps not as well known as
they ought to be; a few seem to be new. This paper is intended as a leisurely survey
that presents the relevant results in a unified fashion and employs methods that are
as elementary as possible.

The Fuler numbers E, are defined by the exponential generating function

o0 tn
sect +tant = E En,— . (1.3)
n!
n=0

The Es, are also called secant numbers, and the FEs,., are called tangent numbers.
The Euler numbers are positive integers that satisfy the recurrence

2
k=0

1 n
Eoyi = =) (Z) E._1E, forn>1 (1.4)

with initial condition Ey = E; = 1; this recurrence follows easily from the differential
equation &£'(t) = 1[1 4 £(t)? for the generating function £(t) = sect + tant. André
[3,4] showed in 1879 that E, enumerates the alternating (down-up) permutations of

[n] o {1,...,n}, i.e. the permutations o € &,, that satisfy o1 > 09 < 03 > 04 < ...

L As Josuat-Verges et al. point out [50, p. 1613], André’s work “is perhaps the first example of
an inverse problem in the theory of generating functions: given a function whose Taylor series has
nonnegative integer coeflicients, find a family of combinatorial objects counted by those coefficients.”



More recently, other combinatorial objects have been found to be enumerated by the
Euler numbers: complete increasing plane binary trees, increasing 0-1-2 trees, André
permutations, simsun permutations, and many others; see [33,[52,[68,[74] for surveys.
The sequence of Euler numbers starts as

(E)nso = 1,1,1,2,5,16,61,272,1385, 7936, 50521, . . . (1.5)

and can be found in the On-Line Encyclopedia of Integer Sequences [57] as se-
quence A000111. It follows from (I.3) that E, has the asymptotic behavior

E, = %(%)"m + O((%)nn!) (1.6)
as n — OOE

The Springer numbers S,, are defined by the exponential generating function [40,
A11[67]

1 =t

— = Sp— . 1.7

cost —sint ;:0 n! (17)
Arnol’d [7] showed in 1992 that S,, enumerates a signed-permutation analogue of the
alternating permutations. More precisely, recall that a signed permutation of [n] is a
sequence ™ = (my,...,m,) of elements of [+n] o {—n,...,—1}U{1,...,n} such that
|| o (Im1], ..., |m]) is a permutation of [n]. In other words, a signed permutation 7
is simply a permutation |7| together with a sign sequence sgn(7). We write B,, for
the set of signed permutations of [n]; obviously |®8,,| = 2"n!. Then a snake of type B,
is a signed permutation m € B, that satisfies 0 < my > m < w3 > my < .... Arnol’d
[7] showed that S,, enumerates the snakes of type B,. Several other combinatorial
objects are also enumerated by the Springer numbers: Weyl chambers in the principal
Springer cone of the Coxeter group B, [67], topological types of odd functions with
2n critical values [7], and certain classes of complete binary trees and plane rooted
forests [49]. The sequence of Springer numbers starts as

(Sp)n>0 = 1,1,3,11,57,361,2763,24611, 250737, 2873041, 36581523, ...  (1.8)

and can be found in [57] as sequence A001586. It follows from (L7) that S, has the
asymptotic behavior

5= 22 (5 w4 o((L)m) (19)

™ ™

as n — oQ.

2 Warning: The Euler numbers found in classical books of analysis are somewhat different from
these: Eglassical — () and Eglassical — (_1)"E,, . Moreover, our tangent numbers Es,, ;| are classically
written as a complicated expression in terms of Bernoulli numbers:

(_1)11—12271(2271 _ 1)B2n
2n

Eyp1 = forn>1.

The definition given here is the one nowadays universally used by combinatorialists, since it makes
E,, a positive integer that has a uniform combinatorial interpretation for n even and n odd.



In this paper I propose to study the sequences of Euler and Springer numbers
from the point of view of the classical moment problem [2,[63H65,[71]. Let us recall
that a sequence a = (a,)n>o of real numbers is called a Hamburger (resp. Stieltjes)
moment sequence if there exists a positive measure p on R (resp. on [0,00)) such
that a, = [2"du(z) for all n > 0. A Hamburger (resp. Stieltjes) moment sequence
is called H-determinate (resp. S-determinate) if there is a unique such measure p;
otherwise it is called H-indeterminate (resp. S-indeterminate). Please note that a
Stieltjes moment sequence can be S-determinate but H-indeterminate [2, p. 240] [65,
p. 96]. The Hamburger and Stieltjes moment properties are also connected with the
representation of the ordinary generating function A(t) = Y a,t™ as a Jacobi-
type or Stieltjes-type continued fraction; this connection will be reviewed in Section
below.

Many combinatorial sequences turn out to be Hamburger or Stieltjes moment se-
quences, and it is obviously of interest to find explicit expressions for the representing
measure(s) u and/or the continued-fraction expansions of the ordinary generating
function. In this paper we will address both aspects for the Euler and Springer
numbers and some sequences related to them.

2 Preliminaries on the moment problem

In this section we review some basic facts about the moment problem [2]63-65,
711,76] that will be used repeatedly in the sequel.

In the Introduction we defined Hamburger and Stieltjes moment sequences. We
begin by noting some elementary consequences of these definitions:

1) If @ = (ay)n>0 is a Stieltjes moment sequence, then every arithmetic-progression
subsequence (a,,+;n)N>0 With ng > 0 and j > 1 is again a Stieltjes moment sequence.

2) If @ = (an)n>o0 is a Hamburger moment sequence, then every arithmetic-
progression subsequence (@,,+jn)n>0 With ng > 0 even and j > 1 is again a Ham-
burger moment sequence; and if also j is even, then it is a Stieltjes moment sequence.

3) For a sequence a = (a,)n>0, the following are equivalent:

(a) a is a Stieltjes moment sequence.

(b) The “aerated” sequence a = (ag,0,a,0,as,0,...) is a Hamburger
moment sequence.

(c) There exist numbers ay, a}, ab, ... such that the “modified aerated”
sequence @’ = (ao, af, a1, ay, az, al, ...) is a Hamburger moment se-
quence.

Indeed, (b) = (c) is trivial, and (c) = (a) follows from property #2: concretely,
if @’ is represented by a measure i’ on R, then a is represented by the measure p on
[0,00) that is the image of i’ under the map x — z* [namely, u(A) = @/'({z: 2% €
A})]. And for (a) = (b), if a is represented by a measure p supported on [0, c0),
then @ is represented by the even measure i = (77 + 77)/2 on R, where 77 is the
image of y under the map = — +/x.

4) For a sequence a = (ay,)n>0, the following are equivalent:



(a) a is a Stieltjes moment sequence.

(b) Both @ and the once-shifted sequence a@ = (an41)n>0 are Stieltjes
moment sequences.

(c) Both a and a are Hamburger moment sequences.

Here (a) <= (b) = (c) is easy (using property #1); unfortunately I do not know
any completely elementary proof of (c) = (a), but it is anyway an immediate con-
sequence of Theorems 2.1 and 2.2 below (see also [12] p. 187]).

5) If @ = (an)n>0 and b = (b,),>0 are Hamburger (resp. Stieltjes) moment se-
quences, then any linear combination aa 4+ £b with «, 5 > 0 is also a Hamburger
(resp. Stieltjes) moment sequence: if a (resp. b) has representing measure p (resp.
v), then aa + fb has representing measure oy + [fv.

6) If @ = (an)n>o0 and b = (b,),>o are Hamburger (resp. Stieltjes) moment se-

quences, then their entrywise product ab dof (@nbp)n>o is also a Hamburger (resp.
Stieltjes) moment sequence: if a (resp. b) has representing measure p (resp. v), then
ab has representing measure given by the product convolution ¢ v:

(Lov)(A) = (pxv)({(z,y) € R*: zy € A}) for ACR (2.1)

[that is, pov is the image of p X v under the map (x,y) — zy]. We will often use this
fact in the contrapositive: if b is a Hamburger (resp. Stieltjes) moment sequence and
ab is not a Hamburger (resp. Stieltjes) moment sequence, then a is not a Hamburger
(resp. Stieltjes) moment sequence. Indeed, the non-Hamburger (resp. non-Stieltjes)
property of ab can be viewed as a strengthened form of the non-Hamburger (resp.
non-Stieltjes) property of a.

We now recall the well-known [2,[34]63-65[71.[76] necessary and sufficient condi-
tions for a sequence a = (a,)n>o to be a Hamburger or Stieltjes moment sequence.
To any infinite sequence a = (a,)n>o of real numbers, we associate for each m > 0
the m-shifted infinite Hankel matrix

A, m4+1  Am+2
Am4+1  Am+2  Am43

H{(a) = (aitjim)ij=0 = Urs Amss Qs (2.2)
and the m-shifted n x n Hankel matrix
A, U+l Qmgn—1
HM (@) = (aipemlozigenn = | e (23
Am4n—1 Gm4n " Am42n-2
We also define the Hankel determinants
A™(a) = det H™(a) . (2.4)



Theorem 2.1 (Necessary and sufficient conditions for Hamburger moment sequence).
For a sequence a = (ay)n>0 of real numbers, the following are equivalent:

(a) a is a Hamburger moment sequence.

(b) Hég)(a) is positive-semidefinite. [That is, all the principal minors of Hég)(a)
are nonnegative. |

(c) There exist numbers ag > 0, By, B2, ... > 0 and Yo, 71, ... € R such that
> o
- Bt
=0 1=t — 3
Bat

1— ...

L—mt—

in the sense of formal power series. [That is, the ordinary generating func-
tion f(t) = > a,t™ can be represented as a Jacobi-type continued fraction with

n=0
nonnegative coefficients 3 and ./

There is also a refinement that is often useful: a is a Hamburger moment sequence
with a representing measure p having infinite support <= Hég)(a) is positive-
definite (i.e. all the principal minors are strictly positive) <= all the leading prin-
cipal minors AY are strictly positive <= all the ; are strictly positive.

Theorem 2.2 (Necessary and sufficient conditions for Stieltjes moment sequence).
For a sequence a = (ay,)n>0 of real numbers, the following are equivalent:

(a) a is a Stieltjes moment sequence.

(b) Both HY(a) and H)(a) are positive-semidefinite. [That is, all the principal
minors of Hég)(a) and Hg)(a) are nonnegative. |

(c) Hég)(a) is totally positive. [That is, all the minors of Hég)(a) are nonnegative. |

(d) There exist numbers ag, o, ... > 0 such that

e (87
> ant" = - (2.6)
n=0 _

1_ Oélt

Oégt
1—--.--

1—

in the sense of formal power series. [That is, the ordinary generating function

f(t) = > ant™ can be represented as a Stieltjes-type continued fraction with
n=0
nonnegative coefficients.]



(e) There exist numbers ag > 0, B1,052,... > 0 and v9,71,... > 0 such that the
infinite tridiagonal matriz

Y 1
i1 1

Ay = |7 A (2.7)

18 totally positive and

> ant" = e (2.8)
=0 1 — ot — 5
2

1— ...

L—mt—

in the sense of formal power series. [That is, the ordinary generating function

f(t) = > ant™ can be represented as a Jacobi-type continued fraction with a
n=0
totally positive production matriz.|

Once again, there is a refinement: a is a Stleltjes moment seo(luence with a rep-
resenting measure g having infinite support <= HY ) and Hso are positive-
definite (i.e. all the principal minors are strictly posfcwe) <:> all the leading princi-
pal minors A and A are strictly positive <= Hég)(a) is strictly totally positive
(i.e. all the minors are strictly positive) <= all the q; are strictly positive <= all
the ; are strictly positive.

From the 2 x 2 minors of HY(a) and HY(a), we see that a Stieltjes moment
sequence is log-convex: a,a,12 —a2,; > 0. (This is also easy to prove directly.)
But it goes without saying that the Stieltjes moment property is much stronger than
log-convexity.

For future reference, let us also recall the formula [76, p. 21] [75] p. V-31] for the
contraction of an S-fraction to a J-fraction: (2.6) and (2.8]) are equal if

Yo = @ (2.9a)
Yo = Qoo forn>1 (2.9b)
B = aop10a, (2.9¢)

Concerning H-determinacy and S-determinacy, we limit ourselves to quoting the
following sufficient condition [64, Theorems 1.10 and 1.11] due to Carleman in 1922:

Theorem 2.3 (Sufficient condition for determinacy of moment problem).

—1/2n

(a) A Hamburger moment sequence a = (a,)n>0 satisfying Z ay,’”" = oo is H-
n=1
determinate.
b) A Stielties moment sequence a = (a,)n>o0 Satisfyin an S o s S-
(b) J q ying

n=1
determinate.



In Corollary below, we will prove, by elementary methods, a slightly weakened
version of Theorem 2.3 It should be stressed that the conditions of Theorem are
sufficient for determinacy, but in no way necessary [45]; indeed, there are determinate
Hamburger and Stieltjes moment sequences with arbitrarily rapid growth [65, pp. 89,
135]. In fact, given any H-indeterminate Hamburger (resp. Stieltjes) moment sequence
a = (ay)n>0, there exists an H-determinate Hamburger (resp. Stieltjes) moment se-
quence @’ = (a},),>o that differs from a only in the zeroth entry: 0 < aj < a¢ while
a, =a, foralln > 1
We will need one other fact about determinacy [13| p. 178]:

Proposition 2.4 (S-determinacy with H-indeterminacy). Let a be a Stieltjes mo-
ment sequence that is S-determinate but H-indeterminate. Then the unique measure
on [0,00) representing a is the Nevanlinna-extremal measure corresponding to the
parameter value t = 0, hence is a discrete measure concentrated on the zeros of the
D-function from the Nevanlinna parametrization (and in particular has an atom at

0).

We refrain from explaining what is meant by “Nevanlinna-extremal measure” and
“Nevanlinna parametrization” [2,[I8[65], but simply stress that in this situation the
representing measure must be discrete

We will also make use of a generalization of the moment problem from positive
measures to signed measures. So let p be a finite signed measure on R; it has a unique
Jordan decomposition p = py — p— where py, i are nonnegative and mutually
singular [43]. We write |u| = py + p—. We will always assume that |u| has finite

o

moments of all orders, i.e. [ |z["d|u|(x) < oo for all n > 0. The moments a, =

[ 2" du(x) are then well-defined; we say that p represents a = (a,)n>o.

In sharp contrast to Theorems 2.1] and 2.2, the moment problem for signed mea-
sures has a trivial existence condition and an extraordinary nonuniqueness:

Theorem 2.5 (Pdlya [59,160]). Let @ = (a,)n>0 be any sequence of real numbers,
and let S be any closed unbounded subset of R. Then there exists a signed measure

3 PROOF (for experts): If a is an indeterminate Hamburger moment sequence, then the
Nevanlinna-extremal measure corresponding to the parameter value ¢ = 0 (call it ug) is a discrete
measure concentrated on the zeros of the Nevanlinna D-function (which are all real and simple,
and one of which is 0). If, in addition, a is a Stieltjes moment sequence, then the orthonormal
polynomials P, (z) have all their zeros in (0,00), so P,(0)P,(z) > 0 for all < 0; it follows that
D(z) = x> .7 P.(0)P,(z) has all its zeros in [0,00), so that s is supported on [0,00). Now
consider the measure ' = pg— 1o({0})do: it is H-determinate [2] p. 115] [I1}, p. 111] and its moment
sequence a’ differs from a only in the zeroth entry. I thank Christian Berg for drawing my attention
to this result and its proof.

4 Proor orF ProPOSITION 24 (for experts): Let a be a Stieltjes moment sequence that is
H-indeterminate. Then it was shown in footnote Bl that the N-extremal measure pg is a discrete
measure on [0,00) representing a. If a is also S-determinate, then pg is the unique measure on
[0,00) representing a. I again thank Christian Berg for drawing my attention to this result and its
proof.



p with support in S that represents a [that is, [ |z|™d|u|(x) < oo for allm >0 and

—00

an = [ a™du(z) for alln > 0].

So for any sequence a (even the zero sequence!) there are continuum many distinct
signed measures p, with disjoint supports, that represent a. (For instance, we can
take S = Z + X for any A € [0,1).) See also Bloom [15] for a slight refinement; and
see Boas [16] for a different proof of a weaker result.

The requirement here that S be unbounded is essential; among signed measures
with bounded support, uniqueness holds. More generally, uniqueness holds among
signed measures that have exponential decay. To show this, we begin with some
elementary lemmas:

Lemma 2.6 (Bounded support). Let a = (a,)n>0 be a sequence of real numbers, let
i be a signed measure on R that represents a, and let R € [0, c0).

(a) If p is supported in [—R, R], then |a,| < ||u|]| R", where ||u|| = |p|(R).

(b) Conversely, if p is a positive measure and |a,| < CR" for some C' < oo, then
w is supported in [—R, R].

PROOF. (a) is trivial.

(b) Suppose that y is a positive measure such that i ((—oo0, —R—€¢]U[R+¢,00)) =
K > 0 for some € > 0. Then ay, > K(R + €)?" for all n > 0, which contradicts the
hypothesis |a,| < CR". O

Remark. This proof shows that (b) holds under the weaker hypothesis lim inf |a, |'/?" <
n—oo
R N

Lemma 2.7 (Exponential decay). Let @ = (an)n>0 be a sequence of real numbers, let
1 be a signed measure on R that represents a, and let € > 0.

(a) If /edxl d|pl(z) = C < oo, then |a,| < Ce"nl.

(b) Conversely, if i is a positive measure and |a,| < Ce "n! for some C' < oo,
o

then /66|x| du(z) < oo for all 6 < e.

—0o0

PROOF. (a) Since |2"| < e "nledl®l it follows that |a,| < Ce "nl.

(b) Applying the monotone convergence theorem to coshdzr = > (§z)**/(2n)!,
n=0
we conclude that
T > 52n Qo C
/(coshé:c) du(z) = ; )l < =52/ < 00. (2.10)



Proposition 2.8 (Uniqueness in the presence of exponential decay). Let @ = (a,)n>0

be a sequence of real numbers, and let p and v be signed measures on R that repre-

sent a. Suppose that p has exponential decay in the sense that /e” d|p|(z) < oo

for some € > 0; and suppose that v is either a positive measure or else also has
exponential decay. Then p = v.

PRrROOF. By Lemma 2.7(a), we conclude that |a,| < Ce ™n! for some C' < co. Then

Lemma 2.7(b) implies that if v is a positive measure, it has exponential decay. So

we can assume that v has exponential decay. It follows that F'(t) = / e du(zx) and

G(t) = / e dy(x) define analytic functions in the strip [Im¢| < e. Moreover, by the

dominated convergence theorem they coincide in the disc |t| < € with the absolutely
convergent series Y ay,(it)™/n!. It follows that F' = G; and by the uniqueness theorem

n=0

for the Fourier transform of tempered distributions [46, Theorem 7.1.10] (or by other
arguments [65], proof of Proposition 1.5]) we conclude that p=v. O

Corollary 2.9. Let a = (a,)n>0 be a sequence of real numbers satisfying |a,| <
AB™n! for some A, B < co. Then there is at most one positive measure representing
a.

PROOF. Apply Lemma 2.7(b) and then Proposition 2.8 O

Corollary 2.10. Let a = (an)n>0 be a sequence of real numbers, and let 1 be a
nonpositive signed measure on R that represents a and has exponential decay in the

sense that /edm' du(x) < oo for some € > 0. Then a is not a Hamburger moment

sequence.

3 Euler numbers, part 1

We begin by studying the sequence of Euler numbers divided by n!. Our starting
point is the partial-fraction expansions of secant and tangent [5], p. 11]:

sect = lim Z i (3.1)

N—oo ' (]{3 + %)ﬂ' —t
N 1
tant = i -_ 3.2
an Jim k:Z_N T (3.2)



Inserting these formulae into the exponential generating function (L3) of the Euler
numbers and extracting coefficients of powers of ¢ on both sides, we obtain

Eo, - —(2n+1)
o k_z (=1)" [(k + 1)n] (3.3)
N
(with the interpretation lim > when n = 0) and
—00 LN
E2n+1 _ i [(k‘—l— l)ﬂ_:|—(2n+2) (3 4)
(2n + 1)! L 2 ' '
We can rewrite (3.4]) as
Borr 2 ( ! )n (3.5)
(2n+1)! e~ (k + 022 \(k+ 3)%m2) .

which represents (Fap,11/(2n+1)!),>0 as the moments of a positive measure supported
on a countably infinite subset of [0,4/72]. It follows that (Ea,.1/(2n + 1)!),>0 is a
Stieltjes moment sequence, which is both S-determinate and H-determinate. Theo-
rem 2.2 then implies that the ordinary generating function of (Ea,11/(2n+1)!),>0 can
be written as a Stieltjes-type continued fraction (2.6) with nonnegative coefficients
ay,; in fact we have the beautiful explicit formula [76], p. 349]

= B tan /1 1
e = AL ; (36)
nzo(n—l— ) \/% 1_ gtl
R 1
<t
1— 35"
1—-...

with coefficients «,, = 1/(4n? — 1) > 0. This continued-fraction expansion of the
tangent function was found by Lambert [54] in 1761, and used by him to prove the
irrationality of = [53,[77]. But in fact, as noted by Brezinski [I7, p. 110], a formula
equivalent to (3.6) appears already in Euler’s first paper on continued fractions [30]:
see top p. 321 in the English translationﬁ The expansion ([B.6) is a oF; limiting case
of Gauss’ continued fraction for the ratio of two contiguous hypergeometric functions
,F, 76, Chapter XVIII].

We will come back to (3.3) in a moment.

Combining (3.3) and (34) and taking advantage of the evenness/oddness of the
summands, we get

[e.e]

B S [k 0 [k 37
o) 9 n+1
- 2k:Z_oo(M) (3.7b)

® The paper [30], which is E71 in Enestrém’s [28] catalogue, was presented to the St. Petersburg
Academy in 1737 and published in 1744.

11



N

(once again with the interpretation ]\}im > when n = 0); see [27] for further
—00 k=—N

discussion of this sum. For n > 1 this sum is absolutely convergent, so we can write

[e.e]

B 8 2 "
(n+1)! ZOO (4k + 1)272 ((4k+1)ﬁ) ! (38)

k=—

which represents (E,11/(n+ 1)!),>0 as the moments of a positive measure supported
on a countably infinite subset of [—2/3w 2/x]. It follows that (E,.1/(n + 1)!)u>0
is a Hamburger moment sequence, which is H-determinate. In fact, the ordinary
generating function of (E,1/(n + 1)!),>0 can be written explicitly as a Jacobi-type
continued fraction [37]

t" = 3.9
(n+1)! St (3.9)

2 itQ

2
1 140t

-
with coefficients 7o = 1/2, v, = 0 for n > 1, and 3, = 1/(16n? — 4). This continued

fraction can be obtained from Lambert’s continued fraction (B.6) with ¢ replaced by
t? /4, by using the identity

=, E, t+tant — 1 1

Z oy _ sect + tan _ ‘ (3.10)
n—O n+1 t Eco’cz—E

a 2 2 2

By using the contraction formula (2.9]), we can also rewrite (8.9) as a Stieltjes-type
continued fraction [39]

[o¢] 1

n—l—l n

§ - (3.11)
— (n+1)! . 3

with coefficients aop 1 = (—=1)71/(4k — 2), agr, = (—=1)k71/(4k + 2). Here the coef-
ficients «; are not all nonnegative; it follows by Theorem and the uniqueness of
Stieltjes-continued-fraction representations that (E,11/(n + 1)!),>0 is not a Stieltjes
moment sequence — a fact that we already knew from (B.8) and the H-determinacy.

Let us now consider the even subsequence (Es,/(2n)!),>¢. Is it a Hamburger
moment sequence? The answer is no, in a very strong sense:

Proposition 3.1. Define En = E,/n!. Then (Egn)nzo is not a Hamburger moment
sequence. In fact, no arithmetic-progression subsequence (Ey,4in)N>0 with ng even
and j7 > 1 is a Hamburger moment sequence.

12



We give two proofs:

FIRST PROOF. For any even nyg > 2 and any j > 1, the equation (3.8) repre-

sents (Eny+in)n>0 as the moments of a nonpositive signed measure supported on
[—2/3m,2/~]. Corollary 210 then implies that (£,,+;n)n>0 is not a Hamburger mo-
ment sequence. The assertion for ny = 0 then follows from the assertion for ng = 27.

O

The second proof is based on the following fact, which is of some interest in its
own right:

Proposition 3.2. Define En = E,/n!. Then (Egn)nzo s a Polya frequency sequence,
i.e. every minor of the infinite Toeplitz matrix

E, E, E, Eg

0 FEy Ey E4
(Boj-2i)ij=o = |0 0 Eo Ly - (3.12)

15 nonnegative. Moreover, a minor using rows iy < iy < ... < 4. and columns
J1 < Jo < ... < jpis strictly positive if ip < ji for 1 < k < r. In particular, the
sequence (Fap)n>o is strictly log-concave.

PROOF. It follows from the well-known infinite product representation for cost that

1
2

This implies [51, p. 395] that (Egn)nzo is a Pdlya frequency sequence; and it also
implies [51, p. 427-430] the statement about strictly positive minors. The strict log-
concavity is simply the strict positivity of the 2 x 2 minors above the diagonal. [

SECOND PROOF OF PROPOSITION B3Il No arithmetic-progression subsequence
(Eng+in)N>0 with ng even and j > 1 can be a Hamburger moment sequence, since
its even subsequence (E,,o;n)nN>0 IS strictly log-concave and hence cannot be log-
convex. [

The even and odd subsequences thus have radically different behavior: the even
subsequence (FEs,),>o is strictly log-concave, while the odd subsequence (FEa,41)n>0
is strictly log-convex (since it is a Stieltjes moment sequence with a representing
measure of infinite support). These two facts are special cases of the following more
general inequality that appears to be true:

Conjecture 3.3. Define E, = E,/n!. Then for alln >0 and j, k > 1, we have

(—1)" BBt jak — EnrjEnsi] > 0. (3.14)

13



I do not know how to prove (B:I4]), but I have verified it for n, 7,k < 900.

Though (FEs,/(2n)!),>0 is not a Hamburger moment sequence, one could try
multiplying it by a Hamburger (or Stieltjes) moment sequence (b,),>0; the result
(bpEon/(2n)!) >0 might be a Hamburger (or even a Stieltjes) moment sequence. For
instance, the central binomial coeficients (*') = (2n)!/(n!)? are a Stieltjes moment
sequence, with representation

(2”) - 1/4:5%—1/2 (4—2)"V2da . (3.15)

n ™
0

Might (Es,/(n!)?),>0 be a Hamburger moment sequence? The answer is no, because
the 7 x 7 Hankel determinant det(a;4;)o<ij<6 for a, = Ea,/(n!)? is negative. Unfor-
tunately I do not know any simpler proof.

But if we multiply by another factor of n!, then the result (Es,/n!),>0 is a Ham-
burger — and indeed a Stieltjes — moment sequence. To see this, start by rewriting

B3) as

Ez” 22 + Ly O (3.16)

Now multiply this by the Stleltjes mtegral representation

L (2n — 1)

n!

2

e~ (3.17)

\/ﬁ

to get

o R N ( : )%
= d 2% E . 3.18
b Vor ) O G D\t D (3.18)

Change variable to y = z/[(k + 5)71‘] and interchange integration and summation; this
leads to

E2n 2n+1 2n 1 2. 2 2
= dyy Z Mexp[—i(k+1)*m%y7] . (3.19)

The density here is posmve because each term with even £ dominates the term k+ 1:
exp[—3(k+1)*7%y%] > exp[—3(k+1+1)7%°] . (3.20)

It follows that (Es,/n!),>o is a Stieltjes moment sequence. Its ordinary generating
function is therefore given by a Stieltjes-type continued fraction with coefficients
a; > 0; but no explicit formula for these coefficients seems to be known.

4 FEuler numbers, part 2

Thus far we have considered the sequence of Euler numbers E,, divided by facto-
rials. Now we consider the sequence of Euler numbers E,, tout court, along with its
even and odd subsequences.

14



We have already seen that (E,41/(n + 1)!),>0 is a Hamburger moment sequence.
Since ((n+1)!),>0 is also a Hamburger (in fact a Stieltjes) moment sequence, it follows
that their product (E,i1)n>0 is again a Hamburger moment sequence. Similarly,
we have seen that (Eo,41/(2n + 1)!),>0 is a Stieltjes moment sequence; and since
((2n + 1)!),,>0 is a Stieltjes moment sequence, it follows that their product (Eay,11)n>0
is a Stieltjes moment sequence. And finally, we have seen that (Es,/n!),>o is a
Stieltjes moment sequence; and since (n!),> is a Stieltjes moment sequence, it follows
that their product (Fa,)n>0 is a Stieltjes moment sequence. In this section we will
obtain explicit expressions for these sequences’ representing measures and for the
continued-fraction expansions of their ordinary generating functions.

Start by rewriting (3.7h) as

k=0

o
Now multiply by the Stieltjes integral representation n! = [2"e™* dx to get
0

E, — O/d:ce wkz: 4k+1 <4k2j31)ﬂ)n
—Unzzxex§2(ugi$w(oﬂff@”)n B

Change variable to y = 2x/[(4k + 1)7] in the first term, and y = 2z/[(4k + 3)7] in
the second, and interchange integration and summation; this leads to

[ ey T o (3m/2)y §
E, = 2 /my dy — /m (—y)" dy (4.3a)
0 0
[ d 4.3b
N /y sinh 7y v (4.3b)

The integral (4.3D)) is absolutely convergent for n > 1; for n = 0 it is valid as a
principal-value integral at y = 0. In particular we have

. [ ye2y ] »
n+l = / ) m Yy, (4.4)
which represents E,,; as the nth moment of a positive measure on R. Hence
(Ept1)n>o0 is a Hamburger moment sequence. It is H-determinate by virtue of (.G
and Corollary 2.9,

Note also that multiplying (4.3D) by ¢"/n! and summing >~ . we recover the

two-sided Laplace transform

T olthm/2)y

t+tant = —d 4.5
sect + tan /sinhwy v, ( )

—00
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which is valid for —37/2 < Ret < 7/2 as a principal-value integral [29, 6.2(8)], or
equivalently (by symmetrizing)

[ sinh(t + /2
sect + tant = /sm ( +m/2)y dy . (4.6)
sinh y

—00

For n even we can combine the y > 0 and y < 0 contributions in (4.3b]) to
obtain [42], 3.523.4] [56], 24.7.6]

oo

E,, = /y sech(2 )dy, (4.7)

0

while for n odd a similar reformulation gives [42}, 3.523.2]

o0

v
Eoni1 = /?f” ycsch(§y> dy . (4.8)

0

We have thus explicitly expressed (Eay,)n>0 and (Eaopi1)n>0 as Stieltjes moment se-
quences. By (L) and Theorem 23(b) they are S-determinate. And since the mea-
sures in (A.7)/(48) are continuous, Proposition 2.4 implies that these sequences are
also H-determinate.

The moment representations (4.7)/(4.8) can also be expressed nicely in terms of
the Lerch transcendent (or Lerch zeta function) [42], §9.55] |56} §25.14], which we take
to be defined by the integral representation

oots 1 —ot

P = 4.9

(2,5,a) stl_ze (4.9)
0

for Res >0, Rea >0, and z € C\ [1,00). For |z| < 1 we can expand the integrand
in a Taylor series in z and then interchange integration with summation: this yields

n

d(z, s, ) Zn+a, (4.10)

n:O

valid for Res > 0, Rea > 0, and |z| < 1. Moreover, an application of Lebesgue’s
dominated convergence theorem to the same series expansion shows that (4.10) holds
also for |z| = 1 with the exception of z = 18 And under the stronger hypothesis
Res > 1 we can take z 1 1 and conclude that (£I0) holds also for z = 1.

N

>

2
oy 1 —
shows that the dominated convergence theorem applies to the Taylor expansion in z whenever |z| < 1
and z # 1.

1—UN+1 .

6 PROOF.

whenever |u| < 1. Applying this with v = ze

1—u
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Let us now use (£I0) for z = £1: then ([B.I6) and (3.4) can be written as

Es, 2
i = W@(—1,2n+1,%) (4.11)
E2n+1 2 1
(2n+1)! T g2 (1, 2n+2,3) (4.12)

Using (4.9) to express I'(s) ®(z, s, ) as an integral, we recover (L.7) and (£.8).

We can also obtain continued fractions for the ordinary generating functions of
these three sequences. For (E,11),>0 we have the Jacobi-type continued fraction

> 1
Y Bt = > (4.13)
n=0 1—t—

3t?
612
102

1—-2t—
1—3t—

1—4t —
1

with coefficients v, = n+1 and 3, = n(n+1)/2. This continued fraction ought to be
classical, but the first mention of which I am aware is a 2006 contribution to the OEIS
by an amateur mathematician, Paul D. Hanna, who found it empirically [44]; it was
proven a few years later by Josuat-Verges [49] by a combinatorial method (which also
yields a g-generalization).

Remark. The J-fraction (£.I3]) does not arise by contraction from any S-fraction.
Indeed, if we use the contraction formula (2.9) and solve for ¢, we find (v, s, ag, oy, as)
=(1,1,1,3,0), but then asag = 3 = 6 has no solution. W

For the even and odd subsequences, we have Stieltjes-type continued fractions:

ad 1
> By t" = . (4.14)
o o 12
) 22
3%t
1—
1—
with coefficients a,, = n?, and
S .
—~ 2n+1 - 1-9¢ .
n= 1—
2-3t
1—
3 -4t
1_
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with coefficients a,, = n(n + 1). These formulae were found by Stieltjes [69, p. H9]
in 1889 and by Rogers [61], p. 77] in 1907. They were given beautiful combinatorial
proofs by Flajolet [32] in 1980.

Since (En41)n>0 is a Hamburger moment sequence, it is natural to ask about
the full sequence (E,),>o. Is it a Hamburger moment sequence? The answer is no,

Ey E, Es 111
because the 3 x 3 Hankel matrix |E; FE, FEs| = |1 1 2| has determinant —1.
Ey Es3 Ey 1 2 5

But a much stronger result is true:

Proposition 4.1. No arithmetic-progression subsequence (Ep +in)n>0 with ng even
and j odd is a Hamburger moment sequence.

PROOF. For ng > 1, (4.4) yields
vy e(T/2)y
Epiin = N dy. 4.16

o = [ Sy (4.16)
When ny is even (> 2) and j is odd, this represents (E,,+jn)n>0 as the moments of a
nonpositive signed measure on R with exponential decay. Corollary 2210 then implies
that (E+jn)n>0 is not a Hamburger moment sequence. The assertion for ny = 0
then follows from the assertion for ny = 25. U

Since (E,41)n>0 is a Hamburger moment sequence with a representing measure of
infinite support, it follows that all the Hankel determinants A — det(Eitjtm)o<ij<n—1
for m odd are strictly positive. On the other hand, the j = 1 case of Proposition [£.1]
implies that for every even m there must exist at least one n such that A <.
But which one(s)? The question of the sign of A for m even seems to be quite
delicate, and I am unable to offer any plausible conjecture.

Remarks. 1. Although the sequence (E,),>o of Euler numbers is not a Stieltjes
or even a Hamburger moment sequence, it is log-convex. This can be proven induc-
tively from the recurrence (L4 [55, Example 2.2]. Alternatively, it can be proven
by observing that the tridiagonal matrix (2.7)) associated to the continued fraction
(A13) is totally positive of order 2, i.e. 5, > 0, vy, > 0 and v, Vns1 — Byt > 0 for all
n. This implies [66,[78] that (E,.1)n>0 is log-convex. And since EqFEy — E? = 0, it
follows that also (E,,),>o is log-convex.

2. Dumont [24, Proposition 5] found a nice Jacobi-type continued fraction also
for the sequence of Euler numbers with some sign changes:

> 1
S ()R L = e (4.17)
=0 1—t+
1+ o
1—t+ 14
- 182
1—f—---

with coefficients vor, = 1, Yogr1 = 0, Bop—1 = —k(4k — 1) and Pop, = —k(4dk+1). W
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5 Springer numbers

We now turn to the sequence of Springer numbers. Since cost—sint = /2 cos(t + 7/4),
the partial-fraction expansion (B.1]) for secant yields

1 - > (=D (5.1)

cost —sint /2 N—oo -

Inserting this into the exponential generating function (7)) of the Springer numbers
and extracting coefficients of powers of ¢ on both sides, we obtain

m \f Z + L] oD (5.2)

k=—o00

N
(with the interpretation lim Y whenn = 0). Since (B.2]) represents every arithmetic-

progression subsequence (§n0+jN> vso [where S, = S, /n!] as the moments of a non-
positive signed measure supported on [—4/3m, (4/7)7], it follows by Corollary 210
that no such sequence is a Hamburger moment sequence.

We now consider the sequence of Springer numbers tout court. Start by rewriting

[(.2) as
[e.e]

Sn 1 —(n+1 n > —(n+1
2o IS EDF [ D) T (YD) [+ Ba] T
v V2 k=0 k=0
(5.3)
Now multiply by the Stieltjes integral representation n! = [2"e™* dx to get
0

S, = % O/ dwe™ :0 (li;l;vr((k‘ v %)”)n

_1)n O/dzce_xg; (211;;%((16 f%)ﬂ)n . (5.4)

Change variable to y = x/[(k + )7 in the first term, and y = z/[(k + 2)7] in the
second, and interchange integration and summation; this leads to

. 1| [ et ] ¥ o~ (3r/2)y "y -
N /my y+/m(—y) Yy (5.5a)
0 0

AR, 5.5b
B 2\/7/ cosh(ry/2) 7 (5.5b)

which is absolutely convergent for all n > 0. It follows that (.S,),>0 is a Hamburger
moment sequence. It is H-determinate by virtue of (IL9) and Corollary Since the
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unique representing measure has support equal to all of R, it follows that (.S,,),>0 is not
a Stieltjes moment sequence. This can alternatively be seen from the fact that the 3x3
ST Sy S3 1 3 11
once-shifted Hankel matrix [Se S3 Si| = |3 11 57 | has determinant —96.
Ss Sy Ss 11 57 361
Note also that multiplying (5.5D) by ¢"/n! and summing >~ . we recover the
two-sided Laplace transform

1 (t+7r/4

= dy 5.6
cost —sint 2\/7 cosh (my/2) (56)

which is valid for —37/4 < Ret < 7/4 [29, 6.2(11)].
For n even we can combine the y > 0 and y < 0 contributions in (5.5D]) to obtain

on cosh(my/4)
Son f/ cosh(my/2) 4y, (5:7)

while for n odd a similar reformulation gives

St = 5 [ Ly 5.
0

We have thus explicitly expressed (S9,)n>0 and (S2n+1)n>0 as Stieltjes moment se-
quences. By (L9) and Theorem 23(b) they are S-determinate. And since the mea-
sures in (5.7)/(5.8) are continuous, Proposition 2.4 implies that these sequences are
also H-determinate.

We can also obtain continued fractions for the ordinary generating functions of
these three sequences. For (S,,),>0 we have the Jacobi-type continued fraction

> 1
n=0 1t
_ 2-22¢
1— 5t 23
- 242 ¢
1—...
with coefficients 7, = 2n + 1 and 3, = 2n? This formula was proven a few

years ago by Josuat-Verges [49], by a combinatorial method that also yields a ¢-
generalization; it was independently found (empirically) by an amateur mathemati-
cian, Sergei N. Gladkovskii [38]. The fact that 5, > 0 for all n tells us again that
(Sn)n>0 is @ Hamburger moment sequence.

For the even Springer numbers we have the Stieltjes-type continued fraction [24]
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Corollary 3.3]

D Sont" = (5.10)
n=0

with coefficients ag,_1 = (4k — 3)(4k — 1) and g = (4k)2. For the odd Springer
numbers we have the Jacobi-type continued fraction [36]

> 1
2 Sowil” = 16-1-3- 52 (5.11)
n=0
1_1”_1 . 16-4-7-9¢2
16-9-11-13¢
1 =203t = —————

with coefficients ,, = 32n*+32n+11 and 3, = (4n—1)(4n)?(4n+1). This formula can
be obtained as a specialization of a result of Stieltjes [70] (see [§]); it can alternatively
be obtained from [24, Propositions 7 and 8] by the transformation formula for Jacobi-
type continued fractions under the binomial transform [9, Proposition 4] [66]. Since
the odd Springer numbers are a Stieltjes moment sequence, their ordinary generating
function is also given by a Stieltjes-type continued fraction with coefficients «; > 0;
these coefficients can in principle be obtained from (G.I1]) by solving (2.9), but no
explicit formula for them seems to be known (and maybe no simple formula exists).

Remarks. 1. Although the sequence (S,,),>0 of Springer numbers is not a Stielt-
jes moment sequence, it is log-convex. This follows [66[78] from the fact that the
tridiagonal matrix (2.7)) associated to the continued fraction (5.9) is totally positive
of order 2.

2. Dumont [24] Corollary 3.2] also found a nice Jacobi-type continued fraction for
the sequence of Springer numbers with some sign changes:

> 1
> (=1 g g = 7 (5.12)
n=0 I—t+
1—-t+ 167
36t>
1—-t+ —

with coefficients ~,, = 1 and 3, = —4n?. This formula follows from (&I4) with ¢
replaced by 4t?, combined with the identity

[n/2] n
1y s, = 3 () (4 B (5.13)

k=0
(which follows from the exponential generating functions [24], p. 275]) and a general

result about how Jacobi-type continued fractions behave under the binomial transform
[9, Proposition 4] [66]. W
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6 What next?

Enumerative combinatorialists are not content with merely counting sets; we want
to refine the counting by measuring one or more statistics. To take a trivial example,
an n-element set has 2" subsets, but we can classify these subsets according to their
cardinality, and say that there are (Z) subsets of cardinality k. We then collect these
refined counts in a generating polynomial

def S M= zn: (Z)xk’ (6.1)

AC[n] k=0

which in this case of course equals (1+z)". To take a less trivial example, the number
of ways of partitioning an n-element set into nonempty blocks is given by the Bell
number B,,; but we can refine this classification by saying that the number of ways of
partitioning an n-element set into £ nonempty blocks is given by the Stirling number
{%}, and then form the Bell polynomial

Bu(z) = ﬁ:{:}xk (6.2)

k=0

We can then study generating functions, continued-fraction expansions, moment
representations and so forth for B, (z), generalizing the corresponding results for
B, = B,(1).

In a similar way, the Euler and Springer numbers can be refined into polynomials
that count alternating permutations or snakes of type B, according to one or more
statistics. For instance, consider the polynomials Es,(x) defined by

(sect)® Z By (x

where z is an indeterminate. They satisfy the recurrence [48, p. 123]

2n+1
E2n+2 = IZ ( ) Eop_ok—1 E2k(x) (6-4)

(6.3)

with initial condition Fy(x) = 1. It follows that FEs,(z) is a polynomial of degree n
with nonnegative integer coefficients, which we call the secant power polynomial. The
first few secant power polynomials are [57, A088874/A085734/A098906]

Eo(z) = 1 (6.5a)
Ey(x) = x (6.5b)
Ei(z) = 27 + 32° (6.5¢)
E¢(x) = 16z + 302% + 152° (6.5d)
Eg(x) = 272z + 588z° + 4202° + 1052" (6.5¢)

Since Fs,(1) = Es,, these are a polynomial refinement of the secant numbers. More-
over, since tan’ = sec? and (logsec) = tan, we have E5,(2) = Ey,,1 and E} (0) =
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E5,_1, so these are also a polynomial refinement of the tangent numbers. Carlitz and
Scoville [19] proved that Es,(z) enumerates the alternating (down-up) permutations
of [2n] or [2n + 1] according to the number of records:

> a2l = Ey(x) (6.6)

o€Altoy,

and
> ) = 2 Ey,(1+a). (6.7)

o€Altan+1

Here a record (or left-to-right mazimum) of a permutation o € &,, is an index 7 such
that 0; < o; for all j < i. (In particular, when n > 1, the index 1 is always a record.
This explains why the Es,(z) for n > 0 start at order z.)

It turns out that the ordinary generating function of the secant power polynomials
is given by a beautiful Stieltjes-type continued fraction, which was found more than
a century ago by Stieltjes [69, p. H9] and Rogers [61], p. 82] (see also [10L49]):

ad 1
S Bunle) " = : 63
n=0 1 — *
) 2(x + 1)t
) 3(z+2)t

1—...

with coefficients o, = n(x +n —1). When x = 1 this reduces to the expansion (£.14))
for the secant numbers; when = = 2 it becomes the expansion ([AI5]) for the tangent
numbers.

The nonnegativity of the coefficients v, in (€8] for > 0 implies, by Theorem 2.2]
that for every x > 0, the sequence (Ey,(z))n>0 is a Stieltjes moment sequence. In fact,
(Eo,(x))n>0 has the explicit Stieltjes moment representation [22) pp. 1797181]E|

et [ sz +isy |
Bonlz) = Wr(x)/y r(“%)
0

which reduces to (41) when z = 1, and to (4.8) when z = 2.

The continued fraction (G.8)) also implies, by Theorem 2] that for every z > 0,
every minor of the Hankel matrix (Es;19;(2)); ;>0 is a nonnegative real number. But
a vastly stronger result turns out to be true [66]: namely, every minor of the Hankel
matrix (Eaiy2;(2))i ;>0 is a polynomial in z with nonnegative integer coefficients!
This coefficientwise Hankel-total positivity arises in a wide variety of sequences of
combinatorial polynomials (sometimes in many variables) — in some cases provably,
in other cases conjecturally. But that is a story for another day.

ds , (6.9)

7 See [56, eq. 5.13.2] for the normalization.

23



Acknowledgments

I wish to thank Christian Berg, Gerald Edgar, Sergei Gladkovskii, Paul Hanna,
Matthieu Josuat-Verges and Mathias Pétréolle for helpful conversations and/or cor-
respondence.

This research was supported in part by Engineering and Physical Sciences Re-
search Council grant EP/N025636/1.

References

[1] S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry
number congruences, J. Reine Angew. Math. 518, 187-212 (2000).

[2] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in
Analysis, translated by N. Kemmer (Hafner, New York, 1965).

[3] D. André, Développements de séc = et de tang x, Comptes Rendus Acad. Sci.
Paris 88, 965-967 (1879).

[4] D. André, Sur les permutations alternées, Journal des Mathématiques Pures et
Appliquées 7, 167-184 (1881).

[5] G.E. Andrews, R. Askey and R. Roy, Special Functions (Cambridge University
Press, Cambridge, 1999).

[6] R. Apéry, Irrationalité de ((2) et ((3), Astérisque 61, 11-13 (1979).

[7] V.I. Arnol’d, The calculus of snakes and the combinatorics of Bernoulli, Euler
and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk 47, no. 1, 3-45
(1992); English translation in Russian Math. Surveys 47, no. 1, 1-51 (1992).

[8] P. Bala, Some S-fractions related to the expansions of sin(ax)/cos(bx) and
cos(ax)/ cos(bzx), 11 May 2017, http://oeis.org/A002439/a002439. pdf

[9] P. Barry, Continued fractions and transformations of integer sequences, J. In-
teger Seq. 12, article 09.7.6 (2009).

[10] P. Barry, A note on three families of orthogonal polynomials defined by circular
functions, and their moment sequences, J. Integer Seq. 15, article 12.7.2 (2012).

[11] C. Berg and J.P.R. Christensen, Density questions in the classical theory of
moments, Ann. Inst. Fourier 31, 99-114 (1981).

[12] C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups
(Springer-Verlag, New York, 1984).

[13] C. Berg and G. Valent, The Nevanlinna parametrization for some indeterminate
Stieltjes moment problems associated with birth and death processes, Methods
Appl. Anal. 1, 169-209 (1994).

24


http://oeis.org/A002439/a002439.pdf

[14] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory 21,
141-155 (1985).

[15] M. Bloom, On the total variation of solutions of the bounded variation moment
problem, Proc. Amer. Math. Soc. 4, 118-126 (1953).

[16] R. P. Boas, The Stieltjes moment problem for functions of bounded variation,
Bull. Amer. Math. Soc. 45, 399-404 (1939).

[17] C. Brezinski, History of Continued Fractions and Padé Approzimants, Springer
Series in Computational Mathematics #12 (Springer-Verlag, Berlin, 1991).

[18] H. Buchwalter and G. Cassier, La paramétrisation de Nevanlinna dans le
probléme des moments de Hamburger, Expositiones Math. 2, 155-178 (1984).

[19] L. Carlitz and R. Scoville, Enumeration of up-down permutations by upper
records, Monatsh. Math. 79, 3-12 (1975).

[20] H.H. Chan and W. Zudilin, New representations for Apéry-like sequences, Math-
ematika 56, 107-117 (2010).

[21] W.Y.C. Chen and E.X.W. Xia, The 2-log-convexity of the Apéry numbers, Proc.
Amer. Math. Soc. 139, 391-400 (2011).

[22] T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach,
New York-London—Paris, 1978). Reprinted by Dover, Mineola NY, 2011.

[23] M.J. Coster, Supercongruences, in p-adic analysis (Trento, 1989), Lecture
Notes in Mathematics #1454 (Springer, Berlin, 1990), pp. 194-204.

[24] D. Dumont, Further triangles of Seidel-Arnold type and continued fractions
related to Euler and Springer numbers, Adv. Appl. Math. 16, 275-296 (1995).

[25] G. Edgar, Is the sequence of Apéry numbers a Stieltjes moment sequence?,
22 August 2014, http://mathoverflow.net/questions/179108/

[26] G.A. Edgar, The Apéry numbers as a Stieltjes moment sequence, in preparation.

[27] N.D. Elkies, On the sums » > _ (4k +1)7", Amer. Math. Monthly 110, 561~
573 (2003).

(28] G. Enestrom, Die Schriften Eulers chronologisch nach den Jahren geordnet,
in denen sie verfafst worden sind, Jahresbericht der Deutschen Mathematiker-
Vereinigung (Teubner, Leipzig, 1913). [English translation, with explanatory
notes, available at http://eulerarchive.maa.org/index/enestrom.html]|

[29] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral
Transforms, vol. I (McGraw-Hill, New York—Toronto—London, 1954).

25


http://mathoverflow.net/questions/179108/
http://eulerarchive.maa.org/index/enestrom.html

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[43]

[44]

[45]

[46]

L. Euler, De fractionibus continuis dissertatio, Commentarii Academiae Sci-
entiarum Petropolitanae 9, 98-137 (1744); reprinted in Opera Omnia, ser. 1,
vol. 14, pp. 187-216. [English translation in Math. Systems Theory 18, 295
328 (1985). Latin original and English and German translations available at
http://eulerarchive.maa.org/pages/E071.html]|

S. Fischler, Irrationalité de valeurs de zéta (d’apres Apéry, Rivoal, ...),
Astérisque 294, 27-62 (2004).

P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32,
125-161 (1980).

D. Foata and M.-P. Schiitzenberger, Nombres d’Euler et permutations alter-
nantes, Technical report, University of Florida, 1971, 71 pp. Available on-line
at http://www.emis.de/journals/SLC/books/foaschuetzl.html

F. Gantmakher and M. Krein, Sur les matrices completement non négatives et
oscillatoires, Compositio Math. 4, 445-476 (1937).

I. Gessel, Some congruences for Apéry numbers, J. Number Theory 14, 362-368
(1982).

S.N. Gladkovskii, 17 September 2012, contribution to [57, sequence A000464].
S.N. Gladkovskii, 27 October 2012, contribution to [57, sequence A000111].

S.N. Gladkovskii, 11 January 2013, contribution to [57, sequence A001586]; and
private communication to the author, 18 April 2017.

S.N. Gladkovskii, 23 December 2013, contribution to [57, sequence A000111].

J.W.L. Glaisher, On the Bernoullian function, Quart. J. Pure Appl. Math. 29,
1-168 (1898).

JW.L. Glaisher, On the coefficients in the expansions of cosz/cos2x and
sin z/ cos 2z, Quart. J. Pure Appl. Math. 45, 187-222 (1914).

[.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 8th
ed., edited by D. Zwillinger and V. Moll (Elsevier/Academic Press, Amsterdam,
2015).

P.R. Halmos, Measure Theory (Van Nostrand, New York, 1950).

P.D. Hanna, 17 January 2006, contribution to [57, sequence A000111]; and
private communication to the author, 28 March 2017.

C.C. Heyde, Some remarks on the moment problem (I), Quart. J. Math. Oxford
14, 91-96 (1963).

L. Hormander, The Analysis of Linear Partial Differential Operators I, 2nd ed.
(Springer-Verlag, Berlin—Heidelberg—New York, 1990).

26


http://eulerarchive.maa.org/pages/E071.html
http://www.emis.de/journals/SLC/books/foaschuetz1.html

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

D. Huylebrouck, Similarities in irrationality proofs for 7, In2, {(2), and ¢(3),
Amer. Math. Monthly 108, 222-231 (2001).

W.P. Johnson, Some polynomials associated with up-down permutations, Dis-
crete Math. 210, 117-136 (2000).

M. Josuat-Verges, Enumeration of snakes and cycle-alternating permutations,
Australas. J. Combin. 60, 279-305 (2014).

M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics
of snakes, J. Comb. Theory A 119, 1613-1638 (2012).

S. Karlin, Total Positivity (Stanford University Press, Stanford CA, 1968).

A.G. Kuznetsov, .M. Pak and A.E. Postnikov, Increasing trees and alternating
permutations, Uspekhi Mat. Nauk 49, no. 6, 79-110 (1994) [= Russian Math.
Surveys 49, no. 6, 79-114 (1994)].

M. Laczkovich, On Lambert’s proof of the irrationality of m, Amer. Math.
Monthly 104, 439-443 (1997).

J.H. Lambert, Mémoire sur quelques propriétés remarquables des quan-
tités transcendentes circulaires et logarithmiques, Mémoires de 1’Académie
Royale des Sciences de Berlin 17, 265-322 (1768). Available on-line at
http://www.kuttaka.org/~JHL/L1768b.html

L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv.
Appl. Math. 39, 453-476 (2007).

F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, eds., NIST Handbook

of Mathematical Functions (U.S. Department of Commerce, Washington DC,
2010). Available on-line at http://d1lmf.nist.gov

The On-Line Encyclopedia of Integer Sequences, published electronically at
http://oeis.org

R. Osburn, B. Sahu and A. Straub, Supercongruences for sporadic sequences,
Proc. Edinburgh Math. Soc. 59, 503-518 (2016).

G. Pélya, Sur I'indétermination d’un probleme voisin du probleme des moments,
Comptes Rendus Acad. Sci. Paris 207, 708-711 (1937).

G. Pdlya, Eine einfache, mit funktionentheoretischen Aufgaben verkniipfte, hin-
reichende Bedingung fiir die Auflésbarkeit eines Systems unendlich vieler lin-
earer Gleichungen, Comment. Math. Helv. 11, 234-252 (1938).

L.J. Rogers, On the representation of certain asymptotic series as convergent
continued fractions, Proc. London Math. Soc. (series 2) 4, 72-89 (1907).

A.L. Schmidt, Legendre transforms and Apéry’s sequences, J. Austral. Math.
Soc. A 58, 358-375 (1995).

27


http://www.kuttaka.org/~JHL/L1768b.html
http://dlmf.nist.gov
http://oeis.org

[63] K. Schmiidgen, The Moment Problem (Springer, Cham, 2017).

[64] J.A. Shohat and J.D. Tamarkin, The Problem of Moments (American Mathe-
matical Society, New York, 1943).

[65] B. Simon, The classical moment problem as a self-adjoint finite difference op-
erator, Adv. Math. 137, 82-203 (1998).

[66] A.D. Sokal, Coefficientwise total positivity (via continued fractions) for some
Hankel matrices of combinatorial polynomials, in preparation.

[67] T.A. Springer, Remarks on a combinatorial problem, Nieuw Arch. Wisk. 19,
30-36 (1971).

[68] R.P. Stanley, A survey of alternating permutations, in: Combinatorics and
Graphs, edited by R.A. Brualdi, S. Hedayat, H. Kharaghani, G.B. Khosrovshahi
and S. Shahriari, Contemporary Mathematics #531 (American Mathematical
Society, Providence, RI, 2010), pp. 165-196.

[69] T.J. Stieltjes, Sur la réduction en fraction continue d’une série procédant selon
les puissances descendantes d’une variable, Ann. Fac. Sci. Toulouse 3, H1-H17
(1889).

[70] T.J. Stieltjes, Sur quelques intégrales définies et leur développement en fractions
continues, Quart. J. Math. 24, 370-382 (1890).

[71] T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse
8, J1-J122 (1894) and 9, A1-A47 (1895). [Reprinted, together with an English
translation, in T.J. Stieltjes, (Buvres Complétes/Collected Papers (Springer-
Verlag, Berlin, 1993), vol. II, pp. 401-566 and 609-745.]

[72] V. Strehl, Binomial identities — combinatorial and algorithmic aspects, Dis-
crete Math. 136, 309-346 (1994).

[73] A. van der Poorten, A proof that Euler missed ... Apéry’s proof of the irra-
tionality of ((3), Math. Intelligencer 1, 195-203 (1979).

[74] G. Viennot, Inteprétations combinatoires des nombres d’Euler et de Genocchi,
Seminaire de Théorie des Nombres de Bordeaux 11, 1-94 (1981). Available
on-line at https://eudml.org/doc/182140

[75] G. Viennot, Une théorie combinatoire des polynoémes orthogo-
naux généraux, Notes de conférences données a I’'Université du
Québec a Montréal, septembre-octobre 1983. Available on-line at
http://www.xavierviennot.org/xavier/polynomes_orthogonaux.html

[76] H.S. Wall, Analytic Theory of Continued Fractions (Van Nostrand, New York,
1948). Reprinted by the American Mathematical Society, Providence RI, 2000.

28


https://eudml.org/doc/182140
http://www.xavierviennot.org/xavier/polynomes_orthogonaux.html

[77] R. Wallisser, On Lambert’s proof of the irrationality of 7, in Algebraic Number
Theory and Diophantine Analysis, edited by F. Halter-Koch and R.F. Tichy
(de Gruyter, Berlin, 2000), pp. 521-530.

[78] B.-X. Zhu, Log-convexity and strong g-log-convexity for some triangular arrays,
Adv. Appl. Math. 50, 595-606 (2013).

[79] W. Zudilin, Quadratic transformations and Guillera’s formulas for 1/7%, Mat.
Zametki 81, 335-340 (2007); English translation in Math. Notes 81, 297-301
(2007).

[80] W. Zudilin, Apéry’s theorem. Thirty years after, Int. J. Math. Comput. Sci. 4,
9-19 (2009).

29



	1 Introduction
	2 Preliminaries on the moment problem
	3 Euler numbers, part 1
	4 Euler numbers, part 2
	5 Springer numbers
	6 What next?
	References

