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PATTERNS IN RANDOM PERMUTATIONS AVOIDING

SOME SETS OF MULTIPLE PATTERNS

SVANTE JANSON

Abstract. We consider a random permutation drawn from the set of

permutations of length n that avoid some given set of patterns of length

3. We show that the number of occurrences of another pattern σ has

a limit distribution, after suitable scaling. In several cases, the number

is asymptotically normal; this contrasts to the cases of permutations

avoiding a single pattern of length 3 studied in earlier papers.

1. Introduction

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ :=
⋃

n>1Sn. If σ = σ1 · · · σm ∈ Sm and π = π1 · · · πn ∈ Sn, then an oc-
currence of σ in π is a subsequence πi1 · · · πim , with 1 6 i1 < · · · < im 6 n,
that has the same order as σ, i.e., πij < πik ⇐⇒ σj < σk for all j, k ∈ [m].
We let nσ(π) be the number of occurrences of σ in π, and note that

∑

σ∈Sm

nσ(π) =

(

n

m

)

, (1.1)

for every π ∈ Sn. For example, an inversion is an occurrence of 21, and
thus n21(π) is the number of inversions in π.

We say that π avoids another permutation τ if nτ (π) = 0; otherwise, π
contains τ . Let

Sn(τ) := {π ∈ Sn : nτ (π) = 0}, (1.2)

the set of permutations of length n that avoid τ . More generally, for any set
T = {τ1, . . . , τk} of permutations, let

Sn(T ) = Sn(τ1, . . . , τk) :=

k
⋂

i=1

Sn(τi), (1.3)

the set of permutations of length n that avoid all τi ∈ T . We also let
S∗(T ) :=

⋃∞
n=1Sn(T ) be the set of T -avoiding permutations of arbitrary

length.
The classes S∗(τ) and, more generally, S∗(T ) have been studied for a

long time, see e.g. Knuth [16, Exercise 2.2.1-5], Simion and Schmidt [20],
Bóna [3]. In particular, one classical problem is to enumerate the sets Sn(τ),
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2 SVANTE JANSON

either exactly or asymptotically, see Bóna [3, Chapters 4–5]. We note the
fact that for any τ with length |τ | = 3, Sn(τ) has the same size |Sn(τ)| =
Cn := 1

n+1

(2n
n

)

, the n-th Catalan number, see e.g. [16, Exercises 2.2.1-4,5],

[20], [21, Exercise 6.19ee,ff], [3, Corollary 4.7]; furthermore, the cases when
T consists of several permutations of length 3 are all treated by Simion and
Schmidt [20]. (The situation for |τ | > 4 is more complicated.)

The general problem that concerns us is to take a fixed set T of one
or several permutations and let πT ;n be a uniformly random T -avoiding
permutation, i.e., a uniformly random element of Sn(T ), and then study
the distribution of the random variable nσ(πT ;n) for some other fixed per-
mutation σ. (Only σ that are themselves T -avoiding are interesting, since
otherwise nσ(πT ;n) = 0.) One instance of this problem was studied already
by Robertson, Wilf and Zeilberger [19], who gave a generating function for
n123(π132;n). The exact distribution of nσ(πτ ;n) for a given n was studied
numerically in [15], where higher moments and mixed moments are calcu-
lated for small n. We are mainly interested in asymptotics of the distribution
of nσ(πT ;n), and of its moments, as n → ∞, for some fixed T and σ.

In the present paper we study the cases when T is a set of two or more
permutations of length 3. The cases when T = {τ} for a single permutation
τ of length |τ | = 3 were studied in [12; 13] (by symmetries, see Section 2.2,
only two such cases have to be considered), and the cases when T contains
a permutation of length 6 2 are trivial (there is then at most one permu-
tation in Sn(T ) for any n); hence the present paper completes the study of
forbidding one or several permutations of length 6 3. The case of forbidding
one or several permutations of length > 4 seems much more complicated,
but there are recent impressive results in some cases by Bassino, Bouvel,
Féray, Gerin and Pierrot [2] and Bassino, Bouvel, Féray, Gerin, Maazoun
and Pierrot [1].

The expectation Enσ(πT ;n), or equivalently, the total number of oc-
curences of σ in all T -avoiding permutations, has previously been treated
in a number of papers for various cases, beginning with Bóna [5; 7] (with
τ = 132). In particular, Zhao [22] has given exact formulas when |σ| = 3 for
the (non-trivial) cases treated in the present paper, where T consist of two
or more permutations of length 3.

Remark 1.1. For the non-restricted case of uniformly random permutations
in Sn, it is well-known that if πn is a uniformly random permutation in Sn,
then nσ(πn) has an asymptotic normal distribution as n → ∞ for every fixed
permutation σ; more precisely, if |σ| = m then, as n → ∞,

nσ(πn)− 1
m!

(n
m

)

nm−1/2

d−→ N
(

0, γ2
)

(1.4)

for some γ2 > 0 depending on σ; see Bóna [4; 6] and Janson, Nakamura and
Zeilberger [15, Theorem 4.1].

We obtain below similar asymptotic normal results in several cases (Sec-
tions 4, 5, 6, 8); note that the asymptotic normality in particular implies
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concentration in these cases, in the sense

nσ(πT ;n)

Enσ(πT ;n)

p−→ 1. (1.5)

On the other hand, in other cases (Sections 3, 7, 9, 10, 11) we find a different
type of limits, where nσ(πT ;n)/E nσ(πT ;n) converges to some non-trivial
positive random variable. The same holds in the case T = {2413, 3142}
studied by Bassino, Bouvel, Féray, Gerin and Pierrot [2].

We see no obvious pattern in the occurence of these two types of limits
in the cases below; nor do we know whether these are the only possibilities
for a general set T of forbidden permutations.

Remark 1.2. In the present paper we consider for simplicity often only
univariate limits; corresponding multivariate results for several σ1, . . . , σk
follow by the same methods. In particular, (1.4) and all instances of nor-
mal limit laws below extend to multivariate normal limits, with covariance
matrices that can be computed explicitly.

Remark 1.3. In the present paper we study only the numbers nσ of oc-
curences of some pattern in πτ ;n. There is also a number of papers by various
authors that study other properties of random τ -avoiding permutations, see
e.g. the references in [13]; such results will not be considered here.

2. Preliminaries

2.1. Notation. Let ι = ιn be the identity permutation of length n. Let
ῑn = n · · · 21 be its reversal.

Let π = π1 · · · πn be a permutation. We say that a value πi is a maximum
if πi > πj for every j < i, and a minimum if πi < πj for every j < i. (These
are sometimes called LR maximum and LR minimum.) Note that π1 always
is both a maximum and a minimum.

2.2. Symmetries. There are many cases treated in the present paper, but
the number is considerably reduced by three natural symmetries (used by
many previous authors). For any permutation π = π1 · · · πn, define its in-
verse π−1 in the usual way, and its reversal and complement by

πr := π ◦ ῑ = πn · · · π1, (2.1)

πc := ῑ ◦ π = (n+ 1− π1) · · · (n + 1− πn). (2.2)

These three operations are all involutions, and they generate a group G of
8 symmetries (isomorphic to the dihedral group D4). It is easy to see that,
for any permutations σ and π,

nσ−1(π−1) = nσr(πr) = nσc(πc) = nσ(π), (2.3)

and consequently, for any symmetry s ∈ G,

nσs(πs) = nσ(π). (2.4)
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For a set T of permutations we define T s := {τ s : τ ∈ T}. It follows from
(2.4) that

Sn(T
s) = {πs : π ∈ Sn(T )}, (2.5)

and, furthermore, that for any permutation σ,

nσs(πT s;n)
d
= nσ(πT ;n). (2.6)

We say that the sets of forbidden permutations T and T s are equivalent,
and note that (2.6) implies that it suffices to consider one set T in each
equivalence class {T s : s ∈ G}. We do this in the sequel without further
comment. (We choose representatives T that we find convenient. One guide
is that we choose T such that the identity permutation ιn avoids T .)

2.3. Compositions and decompositions of permutations. If σ ∈ Sm

and τ ∈ Sn, their composition σ ∗ τ ∈ Sm+n is defined by letting τ act on
[m+ 1,m + n] in the natural way; more formally, σ ∗ τ = π ∈ Sm+n where
πi = σi for 1 6 i 6 m, and πj+m = τj +m for 1 6 j 6 n. It is easily seen
that ∗ is an associative operation that makes S∗ into a semigroup (without
unit, since we only consider permutations of length > 1). We say that a
permutation π ∈ S∗ is decomposable if π = σ ∗ τ for some σ, τ ∈ S∗, and
indecomposable otherwise; we also call an indecomposable permutation a
block. Equivalently, π ∈ Sn is decomposable if and only if π : [m] → [m] for
some 1 6 m < n. See e.g. [8, Exercise VI.14].

It is easy to see that any permutation π ∈ S∗ has a unique decomposition
π = π1 ∗ · · · ∗ πℓ into indecomposable permutations (blocks) π1, . . . , πℓ (for
some, unique, ℓ > 1); we call these the blocks of π.

We shall see that some (but not all) of the classes considered below can
be characterized in terms of their blocks. (See [2] for another, more compli-
cated, example.)

2.4. U-statistics. An (asymmetric) U -statistic is a random variable of the
form

Un =
∑

16i1<···<id6n

f
(

Xi1 , . . . ,Xid

)

, n > 0, (2.7)

where X1,X2, . . . is an i.i.d. sequence of random variables and f is a given
function of d > 1 variables. These were (in the symmetric case) introduced
by Hoeffding [9]; see further e.g. [14] and the references there. We say that
d is the order of the U -statistic.

We shall use the central limit theorem for U -statistics, originally due to
Hoeffding [9], in the asymmetric version given in [10, Theorem 11.20] and
[14, Corollary 3.5 and (moment convergence) Theorem 3.15]. Let, with X
denoting a generic Xi,

µ := E f(X1, . . . ,Xd), (2.8)

fi(x) := E
(

f(X1, . . . ,Xd) | Xi = x
)

, (2.9)

βij := Cov
(

fi(X), fj(X)
)

, (2.10)
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β2 :=

d
∑

i,j=1

(i+ j − 2)! (2d − i− j)!

(i− 1)! (j − 1)! (d − i)! (d − j)! (2d − 1)!
βij . (2.11)

Note that fi(x) in [14] is fi(x)− µ in the present notation.

Proposition 2.1 ([10; 14]). Suppose that f(X1, . . . ,Xd) ∈ L2. Then, with
the notation in (2.8)–(2.11), as n → ∞,

Un −
(n
d

)

µ

nd−1/2

d−→ N
(

0, β2
)

. (2.12)

Furthermore, β2 > 0 unless fi(X) = µ a.s. for i = 1, . . . , d.
Moreover, if f(X1, . . . ,Xd) ∈ Lp for some p > 2, the (2.12) holds with

convergence of all moments of order 6 p. �

Example 2.2. A uniformly random permutation πn of length n (without
other restrictions) can be constructed as the relative order of X1, . . . ,Xn,
where Xi are i.i.d. with, for example, a uniform distribution U(0, 1). For
any given permutation σ ∈ Sm, we can then write nσ(πn) as a U -statistic
(2.7) for a suitable indicator function f . Then Proposition 2.1 yields a limit
theorem showing that nσ(πn) is asymptotically normal. See [15] for details.

We shall also use a renewal theory version of Proposition 2.1. With the
notations above, assume (for simplicity) that Xi > 0. Define Sn :=

∑n
i=1 Xi,

and let for each x > 0

N−(x) := sup{n : Sn < x}, (2.13)

N+(x) := inf{n : Sn > x} = N−(x) + 1. (2.14)

Remark 2.3. The definitions (2.13)–(2.14) differ slightly from the ones in
[14], where instead Sn 6 x and Sn > x are used. This does not affect the
asymptotic results used here. Note that the event {Sk = n for some k > 0}
equals {SN+(n) = n} in the present notation.

The following results are special cases of [14, Theorems 3.11, 3.13(iii) and
3.18] (with somewhat different notation). N±(x) means either N−(x) or
N+(x); the results holds for both.

Proposition 2.4 ([14]). Suppose that f(X1, . . . ,Xd) ∈ L2, X ∈ L2, X > 0
a.s., and ν := EX > 0. Then, with notations as above, as x → ∞,

UN±(x) − ν−dµd!−1xd

xd−1/2

d−→ N
(

0, γ2
)

, (2.15)

where

γ2 := ν1−2dβ2 − 2
ν−2dµ

(d− 1)! d!

d
∑

i=1

Cov
(

fi(X),X
)

+
ν−2d−1µ2

(d− 1)!2
Var

(

X
)

.

(2.16)

Moreover, γ2 > 0 unless fi(X) = µ
νX a.s. for i = 1, . . . , d. �
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Proposition 2.5 ([14]). Suppose in addition to the hypotheses in Propo-
sition 2.4 that X is integer-valued. Then (2.15) holds also conditioned on
SN+(x) = x (cf. Remark 2.3) for integers x → ∞. �

Proposition 2.6 ([14]). Suppose in addition to the hypotheses in Proposi-
tion 2.4 or 2.5 that f(X1, . . . ,Xd) ∈ Lp and X ∈ Lp for every p < ∞. Then
the conclusion (2.15) holds with convergence of all moments. �

2.5. Trivial cases. We consider in the present paper sets T ⊆ S3. Then,
see [20], the following cases are trivial in the sense that for all n > 5,
|Sn(T )| = 0, 1 or 2.

(i) T = {123, 321},
(ii) |T | = 3 and T ⊃ {123, 321},
(iii) |T | > 4.

We ignore these cases in the sequel. This leaves 6 cases with |T | = 1 (Sec-
tion 3), 14 cases with |T | = 2 (Sections 4–7), and 16 cases with |T | = 3 (Sec-
tions 8–11). Symmetries reduce these to the 2 + 4 + 4 = 10 non-equivalent
cases discussed below.

3. Avoiding a single permutation of length 3

There are 6 cases where a single permutation of length 3 is avoided, but by
the symmetries in Subsection 2.2 these reduce to 2 non-equivalent cases, for
example 132 (equivalent to 231, 213, 312) and 321 (equivalent to 123). These
cases are treated in detail in [12] and [13], respectively. Both analyses are
based on bijections with binary trees and Dyck paths, and the well-known
convergence in distribution of random Dyck paths to a Brownian excursion,
but the details are very different, and so are in general the resulting limit
distributions.

For comparison with the results in later sections, we quote the main results
of [12] and [13], referring to these papers for further details and proofs.
Recall that the standard Brownian excursion e(x) is a random non-negative
function on [0, 1].

First, for 132, let
λ(σ) := |σ|+D(σ) (3.1)

where D(σ) is the number of descents in σ, i.e., indices i such that σi > σi+1

or (as a convenient convention) i = |σ|. Note that 1 6 D(σ) 6 |σ|, and thus

|σ|+ 1 6 λ(σ) 6 2|σ|, (3.2)

with the extreme values λ(σ) = |σ| + 1 if and only if σ = 1 · · · k, and
λ(σ) = 2|σ| if and only if σ = k · · · 1, for some k = |σ|.
Theorem 3.1 ([12]). There exist strictly positive random variables Λσ such
that

nσ(π132;n)/n
λ(σ)/2 d−→ Λσ, (3.3)

as n → ∞, jointly for all σ ∈ S∗(132). Moreover, this holds with conver-
gence of all moments.
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For a monotone decreasing permutation k · · · 1, Λk···1 = 1/k! is determin-
istic, but not for any other σ. �

The limit variables Λσ in Theorem 3.1 can be expressed as functionals
of a Brownian excursion e(x), see [12]; the description is, in general, rather
complicated, but some cases are simple.

Example 3.2. In the special case σ = 12, Λ12 =
√
2
∫ 1
0 e(x) dx, see [12,

Example 7.6]; this is (apart from the factor
√
2) the well-known Brownian

excursion area, see e.g. [11] and the references there.
For the number n21 of inversions, we thus have

(n
2

)

− n21(π132;n)

n3/2
=

n12(π132;n)

n3/2

d−→ Λ12 =
√
2

∫ 1

0
e(x) dx. (3.4)

By Subsection 2.2, the left-hand side can also be seen as the number of
inversions n21(π231;n) or n21(π312;n), normalized by n3/2, where we instead
avoid 231 or 312.

Theorem 3.3 ([13]). Let σ ∈ S∗(321). Let m := |σ|, and suppose that σ
has ℓ blocks of lengths m1, . . . ,mℓ. Then, as n → ∞,

nσ(π321;n)/n
(m+ℓ)/2 d−→ Wσ (3.5)

for a positive random variable Wσ that can be represented as

Wσ = wσ

∫

0<t1<···<tℓ<1
e(t1)

m1−1 · · · e(tℓ)mℓ−1 dt1 · · · dtℓ, (3.6)

where wσ is positive constant.
Moreover, the convergence (3.5) holds jointly for any set of σ ∈ S∗(321),

and with convergence of all moments.

Example 3.4. Let σ = 21. Then w21 = 2−1/2, see [13], and thus (3.5)–(3.6),
with ℓ = 1 and m1 = m = 2, yield for the number of inversions,

n21(π321;n)

n3/2

d−→ 2−1/2

∫ 1

0
e(x) dx. (3.7)

Note that the limit in (3.7) differs from the one in (3.4) by a factor 2.

4. Avoiding {132, 312}
In this section we avoid T = {132, 312}. Equivalent sets are {132, 231},

{213, 231}, {213, 312}.
It was shown by Simion and Schmidt [20] that |Sn(132, 312)| = 2n−1,

together with the following characterization (in an equivalent formulation).

Proposition 4.1 ([20, Proposition 12]). A permutation π belongs to the
class S∗(132, 312) if and only if every entry πi is either a maximum or a
minimum. �
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We encode a permutation π ∈ Sn(132, 312) by a sequence ξ2, . . . , ξn ∈
{±1}n−1, where ξj = 1 if πj is a maximum in π, and ξj = −1 if πj is
a minimum. This is by Proposition 4.1 a bijection, and hence the code
for a uniformly random π132,312;n has ξ2, . . . , ξn i.i.d. with the symmetric
Bernoulli distribution P(ξj = 1) = P(ξj = −1) = 1

2 . We let ξ1 have the same
distribution and be independent of ξ2, . . . , ξn.

Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm. Then πi1 · · · πim is an
occurrence of σ in π if and only if ξij = ηj for 2 6 j 6 m. Consequently, cf.
Subsection 2.4, nσ(π132,312;n) is a U -statistic

nσ(π132,312;n) =
∑

i1<···<im

f
(

ξi1 , . . . , ξim
)

, (4.1)

where

f
(

ξ1, . . . , ξm
)

:=

m
∏

j=2

1{ξj = ηj}. (4.2)

Note that f does not depend on the first argument. It follows that, with
the notation (2.8)–(2.11),

µ = E f
(

ξ1, . . . , ξm
)

= 2−(m−1), (4.3)

fi(ξ) =

{

0, i = 1,

2−(m−2)1{ξ = ηi}, 2 6 i 6 m,
(4.4)

βij = Cov
(

fi(ξ), fj(ξ)
)

= 22−2mηiηj, i, j > 2, (4.5)

β2 = 22−2m
m
∑

i,j=2

(i+ j − 2)! (2m − i− j)!

(i− 1)! (j − 1)! (m − i)! (m− j)! (2m − 1)!
ηiηj. (4.6)

Proposition 2.1 yields:

Theorem 4.2. For any m > 1 and σ ∈ Sm(132, 312), as n → ∞,

nσ(π132,312;n)− 21−mnm/m!

nm−1/2

d−→ N
(

0, β2
)

, (4.7)

with β2 > 0 given by (4.6).
Moreover, (4.7) holds with convergence of all moments.

Example 4.3. For the number of inversions, we have σ = 21 and m = 2,
η2 = −1. Thus, (4.4) yields f1(ξ) = 0 and f2(ξ) = 1{ξ = −1}. We find,
from (4.3)–(4.6), µ = 1

2 , β22 =
1
4 and β2 = 1

12 , and thus Theorem 4.2 yields

n21(π132,312;n)− n2/4

n3/2

d−→ N
(

0, 1
12

)

, (4.8)

Remark 4.4. It is easily seen from (4.1)–(4.2) that the expected number of
occurrences Enσ(π132,312;n) = 21−m

(n
m

)

, for every σ ∈ Sm(132, 312); hence
the expectation depends only on the length m = |σ|.

The variance depends not only on |σ|, not even asymptotically, by (4.6).
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5. Avoiding {231, 312}
In this section we consider T = {231, 312}. The only equivalent set is

{132, 213}.
It was shown by Simion and Schmidt [20] that |Sn(231, 312)| = 2n−1,

together with the following characterization (in an equivalent form).

Proposition 5.1 ([20, Proposition 12]). A permutation π belongs to the
class S∗(231, 312) if and only if every block in π is decreasing, i.e., of the
type ℓ(ℓ− 1) · · · 21 for some ℓ. �

Hence there exists exactly one block of each length ℓ > 1, and a permu-
tation π ∈ S∗(231, 312) is uniquely determined by the block lengths. In
this section, let πℓ1,...,ℓb denote the permutation in S∗(231, 312) with block
lengths ℓ1, . . . , ℓb, i.e.,

πℓ1,...,ℓb := ῑℓ1 ∗ · · · ∗ ῑℓb . (5.1)

If σ, π ∈ S∗(231, 312), then in an occurrence of σ in π, each block in σ
has to be mapped into a block in π, and distinct blocks have to be mapped
into distinct blocks. Conversely, any such increasing map [m] → [n] defines
an occurence of σ. It follows that if σ = πℓ1,...,ℓb , then

nσ

(

πL1,...,LB

)

=
∑

16i1<···<ib6B

b
∏

j=1

(

Lij

ℓi

)

. (5.2)

This is similar to a U -statistic (2.7), but note that if we write π231,312;n as
πL1,...,LB

, then the block lengths L1, . . . , LB are not independent (since their
sum is fixed = n), and the number of blocks B is random. However, we can
analyze this variable using the renewal theory in Subsection 2.4 as follows.

First, mark each endpoint of the blocks in π ∈ Sn(231, 312) by 1, and
mark all other indices in [n] by 0. Thus π defines a string ξ1, . . . , ξn ∈
{0, 1}n, where necessarily ξn = 1 but ξ1, . . . , ξn−1 are arbitrary. This yields
a bijection between Sn(231, 312) and the 2n−1 such strings; hence, we obtain
a uniformly random π231,312;n by letting ξ1, . . . , ξn−1 be i.i.d. Be(

1
2 ), i.e., with

P(ξi = 0) = P(ξi = 1) = 1
2 .

We change notation a little, to avoid problems at the endpoint, and define
ξ′1, ξ

′
2, . . . as an infinite i.i.d. sequence with ξ′i ∼ Be(12). Regard each i with

ξ′i = 1 as the end of a block, and let X1,X2, . . . , be the successive lengths
of these (infinitely many) blocks. Then Xi are i.i.d. with

Xi ∼ Ge(12). (5.3)

Given n, we then may let ξi := ξ′i for 1 6 i < n, and ξn := 1; this determines
ξ1, . . . , ξn as above, and thus a uniformly random π231,312;n. With this
construction, the number of blocks in π231,312;n is, recalling (2.13)–(2.14),
B = N+(n), and the block lengths are

Li =

{

Xi, i < N+(n)

n−∑

i<N+(n)Xi 6 XN+(n), i = N+(n).
(5.4)
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Consequently, if σ = πℓ1,...,ℓb and we define

f(x1, . . . , xb) :=

b
∏

j−1

(

xi
ℓi

)

, (5.5)

then (5.2) and (2.7) show that

UN−(n) 6 nσ(π231,312;n) 6 UN+(n). (5.6)

Consequently, the asymptotic result in (2.15), which holds for both UN−(n)

and UN+(n), holds also for nσ(π231,312;n).

Remark 5.2. Alternatively, we can obtain (ξi) from (ξ′i) by conditioning
on ξ′n = 1, and note that this holds when SN+(n) = n (see Remark 2.3), and
then nσ(π231,312;n) = UN+(n). The result then follows from Proposition 2.5.

To calculate the parameters, note that, by (5.3), X has the probability
generating function

g(z) := E zX =

∞
∑

k=0

2−kzk =
z

2− z
=

2

2− z
− 1 (5.7)

and it follows that for any integers k, l > 0 with (k, l) 6= (0, 0),

E

((

X

k

)(

X

ℓ

))

= [zkwℓ]E
(

(1 + z)X(1 + w)X
)

(5.8)

= [zkwℓ]g
(

(1 + z)(1 + w)
)

(5.9)

= [zkwℓ]
2

2− (1 + z)(1 + w)
(5.10)

= [zkwℓ]
2

1− z − w − zw
(5.11)

= 2D(k, ℓ) = 2

k∧ℓ
∑

i=0

(k + ℓ− i)!

(k − i)! (ℓ− i)! i!
(5.12)

where D(k, ℓ) denotes the Delannoy numbers. (D(k, ℓ) is, e.g., the number
of lattice paths from (0, 0) to (k, ℓ) with steps (1, 0), (0, 1) or (1, 1); see [21,
Example 6.3.8] and [18, A008288 and A001850] and the references there.)
Simple calculations then yield

ν = EX = 2, (5.13)

Var(X) = 2. (5.14)

µ = E

b
∏

j=1

(

X

ℓi

)

=

b
∏

j=1

E

(

X

ℓi

)

= 2b, (5.15)

fi(X) = 2b−1

(

X

ℓi

)

, (5.16)

βij = Cov
(

fi(X), fj(X)
)

= 22b−1D(ℓi, ℓj)− 22b, (5.17)
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Cov
(

fi(X),X
)

= 2bD(ℓi, 1)− 2b+1 = (2ℓi − 1)2b. (5.18)

Consequently, we obtain by Propositions 2.4 and 2.6 asymptotic normality
in the following form.

Theorem 5.3. Let σ ∈ Sm(231, 312) have block lengths ℓ1, . . . , ℓb. Then,
as n → ∞,

nσ(π231,312;n)− nb/b!

nb−1/2

d−→ N
(

0, γ2
)

, (5.19)

where γ2 can be calculated by (2.16) and (5.13)–(5.18).
Moreover, (5.19) holds with convergence of all moments. �

Example 5.4. For the number of inversions, we have σ = 21 and b = 1,
ℓ1 = 2. A calculation yields γ2 = 6, and Theorem 5.3 yields

n21(π231,312;n)− n

n1/2

d−→ N(0, 6). (5.20)

Remark 5.5. Theorem 5.3 shows that the typical order of nσ(π231,312;n)
depends only on the number of blocks b in σ (but not on the length |σ|);
more precisely, the asymptotic mean depends only on b. (Cf. the different
situation when avoiding {132, 312} in Section 4, see Remark 4.4.) Calcula-
tions (assisted by Maple) show, however, that the asymptotic variance γ2

depends not only on m and b; for example σ = 2143 = ῑ2 ∗ ῑ2 has γ2 = 6
while σ = 3214 = ῑ3 ∗ ῑ1 has γ2 = 52/3.

Remark 5.6. The asymptotic variance γ2 = 0 when σ = ιm = 1 · · ·m, in
which case b = m and all blocks have length 1. This can be seen directly,
since all other patterns occur only Op(n

m−1) times (by Theorem 5.3), and
thus ιm occurs

(

n
m

)

− Op(n
m−1) times. This argument also shows that the

asymptotic variance of n1···m(π231,312;n) is of the order n2m−3.
It follows from Proposition 2.4 that γ2 > 0 for any other σ ∈ S∗(231, 312).

6. Avoiding {231, 321}
In this section we consider T = {231, 321}. Equivalent sets are {123, 132},

{123, 213}, {312, 321}.
It was shown by Simion and Schmidt [20] that |Sn(231, 321)| = 2n−1,

together with the following characterization (in an equivalent form).

Proposition 6.1 ([20, Proposition 12]). A permutation π belongs to the
class S∗(231, 321) if and only if every block in π is of the type ℓ12 · · · (ℓ− 1)
for some ℓ. �

Thus, as in Section 5, a permutation in S∗(231, 321) is determined by its
block lengths, and these can be arbitrary. In this section, let πℓ1,...,ℓb denote
the permutation in S∗(231, 321) with block lengths ℓ1, . . . , ℓb.

Again, in an occurrence of σ in π, each block in σ has to be mapped into
a block in π. However, this time, several consecutive blocks in σ may be
mapped to the same block in π, provided they have length 1. Moreover, if a
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block of length ℓ > 2 in σ is mapped to a block in π, then the first element
has to be mapped to the first element. Hence, we obtain instead of (5.2), if
σ = πℓ1,...,ℓb ,

nσ

(

πL1,...,LB

)

=
∑

16i1<···<ib6B

b
∏

j=1

hℓi(Lij ) +R, (6.1)

where

hℓ(x) :=

{

x, ℓ = 1,
(x−1
ℓ−1

)

, ℓ > 2,
(6.2)

and R counts the occurrences where less that b different blocks in πL1,...,LB

are used. We represent the block lengths as in Section 5, in particular (5.3)–
(5.4), again using an infinite i.i.d. sequence Xi ∼ Ge(12 ). Then, the main
term in (6.1) is sandwiched between U -statistics as in (5.6), and we can
apply Proposition 2.4 to it. (Alternatively, we can use Proposition 2.5 as in
Remark 5.2.)

By (5.7), E zX−1 = (2− z)−1, and calculations similar to (5.8) yield

E

((

X − 1

k

)(

X − 1

ℓ

))

= D(k, ℓ), k, ℓ > 0. (6.3)

Hence

Ehℓ(X) =

{

D(ℓ− 1, 0) = 1, ℓ > 2,

2, ℓ = 1.
(6.4)

Simple calculations then yield, in addition to (5.13)–(5.14), letting b1 be the
number of blocks of length 1,

µ =
b
∏

j=1

Ehℓi(X) = 2b1 , (6.5)

fi(X) =

{

2b1
(

X−1
ℓi−1

)

, ℓi > 2,

2b1−1X, ℓi = 1,
(6.6)

βij = Cov
(

fi(X), fj(X)
)

=











22b1D(ℓi − 1, ℓj − 1)− 22b1 , ℓi, ℓj > 2,

22b1
(

ℓi − 1
)

, ℓi > 2 > ℓj = 1,

22b1−1, ℓi = ℓj = 1

(6.7)

Cov
(

fi(X),X
)

=

{

2b1+1
(

ℓi − 1
)

, ℓi > 2,

2b1 , ℓi = 1.
(6.8)

Consequently, we obtain by Propositions 2.4 and 2.6 asymptotic normality
in the following form.
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Theorem 6.2. Let σ ∈ Sm(231, 321) have block lengths ℓ1, . . . , ℓb. Then,
as n → ∞,

nσ(π231,321;n)− 2b1−bnb/b!

nb−1/2

d−→ N
(

0, γ2
)

, (6.9)

where γ2 can be calculated by (2.16) and (6.5)–(6.8).
Moreover, (6.9) holds with convergence of all moments.

Proof. The argument above yields the stated limit for the first (main) term
on the right-hand side of (6.1). We show that the remainder term R is
negligible.

The term R can be split up as a sum
∑b−1

d=1 Rd, where Rd counts the oc-
curences that use d blocks in π = πL1,...,LB

. Each Rd may be written as a sum
over d-tuples of blocks, and thus bounded as in (5.6) by some U -statistics

U
(d)
N+(n)

of order d. Applying Proposition 2.4 (or Proposition 2.1, together

with N+(n) 6 n) to the latter, we find Rd = Op(n
d) = Op(n

b−1), and thus

Rd/n
b−1/2 p−→ 0. For moments, we similarly have by Proposition 2.6 or 2.1

E |Rd|p = O
(

npd
)

= O
(

np(b−1)
)

= o
(

np(b−1/2)
)

. Hence, each Rd is negligible
in the limit (6.9), and the result follows. �

Example 6.3. For the number of inversions, we have σ = 21 and b = 1,
ℓ1 = 2, b1 = 0. A calculation yields γ2 = 1/4, and Theorem 6.2 yields

n21(π231,321;n)− n/2

n1/2

d−→ N(0, 14). (6.10)

In fact, we have the exact distribution

n21(π231,321;n) ∼ Bi
(

n− 1, 12
)

. (6.11)

To see this, note that, by Proposition 6.1, if we define ξ2, . . . , ξn by

ξi := 1{no block begins at position i}, (6.12)

then every sequence ξ2, . . . , ξn ∈ {0, 1}n−1 occurs for exactly one permuta-
tion in Sn(231, 321), and thus ξ2, . . . , ξn are i.i.d. Be(12 ). (This is a minor
variation of the similar argument in Section 5.) Furthermore, for each j > 2,
the number of inversions ij with i < j equals ξj, so the total number is
∑n

2 ξi ∼ Bi(n − 1, 12 ).

Remark 6.4. Unlike in Section 5, here the asymptotic mean depends not
only on the number of blocks in σ, but also on their lengths.

Remark 6.5. As in Section 5, the asymptotic variance γ2 = 0 when σ =
ιm = 1 · · ·m, in which case b = m and all blocks have length 1, but γ2 > 0
for any other σ ∈ S∗(231, 321).

7. Avoiding {132, 321}
In this section we consider T = {132, 321}. Equivalent sets are {123, 231},

{123, 312}, {213, 321}.
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It was shown by Simion and Schmidt [20] that |Sn(132, 321)| =
(

n
2

)

+ 1.
(The case Sn(132, 321) is thus more degenerate than the cases considered
above, in the sense that the allowed set of permutations is much smaller;
|Sn(132, 321)| grows polynomially as (roughly) n2, compared to 2n−1 in the
previous cases forbidding two permutations of length 3.) [20] gave also the
following characterization. Given k, ℓ > 1 and m > 0, let, in this section,

πk,ℓ,m := (ℓ+1, . . . , ℓ+k, 1, . . . , ℓ, k+ ℓ+1, . . . , k+ ℓ+m) ∈ Sk+ℓ+m. (7.1)

Thus πk,ℓ,m consists of three increasing runs of lengths k, ℓ, m (where the
third run is empty when m = 0).

Proposition 7.1 ([20, Proposition 13]).

Sn(132, 321) =
{

πk,ℓ,n−k−ℓ : k, ℓ > 1, k + ℓ 6 n
}

∪ {ιn}. (7.2)

�

For asymptotic results, we may ignore the case when π132,321;n = ιn, which
has probability 1/(

(

n
2

)

+1) = o(1). Conditioning on π132,321;n 6= ιn, we see by
Proposition 7.1 that π132,321;n = πK,L,n−K−L, where K and L are random
with (K,L) uniformly distributed over the set {K,L > 1 : K + L 6 n}.
As n → ∞, we thus have (K/n,L/n)

d−→ (X,Y ) with (X,Y ) uniformly
distributed on the triangle {(X,Y ) ∈ R

2
+ : X + Y 6 1}. Equivalently,

letting Z := 1−X − Y ,
(K

n
,
L

n
,
n−K − L

n

)

d−→ (X,Y,Z) ∼ Dir(1, 1, 1), (7.3)

where we recall that the Dirichlet distribution Dir(1, 1, 1) is the uniform
distribution on the simplex {(x, y, z) ∈ R

3
+ : x+ y + z = 1}.

If σ = πi,j,p for some i, j, p, then it is easily seen that an occurrence of σ
in πk,ℓ,m is obtained by selecting i, j and p elements from the three runs of
πk,ℓ,m, and thus

nσ(πk,ℓ,m) =

(

k

i

)(

ℓ

j

)(

m

p

)

. (7.4)

Similarly, if σ = ιi, then an occurrence of σ in πk,ℓ,m is obtained by selecting
i elements from either the union of the first and last run, or from the union
of the two last. Hence, by inclusion-exclusion,

nσ(ιi) =

(

k +m

i

)

+

(

ℓ+m

i

)

−
(

m

i

)

. (7.5)

These exact formulas together with the description of π132,321;n above and
(7.3) yield the following asymptotic result.

Theorem 7.2. Let σ ∈ S∗(132, 321). Then the following hold as n → ∞.

(i) If σ = πi,j,p for some i, j, p, then

n−(i+j+p)nσ(π132,321;n)
d−→ Wi,j,p :=

1

i! j! p!
XiY jZp, (7.6)

where (X,Y,Z) ∼ Dir(1, 1, 1).
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(ii) If σ = ιi, then

n−inσ(π132,321;n)
d−→ Wi :=

1

i!

(

(X + Z)i + (Y + Z)i − Zi
)

, (7.7)

with (X,Y,Z) ∼ Dir(1, 1, 1) as in (i).

Moreover, these hold jointly for any set of such σ, and with convergence of
all moments. In particular, in case (i),

n−(i+j+p)
Enσ(π132,321;n)

d−→ EWi,j,p =
2

(i+ j + p+ 2)!
(7.8)

and in case (ii),

n−i
Enσ(π132,321;n)

d−→ EWi =
4i+ 2

(i+ 2)!
(7.9)

Proof. The limits in distribution (7.6) and (7.7) hold (with joint conver-
gence) by the discussion before the theorem. Moment convergence holds
because the normalized variables in (7.6) and (7.7) are bounded (by 1). Fi-
nally, the expectation in (7.8) is easily computed using the multidimensional
extension of the beta integral [17, (5.14.2)], which implies

EXaY bZc =
2Γ(a+ 1)Γ(b+ 1)Γ(c + 1)

Γ(a+ b+ c+ 3)
, a, b, c > −1. (7.10)

For the expectation in (7.9), we note also that X + Z
d
= Y + Z ∼ B(2, 1);

the result follows by a short calculation. �

Higher moments of Wi,j,p follow also from (7.10).

Corollary 7.3. The number of inversions has the asymptotic distribution

n−2n21(π132,321;n)
d−→ W := XY, (7.11)

with (X,Y ) as above; the limit variable W has density function

2 log
(

1 +
√
1− 4x

)

− 2 log
(

1−
√
1− 4x

)

, 0 < x < 1/4, (7.12)

and moments

EW r = 2
r!2

(2r + 2)!
, r > 0. (7.13)

Proof. We have 21 = π1,1,0, and thus (7.6) yields (7.11). The formula (11.8)
for the moments EW r = EXrY r follow by (7.10). Finally, for 0 < t < 1/4,
P(W > t) = P(XY > t) equals 2 times the area of the set {(x, y) ∈ R

2
+ : x+

y 6 1, xy > t}. A differentiation and a simple calculation yield (7.12). �

Example 7.4. For the four allowed patterns of length 3, we find

n−3
En123(π132,321;n) → EW3 =

7

60
, (7.14)

n−3
En213(π132,321;n) → EW1,1,1 =

1

60
, (7.15)
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n−3
En231(π132,321;n) → EW2,1,0 =

1

60
, (7.16)

En312(π132,321;n) = EW1,2,0 =
1

60
. (7.17)

(See Zhao [22] for exact formulas for finite n.) Note that by (7.8), all Wi,j,q

with the same i+ j+ q have the same expectation; their distributions differ,
however, in general, as is shown by higher moments. For example, in the
present example, by (7.10), EW 2

1,1,1 = 2/7! and EW 2
2,1,0 = 3/7!.

The expected number of occurrences of σ can also easily be found exactly
for finite n, as follows. As noted above, (7.8) shows that all σ in (i) of the
same length occur in π132,321;n with asymptotically equal frequencies. In
fact, this holds also exactly, for any n. (Note also that (7.8) is an immediate
consequence of (7.18).)

Theorem 7.5. Let σ = πi,j,p, with i, j > 1 and p > 0. Then, for any n,

Enσ(π132,321;n) =

( n+2
i+j+p+2

)

(n
2

)

+ 1
. (7.18)

Proof. By (7.4) and the discussion before it, for any given k, ℓ,m, the number
of occurences of σ in πk,ℓ,m equals the number of sequences q1, . . . , qi, q

′
1, . . . ,

q′j, q
′′
1 , . . . , q

′′
p such that

1 6 q1 < · · · < qi 6 k < q′1 < · · · < q′j 6 ℓ < q′′1 < · · · < q′′m 6 n. (7.19)

Since σ does not occur in ιn, the total number of occurences of σ in all
elements of Sn(132, 321) is thus, recalling (7.2), equal to the number of all
sequences (q1, . . . , qi, k, q

′
1, . . . , q

′
j , ℓ, q

′′
1 , . . . , q

′′
m) of integers satisfying (7.19).

By increasing k and all q′r by 1, and ℓ and all q′′s by 2, we obtain a bijection
with the collection of all subsets of i+ j + q + 2 elements of {1, . . . , n+ 2}.
Hence, the total number of occurrences is

( n+2
i+j+p+2

)

, and (7.18) follows. �

8. Avoiding {231, 312, 321}
We proceed to avoiding sets of three permutations. In this section we

avoid T = {231, 312, 321}. An equivalent set is {123, 132, 213}.
It was shown by Simion and Schmidt [20] that |Sn(231, 312, 321)| = Fn+1,

the (n+1)th Fibonacci number (with the initial conditions F0 = 0, F1 = 1);
they also gave the following characterization (in an equivalent form).

Proposition 8.1 ([20, Proposition 15∗]). A permutation π belongs to the
class S∗(231, 312, 321) if and only if every block in π is decreasing and has
length 6 2, i.e., every block is 1 or 21. �

Cf. Proposition 5.1; we have here added the restriction that block lengths
are 1 or 2. With this restriction in mind, we use again the notation (5.1)
and note that (5.2) holds. A permutation π ∈ Sn(231, 312, 321) is thus
of the form πL1,...,LB

for some sequence L1, . . . , LB of {1, 2} with sum n;
furthermore, this yields a bijection with all such sequences.
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Define p to be the golden ratio:

p :=

√
5− 1

2
, (8.1)

so that p+ p2 = 1. Let X be a random variable with the distribution

P(X = 1) = p, P(X = 2) = p2. (8.2)

Consider an i.i.d. sequenceX1,X2, . . . of copies ofX, and let Sn :=
∑n

i=1 Xi.

Then for any sequence ℓ1, . . . , ℓb with b > 1, ℓi ∈ {1, 2} and
∑b

1 ℓi = n,

P
(

Xi = ℓi, i = 1, . . . , b
)

=

b
∏

i=1

pℓi = pn. (8.3)

This probability is thus the same for all such sequences, which means that,
conditioned on the event that Sb = n for some (unspecified) b > 1, the se-
quence (X1, . . . ,Xb) is equidistributed over all {1, 2}-sequences with sum n;
we have seen above that this equals the distribution of the sequence of block
lengths (L1, . . . , LB) of a random permutation π231,312,321;n inSn(231, 312, 321).
Consequently, recalling (2.14) and Remark 2.3,

(L1, . . . , LB)
d
=

(

(X1, . . . ,XN+(n)) | SN+(n) = n
)

. (8.4)

It follows from this and (5.2) that if σ = πℓ1,...,ℓb ∈ S∗(231, 312, 321), and
f is defined by (5.5), then nσ(π231,312,321;n) has the same distribution as
UN+(n) conditioned on SN+(n) = n. Consequently, Proposition 2.5 applies
and yields asymptotic normality of nσ(π231,312,321;n), and Proposition 2.6
adds moment convergence.

To find the parameters, let σ have b1 blocks of length 1 and b2 blocks of
length 2 (so b1 + b2 = b and b1 + 2b2 = |σ|). Then, noting

(

X
2

)

= X − 1,

ν = EX = p+ 2p2 = 2− p =
5−

√
5

2
, (8.5)

VarX = p3 = 2p− 1 =
√
5− 2, (8.6)

E

(

X

2

)

= P(X = 2) = p2 = 1− p, (8.7)

µ = (2− p)b1(1− p)b2 =
(5−

√
5

2

)b1(3−
√
5

2

)b2
, (8.8)

fi(X) =

{

(2− p)b1−1(1− p)b2X, ℓi = 1,

(2− p)b1(1− p)b2−1(X − 1), ℓi = 2,
(8.9)

βij =











(2− p)2b1−2(1− p)2b2(2p− 1), ℓi = ℓj = 1,

(2− p)2b1−1(1− p)2b2−1(2p − 1), ℓi = 1 < ℓj = 2,

(2− p)2b1(1− p)2b2−2(2p− 1), ℓi = ℓj = 2.

(8.10)

Cov
(

fi(X),X
)

=

{

(2− p)b1−1(1− p)b2(2p− 1), ℓi = 1,

(2− p)b1(1− p)b2−1(2p− 1), ℓi = 2.
(8.11)
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We summarize.

Theorem 8.2. Let σ ∈ Sm(231, 312, 321) have block lengths ℓ1, . . . , ℓb.
Then, as n → ∞,

nσ(π231,312,321;n)− µnb/b!

nb−1/2

d−→ N
(

0, γ2
)

, (8.12)

where µ is given by (8.8) and γ2 can be calculated by (2.16) and (8.5)–(8.11).
Moreover, (8.12) holds with convergence of all moments. �

Example 8.3. For the number of inversions, σ = 21, b = 1 = b2 and b1 = 0.
Hence, µ = 1−p = (3−

√
5)/2 and, by a calculation, γ2 = (2−p)−3 VarX =

5−3/2. Consequently,

n21(π231,312,321;n)− 3−
√
5

2 n

n1/2

d−→ N
(

0, 5−3/2
)

. (8.13)

Remark 8.4. Again, γ2 > 0 unless σ = ιm.

9. Avoiding {132, 231, 312}
In this section we avoid {132, 231, 312}. Equivalent sets are {132, 213, 231},

{132, 213, 312}, {213, 231, 312}.
It was shown by Simion and Schmidt [20] that |Sn(132, 231, 312)| = n,

together with the following characterization (in an equivalent form). In this
section, let

πk,ℓ := ῑk ∗ ιl = (k, . . . , 1, k + 1, . . . , k + ℓ) ∈ Sk+ℓ, k > 1, ℓ > 0. (9.1)

Note that π1,ℓ = ι1+ℓ.

Proposition 9.1 ([20, Proposition 16∗]).

Sn(132, 231, 312) = {πk,n−k : 1 6 k 6 n}. �

Cf. Propositions 4.1 and 5.1, which characterize supersets. (Equivalently,
π ∈ S∗(132, 231, 312) if the first block is decreasing and all other blocks
have length 1.)

Hence, the random π132,231,312;n = πK,n−K, where K ∈ [n] is uniformly
random. Obviously, as n → ∞,

K/n
d−→ U ∼ U(0, 1). (9.2)

Furthermore, if σ = πk,ℓ, then it is easy to see that

nσ

(

πK,n−K

)

=

{(

K
k

)(

n−K
ℓ

)

, k > 2,

K
(

n−K
ℓ

)

+
(

n−K
ℓ+1

)

, k = 1.
(9.3)

Theorem 9.2. Let σ ∈ S∗(132, 231, 312). Then the following hold as
n → ∞, with U ∼ U(0, 1).
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(i) If σ = πk,m−k with 2 6 k 6 m, then

n−mnσ(π132,231,312;n)
d−→ Wk,m−k :=

1

k! (m− k)!
Uk(1− U)m−k. (9.4)

(ii) If σ = π1,m−1 = ιm, then

n−mnσ(π132,231,312;n)
d−→ W1,m−1 :=

1

(m− 1)!
U(1− U)m−1 +

1

m!
(1− U)m

=
1

m!

(

1 + (m− 1)U
)

(1− U)m−1.

(9.5)

Moreover, these hold jointly for any set of such σ, and with convergence of
all moments. In particular, in case (i),

n−m
Enσ(π132,231,312;n)

d−→ EWk,m−k =
1

(m+ 1)!
, k > 2, (9.6)

and in case (ii),

n−m
Enσ(π132,231,312;n)

d−→ EW1,m−1 =
2

(m+ 1)!
. (9.7)

Proof. The limits in distribution (9.4) and (9.5) hold (with joint conver-
gence) by (9.3) and (9.2). Moment convergence holds because the normal-
ized variables in (9.4) and (9.5) are bounded (by 1). Finally, the expectations
in (9.6)–(9.7) are computed by standard beta integrals. �

Corollary 9.3. The number of inversions has the asymptotic distribution

n−2n21(π132,231,312;n)
d−→ W := U2/2 (9.8)

with U ∼ U(0, 1). Thus, 2W ∼ B(12 , 1), and W has moments

EW r =
1

2r(2r + 1)
, r > 0. (9.9)

Proof. We have 21 = π2,0 by (9.1), and (9.4) yields (9.8). The remaining
statements follow by simple calculations. �

10. Avoiding {132, 231, 321}
In this section we avoid {132, 231, 321}. Equivalent sets are {123, 132, 231},

{123, 213, 312}, {213, 312, 321}, {123, 132, 312}, {123, 213, 231}, {132, 312, 321},
{213, 231, 321}.

It was shown by Simion and Schmidt [20] that |Sn(132, 231, 321)| = n,
together with the following characterization (in an equivalent form). In this
section, let

πk,ℓ := (k, 1, . . . , k − 1, k + 1, . . . , k + ℓ) ∈ Sk+ℓ, k > 1, ℓ > 0. (10.1)

Note that πk,ℓ equals π1,k−1,ℓ in the notation (7.1) of Section 7 if k > 2, and
ι1+ℓ if k = 1.
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Proposition 10.1 ([20, Proposition 16∗]).

Sn(132, 231, 321) = {πk,n−k : 1 6 k 6 n}. �

Cf. Proposition 7.1, which characterizes a superset.
Hence, the random π132,231,321;n = πK,n−K, where K ∈ [n] is uniformly

random. Obviously, as n → ∞, (9.2) holds in this case too. Furthermore, if
σ = πk,ℓ, then it is easy to see, e.g. by (7.4)–(7.5), that

nσ

(

πK,n−K

)

=

{(K−1
k−1

)(n−K
ℓ

)

, k > 2,
(n−1
ℓ+1

)

+
(n−K

ℓ

)

, k = 1.
(10.2)

Theorem 10.2. Let σ ∈ S∗(132, 231, 321). Then the following hold as
n → ∞, with U ∼ U(0, 1).

(i) If σ = πk,m−k with 2 6 k 6 m, then

n−(m−1)nσ(π132,231,321;n)
d−→ Wk,m−k :=

1

(k − 1)! (m− k)!
Uk−1(1−U)m−k.

(10.3)
(ii) If σ = π1,m−1 = ιm, then

n−mnσ(π132,231,321;n) =
1

m!
+O

(

n−1
) p−→ 1

m!
. (10.4)

Moreover, these hold jointly for any set of such σ, and with convergence of
all moments. In particular, in case (i),

n−(m−1)
Enσ(π132,231,321;n)

d−→ EWk,m−k =
1

m!
, k > 2. (10.5)

Proof. By (10.2) and (9.2), similarly to the proof of Theorem 9.2. �

Corollary 10.3. The number of inversions n21(π132,231,321;n) has a uniform
distribution on {0, . . . , n− 1}, and thus the asymptotic distribution

n−1n21(π132,231,321;n)
d−→ U ∼ U(0, 1). (10.6)

Proof. By (10.1), 12 = π2,0, and thus (10.2) yields n21(πK,n−K) = K−1. �

11. Avoiding {132, 213, 321}
In this section we avoid {132, 213, 321}. An equivalent sets is {123, 231, 312}.
It was shown by Simion and Schmidt [20] that |Sn(132, 213, 321)| = n,

together with the following characterization (in an equivalent form). In this
section, let

πk,ℓ := (ℓ+ 1, . . . , ℓ+ k, 1, . . . , ℓ) ∈ Sk+ℓ, k > 1, ℓ > 0. (11.1)

Note that πk,ℓ equals πk,ℓ,0 in the notation (7.1) of Section 7 if ℓ > 1, and
ιk if ℓ = 0.

Proposition 11.1 ([20, Proposition 16∗]).

Sn(132, 213, 321) = {πk,n−k : 1 6 k 6 n}. �
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Cf. Proposition 7.1, which again characterizes a superset.
Hence, the random π132,213,321;n = πK,n−K, where K ∈ [n] is uniformly

random, and (9.2) holds again. Furthermore, if σ = πk,ℓ, then it is easy to
see, e.g. by (7.4)–(7.5), that

nσ

(

πK,n−K

)

=

{(K
k

)(n−K
ℓ

)

, ℓ > 1,
(K
k

)

+
(n−K

k

)

, ℓ = 0.
(11.2)

Theorem 11.2. Let σ ∈ S∗(132, 213, 321). Then the following hold as
n → ∞, with U ∼ U(0, 1).

(i) If σ = πk,m−k with 1 6 k 6 m− 1, then

n−mnσ(π132,213,321;n)
d−→ Wk,m−k :=

1

k! (m− k)!
Uk(1− U)m−k. (11.3)

(ii) If σ = πm,0 = ιm, then

n−mnσ(π132,213,321;n)
d−→ Wm,0 :=

1

m!

(

Um + (1− U)m
)

. (11.4)

Moreover, these hold jointly for any set of such σ, and with convergence of
all moments. In particular, in case (i),

n−m
Enσ(π132,213,321;n)

d−→ EWk,m−k =
1

(m+ 1)!
, 1 6 k < m, (11.5)

and in case (ii),

n−m
Enσ(π132,213,321;n)

d−→ EWm,0 =
2

(m+ 1)!
. (11.6)

Proof. By (11.2) and (9.2), similarly to the proof of Theorem 9.2. �

Corollary 11.3. The number of inversions has the asymptotic distribution

n−2n21(π132,213,321;n)
d−→ W := U(1− U), (11.7)

with U ∼ U(0, 1). Thus, 4W ∼ B(1, 12), and W has moments

EW r =
Γ(r + 1)2

Γ(2r + 2)
, r > 0. (11.8)

Proof. We have 21 = π1,1 by (11.1), and thus (11.3) yields (11.7). The
remaining statements follow by simple calculations, using 4W = 1−(2U−1)2

and a beta integral. �
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