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FURTHER DEVELOPMENT OF “NON-PYTHAGOREAN” MUSICAL

SCALES BASED ON LOGARITHMS

THOMAS MORRILL

Abstract. We offer some refinements to the logarithmic series and a resulting “non-
Pythagorean” musical scale, as given by Robert Schneider, the former of which we treat
analogously to the harmonic series. In order to yield pleasing resonances within chords in
this logarithmic mode, we produce two subseries of the logarithmic series and some logarith-
mic musical scales, all of which contain many of their beat frequencies. We also demonstrate
that a beat scale which contains all its beat frequencies necessarily consists solely of integer
ratios.

1. Background

We seek to produce beat scales, sets of pitches S = {f1, f2, . . . , fk} for which many of the
beat frequencies [1] [6] occur in S, up to octave equivalence. That is, we want 2k|fj − fi| ∈ S
for some k. Schneider [7] invites us to compose with the pitches

F log(4), F log(5), F log(6), . . . ,

in order to take advantage of the property log(m) − log(n) = log(m/n). Here F is an
arbitrary reference pitch. As this scale is infinite, Schneider also gives a logarithmic scale
which divides the octave into 12 pitches suited for piano keyboards. If we normalize so that
the scale begins on a ratio of 1:1, and omit the reference pitch F , Schneider’s scale is given
by:

Ratio Cents
1 0

log4(5) 258.38
log4(6) 444.17
log4(7) 587.05
log4(8) 701.95
log4(9) 797.33
log4(10) 878.42
log4(11) 948.64
log4(12) 1010.35
log4(13) 1065.24
log4(14) 1114.55
log4(15) 1159.22

2 1200.00

This normalization also allows us to include log(2) and log(3) while avoiding negative cents
between scale pitches. We call

log(2), log(3), log(4), . . .(1)
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the logarithmic series, to treat it analogously to the harmonic series1, 1, 2, 3, . . ..
Many tuning systems arise from the harmonic series, such as the major Pythagorean scale,
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which consists of repeated ratios of 2 and 3 under octave equivalence. Although logarithms
do not behave as well under repeated ratios, we present some other techniques for creating
novel scales from the logarithmic series.

2. Mapping Integers to Chords

We begin with a number-theoretic technique for composing with the logarithmic series.
Let A be a positive integer with the unique prime factorization

A =

k
∏

i=1

paii .

Because of the property

log(A) =
k

∑

i=1

ai log(pi),

each positive integer corresponds to a unique pitch set in the logarithmic series. We call

CA = {a1 log(p1), a2 log(p2), . . . , ak log(pk)}

the factored chord corresponding to A. Two factored chords CA1
and CA2

relate to each other
harmonically depending on the divisibility properties of A1 and A2. For example, moving
between C2016 and C4752 creates pure intervals:

5 log(2) 7→ 4 log(2)

2 log(3) 7→ 3 log(3)

log(7) 7→ log(11),

a major third in the log(2) voice, and a major fifth in the log(3) voice. This reflects the
fact that gcd(2016, 4752) = 2432. This author has composed a number of short pieces which
transform integer sequences into melodies and chord progressions [3].

Note that a single factored chord cannot contain any pure intervals, as the primes are
distinct. This also means that a factored chord does not produce beat frequencies which fall
in the logarithmic series.

3. Beat Series

When two pitches f1 and f2 are heard at the same time, an interference frequency f1 − f2
can sometimes be heard [1]. This interference is perceived as a beating sound when f1 − f2
is below the audible threshold, or as a distinct pitch when f1 − f2 is larger. Thus, the beat

frequency of two pitches is f1 − f2. For logarithmic pitches, f1 = log(m) and f2 = log(n),

1In fact, the logarithmic series contains copies of the harmonic series via the property log(nk) = k log(n).
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this simplifies to log(m/n). If m/n is a proper fraction, then it is apparent that log(m/n)
does not occur in the logarithmic series, nor do any of its octave equivalents

2k log(m/n) = log

(

m2k

n2k

)

.

3.1. Integer Beat Series. We seek a sequence of integers in which any fraction fi/fj
reduces to an integer. There are many integer valued functions we may consider. One
option is to take logarithms of the factorial function [4], which normalizes to:

Ratio Cents
1 0

log2(6) 1644.17
log2(24) 2636.29
log2(120) 3345.64
log2(720) 3896.028
log2(5040) 4344.59
log2(40320) 4722.46

...
...

The first differences of this series are log((n + 1)!/n!) = log(n), which gives the logarithmic
series. Another is to take the values of the Chebyshev theta function,

ϑ(x) :=
∑

pi≤x

log(pi) = log
(

p1p2 · · · p⌊x⌋
)

,

where pi is the ith prime number. The corresponding series of integers is known as the
primorial numbers [5]. The Chebyshev series normalizes to:

Ratio Cents
1 0

log2(6) 1644.17
log2(30) 2753.77
log2(210) 3537.03
log2(2310) 4178.44
log2(30030) 4673.68
log2(570570) 5108.60

...
...

The differences of this series are of the form log(pipi+1 · · · pj), where the argument can be
any product of consecutive primes. However, the beat frequencies of both these series fall in
the full logarithmic series, not in the subseries themselves.

3.2. Restricted Beat Series. We could instead choose a sequence of integers d1, d2, . . . ,
dk to be a repeating sequence of beat frequencies for building a beat series. Then the series

log(d1), log(d1d2) . . . , log(d1d2 · · · dk), log(d
2

1d2 · · · dk), log(d
2

1d
2

2 · · · dk), . . .
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contains all of its beat frequencies, with the exception of log(d2), log(d3), . . . , log(dk), which
may be appended2. For example, with k = 2 and d1 = 3, d2 = 5 normalizes to:

Ratio Cents
1 0

log3(5) 661.049
log3(15) 1561.89
log3(45) 2151.41
log3(225) 2761.89
log3(675) 3081.62

...
...

4. Logarithmic Beat Scales

Here we seek a set of integers n1 < n2 < . . . < nk to produce a scale which divides the
octave, that is,

1, logn1
(n2), logn1

(n3), . . . , 2.

However, there is the potential to over-correct, which loses the transcendental properties of
the logarithm.

Proposition 1. Let S be a finite set of real numbers such that for all x > y ∈ S, there exists

a z ∈ S and an integer t such that

x− y = 2tz.(2)

If S is a finite set, then there exists F > 0 so that S ⊂ FQ. That is, if a finite beat scale

contains all of its beat frequencies under octave equivalence, then the scale consists of integer

ratios of some frequency F .

Proof. We induct on |S| = n. The case n = 1 is trivial. Suppose the proposition holds for
all scales of size n, and consider an S for which |S| = n + 1. Let x, y, z ∈ S as in (2). Then
S ⊆ spanQ(S) ⊆ spanQ(S − {z}) = FQ. �

We offer some methods for producing logarithmic scales which contain many, but not all,
of their beat frequencies.

4.1. Root Approximation Scales. Choose integers n and m so that n2k ≈ m for some
positive integer k. This scale consists of pitches

{log(m), log(nm), log(n2m), . . . , log(n22k−1

m), log(m2)} ∪ {log(n22k)}.

In this scale, many of the beat frequencies are multiples of log(n), which is k octaves below

log(n2k). For example, if we let n = 2, m = 17, and k = 4, then the corresponding scale

2Appending these introduces new beat frequencies not present in the revised series.
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normalizes to:

Ratio Cents
1 0

log17(34) 378.89
log17(68) 689.56
log17(136) 952.88
log17(256) 1162.55

2 1200

This method can also be modified to approximate integer ratios while maintaining the tran-
scendental sound of the logarithmic mode: If na−b ≈ ma, then logm(nm) ≈ a/b.

4.2. Composite Scales. Choose an integer N =
∏

i∈I p
ai
i with factors

1 = a1, a2, . . . , ak = N.

This scale consists of pitches

{log(N), log(a2N), . . . , log(ak−1N), log(N2)} ∪ {log(p2
bi

i ) | i ∈ I},

where bi = ⌈log2(logpi(N))⌉. For example, letting N = 108 = 2233 produces the scale:

Ratio Cents
1 0

log108(216) 239.01
log108(256) 292.88
log108(324) 364.91
log108(432) 448.99
log108(648) 560.96
log108(972) 666.13
log108(1296) 737.05
log108(1944) 832.32
log108(2916) 922.63
log108(3888) 983.96
log108(5832) 1066.86
log108(6561) 1090.22

2 1200

Many of the beat frequencies are integer multiples of some log(pi), which is bi octaves below

log(p2
bi

i ).

4.3. Projective Pitch Sets. We take a cue from Wendy Carlos’s α, β, and γ scales [2],
and offer a family of logarithmic scales which do not contain redundant intervals, and do not
span one octave. Rather than construct beat frequencies which fall in the logarithmic series,
we start with rational numbers whose numerators and denominators are only divisible by a
fixed set of primes, then exclude these pitches based on what exponent appears with each
prime.
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Choose bases b1, b2, . . . , bk and heights hb1 , hb2, . . . , hbk . Let S be the set of rational numbers
of the form

k
∏

i=1

bαi

i ,

where:

(1) gcd(α1, α2, . . . , αk) = 1

(2)
∏k

i=1
bαi

i > 1.

As with the scales introduced by Carlos [2], this excludes the possibility of the pitch set
containing redundant octaves, fourths, fifths, or any integer ratio for that matter.

For example, choosing bases 2, 3 and heights h2 = 2, h3 = 1 produces the normalized pitch
set:

Ratio Cents
1 0

log4/3(3/2) 594.12
log4/3(2) 1522.42
log4/3(3) 2319.76
log4/3(6) 3166.60
log4/3(12) 3732.77,

which spans over three octaves.
In this example, the beat frequencies take the form log4/3(2

i3j), which falls in the pitch
set with the exception of

log4/3(3/2)− log4/3(4/3) = log4/3(9/8)

log4/3(6)− log4/3(4/3) = log4/3(9/2).

Note that we use octave equivalence to treat the beat frequencies

log4/3(3)− log4/3(4/3) = 2 log4/3(3/2)

log4/3(12)− log4/3(4/3) = 2 log4/3(3).

5. Conclusion

The use of the logarithm translates beat frequencies from an additive problem to a mul-
tiplicative one. This in turn opens up applications of ideal theory, projective geometry, and
näıve height theory in the construction of beat scales and in the composition of such scales.
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