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Abstract

An edge labeling of a graph distinguishes neighbors by sets (multisets, resp.), if for any two
adjacent vertices u and v the sets (multisets, resp.) of labels appearing on edges incident to
u and v are different. In an analogous way we define total labelings distinguishing neighbors
by sets or multisets: for each vertex, we consider labels on incident edges and the label of the
vertex itself.

In this paper we show that these problems, and also other problems of similar flavor, admit
an elegant and natural generalization as a hypergraph coloring problem. An ieds-coloring (iedm-
coloring, resp.) of a hypergraph is a vertex coloring, in which the sets (multisets, resp.) of colors,
that appear on every pair of intersecting edges are different. We show upper bounds on the
size of lists, which guarantee the existence of an ieds- or iedm-coloring, respecting these lists.
The proof is essentially a randomized algorithm, whose expected time complexity is polynomial.
As corollaries, we derive new results concerning the list variants of graph labeling problems,
distinguishing neighbors by sets or multisets. We also show that our method is robust and can
be easily extended for different, related problems.

We also investigate a close connection between edge labelings of bipartite graphs, distinguish-
ing neighbors by sets, and the so-called property B of hypergraphs. We discuss computational
aspects of the problem and present some classes of bipartite graphs, which admit such a labeling
using two labels.

1 Introduction

Among the variants of graph coloring, there is a prominent family of problems, where the coloring of
vertices of G is not given explicitly, but derived from some other function. Usually, this function is
some labeling of edges or vertices of G, and the color of the vertices is based on the labels assigned
to incident edges or adjacent vertices (or both in case of total labeling).

Perhaps the most famous problem of this kind was proposed by Karoński, Łuczak, and Thoma-
son [39]. They were labeling the edges of a graph G with integers {1, 2, . . . , k}, so that for every two
adjacent vertices u, v, the sums of labels assigned to edges incident to each of u and v are different.
We call such a labeling neighbor sum distinguishing. Observe a neighbor sum distinguishing labeling
exists if and only if G has no isolated edge, such graphs will be called nice. Karoński, Łuczak, and
Thomason showed that each nice graph has a neighbor sum distinguishing labeling with 183 labels,
if we allow real numbers as labels. They also showed that if the minimum degree of G is large, 30
(real) labels suffice, and conjectured that every nice graph has a neighbor sum distinguishing labeling
with labels {1, 2, 3}. This problem, known as the 1-2-3 conjecture, raised significant interest in the
graph theory community. Addario-Berry, Dalal, McDiarmid, Reed, and Thomason [2] showed that
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integer labels {1, 2, . . . , 30} are sufficient to find a neighbor sum distinguishing labeling of any nice
graph. The upper bound on the largest label was subsequently improved: to 16 by Addario-Berry,
Dalal, and Reed [3], then to 13 by Wang and Yu [61], and then to 6 by Kalkowski, Karoński, and
Pfender [37]. Currently best bound for general graphs is 5 and was shown by Kalkowski, Karoński,
and Pfender [38]. Bartnicki, Grytczuk, and Niwczyk [8] proposed a stronger conjecture, that for any
assignment of 3-element lists to edges of G, one can find a neighbor sum distinguishing labeling,
such that every edge gets a label from its list. A constant bound on the size of lists that guarantee
the existence of such a labeling is known for some special classes of graphs, e.g. complete graphs,
complete bipartite graphs, or nice trees [8].

Dudek and Wajc [20] considered the computational problem of deciding whether a given nice
graph has a neighbor sum distinguishing edge labeling with labels {a, b}. They proved that the
problem is NP-complete for {a, b} = {0, 1} and for {a, b} = {1, 2}. This was later extended by
Dehghan, Sadeghi, and Ahadi [19] to all pairs {a, b}, even if the input graph is cubic.

Let us have a closer look at the already mentioned result by Karoński, Łuczak, and Thomason [39],
that a constant number of real labels is sufficient to distinguish adjacent vertices by sums of labels
on incident edges. We will say that an edge labeling distinguishes neighbors by multisets, if for every
pair u, v of adjacent vertices, the multisets of labels appearing on the edges incident to u and v
are different, see Figure 1 a). Notice that different sums always imply different multisets, but it is
possible to have different multisets that give the same sum. The authors of [39] proved that every
graph has an edge labeling, which distinguishes neighbors by multisets, and uses a constant number
of labels and then, by choosing labels that satisfy certain independence properties, one can obtain a
labeling that distinguishes sums. Edge labelings distinguishing neighbors by multisets were further
studied by Addario-Berry, Aldred, Dalal, and Reed [1], who showed every nice graph has such a
labeling using four labels and, if the minimum degree of G is large enough, three labels suffice.
Observe that if G is regular, then an edge labeling using two labels is neighbor sum distinguishing
if and only if it distinguishes neighbors by multisets. Thus, by the already mentioned result by
Dehghan, Sadeghi, and Ahadi [19], it is NP-complete to decide whether a given graph has an edge
labeling distinguishing neighbors by multisets.

Instead of considering sums or multisets of labels appearing on edges incident to adjacent vertices,
one can also consider sets. We say that an edge labeling distinguishes neighbors by sets if for any
two adjacent vertices v and w, the sets of labels on edges incident to u and v are different, see
Figure 1 b). Observe that different sets of colors always imply different multisets, but not the
other way around. On the other hand, sets are sums are incomparable: one may have different
multisets that give the same sum and different sets, or the same set and different sums. By the
generalized neighbor-distinguishing index of a graph G, denoted by gndi(G), we mean the minimum
number of labels in an edge labeling distinguishing neighbors by sets. This parameter was introduced
by Győri, Horňák, Palmer, and Woźniak [30], who proved that for every nice graph G we have
gndi(G) ≤ 2⌈log2 χ(G)⌉ + 1. This bound was later refined by Horňak and Sotak [34] and by Győri
and Palmer [29], who proved that if χ(G) ≥ 3, then gndi(G) = ⌈log2 χ(G)⌉+1. Horňák and Woźniak
considered a list variant of the problem, where each edge is equipped with a list of possible labels
and we ask for the existence of a labeling distinguishing neighbors by multisets and respecting these
lists. They proved tight bounds on the size of lists, that guarantee the existence of such a labeling
in paths and cycles, and showed that for trees lists of size three are sufficient. They also showed
that lists of size three may be necessary, even for trees T with gndi(T ) = 2.

Inspired by the 1-2-3 conjecture, Woźniak and Przybyło [49] suggested a closely related problem
considering total labelings of G, i.e., labelings of edges and vertices. They considered the problem
of finding a total labeling using minimum number of labels, which distinguishes adjacent vertices by
sums of labels appearing on incident edges and the vertex itself. Such a labeling is called neighbor
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(a)
(b)

Figure 1: Edge labeling distinguishing neighbors (a) by multisets, (b) by sets. The boxes next to
each vertex denote (a) the multiset and (b) the set of labels appearing on edges incident to that
vertex.

sum distinguishing total labeling. Woźniak and Przybyło conjectured that every graph has a neighbor
sum distinguishing total labeling, using labels {1, 2} only, this problem is known as the 1-2 conjecture.
Kalkowski [36] showed that each graph has a neighbor sum distinguishing total labeling with labels
{1, 2, 3}, in which the label 3 does not appear on any vertex. Wong and Zhu [63], and Przybyło
and Woźniak [50] conjectured that the 1-2 conjecture holds even in the list variant. Recently, Wong
and Zhu [64] showed a list version of the theorem by Kalkowski: a list neighbor sum distinguishing
total labeling exists if each vertex has a list of size 2 and every edge has a list of size 3. Observe
that in an analogous way one may define total labelings distinguishing neighbors by multisets and
distinguishing neighbors by sets, see Figure 2.

(a) (b)

Figure 2: (a) Edge and (b) total labeling distinguishing neighbors by sets.

Finally, let us mention a similar problem, considered by Seamone and Stevens [54]. Let G be a
graph and suppose that its edges are linearly ordered. A labeling of edges distinguishes neighbors
by sequences, if the sequences of colors (implied by the global ordering of edges), appearing on edges
incident to adjacent vertices, are different.

Seamone and Stevens showed that if the ordering of edges can be chosen, then for any nice graph
lists of size 2 are sufficient to find a list edge labeling, distinguishing neighbors by sequences. If
the ordering of edges is fixed, the lists of size 3 suffice, provided that the minimum degree is large
enough, compared to the maximum degree. In particular, lists of size 3 are sufficient for a k-regular
graph with k ≥ 6.

Another variants of the mentioned problems have also been studied. For example, one can ask
for an edge-labeling, which distinguishes neighbors by sums/multisetes/sums, and is also required
to be proper: for distinguishing neighbors by sums of labels, see e.g. Przybyło [47, 48], Bonamy and
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Przybyło [14], Hocquard and Przybyło [33]; for distinguishing neighbors by sets of labels, see Zhang,
Liu, and Wang [65], Balister, Győri, Lehel, and Schelp [6], Edwards, Horňák, and Woźniak [22],
Bonamy, Bousquet, and Hocquard [13] or Hatami [31]; for list edge labelings distinguishing neighbors
by multisets see a recent exciting result by Kwaśny and Przybyło [40].

There is also some work on edge labelings, that distinguish neighbors by products of labels (see
Skowronek-Kaziów [55, 56, 57]). For a more detailed overview on the related problems, we refer the
reader to the recent book by Zhang [65], and a survey by Seamone [53].

1.1 Our contribution

Let us introduce the main character of this paper. For a hypergraph H , we say that a vertex coloring
is intersecting edge distinguishing by multisets (or, in short, is an iedm-coloring), if the multisets of
colors appearing in intersecting edges are different. Similarly, a vertex coloring is intersecting edge
distinguishing by sets (or, in short, is an ieds-coloring), if the sets of colors appearing in intersecting
edges are different.

It is perhaps interesting to mention the special case of graphs, i.e., 2-uniform hypergraphs. It
is straightforward to verify that in this case iedm- and ieds-colorings are equivalent. Moreover, a
vertex coloring distinguishes intersecting edges by sets (or, equivalently, multisets) if and only if no
two vertices with a common neighbor receive the same color. Such a concept is already known in
graph theory and usually referred to as an L(0, 1)-labeling. The motivation to study this kind of
a coloring came from the hidden terminal problem in telecommunication [10, 42]. Optimal (i.e.,
using the minimum number of colors) L(0, 1)-labelings are known for simple classes of graphs, like
paths, cycles, grids (see Makansi [42] and Jin, Yeh [35]), hypercubes (see Wan [60]), and complete
binary trees (see Bertossi and Bonuccelli [10]). Bodlaender, Kloks, Tan, van Leeuwen [11] showed
some bounds on the number of colors required to find an L(0, 1)-labeling of G for some special
classes of graphs: bounded-treewidth graphs, permutation graphs, outerplanar graphs, split graphs,
and bipartite graphs. On the complexity side, it is known that the decision problem whether an
input graph has an L(0, 1)-labeling with 3 colors is NP-complete for planar graphs [10] and split
graphs [11]. The parameterized complexity of this problem was considered by Fiala, Golovach, and
Kratochvíl [27], who showed that the problem is W [1]-hard, when parameterized by treewidth, but
FPT, when parameterized by the vertex cover number (we refer the reader to the book by Cygan
et al. [16] for more information about parameterized complexity).

In Section 2.2 we argue that colorings of hypergraphs, that distinguishing intersecting edges
by sets or multisets, are natural common generalization of edge and total labelings distinguishing
neighbors by sets and multisets. We are interested in the list variants of both problems. As the
main result, in Theorem 1 we show upper bounds on the size of lists that guarantee the existence of
a list ieds-coloring or a list iedm-coloring of a given hypergraph.

The main part of the paper, i.e., Section 3, is devoted to the proof of Theorem 1. The proof
uses the so-called entropy compression method, which is a variant of the Lovász Local Lemma [25].
The Local Lemma is essentially non-constructive, but several algorithmic versions have also been
developed (see Alon [4], Molloy, Reed [43], and Moser, Tardos [45]). Entropy compression originates
in the algorithmic version of the Local Lemma by Moser and Tardos, and was first used by Grytczuk,
Kozik, and Micek [28] to study the list version of the problem of Thue. Then the method was
successfully applied in many other contexts (see e.g. Esperet, Parreau [26] or Dujmović, Joret,
Kozik, and Wood [21]). The main idea of our proof is similar to the one of Bosek, Czerwiński,
Grytczuk, and Rzążewski [15], but there are two significant differences. First, the authors of [15]
considered the so-called harmonious colorings, where all pairs of edges need to be distinguished.
Second, they were considering colorings in which no edge contained two vertices in the same color.
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If we drop this restriction, distinguishing edges by sets is significantly more difficult and makes the
argument more complicated.

The proof of Theorem 1 is essentially a randomized algorithm which finds a list ieds- or iedm-
coloring of a given hypergraph. In Section 3.4 we consider its computational complexity and show
that the expected number of steps in the execution of the algorithm is polynomial.

In Section 4 we discuss the applicability of Theorem 1 and the method used in the proof. As
corollaries from Theorem 1, in Section 4.1 we obtain several bounds on the size of lists, which
guarantee the existence of a list edge/total labeling, distinguishing neighbors of a regular graph by
sets or multisets. In particular, in Corollaries 8 and 9 we show that if k is sufficiently large, then
lists of size 0.54k are sufficient to find an edge or total labeling distinguishing neighbors by sets. In
case of distinguishing by multisets, in Corollaries 10 and 11 we prove that lists of size 0.37k suffice, if
k is large enough. We also consider the case of the so-called configurations. In Section 4.2, we show
that our method can be easily extended and adapted to other problem of similar kind. In particular,
we show how to construct an algorithm, which finds a list coloring of vertices of a hypergraph,
distinguishing intersecting edges by sequences. We omit most of the details of the proof, as it is
essentially the same as the proof of Theorem 1. We focus on highlighting the crucial issues that have
to be considered, when adapting our approach to a new problem. As a side result, we improve the
result of Seamone and Stevens [54] for regular graphs. In particular, we show that given a k-regular
graph with k ≥ 10, with a fixed ordering of edges, then lists of size 2 are sufficient to choose a list
edge labeling, in which every two adjacent vertices have distinct sequences of colors appearing on
incident edges.

In Section 5, we investigate an interesting relation between the generalized neighbor-distinguishing
index of bipartite graphs and two well-known problems, i.e., a variant of the satisfiability problem
called Not-All-Equal Sat, and the so-called property B of hypergraphs. The paper is concluded
in Section 6 with several open problems and suggestions for future work.

2 Preliminaries

For an integer n, by [n] we denote the set {1, 2, . . . , n}. By fn we denote the number of total
preorders of [n]. In other words, fn is the number of orderings of [n] with possible ties. Observe
that

fn =
n∑

i=0

i!

{
n

i

}

, (1)

where
{
n
i

}
denotes the Stirling number of the second kind, i.e., the number of partitions of [n] into

i non-empty subsets. The value fn is sometimes called an ordered Bell number or a Fubini number
(see the corresponding OEIS entry [58]). For any function ϕ : X → Y , and any subset X ′ ⊆ X ,
by ϕ〈X ′〉 we denote the multiset of images of elements of X ′. This is in contrast with the usual
notation ϕ(X ′), which is the image of X ′, i.e., the set of images of elements of X ′. For two disjoint
sets A,B and a function f : A ∪ B → N, such that f(A) ⊆ f(B), we say that a function γ : A → B
is color-preserving if for every a ∈ A it holds that f(a) = f(γ(a)).

Consider a hypergraph H = (V,E). For every vertex v ∈ V , let E(v) be the set of edges
containing v. The degree of a vertex v is defined as deg v := |E(v)|. By ∆(H) we denote the
maximum degree, i.e., maxv∈V deg v. A hypergraph is k-uniform, for k ∈ N, if |P | = k for every
P ∈ E. Clearly, graphs are 2-uniform hypergraphs. For a k-uniform hypergraph H , define

I(H) := {|P \Q| : P,Q ∈ E} ∩ [k − 1].

5



2.1 Graph labeling problems

Let G = (V,E) be a simple, undirected graph, i.e., a 2-uniform hypergraph and consider an (un-
restricted) edge labeling µ of G. We say that µ distinguishes neighbors by sets (respectively, by
multisets) if µ(E(v)) 6= µ(E(u)) (respectively, µ〈E(v)〉 6= µ〈E(u)〉) for every pair of adjacent ver-
tices v and u. Clearly, in both cases, such a labeling exists if and only if and only if the graph G is
nice, i.e., it does not have an isolated edge. Recall that by gndi(G) we denote the minimum number
of labels used in an edge labeling of G, distinguishing neighbors by sets.

Similarly, let η be a total labeling of G, i.e., a labeling of its edges and vertices. We say it distin-
guishes neighbors by sets (respectively, by multisets) if η(E(v) ∪ {v}) 6= η(E(u)∪ {u}) (respectively,
η〈E(v)∪{v}〉 6= η〈E(u)∪{u}〉) for every pair of adjacent vertices v and u. Note that such a labeling
exists for every graph G, as it is enough to use a different label for every vertex, and one extra label
for all edges.

In list variants of all four problems, edges (or edges and vertices in total labelings) are equipped
with lists of possible labels, and we ask for a labeling, where the label of every edge (or edge and
vertex in total labelings) belongs to the appropriate list.

It is interesting to note a very close connection between total and edge labelings distinguishing
neighbors by sets. Consider a nice graph G and let m denote the minimum number of labels in a
total labeling distinguishing neighbors by sets. First, observe that m ≤ gndi(G), because we can
extend any edge labeling, which is neighbor distinguishing by sets, to a total labeling, by assigning
to each vertex v a label that appears on some edge incident to v. On the other hand, consider a
total labeling c of G, which distinguishes neighbors by sets and uses m labels. By the argument
analogous to the one used by Horňák and Soták [34], we observe that

{c−1(M) ∪ c−1([m] \M) : M ⊆ [m]},

is a proper vertex coloring of G, which implies that χ(G) ≤ 2m−1 and thus m ≥ ⌈log2 χ(G)⌉ + 1.
Recall that Győri and Palmer [29] showed that if χ(G) ≥ 3, then gndi(G) = ⌈log2 χ(G)⌉+ 1, which
implies that m = gndi(G).

Finally, if G is a bipartite graph then m = 2, because we can extend its proper vertex coloring
using colors {1, 2} to a total labeling, by assigning label 1 to every edge of G. The inverse of this
statement is also true: if G = (V,E) has a total labeling c : V ∪E → {1, 2}, distinguishing neighbors
by sets, then G is bipartite. This is because the sets c−1({1, 2}) and c−1({1}) ∪ c−1({2}) form a
bipartition of G.

Observe that this reasoning does not show equivalence of the list variants of the problems, so it
still makes sense to consider them separately.

Finally, note that if we are interested in edge/total labelings of a disconnected graph G, then we
can label each connected component of G independently, as the distinguishing constraints are local.
Thus we will focus on connected graphs.

2.2 Distinguishing neighbors via colorings of hypergraphs

Let H = (V,E) be a hypergraph, we do not allow multiple edges. We say that a coloring ϕ : V → N

distinguishes intersecting edges by sets (or, in short, is an ieds-coloring) if for every pair of distinct
intersecting edges P,Q ∈ E it holds that

ϕ(P ) 6= ϕ(Q). (2)
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Analogously, ϕ distinguishes intersecting edges by multisets (or is an iedm-coloring), if for every pair
of distinct intersecting edges P,Q ∈ E it holds that

ϕ〈P 〉 6= ϕ〈Q〉. (3)

See Figure 3 for an example. Note that (2) implies (3), so every ieds-coloring is also an iedm-coloring.
Moreover, if |P | 6= |Q|, then (3) is satisfied for any coloring ϕ.

By a list ieds-coloring (respectively, a list iedm-coloring) we mean an ieds-coloring (respectively,
an iedm-coloring), in which the color of each vertex v is chosen from a list Lv which is assigned to
the vertex v. The lists come with a graph and are assumed to be a part of the instance.

(a) (b)

Figure 3: (a) An iedm-coloring and (b) an ieds-coloring of a 4-uniform hypergraph.

Now, for the graph G = (V,E), let H = (E,Q) be its dual hypergraph, i.e., the hypergraph whose
vertex set is the set of edges of G, and edges of H correspond to vertices of G in the following way:
Q = {E(v) : v ∈ V }. Observe that in such a hypergraph each vertex belongs to exactly two edges
and also, if G is k-regular, then H is k-uniform and I(H) = {k− 1}. Let µ be an edge labeling of a
graph G. We observe that µ distinguishes neighbors by sets (respectively, by multisets) if and only
if it is an ieds-coloring (respectively, iedm-coloring) of the dual hypergraph H of G, see Figure 4.

Analogously to the previous case, we define the total hypergraph of G, i.e., the hypergraph
H = (V ∪ E,Q), whose vertices are both vertices and edges of G. Every edge of H is the set of all
edges incident to a vertex in G and the vertex itself, i.e., Q = {E(v) ∪ {v} : v ∈ V }. Note that
∆(H) ≤ 2 and, if G is k-regular, then H is (k + 1)-uniform and I(H) = {k}. Now, if η is a total
labeling of G, it distinguishes neighbors by sets (respectively, by multisets) if and only if it is an
ieds-coloring (respectively, an iedm-coloring) of H .

3 Upper bound

In this section we prove the main results of the paper, i.e., upper bounds on the size of lists, which
guarantee the existence of an ieds-coloring or an iedm-coloring of a given k-uniform hypergraph.

Theorem 1. Let k ≥ 2 and let H be a k-uniform hypergraph H with ∆(H) ≤ ∆ and I(H) = I,
whose every vertex is equipped with a list Lv of at least R colors. Define q1 := 1 and qi :=

i
i−1

i
√
i− 1

for every i > 1. The following hold:

(a) if R ≥
⌈

2 +
∑

i∈I

qi
i

√

∆(∆− 1)(k − 1)

k − i
2k−i+1fi

⌉

, then there exists a list ieds-coloring ϕ of H,
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(a)

a d

b

c e

f

(b)

ce

ac

bc

de

ad

ab

ef

df

bf

Figure 4: An edge labeling of a graph, distinguishing neighbors by sets (a), and the corresponding
ieds-coloring of its dual hypergraph (b).

(b) if R ≥
⌈

2 +
∑

i∈I

qi
i

√

∆(∆− 1)(k − 1)

k − i
i!

⌉

, then there exists a list iedm-coloring ϕ of H.

For the rest of the section, let H = (V,E) be a fixed k-uniform hypergraph on n vertices, such
that I(H) = I and ∆(H) ≤ ∆ for some ∆ ≥ 2. Note that if ∆(H) ≤ 1, then there are no intersecting
edges and thus the problem is trivial. We assume that sets V and E are linearly ordered, clearly
these orderings induce a linear ordering on any subset Y of V or E. For every y ∈ Y , denote by
nY (y) a position of element y in the set Y , determined by this ordering. Suppose that every vertex
v of H is assigned with a list Lv of at least R colors.

For a subset U of V , a function ϕ : U → N is called a partial ieds-coloring if for every pair of
distinct, intersecting edges P,Q ∈ E such that (P ∪Q) \ (P ∩Q) ⊆ U , it holds that

ϕ(P ∩ U) 6= ϕ(Q ∩ U) (4)

and ϕ(v) ∈ Lv for every vertex v ∈ U . Analogously, ϕ is called a partial iedm-coloring if for every
such pair of edges P,Q we have that

ϕ〈P \Q〉 6= ϕ〈Q \ P 〉 (5)

and ϕ(v) ∈ Lv for every v ∈ U . A partial ieds-coloring (iedm-coloring, respectively) is complete if
U = V , note that for U = V the condition (4) is exactly (2) and the condition (5) is equivalent
to (3). Moreover, notice that conditions (4) or (5) are necessary, if we want to extend a partial
ieds-coloring or a partial iedm-coloring to a complete one, see Figure 5.

Both statements in Theorem 1 can be shown in a very similar way. We will discuss the proof
in a detail and point out the differences between the cases of sets and multisets. By a (partial)
ied-coloring we will mean a (partial) ieds-coloring or a (partial) iedm-coloring, depending whether
we want to show the statement (a) or (b).

We will construct an appropriate coloring of H iteratively, ensuring that after each step the
current partial coloring is a partial ied-coloring. In general, the algorithm works as follows. We fix
a large N ∈ N and a sequence C of N numbers from [R]. In each step of the algorithm we color
an uncolored vertex, using the next number from C, and check if the obtained partial coloring is a

8



(a)

v

(b)

v

Figure 5: Partial colorings which do not satisfy condition (4). After coloring vertex v, there is no
way to extend these colorings to obtain a complete ieds-coloring. Moreover, (a) does not satisfy
condition (5) and cannot be even extended to iedm-coloring.

partial ied-coloring. If so, we proceed to the next iteration. If not, it means that the condition (4)
or (5) (depending on the case of sets or multisets) is violated for some pair of edges P,Q. In this
situation we say that a conflict appears on these two edges. We erase colors of some already colored
vertices, to ensure that the current coloring is a partial ied-coloring. Moreover, we use an additional
table T to register all information about occurring conflicts. The algorithm terminates when all
vertices of H are colored or all numbers from the sequence C are used (i.e., after N iterations). In
the first case the algorithm returns a complete ied-coloring. In the second one, it returns a pair
(T, ϕN ), where T is the table of conflicts and ϕN is the partial ied-coloring obtained after the last
iteration.

For the contradiction, assume that H does not have any ied-coloring, respecting the lists Lv. This
means that for every possible sequence C the algorithm does not return a complete list ied-coloring
of H , but some pair (T, ϕN ). We will show that there is a bijection between all possible sequences C
and all possible pairs (T, ϕN ). Then, we will show that if N is sufficiently large, then the number of
all pairs (T, ϕN ) is strictly smaller than RN , which is a number of possible sequences C. This leads
to a contradiction, so there is at least one sequence C, for which the algorithm successfully returns
a complete list ied-coloring of H .

3.1 The algorithm

Let N be a large integer and let C = (c1, c2, . . . , cN ) be a sequence of integers from [R]. At the
beginning of the procedure all vertices of H are uncolored, call this (empty) partial coloring ϕ0.
Also, if a list Lv for some v ∈ V has more than R elements, we truncate it, so that all lists are of
size exactly R. For j ∈ [N ], by ϕj we denote the partial ied-coloring after the j-th iteration.

Recall that the vertices of H are linearly ordered. For each j ∈ [N ], the j-th iteration of the
algorithm consists of the following steps.

Step 1. Find the smallest uncolored vertex in V , call it v.

Step 2. Assign the cj-th color from the list Lv to v and denote by ϕ the obtained partial coloring.

Step 3. If ϕ is a partial ied-coloring, write + in T (j) and set ϕj := ϕ. If ϕ is a complete ied-coloring,
return it and terminate, otherwise, proceed to the next iteration.

Step 4. If ϕ is not a partial ied-coloring, then a conflict appeared on a pair of intersecting edges
P,Q, and v belongs to at least one of them, say P . This is because ϕj−1 was a partial ied-
coloring and a conflict was caused by coloring v. If there is more than one conflict, we can
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choose any of them. Let i := |P \ Q| = |Q \ P |, so i ∈ I, and define the set X := {K ∈
E : |P \K| = i and v /∈ K}.

The final step differs in case of distinguishing by sets and distinguishing by multisets.

Step 5 (variant (a): sets). There are two types of possible conflicts that may occur, we consider
them separately.

a) First, consider the case that v /∈ Q. This means that all vertices from (P ∪Q)\(P ∩Q)\{v}
were colored in previous iterations, and ϕ(P \ Q) ⊆ ϕ(Q). Let xP := nE(v)(P ) and
xQ := nX(Q). In T (j) write the quadruple (1, xP , xQ, γ), where γ is a color-preserving
function from P \ Q to Q (later we will specify how to choose γ, for now it is enough to
know that it is color-preserving). After that, uncolor all vertices from P \Q, denoting the
obtained coloring by ϕj , and proceed to the next iteration.

b) Now, consider the case that v ∈ P ∩Q, clearly all vertices of (P ∪Q) \ (P ∩Q) are already
colored. Observe that ϕ(v) belongs to exactly one of the sets ϕ(P \Q) and ϕ(Q\P ), because
ϕj−1 was a partial ieds-coloring. Without loss of generality assume that ϕ(v) ∈ ϕ(Q \ P ),
otherwise switch the names of P and Q.

Let w be the smallest vertex of P \Q, it exists, because H does not have multiple edges.
Let xP := nE(v)(P ) and xQ := nE(v)\{P}(Q). In T (j) write the quadruple (2, xP , xQ, γ),
where γ is a color-preserving function from P \ (Q ∪ {w}) ∪ {v} to Q \ {v} . After that,
uncolor all vertices from P \ (Q ∪ {w}) ∪ {v}, denoting the obtained coloring by ϕj , and
proceed to the next iteration.

Step 5 (variant (b): multisets). Note that now v ∈ P \ Q, because ϕj−1 was a partial iedm-
coloring. Recall that ϕ〈P \ Q〉 = ϕ〈Q \ P 〉. Let xP := nE(v)(P ) and xQ := nX(Q). In T (j)
write the triple (xP , xQ, γ), where γ is a color-preserving function from P \Q to Q \ P . After
that, uncolor all vertices from P \Q, denoting the obtained coloring by ϕj , and proceed to the
next iteration.

Observe that after uncoloring v (and possibly some additional vertices) there are no more con-
flicts, so ϕj is a partial ied-coloring for every j ∈ [N ]. Moreover, note that the execution of the
algorithm does not depend on the content of T . The information stored there will only be used in
the proof.

It is clear that the algorithm either returns an ied-coloring, or runs for N iterations and terminates
without success. In the latter situation, we say that the pair (T, ϕN ) is produced from the sequence
C, note that this pair is uniquely determined by C. Let I := [R]N (for input) denote the set of all
possible sequences C, and O (for output) denote the set of all pairs (T, ϕN ) that can be possibly
produced from a sequence C ∈ I. Assume that the algorithm never returns a complete ied-coloring,
which means that for every C ∈ I it produces some pair (T, ϕN ) ∈ O. This implies that |O| ≤ |I|.

3.2 Equicardinality of sets I and O
We will show that if a pair (T, ϕN ) belongs to O, then there is exactly one sequence C ∈ I that
produces (T, ϕN). By Wj we denote the set of uncolored vertices after the j-th iteration of the
algorithm and by Uj we denote the set of vertices that are colored after the j-th iteration of the
algorithm. Moreover, we define W0 := V and U0 := φ. Notice that for every j ∈ {0, 1, . . . , N} the
sets Wj and Uj form a partition of V , i.e., Wj ∩ Uj = φ and Wj ∪ Uj = V .

First, let us prove that using the entries of T only, we can reconstruct sets Wj for all j ∈ [N ].
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Lemma 2. For every j ∈ [N ] the set Wj is uniquely determined by Wj−1 and T (j).

Proof. Let v be the smallest vertex in the set Wj−1. In the j-th iteration we assigned a color to
v. Depending on T (j) and, obviously, the variant of coloring we consider, we have the following
possibilities:

Case 1: T (j) = + (both variants (a) and (b): sets and multisets). In this case, no conflicts
arose after coloring v in the j-th iteration and no vertex was uncolored. Therefore Wj =
Wj−1 \ {v}.

Case 2: T (j) = (1, xP , xQ, γ) (variant (a): sets). This means that there was a conflict on some
intersecting edges P and Q, such that v ∈ P \Q. We know that P is the xP -th element of the
set E(v). From the size of the domain of γ, we can determine the value of i = |P \Q| = |Q\P |.
Knowing P , v, and i, we can uniquely determine the set X = {K ∈ E : |P \K| = i and v /∈
K}, and thus also the edge Q, which is the xQ-th element of X . After the conflict occurred,
we uncolored all the vertices from P \Q, so Wj = Wj−1 ∪ (P \Q).

Case 3: T (j) = (2, xP , xQ, γ) (variant (a): sets). This means that there was a conflict on some
edges P and Q, such that v ∈ P ∩Q. We know that P is the xP -th element of E(v), and Q is
the xQ-th element of E(v)\{P}. The vertex w is the smallest vertex in P \Q. After the conflict
occurred, we uncolored all vertices from P \ (Q∪{w})∪{v}, so Wj = Wj−1 ∪ (P \ (Q∪{w})).

Case 4: T (j) = (xP , xQ, γ) (variant (b): multisets). This case is very similar to the second one.
Again we have a conflict on edges P and Q, such that v ∈ P \Q. Using xP , we can determine
P , and i is given by the size of the domain of γ. Having v, P , and i, we can compute X , and
then, using xQ, we can find Q. After the conflict occurred, we uncolored all the vertices from
P \Q, so Wj = Wj−1 ∪ (P \Q).

Using Lemma 2, we can reconstruct sets W1, . . . ,WN . Now we show that using the pair (T, ϕN )
that was returned by the algorithm and sets Wj for j ∈ {0, . . . , N}, we can reconstruct all elements
of C.

Lemma 3. For every j ∈ [N ], the partial ied-coloring ϕj−1 and the number cj are uniquely deter-
mined by ϕj, T (j), and the sets W0,W1, . . . ,WN .

Proof. For every j ∈ {0, 1, . . . , N} we have Uj = V \Wj . Let v be the smallest vertex in Wj−1, this
is the vertex that was colored in the j-th iteration. We know that ϕj agrees with ϕj−1 on the set
Uj ∩ Uj−1. Again we consider the cases.

Case 1: T (j) = + (both variants (a) and (b): sets and multisets). This means that coloring
v in the j-th iteration did not cause any conflict. Thus for every u ∈ Uj−1 we have ϕj−1(u) =
ϕj(u). From ϕj we get ϕj(v), and cj is the position of the color ϕj(v) in the list Lv.

Case 2: T (j) = (1, xP , xQ, γ) (variant (a): sets). Recall that this means that there was a conflict
on some edges P and Q, where v ∈ P \Q. We determine P and Q as in Lemma 2. To get ϕj−1,
we need to recover colors of the vertices from P \ (Q ∪ {v}), and also the number cj. Observe
that all colors in ϕj−1(P \ (Q ∪ {v})) appear on vertices of Q, and since γ is color-preserving,
we can easily reconstruct the coloring ϕj−1 on P \ (Q∪ {v}). In the same way we reconstruct
the color that was given to v in the j-th iteration, cj is its position in Lv.

Case 3: T (j) = (2, xP , xQ, γ) (variant (a): sets). This means there was a conflict on some edges
P and Q, where v ∈ P ∩ Q. We find P , Q, and w as in Lemma 2. As in the case above, we
use γ to reconstruct colors of P \ (Q ∪ {w}) to get ϕj−1, and also the color that was assigned
to v to get cj .
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Case 4: T (j) = (xP , xQ, γ) (variant (b): multisets). Again, we find P and Q as in Lemma 2,
and then use γ to reconstruct ϕj−1 and cj .

Finally, we can use Lemma 2 and Lemma 3 to get the following corollary.

Corollary 4. The sets I and O have the same cardinality.

Proof. From Lemma 2 it follows that knowing T , we can determine the sets Wj for every j ∈ [N ].
Using them, the table T , and the partial ied-coloring ϕN , we can reconstruct all partial ied-colorings
ϕj and the sequence C, as shown in Lemma 3. This implies that every possible pair (T, ϕN ) ∈ O is
produced by a unique sequence C ∈ I, which means that |I| ≤ |O|. Since we know that |O| ≤ |I|
also holds, the proof is complete.

3.3 Cardinality of O
Now we want to estimate the number of possible pairs (T, ϕN ) that may be produced by the algo-
rithm. Let us start with estimating the number of possible entries in the table T , other than just
a + sign. We use the notation from the previous section. Consider an iteration j, where a conflict
appeared on two intersecting edges P and Q, such that v ∈ P , and |P \Q| = |Q \ P | = i, and let ϕ
be the coloring obtained by assigning the color cj to v.

We will consider the cases of sets and multisets separately. For each i ∈ [k − 1], by Si (Mi,
respectively), we denote the set of all possible entries other than +, that may appear in T (j) in
case of ieds-coloring (iedm-coloring, respectively). Clearly if i /∈ I, then there are no edges P and
Q for which |P \Q| = i holds, so there are no possible conflicts. Therefore in such a case we have
Si = Mi = ∅. Now consider i ∈ I.

Variant (a): sets. Then each entry is a quadruple (1, xP , xQ, γ) or (2, xP , xQ, γ). Since xP =
nE(v)(P ), clearly we have xP ∈ [∆].

Case 1: T (j) = (1, xP , xQ, γ). Note that in this case v ∈ P \ Q, recall xQ = nX(Q), where
X = {K ∈ E : |P \K| = i and v /∈ K}. Equivalently, X contains all edges, which do not contain
v, and have exactly k − i common vertices with P \ {v}. There are at most (∆ − 1)(k − 1) edges

intersecting P \ {v}, which implies that there are at most
⌊
(∆−1)(k−1)

k−i

⌋

elements of X , so

xQ ∈
[⌊

(∆− 1)(k − 1)

k − i

⌋]

.

Finally, we need to estimate the number of possible color-preserving functions γ, recall ϕ(P \Q) ⊆
ϕ(Q) and we want to store the information about ϕ(u) for every u ∈ P \ Q. Let Γ1 := ϕ(P ∩ Q)
and g1 := |Γ1|, clearly 0 ≤ g1 ≤ k − i. Also, define Γ2 := ϕ(Q \ P ) \ ϕ(P ∩ Q) and g2 := |Γ2|, so
we have 0 ≤ g2 ≤ i. Observe that ϕ(Q) = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. Note that Γ1 and Γ2 may be
considered fixed, as they only depend on P , Q, and ϕ. Fix a linear ordering of elements of ϕ(Q),
which is implied by the linear ordering of vertices of Q: each color is represented by the smallest
vertex in this color.

We observe that if the condition (4) does not hold, every color from Γ2 must appear on some
vertex of P \Q. On the other hand, colors from Γ1 may appear on vertices in P \Q, but do not have
to. Let Γ′

1 := ϕ(P \Q) ∩ Γ1 and g′1 := |Γ′
1|. Now γ is a surjective function from P \ Q to Γ′

1 ∪ Γ2
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and can be chosen in at most

g1∑

g′

1
=0

(
g1
g′1

)

surj(i, g′1 + g2) ≤
k−i∑

g′

1
=0

(
k − i

g′1

)

surj(i, g′1 + g2)

ways, where surj(i, g′1 + g2) denotes the number of surjective functions from an i-element set to a
(g′1 + g2)-element set. We observe that

surj(i, g′1 + g2) = (g′1 + g2)! ·
{

i

g′1 + g2

}

≤ fi,

where the last inequality follows from (1). Summing up, we obtain that the number of possible
functions γ is at most

k−i∑

g′

1
=0

(
k − i

g′1

)

surj(i, g′1 + g2) ≤
k−i∑

g′

1
=0

(
k − i

g′1

)

fi = 2k−ifi. (6)

Case 2: T (j) = (2, xP , xQ, γ). If T (j) = (2, xP , xQ, γ), then v ∈ P ∩Q, so xQ = nE(v)\{P}(Q) and
thus clearly xQ ∈ [∆− 1]. The bound on the number of functions γ is obtained in a way analogous
to the previous case. Again, we are interested in bounding the number of surjective functions from
[i] to [g′1+g2], where g′1 is the number of colors from ϕ(P ∩Q\{v}) that appear in ϕ(P \ (Q∪{w})),
and g2 = |ϕ(Q \ P ) \ ϕ(P ∩Q \ {v})|. We observe that this number is bounded by (6).

Summing up, we conclude that

|Si| ≤
(

∆ ·
⌊
(∆− 1)(k − 1)

k − i

⌋

· 2k−ifi

)

︸ ︷︷ ︸

Case 1.

+

(

∆ · (∆− 1) · 2k−ifi

)

︸ ︷︷ ︸

Case 2.

≤2∆ · (∆− 1)(k − 1)

k − i
· 2k−ifi =

∆(∆− 1)(k − 1)

k − i
· 2k−i+1fi.

Variant (b): multisets. This variant is significantly simpler. The only possible entry in T (j) is
a triple (xP , xQ, γ). Just as in the Case 1 in the previous variant, we have

xP ∈ [∆] and xQ ∈
[⌊

(∆− 1)(k − 1)

k − i

⌋]

.

By condition (5), γ can be assumed to be a bijection, so it can be chosen in i! ways. So, summing
up, we obtain the following bound:

|Mi| ≤
∆(∆− 1)(k − 1)

k − i
· i!.

The rest of the proof is exactly the same in both variants: distingushing by sets and multisets.
For every i ∈ [k − 1], by Ai let us denote Si, if we are interested in finding an ieds-coloring, or Mi,
if we are interested in finding an iedm-coloring. Define ai := |Ai|.

Now, let us bound the number of all possible tables T that could be produced by the algorithm,
denote it by #T . By p denote a number of + symbols in T . For every i ∈ [k − 1] let ti be the
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number of appearances of the elements of Ai in T ; if i /∈ I, then clearly ti = 0. Notice that
p+ t1 + t2 + · · ·+ tk−1 = N . Denote by

(
N

p, t1, t2, . . . , tk−1

)

=
N !

p!t1!t2! . . . tk−1!

the number of partitions of an N -element set into the subsets of cardinalities p, t1, t2, . . . , tk−1.

Lemma 5. The number #T of all possible tables T is bounded from above by

N∑

s=N−n+1

∑

t1+···+(k−1)tk−1=s

(
N

p, t1, . . . , tk−1

)

at11 · . . . · atk−1

k−1 . (7)

Proof. For every i ∈ [k− 1], the total number of appearances of elements of Ai in T is ti. It implies
that for fixed p, t1, . . . , tk−1, the number of ways to fill the table T is at most

(
N

p, t1, . . . , tk−1

)

at11 · . . . · atk−1

k−1 .

Observe that if an element of Ai appears in T (j), it means that in the j-th iteration we uncolored
i − 1 vertices that were colored in previous iterations. Thus to each occurrence of an element of
Ai in T we can assign i − 1 iterations when we wrote + into T , and each + symbol is assigned at
most once. Let s be the number of iterations when a conflict occurred, or when we colored a vertex
that was uncolored later. There are t1 + t2 + . . . + tk−1 iterations when a conflict occured, and
t2 + 2t3 + . . .+ (k − 2)tk−1 iterations when we colored a vertex which was uncolored later, so

s = (t1 + t2 + . . .+ tk−1) + (t2 + 2t3 + . . .+ (k − 2)tk−1) = t1 + 2t2 + . . .+ (k − 1)tk−1.

Clearly s is at most N , which is the total number of iterations. On the other hand, after N steps
the algorithm returns a partial ied-coloring, where at most n − 1 vertices are colored. Therefore
N − n+ 1 ≤ s ≤ N .

We will need the following technical lemma shown in [15, Lemma 2.7].

Lemma 6 (Bosek, Czerwiński, Grytczuk, Rz. [15]). If p, t1, t2, . . . , tk−1 are non-negative integers
such that p+ t1 + · · ·+ tk−1 = N and t1 + 2t2 + · · ·+ (k − 1)tk−1 = s ≤ N , then

(
N

p, t1, t2, . . . , tk−1

)

≤
(
N

s

)(
s

t1, 2t2, . . . , (k − 1)tk−1

)

qt11 · q2t22 · . . . · q(k−1)tk−1

k−1 ,

where q1 = 1 and

qi =
i

i− 1
i
√
i− 1,

for i ≥ 1.

Now we are ready to prove the final lemma.

Lemma 7. Let

R :=

⌈

2 +
k−1∑

i=1

qi i
√
ai

⌉

,

where q1 = 1 and qi =
i

i−1
i
√
i− 1 for i ≥ 1. Then there exists N0 such that for every N ≥ N0 the

number of elements of the set O is strictly smaller than |I| = [R]N .
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Proof. From Lemma 5 it follows that the number #T of all possible tables T that may be produced
is bounded by (7). Using Lemma 6, we have that

#T ≤
N∑

s=N−n+1

∑

t1+···+(k−1)tk−1=s

(
N

p, t1, . . . , tk−1

)

at11 · . . . · atk−1

k−1

≤
N∑

s=N−n+1

(
N

s

)
∑

t1+···+(k−1)tk−1=s

(
s

t1, 2t2, . . . , (k − 1)tk−1

) k−1∏

i=1

(qi i
√
ai)

iti .

(8)

Because t1 + 2t2 + · · ·+ (k − 1)tk−1 = s, we can use the Multinomial Theorem to write

∑

t1+...+(k−1)tk−1=s

(
s

t1, 2t2, . . . , (k − 1)tk−1

) k−1∏

i=1

(qi i
√
ai)

iti =

(
k−1∑

i=1

qi i
√
ai

)s

. (9)

Now consider the number of all possible partial ied-colorings ϕN that can be produced by the
algorithm. Recall that all lists Lv were truncated to exactly R elements. We can assign one of R
colors to each vertex v ∈ V or leave v uncolored, which gives at most (R + 1)n possible partial
ied-colorings. The value (R + 1)n does not depend on N , so from (8) and (9), if N is sufficiently
large, we get

#T ≤
N∑

s=1

(
N

s

)(k−1∑

i=1

qi i
√
ai

)s

=

(

1 +
k−1∑

i=1

qi i
√
ai

)N

.

It means that for N large enough we obtain the following bound on O.

|O| ≤#T · (R+ 1)n ≤ (R + 1)n
N∑

s=N−n+1

(
N

s

)(k−1∑

i=1

qi i
√
ai

)s

<(R+ 1)n
N∑

s=1

(
N

s

)(k−1∑

i=1

qi i
√
ai

)s

= (R + 1)n

(

1 +

k−1∑

i=1

qi i
√
ai

)N

≤(R+ 1)n(R − 1)N < RN = |I|,

(10)

which completes the proof of the lemma.

Assuming that we never produce a complete ied-coloring of H , we shown in Corollary 4 that
|O| = |I|. On the other hand, by Lemma 7 we get that if N is sufficiently large, then |O| < |I|,
which is a contradiction. Therefore, for any fixed hypergraph H with lists of size at least R, there
always exists at least one sequence C of length N , for which the algorithm returns a complete
ied-coloring of H .

Looking back at the definition of ai, we get:

R =







⌈

2 +
∑

i∈I qi
i

√
∆(∆−1)(k−1)

k−i
2k−i+1fi

⌉

in the case of ieds-coloring,

⌈

2 +
∑

i∈I qi
i

√
∆(∆−1)(k−1)

k−i
i!

⌉

in the case of iedm-coloring.

This completes the proof of both statements in Theorem 1.
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3.4 Computational complexity

In the previous section we showed that if N is sufficiently large, then for some C the algorithm returns
a complete ied-coloring. It appears that the algorithm that we used is actually quite efficient. Let
us estimate the expected complexity of the algorithm, if C is chosen uniformly at random.

We use the notation from the previous section, in particular H is a fixed hypergraph that we
want to color, and N is a large integer. For a sequence C ∈ [R]N , define a random variable Z(C) as
follows:

Z(C) =

{

t if the algorithm returns a complete ied-coloring after t iterations,

N + 1 if the algorithm fails to find a complete ied-coloring.

Note that Z(C) < N +1 if and only if the algorithm returns a complete ied-coloring. Let us assume
that Z(C) > t, i.e., the algorithm did not terminate before reaching iteration t, and consider the
pair (T, ϕt) after the t-th iteration. Let O(t) stand for the number of possible pairs (T, ϕt) that may

be created in the algorithm after t iterations. Observe that if t > t0 := n ln(R+1)

ln R−0.5

R−1

, from (10) we get

O(t) < (R − 1)t(R+ 1)n < (R− 0.5)t.

Hence, for t ∈ [t0 + 1, N ], the probability that the algorithm does not terminate after at most t
iterations is

P(Z(C) > t) =
O(t)

Rt
<

(
R− 0.5

R

)t

.

Assuming that C is chosen uniformly at random, we can estimate the expected value of Z(C) as
follows:

E(Z) =

N∑

t=0

P(Z(C) > t) =

⌈t0⌉∑

t=0

P(Z(C) > t) +

N∑

t=⌈t0⌉+1

P(Z(C) > t) <

⌈t0⌉∑

t=0

1 +

N∑

t=⌈t0⌉+1

(
R − 0.5

R

)t

<⌈t0⌉+ 1 +

∞∑

t=0

(
R− 0.5

R

)t

= ⌈t0⌉+ 1+
1

1− R−0.5
R

= ⌈t0⌉+ 1 + 2R ≤ n
ln(R+ 1)

ln R−0.5
R−1

+ 2R+ 2.

Notice that

lim
R→∞

R ln

(
R− 0.5

R − 1

)

=
1

2
,

so

lim
R→∞

(R lnR)

(

ln

(
R − 0.5

R− 1

)

/ ln(R+ 1)

)

=
1

2
,

which implies that E(Z) = O(nR lnR). Moreover, recall that the value of R is bounded by a function
of k and ∆, so for fixed k and ∆ the expected number of iterations of the algorithm is linear in n.
Finally, observe that each iteration of the algorithm clearly takes polynomial time; actually, if k and
∆ are fixed, then the complexity of each iteration is dominated by finding the least uncolored vertex,
which can be done in time O(log n), using a priority queue. Summing up, the expected complexity
of the algorithm is polynomial, and if k and ∆ are fixed, then it is O(n log n).
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4 Special cases and extensions

In this section we discuss the applicability of our approach. First, in Section 4.1, we show how the
results in Theorem 1 translate to the graph labeling problems, defined in Section 2.1. We also show
another example, where the input hypergraph is a so-called configuration. Then, in Section 4.2, we
show that our approach can be easily adapted to solve other problems of similar flavor. In particular,
we show how to modify the algorithm, so that it produces colorings distinguishing intersecting edges
by sequences of colors.

4.1 Special cases

Theorem 1 gives us some interesting corollaries concerning graph labeling problems defined in
Section 2.1. Throughout this section, k is a fixed integer greater than 2, and G = (V,E) is a
k-regular graph, whose every edge e is assigned with a list Le of available labels. In case of total
labelings, we assume that also every vertex v has its list Lv.

Corollary 8. If each of the lists assigned to edges has at least

⌈

2 +
k − 1

k − 2
k−1

√

8(k − 1)(k − 2)fk−1

⌉

(11)

elements, then there exists a list edge labeling of G, distinguishing neighbors by sets. Moreover, if
k ≥ 1540, then (11) is bounded from above by 0.54k.

Proof. Let H = (E,Q) be the dual hypergraph of G. As we observed before, H is k-uniform with
∆(H) = 2 and I(H) = {k − 1}. From Theorem 1(a) we get (11).

Barthélémy [7] showed that fi has the following asymptotic behavior:

fi =
i!

2(ln 2)i+1
(1 + o(1)) ,

so to get the latter bound, observe that

lim
k→∞

⌈

2 + k−1
k−2

k−1

√

16(k − 1)(k − 2)fk−1

⌉

k
= lim

k→∞

k

√

k! (1 + o(1))

k ln 2
=

1

e ln 2
≈ 0.531.

It means that if k is sufficiently large, then

1

e ln 2
· k ≤ 0.54k. (12)

From a direct calculation we get that (12) holds for k ≥ 1540.

Analogously we can prove the following three results.

Corollary 9. If each of the lists assigned to edges and vertices has at least

⌈

2 +
k

k − 1
k

√

8k(k − 1)fk

⌉

(13)

elements, then there exists a list total labeling of G, distinguishing neighbors by sets. Moreover, if
k ≥ 1600, then (13) is bounded from above by 0.54k.
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Corollary 10. If each of the lists assigned to edges has at least

⌈

2 +
k − 1

k − 2
k−1

√

2(k − 1)(k − 2)(k − 1)!

⌉

. (14)

elements, then there exists a list edge labeling of G, distinguishing neighbors by multisets. Moreover,
if k ≥ 5435, then (14) is bounded from above by 0.37k.

Corollary 11. If each of the lists assigned to edges and vertices has at least

⌈

2 +
k

k − 1
k

√

2k(k − 1)k!

⌉

. (15)

elements, then there exists a list total labeling of G, distinguishing neighbors by multisets. Moreover,
if k ≥ 5650, then (15) is bounded from above by 0.37k.

The bounds in Corollaries 10 and 11 follow from the fact that the limit of (14) divided by k, and
also of (15) divided by k, is 1/e ≈ 0.368.

Let us show another example of application of Theorem 1. We say that a set of lines is in general
position if no three lines share a common point.

Corollary 12. Let L be a family of straight lines in general position. Fix a family P of points, such
that each line in L has precisely k ≥ 3 points. Assume that each p ∈ P has a list of at least R colors.
For each p ∈ P we can choose a color from its list, so that no two lines that share a common point

(a) have the same set of colors, if R ≥
⌈

2 + k−1
k−2

k−1

√

8(k − 1)(k − 2)fk−1

⌉

,

(b) have the same multiset of colors, if R ≥
⌈

2 + k−1
k−2

k−1

√

2(k − 1)(k − 2)(k − 1)!
⌉

.

Proof. Construct a hypergraph H , whose vertex set is P and edges correspond to L. Observe that
H is k-uniform with ∆(H) ≤ 2 and I = {k − 1}. Both claims follow directly from Theorem 1.

The hypergraph that appears in Corollary 12 is a special type of the so-called configuration
(see [62]). A (v, b, k, r)-configuration is a collection of v points and b lines, where:
a) each line contains k points and each point belongs to r lines,
b) two lines share at most one point,
c) each pair of points belongs to at most one line.
In a way analogous to Corollary 12, we obtain the following.

Corollary 13. Consider a (v, b, k, r)-configuration with set of point P and set of lines L, where
k ≥ 3. Assume that each p ∈ P has a list of at least R colors. For each p ∈ P we can choose a color
from its list, so that no two lines that share a common point

(a) have the same set of colors, if R ≥
⌈

2 + k−1
k−2

k−1

√

4r(r − 1)(k − 1)(k − 2)fk−1

⌉

,

(b) have the same multiset of colors, if R ≥
⌈

2 + k−1
k−2

k−1

√

r(r − 1)(k − 1)(k − 2)(k − 1)!
⌉

.

4.2 Extension: distinguishing intersecting edges by sequences

In Corollary 12 we show how to distinguish intersecting lines by sets and multisets of colors. However,
in case of lines, it is perhaps more natural to consider sequences of colors. Although Theorem 1
cannot be directly applied in such a case, our approach is robust and can be easily adapted to this
setting. The aim of this section is to present how to adapt the approach from Section 3 to solve
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Figure 6: (a) A set of lines in general position and (b) a (9, 9, 3, 3)-configuration and their corre-
sponding sets P of points. Observe that in both cases no two lines that share a common point have
the same set of colors.

problems of similar flavor. We will not discuss the proof in a detail, as it is almost the same as the
proof of Theorem 1, but we will focus on pointing out the differences.

If edges of our hypergraph correspond to straight lines, each of them has two natural sequences
of colors, depending on the direction along the line. We may want to find a coloring, in which the
sequences of colors on intersecting edges are different, whichever direction we choose. On the other
hand, if edges correspond to closed curves, e.g. circles, we may want a coloring in which intersecting
edges have distinct “cyclic sequences” of colors. Let us start with a generalization of both these
cases.

Fix some set Π of permutations of [k], such that if σ ∈ Π, then σ−1 ∈ Π, and define π := |Π|.
We say that two sequences B = (b1, b2, . . . , bk) and D = (d1, d2, . . . , dk) are Π-compatible if there
is σ ∈ Π, such that σ(B) = (σ(b1), σ(b2), . . . , σ(bk)) is equal to D. Note that compatibility is not
necessarily reflexive nor transitive. Now let H = (V,E) be a k-uniform hypergraph with maximum
degree ∆ and I(H) = I. Let us assume that each edge is ordered, i.e., we will assume that each
edge of H is a sequence (such hypergraphs are called sequence hypergraphs and were considered e.g.
by Böhmova, Chalopin, Mihalák, Proietti, and Widmayer [12]). Note that there is no relation on
sequences of distinct edges, even if they share some vertices. We say that a coloring of vertices of H
distinguishes intersecting edges by Π-compatible sequences (or, in short, is Π-distinguishing), if for
any two intersecting edges P and Q, the sequences of colors on P and Q are not Π-compatible.

Let us show how to adapt our algorithm to find a list Π-distinguishing coloring of H . We proceed
as in the proof of Theorem 1. Analogously to (4) and (5), by a conflict we mean a situation, that the
current partial coloring cannot be extended to a complete Π-distinguishing coloring. More formally,
consider two k-element sequences P ′ = (p′1, p

′
2, . . . , p

′
k) and Q = (q1, q2, . . . , qk) of vertices, sharing

at least one common element (we will interpret P ′ as some permutation of an edge P , and Q is just
an edge). Let ϕ be a partial coloring of P ′ ∪Q (for simplicity, we will sometimes identify sequences
with their sets of elements). For j ∈ [k], we say that P ′ is ϕ-similar to Q on position j if either
p′j and qj are colored by ϕ and ϕ(p′j) = ϕ(qj), or p′j = qj , i.e., the same vertex appears in both
sequences on position j. The edges P and Q are ϕ-similar if there is σ ∈ Π, such that for every
j ∈ [k], sequences σ(P ) and Q are ϕ-similar on position j.

We observe that if for any two intersecting edges P and Q, and any partial vertex coloring ϕ,
edges P and Q are ϕ-similar, there is no way to extend ϕ to a complete Π-distinguishing coloring of
H . So in this situation we will report a conflict. Note that, similarly to the case of sets, a conflict
on intersecting edges P and Q may occur after coloring a vertex v from P \Q or from P ∩ Q (see
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Figure 7).

(a)
v

(b)

v

Figure 7: Edges P and Q of the hypergraph and their corresponding sequences, represented by
(x-monotone) curves. After coloring a vertex v such that (a) v ∈ P \Q or (b) v ∈ P ∩ Q, it is not
possible to extend the obtained partial coloring to get different sequences on P and Q. Note that in
both cases there was no conflict before coloring v.

Suppose a conflict given by some σ ∈ Π appeared on intersecting edges P and Q, such that
v ∈ P \ Q and |P \ Q| = |Q \ P | = i. In this case we want to erase all colors from P \ Q. In our
encoding of this conflict, we need to be able to retrieve the edges P and Q. Moreover, to remember
the coloring of vertices in P \ Q, we need to remember the permutation σ. Since σ ∈ Π, it can be
chosen in at most π ways. Observe that we do not erase the colors of any vertices of Q, so this is
indeed sufficient to restore the coloring.

We can choose one of two possible encodings of P and Q. In the first one, we store xP and xQ,
in the same way as in the case of sets. Additionally, in order to retrieve the set X and thus the edge
Q, we need to be able to store the information about i. We encode it as nI(i). The total number of

possibilities is at most ∆
⌊
(∆−1)(k−1)

k−i

⌋

|I| π.

In the second variant, we again store xP as nE(v)(P ). Then we choose any vertex v′ in P ∩ Q
(note that we can do it in at most k− 1 ways, as v /∈ Q), and then encode Q as nE(v′)\{P}(Q). The
total number of possibilities is at most ∆(∆− 1)(k − 1) π.

For every i ∈ I we choose the encoding that gives fewer possibilities (and store an information
about the choice as well), so in the case if v ∈ P \Q, the number of possibilities is at most:

min

{

∆

⌊
(∆− 1)(k − 1)

k − i

⌋

|I| π, ∆(∆− 1)(k − 1) π

}

≤ ∆(∆− 1)(k − 1)πmin

{ |I|
k − i

, 1

}

.

If there is a conflict on edges P and Q, such that v ∈ P ∩ Q, we also proceed as in the case
of sets. We encode P and Q with xP = nE(v)(P ) and xQ = nE(v)\{P}(Q). We also store σ. Let
v′ be the vertex of P , which is mapped to v by σ applied to P (recall that v is a vertex of Q). If
v′ ∈ P \ Q, then let w := v′, otherwise let w be the smallest vertex of P \ Q. We will erase the
colors of vertices of P \ (Q ∪ {w}) ∪ {v}. Note that by the choice of w, we can safely do it, as we
can restore the coloring using σ.

Also note that we always erase the color of v, so after that all conflicts are removed. We observe
that the maximum number of possible entries in the conflict table T , which correspond to a conflict
on P and Q, is
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ai ≤ ∆(∆− 1)(k − 1)πmin

{

1,
|I|

k − i

}

+∆(∆− 1)π = ∆(∆− 1)π

(

1 + (k − 1)min

{

1,
|I|

k − i

})

.

The rest of the proof is exactly the same, but let us add a slight modification in the very end.
While proving Theorem 19, we did not care too much about the additive constant in the bound on
the sizes of lists, but now let us estimate (10) more carefully. Now, for every ǫ > 0, if N is large
enough, we have

|O| ≤#T · (R+ 1)n ≤ (R+ 1)n
N∑

s=N−n+1

(
N

s

)(k−1∑

i=1

qi i
√
ai

)s

≤
(

k−1∑

i=1

qi i
√
ai

)N

(R + 1)n
N∑

s=N−n+1

(
N

s

)(k−1∑

i=1

qi i
√
ai

)s−N

≤
(

k−1∑

i=1

qi i
√
ai

)N

(R + 1)n · n ·Nn <

(

ǫ/2 +

k−1∑

i=1

qi i
√
ai

)N

(R+ 1)n <

(

ǫ+

k−1∑

i=1

qi i
√
ai

)N

.

So, choosing ǫ sufficiently small, if

R ≥
⌈

ǫ+
k−1∑

i=1

qi i
√
ai

⌉

= 1 +

⌊
k−1∑

i=1

qi i
√
ai

⌋

,

then |O| < |I|, which completes the proof. Thus we obtain the following.

Theorem 14. Let k ≥ 2 and let H be a k-uniform hypergraph H with ∆(H) ≤ ∆ and I(H) = I,
whose every vertex is equipped with a list of at least R colors. Let Π be some set of permutations
of [k], such that if σ ∈ Π, then σ−1 ∈ Π. Let π := |Π|. Define q1 := 1 and qi := i

i−1
i
√
i− 1 for

every i > 1. If R ≥ 1 +

⌊
∑

i∈I qi
i

√

∆(∆− 1)π
(

1 + (k − 1)min
{

1, |I|
k−i

})⌋

, then there exists a list

Π-distinguishing coloring of H.

So, going back to the example of lines, we obtain the following sequence counterpart of Corollary 12,
see Figure 8.

Corollary 15. Let L be a family of straight lines in a general position. Fix a family P of points,
such that each line in L has precisely k ≥ 3 points. Assume that each p ∈ P has a list of at least R
colors (regardless on the direction along the line). If

R ≥ 1 +

⌊
k − 1

k − 2
k−1

√

4k2 − 8k

⌋

,

then for each p ∈ P we can choose a color from its list, so that no two lines that share a common
point have the same sequence of colors.

Note that for k ≥ 12, the bound in Corollary 15 is 2, which is clearly best possible.
Finally, let us recall that Seamone and Stevens [54] considered distinguishing adjacent vertices

of a graph by sequences of labels appearing on the incident edges. In their setting, there was one
global ordering of all edges (either fixed, or one that could be chosen along with the labeling), and
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Figure 8: A set of lines in general position and a set P of points. No two lines that share a common
point have the same set of colors, regardless of directions.

sequences of labels were implied by this ordering. For fixed ordering of edges, they showed that one
can choose such a labeling from lists of size at least 3, provided that the minimum degree is large
enough, compared to the maximum degree. In particular, lists of size 3 suffice for k-regular graphs
with k ≥ 6.

Note that if Π contains only the identity, then a bound for the size of lists in a Π-distinguishing
coloring of the dual hypergraph of a k-regular graph implies the bound for the size of lists in the
problem considered by Seamone and Stevens. Actually, our setting is more flexible, as the sequences
corresponding to edges of the hypergraph can be chosen independently. However, even in this more
general setting, we improve the result by Seamone and Stevens [54] for regular graphs.

Corollary 16. Let G be a k-regular graph, and fix some ordering of edges. If each edge has a list
of at least

1 +

⌊
k − 1

k − 2
k−1

√

2k2 − 4k

⌋

(16)

labels, then there exists a list edge labeling, in which no two adjacent vertices have the same sequence
of labels appearing on incident edges. Moreover, if k ≥ 6, then (16) is at most 3, and if k ≥ 10, then
(16) is 2.

Finally, note that in the reasoning in this section, we could in fact have a different set Π for each
(ordered) pair of intersecting edges. Also, our algorithm can be easily adapted to different problems
of similar flavor.

5 Generalized neighbor distinguishing index of bipartite graphs

Győri , Horňák, Palmer, and Woźniak [30] considered the generalized neighbor-distinguishing index
of bipartite graphs. They showed that for bipartite G with at least 3 vertices it holds that gndi(G) ∈
{2, 3}, and provided some observations on graphs with gndi(G) = 2. Let us summarize them below.
The notation from Observation 17 will be used throughout this section.

Observation 17 ([30]). Let G = (V,E) be a connected graph with gndi(G) = 2, and consider an
edge labeling c : E → {1, 2}, which distinguishes neighbors by sets. Then the following hold:

1. G is bipartite,
2. the vertices v ∈ V , such that c(E(v)) = {1, 2} form one bipartition class Y , and the remaining

vertices form the second bipartition class X,
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3. X is partitioned into two subsets: X1 containing vertices v, such that c(E(v)) = {1}, and X2

containing vertices v, such that c(E(v)) = {2},
4. if deg v = 1, then v ∈ X,
5. if v ∈ Y and deg v = 2, then one neighbor of v is in X1 and the other is in X2.

In this section we investigate the edge labelings distinguishing neighbors by sets in bipartite
graphs more closely. In particular, we exhibit an interesting relation between the problem of deter-
mining gndi(G) for bipartite G, and a well-known variant of satisfiability problem, called Not-All-

Equal Sat, which can be equivalently formulated as a hypergraph coloring problem. This relation
was also observed by Győri and Palmer [29].

5.1 Complexity aspects

The instance Φ of Not-All-Equal Sat (usually called a f ormula) is a set of boolean variables
and a collection of clauses, each being a set of literals (negated or non-negated variables). A clause
is unsatisfied if all its literals have the same value, otherwise it is satisfied. The problem asks
whether there exists a truth assignment in which all clauses are satisfied. A restriction of Not-

All-Equal Sat, in which each clause has at most k literals, is called Not-All-Equal k-Sat.
Finally, in Positive Not-All-Equal Sat, there are no negated variables. It is well known that
the Positive Not-All-Equal 3-Sat is NP-complete [41, 52]. Moreover, an algorithm solving
Positive Not-All-Equal 3-Sat in time 2o(N+M), where N is the number of variables and M is
the number of clauses, would contradict the Exponential Time Hypothesis (ETH), which is one of
the standard assumptions in complexity theory [16].

For an instance Φ of Not-All-Equal Sat with variables V and clauses C, its incidence graph
is the bipartite graph with bipartition classes V and C, in which v ∈ V and C ∈ C are adjacent if an
only if v ∈ C. The literal-clause incidence graph of a formula Φ is similar to the incidence graph,
but now vertices correspond to literals and clauses, and edges indicate whether a literal belongs to
the clause. Moreover, we have additional edges between each literal and its negation. By Strongly

Planar Not-All-Equal Sat we mean the restriction of Not-All-Equal Sat, where the literal-
clause incidence graph is planar. Note that in case of Positive Not-All-Equal Sat, there are no
negated variables, so literal-clause incidence graph is exactly the incidence graph, and thus strong
planarity of Φ is equivalent to the planarity of its incidence graph.

Analogously, for a bipartite graph G with bipartition classes A and B, an A-derived formula is a
Positive Not-All-Equal Sat formula, in which for every v ∈ A we have a variable var(v), and
for every u ∈ B we have a clause Cu = {var(v) : v ∈ N(u)}. Observe that the incidence graph of an
A-derived formula of G is G.

Lemma 18. Let G be a connected bipartite graph with bipartition classes A,B and let Φ be its
A-derived formula. Then Φ is satisfiable if and only if G has an edge labeling c with two labels,
distinguishing neighbors by sets, in which A = X.

Proof. First, suppose Φ is satisfiable and let ϕ be a satisfying truth assignment. We define an edge
labeling c as follows: for v ∈ A and u ∈ B, we set c(uv) = 1 if ϕ(var(v)) = true and c(uv) = 2 if
ϕ(var(v)) = false. Note that c is well-defined and for each v ∈ A we have c(E(v)) = {ϕ(var(v))}.
Now consider a clause Cu. Since ϕ satisfies Cu, there is some var(v1) ∈ Cu such that ϕ(var(v1)) =
true and some var(v2) ∈ Cu such that ϕ(var(v2)) = false. This means that c(v1u) = 1 and
c(v2u) = 2, so c(E(u)) = {1, 2}. Therefore c satisfies the conditions in the statement of the lemma.

On the other hand, for an edge labeling c : E → {1, 2}, which distinguishes neighbors by sets
and in which A = X , we may define the truth assignment ϕ as ϕ(var(v)) = true if v ∈ X1 and
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ϕ(var(v)) = false if v ∈ X2. Since for each u we have c(E(u)) = {1, 2}, we observe that Cu contains
and least one true and at least one false variable.

Lemma 18 together with NP-completeness of Positive Not-All-Equal Sat implies that it is
NP-complete to decide whether an input bipartite graph G with bipartition classes A,B has an edge
labeling with two labels, which distinguishes neighbors by sets and A = X . Here we strengthen this
result by restricting the structure of G and removing asymmetry between bipartition classes.

Theorem 19. For every g ≥ 4, given a subcubic bipartite graph G with n vertices and girth at least
g, it is NP-complete to decide whether gndi(G) = 2. Moreover, the problem cannot be solved in time
2o(n), unless the ETH fails.

Proof. Consider an instance Φ of Positive Not-All-Equal 3-Sat, with variable set V and clause
set C. Let N := |V| and M := |C|. We may assume that for every C ∈ C we have 2 ≤ |C| ≤ 3, since
one-element clauses cannot be satisfied. For a variable v, by d(v) we will denote the total number
of occurrences of v in clauses. Clearly

∑

v∈V d(v) ≤ 3M . We assume that the clauses are ordered,
this implies the ordering of occurrences of each variable.

Let g′ be the smallest integer divisible by 4, which is larger than g/2. For each variable v ∈ V we
introduce a path P v with ℓ = g′ · d(v) + 1 vertices pv0 , p

v
1, . . . , p

v
ℓ−1. For i = 1, 2, . . . , d(v), the vertex

pv(i−1)·g′ will be denoted by xv
i , and the vertex pvℓ−1 will be denoted by yv.

For each clause C we introduce a vertex zC . Now, if C contains variables u, v, w, such that the
occurrence in C is the i-th occurrence of u, the j-th occurrence of v, and the k-th occurrence of w,
we add edges xu

i z
C , xv

j z
C , and xw

k z
C . If |C| = 2, then we add just two edges.

Let G be the graph constructed in such a way. Observe that G is bipartite, subcubic, and the
girth of G is at least 2g′ ≥ g (see Figure 9). Moreover, for every v ∈ V , the degree of yv is 1.

≥ g′ ≥ g′x
u
i

x
u
i+1 x

v
j

x
v
j+1

z
C

z
C′

Figure 9: The girth of G is at least 2g′ ≥ g.

We claim that gndi(G) = 2 if and only if Φ is satisfiable. First, suppose that gndi(G) = 2 and
let c : E(G) → {1, 2} be a labeling distinguishing neighbors by sets. Recall from Observation 17
that for every v ∈ V , the value of c(E(yv)) is either {1} or {2}. Moreover, it is straightforward to
observe that for all v and all i it holds that c(E(xv

i )) = c(E(yv)) (see Figure 10). Let ϕ be the truth
assignment defined as follows: ϕ(v) is true if c(E(yv)) = {1}, otherwise ϕ(v) is false. Suppose ϕ is
not a satisfiable assignment and let C be an unsatisfied clause. We consider the case that |C| = 3,
the case if |C| = 2 is analogous. So let C = {u, v, w} and without loss of generality assume that
all these three variables are set false by ϕ. However, this means that all edges incident with zC are
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labeled 2, so c(E(zC)) = {2}, which contradicts the assumption that c distinguishes neighbors by
sets.

Figure 10: Up to the permutation of labels, there is only one possible labeling of edges of P v.

On the other hand, let ϕ be a satisfiable assignment of Φ. We define the labeling c of edges of
each P v according to the pattern shown in Figure 10, such that the edge incident with yv is labeled 1
if ϕ(v) = true, and otherwise it is labeled 2. The edges incident to xv

i are labeled in such a way that
c(E(xv

i )) is either {1} or {2}, note that this is uniquely determined by the labeling of edges of P v.
Note that since ϕ satisfied Φ, we have c(E(zC)) = {1, 2} for every C ∈ C, and thus c distinguishes
neighbors by sets.

Finally, observe that the number n of vertices of G is O(N + M), so an algorithm solving our
problem in time 2o(n) could be used to solve any instance of Positive Not-All-Equal 3-Sat in
time 2o(N+M), which would in turn contradict the ETH.

Lemma 18 has some further interesting implications. Quite surprisingly, Moret [44] showed that
Strongly Planar Not-All-Equal 3-Sat can be solved in polynomial time. Since the textbook
polynomial reduction from Not-All-Equal Sat to Not-All-Equal 3-Sat preserves planarity
of the incidence graph, the following also holds.

Corollary 20. Strongly Planar Not-All-Equal Sat can be solved in polynomial time.

This, combined with Lemma 18, gives us the following result.

Theorem 21. If G is planar and bipartite, then gndi(G) can be computed in polynomial time.

Proof. Recall that if G is bipartite, then either gndi(G) = 2 or gndi(G) = 3. We will focus on deciding
whether gndi(G) = 2, otherwise we answer that gndi(G) = 3. Without loss of generality we may
assume that G is connected, since otherwise we may label each connected component independently.
Let A,B be bipartition classes of G. Clearly gndi(G) = 2 if and only if at least one of the following
hold:

• G has an edge labeling c with two labels, distinguishing neighbors by sets, in which A = X , or
• G has an edge labeling c with two labels, distinguishing neighbors by sets, in which B = X .

By Lemma 18, this is equivalent to saying that the A-derived formula ΦA of G is satisfiable, or
the B-derived formula ΦB of G is satisfiable. Notice that the incidence graph of ΦA and of ΦB is
exactly G, so it is planar. Since formulae ΦA and ΦB can be computed in polynomial time, and
by Corollary 20, the satisfiability of each of them can be tested in polynomial time, we obtain our
claim.

Finally, Dehghan [18] showed NP-completes of yet another variant of Not-All-Equal 3-Sat,
called Restricted Strongly Planar Positive Not-All-Equal 3-Sat. In this problem we are
given an instance Φ of Strongly Planar Positive Not-All-Equal 3-Sat along with a non-
empty subset V ′ of variables, and we ask whether Φ has a satisfiable truth assignment, such that
all variables in V ′ are set true. This, along with Lemma 18, implies the hardness of the following
extension variant of our problem.

Theorem 22. Let G be a connected planar bipartite graph with bipartition classes A,B, and let E′

be a subset of edges of G. It is NP-complete to determine whether G has an edge labeling c with
labels {1, 2}, distinguishing neighbors by sets, in which c(e) = 1 for every e ∈ E′.
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Proof. Let (Φ,V ′) be an instance of Restricted Strongly Planar Positive Not-All-Equal

3-Sat and G be its incidence graph. For each variable v ∈ V ′, we label all edges incident to v with
label 1. Note that this means that the variable v must be set true. Moreover, notice that since V ′ is
non-empty, at least one of variable-vertices is forced to be in X1, so there is no ambiguity between
the bipartition classes of G.

Finally let us mention another related problem, introduced by Tahraoui, Duchêne, and Khed-
douci [59]. We say that an edge labeling c of a connected graph G with at least two vertices is an
edge-labeling by gap if the vertex coloring defined as

f(v) =

{

c(e) if deg v = 1 and v ∈ e,

maxe∋v c(e)−mine∋v c(e) otherwise,

is proper. By gap(G) we denote the minimum k, for which there exists an edge labeling by gap using
labels {1, 2, . . . , k}. We observe that if G is a bipartite graph with minimum degree at least 2, then
c : E → {1, 2} is an edge-labeling by gap if and only if it distinguishes neighbors by sets. Indeed,
suppose that c is an edge-labeling by gap and consider an edge uv of G. Without loss of generality
assume that f(u) < f(v), they cannot be equal by the definition of c. Since deg u, deg v ≥ 2, and c
uses only labels 1 and 2, we must have f(u) = 0 and f(v) = 1. This means that c(E(v)) = {1, 2} and
c(E(u)) ∈ {{1}, {2}}, which proves that c is a labeling distinguishing neighbors by sets. Analogously,
suppose c distinguishes neighbors by sets and consider an edge uv, such that u ∈ X and v ∈ Y . By
the definition of c, we observe that f(u) = 0 and f(v) = 1, so c is an edge labeling by gap.

However, the presence of vertices of degree 1 in G changes the situation significantly: Dehghan,
Sadeghi, and Ahadi [19] proved that determining if gap(G) = 2 is NP-complete for a planar bipartite
graph G, while it is polynomially solvable if G has minimum degree 2. This is in a contrast with
Theorem 21.

5.2 Graphs G with gndi(G) = 2

The Positive Not-All-Equal Sat is equivalent to a well-known hypergraph problem, whose
origins date back to the work of Bernstein [9], and was popularized by Erdős [23, 24]. We say that
a hypergraph H has property B (or simply is 2-colorable) if there is a 2-coloring of its vertices, in
which no edge is monochromatic. It is straightforward to observe that Φ is a satisfiable Positive

Not-All-Equal Sat formula if and only if the hypergraph whose vertices are variables of Φ, and
edges are formed by the clauses, has property B. Radhakrishnan and Srinivasan [51] proved that
every k-uniform hypergraph with at most 0.1

√

k/ lnk 2k edges has property B. Moreover, if k is

large enough, then the bound can be improved to 0.7
√

k/ lnk 2k. By Lemma 18, we obtain the
following corollary.

Corollary 23. Let G be a bipartite graph with bipartition classes A and B, such that deg b = k for
every b ∈ B. If |B| ≤ 0.1

√

k/ lnk 2k, then gndi(G) = 2.

Moreover, if k is sufficiently large and |B| ≤ 0.7
√

k/ lnk 2k, then gndi(G) = 2.

As the very first application of the Lovász Local Lemma, Erdős and Lovász [25] proved that each

hypergraph, whose every edge has at least k elements and intersects at most 2k−1

e
− 1 other edges,

has property B (see also Alon, Spencer [5]). For large k and uniform hypergraphs, this bound was
improved by Radhakrishnan and Srinivasan [51] who showed that if H is a k-uniform hypergraph,
in which no edge intersects more than 0.17

√

k/ lnk 2k edges, then H has property B. This gives the
following.
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Corollary 24. Let G be a bipartite graph with bipartition classes A and B, such that deg b ≥ k for
every b ∈ B. If for every vertex b ∈ B, the number of vertices at distance exactly 2 from b is at most
2k−1

e
− 1, then gndi(G) = 2.

Moreover, if deg b = k for every b ∈ B and k is sufficiently large, then the bound on the number of
vertices at distance 2 can be improved to 0.17

√

k/ lnk 2k.

The bound by Erdős and Lovász [25] implies that if k ≥ 9, then every k-uniform k-regular
hypergraph H has property B. The bound on k can be improved to k ≥ 4 (the result is attibuted to
Thomassen, the proof can be found in Henning, Yeo [32]). Thus we immediately obtain the following
corollary.

Corollary 25. For every k ≥ 4 and every k-regular bipartite graph G it holds that gndi(G) = 2.

It is well known that k ≥ 4 is the best possible bound of this type, as the Fano plane F , i.e., the
unique (7, 7, 3, 3)-configuration, is a 3-uniform 3-regular hypergraph that does not have property B
(see Figure 11). This is equivalent to saying that the 3-regular incidence graph GF of F does not
have an edge labeling with two labels, that distinguish neighbors by sets (note that by the symmetry
of F , the bipartition classes of GF are symmetric).

a)
b)

Figure 11: a) Fano plane (points denote vertices, straight lines and the circle denote 3-element
edges); b) the 3-regular bipartite incodence graph GF of F with gndi(GF ) = 3.

It turns out that the Fano plane is an exceptional case. Person and Schacht [46] showed that
almost all 3-uniform hypergraphs that do not contain F as a (not necessarily induced) subhypergraph
have property B. More formally, they showed that if H is a labeled 3-regular hypergraph with n
vertices, which does not contain F , chosen uniformly at random, then H has property B with
probability at least 1− 2−Ω(n2). We observe that a hypergraph H contains F as a subhypergraph if
and only if its incidence graph contains GF as an induced subgraph. Thus we obtain the following.

Corollary 26. Let G be the family of bipartite graphs G with bipartition classes A,B, in which
deg b = 3 for all b ∈ B, and excluding GF as an induced subgraph. Then gndi(G) = 2 for almost all
G ∈ G.

6 Conclusions

Let us conclude the paper with pointing out several open questions. In Theorem 1 we require that
H is a uniform hypergraph, which restricts the corollaries in Section 4.1 to regular graphs. Our
approach cannot be easily adapted to nonuniform hypergraphs. However, there are some other
algorithmic versions of the Lovász Local Lemma that work in such a setting (see e.g. Czumaj and
Scheidler [17]). It would be interesting to investigate if we can find some bounds on the minimum size
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of lists that guarantee the existence of an ieds- and an iedm-coloring of a nonuniform hypergraph.
Observe that in case of iedm-colorings, we will never have a conflict on intersecting edges with
different cardinalities.

Next, let us turn our attention to graph labeling problems. In Corollary 10 we show that if k is
sufficiently large, then for any k-regular graph, lists of size at least 0.37k are sufficient to guarantee
the existence of a list edge labeling, distinguishing neighbors by multisets. On the other hand, we
know that 4 colors suffice in the non-list version (and even 3, if the minimum degree is sufficiently
large) [1]. Is it possible to get a constant upper bound in the list variant of the problem?

In case of list edge labelings, distinguishing neighbors by sets, we cannot hope for a constant
bound, as for any graph G with χ(G) ≥ 3 it holds that gndi(G) = ⌈log2 χ(G)⌉ + 1 [29]. However,
it would still be interesting to know whether the bound from Corollary 8 can be improved to a
sublinear function of k.

Furthermore, as shown in Section 5.2, a close connection between the property B of a hypergraph
H and the value of gndi(G) of its incidence graphG yields the existence of neighbor-distinguishig edge
labeling using only two labels in several classes of bipartite graphs. However, note that uniformity of
H , while a natural property of a hypergraph, is translated into a less natural condition of regularity
of one bipartition class of G. It would be interesting to investigate property B in hypergraphs,
whose incidence graphs belong to some more natural classes of bipartite graphs. Moreover, recall
from Lemma 18 that if G is connected and bipartite, then gndi(G) = 2 if any of two hypergraphs,
for which G is the incidence graph, has property B.

Finally, from Theorem 19 and the complexity results mentioned in the introduction it follows
that the decision problem of determining whether a hypergraph H with n vertices has an ieds- or
an iedm-coloring using at most c colors is NP-hard, even for very restricted classes of hypergraphs.
Moreover, assuming the ETH, there is no algorithm solving this problem in time 2o(n). This lower
bound matches the complexity of the trivial brute force algorithm, if the number of colors c is
considered constant. However, if the number of colors is non-constant, the complexity of the brute-
force algorithm is 2O(n logn). Can we get a single exponential, i.e., 2O(n) time, algorithm for the
problem, if the number of colors is arbitrary, or prove that such an algorithm does not exist, under
some standard complexity assumptions?
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