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Abstract

Permutations and associated algebras allow the construction of half and quarter BPS op-
erators in maximally supersymmetric Yang Mills theory with U(N), SO(N) and Sp(N)
gauge groups. The construction leads to bases for the operators, labelled by Young diagrams
and associated group theory data, which have been shown to be orthogonal under the inner
product defined by the free field two-point functions. In this paper, we study in detail the ori-
entifold projection map between the Young diagram basis for U(N) theories and the Young
diagram basis for SO(N) (and Sp(N)) half-BPS operators. We find a simple connection
between this map and the plethystic refinement of the Littlewood Richardson coefficients
which couple triples of Young diagrams where two of them are identical. This plethystic
refinement is known to be computable using an algorithm based on domino tilings of Young
diagrams. We discuss the domino combinatorics of the orientifold projection map in terms
of giant graviton branes. The permutation construction of SO(N) operators is used to find
large N generating functions. The structure of these generating functions is elucidated using
the combinatorics of words, organised according to their periodicity. Aperiodic words in the
U(N) theory are Lyndon words and an SO(N) analogue of Lyndon words is defined using
a minimal periodicity condition. We calculate the normalization factor for the orthogonal
basis of Young diagram operators in the baryonic sector of SO(N).
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1 Introduction

The AdS/CFT correspondence [1, 2, 3] allows us to use the physics of N = 4 U(N) super Yang-
Mills to find new properties of type IIB string theory on AdS5 × S5. Following the association
of sub-determinant operators with single giant graviton branes in S5 [4], the construction of the
Young diagram basis for the half-BPS sector of U(N) gauge theory [5], which diagonalizes the
CFT 2-point functions, has led to an explicit correspondence between the half-BPS operators and
non-perturbative states in the AdS space. These states include general giant gravitons [6, 7, 8]
as well as LLM geometries arising from the backreaction of giant gravitons on the space-time
[9]. The finite N cut-off in the diagrams is dual to the stringy exclusion principle [10]. Progress
towards Young diagram bases for multi-matrix systems was made in [11, 12, 13], motivated by
the study of open strings attached to giant gravitons. The diagonalisation property for two-point
functions of Young diagram bases in multi-matrix systems was proved in [14, 15, 16, 17, 18]. The
U(N) Young diagram basis was extended in [19, 20, 21] to more general quiver gauge theories.

In a different direction, the dual description of different gauge groups was considered in
[22]. A Z2 orientifold operation, acting as a Z2 orbifold in space-time, takes the S5 factor of
AdS5 × S5 to RP 5. This operation can produce, depending on topological factors, a theory
with either an orthogonal or symplectic gauge group. Following earlier work by [23], recently a
Young diagram basis of the half-BPS sector was found for these groups and was used to compute
exact correlators for elements of this basis, and for certain traces [24, 25]. These considerations
were extended to the free field quarter-BPS sector in [26, 27]. These results involve significant
extensions of the U(N) story, where wreath products of symmetric groups play an interesting
role. These wreath products are described in more detail in section 2.

In this paper we revisit the construction and counting of operators in the half and quarter-
BPS sectors of N = 4 SYM with SO(N) and Sp(N) gauge groups. In the orthogonal case,
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these operators are of two types, which we call mesonic and baryonic. Essentially, the mesonic
operators are constructed by contracting indices of matrices with Kronecker δ invariants common
to SO(N) and U(N) theories (the Sp(N) equivalent is the symplectic form). The baryonic
operators are constructed using ε invariants which are specific to SO(N) theories (Sp(N) theories
also contain such operators, but they are linearly dependent on the mesonic ones). These two
types of operators are described in more detail in Section 3. A natural question is: how are
the mesonic Young diagram operators of U(N) theories related to the mesonic Young diagram
operators of the SO(N) (or Sp(N) theories)? From the physical perspective, the relation is given
by the orientifold map. So the question we are asking can be posed as: how does the orientifold
projection operation of string theory act on the Young diagram operators of the U(N) half-BPS
sector (and quarter-BPS sector) to produce the Young diagram operators of the SO(N) theory?
Surprisingly, we find that this question, in the case of the half-BPS sector, has a simple and
elegant answer in terms of a classic concept in the combinatorics of Young diagrams, called
plethysms of Young diagrams.

Consider a Young diagram t with m boxes and a positive integer k. There is a representation
Vt of U(N) corresponding to t. We take N to be large here, more precisely N ≥ mk. Now
consider the tensor product V ⊗kt . This is a representation of U(N) under the diagonal action
where the group element U ∈ U(N) acts as U⊗U⊗· · ·U . This diagonal action of U(N) commutes
with the Sk permutation group acting on V ⊗kt by permuting the different factors of the tensor
product. So we can decompose V ⊗kt according to irreps of U(N)× Sk which correspond to pair
(R,Λ) where R is a Young diagram with km boxes and Λ is a Young diagram with k boxes. The
multiplicity of (R,Λ), denoted P(t,Λ, R) is known as a plethysm coefficient. They were defined
by D. E. Littlewood [28] and remain the subject of important questions in combinatorics [29].
The sum over Λ of P(t,Λ, R) can be expressed in terms of Littlewood-Richardson coefficients.
For the case where k = 2, the Young diagram Λ can be either the symmetric with a row of length
2, denoted as Λ = [2], or it can be anti-symmetric, denoted as Λ = [1, 1] for two rows of length 1.
The sum P(t, [2], R) +P(t, [1, 1], R) is a Littlewood-Richardson coefficient: the number of times
R appears in V ⊗2

t when this is decomposed into irreps of the diagonal U(N). Thus P(t, [2], R)
and P(t, [1, 1], R) are plethystic refinements of the Littlewood-Richardson coefficients. It turns
out that the orientifold projection map can be expressed in terms of the plethysm coefficients
P(t, [2], R) and P(t, [1, 1], R). A combinatorial rule for finding these coefficients was given in
[30], refining the Littlewood-Richardson rule by replacing the standard Littlewood-Richardson
tableaux with Yamanouchi domino tableaux. The derivation of this connection between the
orientifold operation of string theory and the plethysm coefficients is the first main result of this
paper.

It has been recognized for a while that connections between the combinatorics of words and
the classification of gauge invariant operators form an important pillar of gauge-string duality
[31, 32, 33]. This has seen the application of Polya theory in the study of the thermodynamics of
N = 4 SYM theory. Another aspect of word combinatorics, underlying the structure of counting
functions for gauge invariants in general quiver gauge theories, was highlighted in [20]. These
were free monoids of words, which are sets of words obtained by multiplying a few generating
letters in arbitrary order without assuming any commutativity of the multiplication. Words can
be composed by concatenation, giving rise to a monoid structure. There is no explicit mention
of cyclicity in these free monoids, which makes it a little surprising that these have anything
to do with counting gauge invariants, which are traces of one kind or another. Nevertheless
the counting of gauge invariants built from two matrices X,Y at large N has an interesting
connection with the free monoid generated by two letters x, y. The key to understanding this
relation is to think about the organisation of traces of two letters according to their periodicity.
For example Tr(XYXY ) has periodicity 2, while Tr(X2Y 2) has periodicity 1 and can be said
to be aperiodic. Figure 7 gives a glimpse of the importance of aperiodic single traces. They lie
at the apex of this diagram. To the right of the diagram, are multi-traces of aperiodic traces.
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To the left, are single traces of all periodicities. At the bottom of the diagram is the full space
of gauge-invariant operators made from two matrices. As we explain in section 5.1, aperiodic
multi-traces (appearing in the right box of the figure) are in 1-1 correspondence with the free
monoid generated by two letters x, y. This builds on known results concerning Lyndon words
[34], which play an important role in the field of “combinatorics on words”, an area with diverse
applications in mathematics [35, 36]. As we further explain, there are counting functions for each
of these boxes, and there are relations between them, involving the plethystic exponential and
the Möbius map. The plethystic exponential has been emphasised and its applications in many
problems of counting chiral operators in supersymmetric gauge theories have been developed in
[37] and subsequent literature.

The second main result of this paper is to develop the analogous picture for the counting of
SO(N) gauge invariant operators made from two matrices, i.e. the free field quarter-BPS sector
of N = 4 SYM. This involves defining an analogue of the notion of Lyndon words, appropriate for
mesonic operators in the large N limit of SO(N) groups, which we call orthogonal Lyndon words.
These are defined by a condition of minimal periodicity which replaces the aperiodic condition
on traces for U(N) theories. Figure 8 shows the SO(N) analogue: the minimally periodic words
are at the apex, and there are maps leading to the counting of all the multi-traces. As we will
see, the minimally periodic words can have periodicity one or two. Consequently, there is a
different organization of SO(N) two-matrix multi-traces which respects the periodicity. This is
shown in Figure 9.

Alongside demonstrating the structure of the space of two-matrix multi-traces, the diagrams
in figures 7, 8 and 9 give different forms for the generating function of the quarter-BPS sector.
For the U(N) theory this function is already well known [16], and can also be written as the
sum of squares of Littlewood-Richardson coefficients. The SO(N) generating function has been
given previously [26] as a linear sum of Littlewood-Richardson coefficients, but to the best of
our knowledge, the explicit expression we derive here is a new mathematical result, of interest
to mathematicians [38] as well as physicists.

The paper is organised as follows. Section 2 gives a brief summary of our notation and
conventions. In particular it introduces the wreath product group Sn[S2], which is one of the
key mathematical structures in analysing SO(N) invariants. In section 3 we explicitly construct
a Fourier basis for the quarter-BPS sector. This is done by studying the group invariances of
the different methods of contracting the SO(N) indices and then using Young diagrams to build
operators that align with these invariances. The two SO(N) invariant tensors δij and εi1...iN lead
to two types of operators, which we call mesonic and baryonic. We also review the quarter-BPS
sector of the U(N) theory.

In section 4 we specialise these operators to the half-BPS sector and look in detail at how
Young diagram operators in the U(N) theory behave when projected to the SO(N) theory. This
leads to surprising connections with the combinatorics of domino tableaux.

In sections 5 and 6, we study the vector spaces spanned by U(N) traces (multi-traces of two
arbitrary complex matrices) and SO(N) traces (multi-traces of two anti-symmetric complex
matrices) respectively in the large N limit. In particular we look at how the structure of these
spaces reflects the factorisation of multi-traces into single traces and the classification of traces
by periodicity. We also study how this structure is exhibited in the respective Hilbert series.
This leads to many different counting formulae, and an associated list of number sequences is
given in Appendix C.

Having studied the half-BPS projection in section 4, we proceed to the quarter-BPS case in
section 7. Much of the difficulty here is in finding a suitable labelling set for generic 2-matrix
multi-traces. For the U(N) theory this set is provided by partitions labelled by Lyndon words,
while for SO(N), the partitions are labelled by orthogonal Lyndon words. The projection coeffi-
cients can be expressed as a sum over these labelling sets, where the summand is given in terms
of restricted characters. Finding a combinatoric interpretation of the projection coefficients,
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generalising the domino combinatorics of the half-BPS case, is an interesting problem for the
future.

Correlators of the mesonic operators have been studied before in [26]. In section 8 we
complete the quarter-BPS picture by giving the correlator of baryonic operators. We give
two methods for this calculation. The first uses Schur-Weyl duality to connect the baryonic
calculation with the mesonic result. The second is given in appendix E, and goes via a nice
generalisation of the result (D.6).

It is well known that invariants of the symplectic and orthogonal groups are connected. In
section 9 we repeat all of the above, but with a symplectic gauge group instead of an orthogonal
one. All the results follow along similar lines, and in many cases are entirely identical.

Finally, section 10 gives a brief overview of questions arising from and future research direc-
tions related to the results of this paper.

2 Notation and Conventions

In this paper, we will make extensive use of the symmetric group Sn, made up of permutations
of n distinct objects, usually taken to be {1, 2, · · · , n}. Permutations σ ∈ Sn are maps σ :
{1, 2, · · · , n} 7→ {1, 2, · · · , n} which are 1-1 and invertible. The image of i is denoted σ(i)
and the product is defined by (στ)(i) = τ(σ(i)). The group algebra C(Sn) is the space of linear
combinations

∑
σ∈Sn aσσ where aσ ∈ C. The product on this space is inherited from the product

on the group. We define (−1)σ =sgn(σ) to be the sign of the permutation σ.
Conjugacy classes in Sn are labelled by partitions p of n, for which we use the standard

notation p ` n. We write partitions in two distinct ways, depending on which is more suitable
for the situation. Firstly, we write p = [λ1, λ2, ...], where the λi are just the components of p in
(weakly) decreasing order. Secondly, we use p = (1p1 , 2p2 , 3p3 , ...), where pi is the multiplicity
of i as a component of p. So p1 is the number of λs equal to 1, p2 is the number of λs equal to
2, and similarly for p3, p4 etc. When speaking about partitions in general (so for example when
considering the set of all partitions), we normally use multiplicities, but when giving specific
examples of partitions, we will typically work with components. To avoid confusion between the
two notations, we will use Greek letters for the components of a partition and Latin ones for the
multiplicities. Since we use the multiplicities more often for named partitions, we will generally
give partitions Latin names (p, q, etc).

As an example of the two notations, the partition p = [5, 3, 3, 2, 1] ` 14 has components
λ1 = 5, ..., λ5 = 1 and multiplicities p1 = p2 = p5 = 1 and p3 = 2.

We denote the sum of a partition p by

|p| =
∑
i

λi =
∑
i

ipi = n

and the number of components by

l(p) = # of non-zero λi =
∑
i

pi

Since all permutations of cycle type p have the same sign, we define the sign of a partition to
be the sign of any permutation with that cycle type. Explicitly

(−1)p =
∏
i

(−1)λi+1 =
∏
i even

(−1)pi

Given two partitions p ` n and q ` m, there are two ways of ‘adding’ them together to create a
partition of n+m. Firstly, we can add the components together, which we denote by p+ q. So
given q = [µ1, µ2, ...], we have p+q = [λ1+µ1, λ2+µ2, ...]. Secondly, we can add the multiplicities
together, which we denote by p ∪ q. So p ∪ q = (1p1+q1 , 2p2+q2 , ...). Intuitively, + corresponds

6



to concatenating Young diagram left to right, while ∪ concatenates them top to bottom. This
notation was used in [39].

It will be useful to define the partitions 2p = p + p, 3p = p + p + p and so on. In terms of
components and multiplicities, kp = [kλ1, kλ2, ...] = (kp1 , (2k)p2 , ...).

An important quantity for p ` n is given by

zp =
∏
i

ipipi! (2.1)

For σ ∈ Sn of cycle type p, zp gives the size of the centraliser of σ, that is the subgroup of Sn
that commutes with σ. Using the orbit-stabiliser theorem [40] then tells us that the size of the
conjugacy class (number of elements in Sn with cycle type p) is n!

zp
.

The definition (2.1) interacts nicely with the definition of kp

zkp = kl(p)zp (2.2)

As is standard, we define the number of distinct partitions of n to be p(n).
For a partition p ` n, we denote the conjugate (transposed) partition by pc. The operations

∪ and + are conjugate to each other:

(p+ q)c = pc ∪ qc (2.3)

The irreducible representations (irreps) of Sn are also labelled by partitions. For various pur-
poses, it is useful to think of these visually in terms of Young diagrams. These are arrangements
of boxes such that the number of boxes in each row corresponds to the components of the
partition. So for example the partition R = [4, 4, 2] has the Young diagram

R =

We will use the terms Young diagram and partition interchangeably, and we denote them in the
same way, R ` n.

It is well known that Sn representations are real and that the representation space can be
given an inner product so as to make them orthogonal. We denote the dimension of R by dR.

The matrix representatives of group or group algebra elements are denoted by DR(σ). These
matrices satisfy the orthogonality relations∑

σ∈Sn

DR
ij(σ)DS

kl(σ
−1) =

n!

dR
δRSδilδjk (2.4)

For each irrep R we can define a projector in C(Sn)

PR =
dR
n!

∑
σ∈Sn

χR(σ)σ (2.5)

These satisfy the multiplication identity

PRPS = δRSPR

They are represented by the identity matrix in the corresponding irrep and the zero matrix in
all other irreps

DS(PR) = δRS

Therefore in any direct sum representation PR projects to the R subspace (or subspaces).
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The character of a permutation in an irrep R depends only on its cycle type, so taking σ ∈ Sn
to be of cycle type p we have

χR(p) = χR(σ)

The definition of zp (2.1) allows us to neatly write down the orthogonality relations for characters.
They are ∑

p`n

1

zp
χR(p)χS(p) = δRS

∑
R`n

χR(p)χR(q) = zpδpq (2.6)

For a Young diagram R ` n, the irrep Rc is isomorphic to the tensor product of R with the sign
(anti-symmetric) representation, so

χRc(p) = (−1)pχR(p) (2.7)

2.1 The wreath product Sn[S2]

We will have particular use for a certain subgroup of S2n, called Sn[S2]. This can be thought of
as the permutations of n pairs of objects. Each pair can be individually switched, and the n pairs
can be permuted among themselves, so we have |Sn[S2]| = 2nn!. By labelling the 2n objects
as {1, 2}, {3, 4}, ..., {2n − 1, 2n}, where the brackets denote the pairings, we see that Sn[S2] is
a subgroup of S2n as claimed. It is simple to check that it is the stabiliser of the permutation
(1, 2)(3, 4)...(2n− 1, 2n). Figure 1 shows the set on which Sn[S2] acts.

More formally, Sn[S2] is defined as the wreath product of Sn with S2, or equivalently as the
semi-direct product of Sn with (S2)n, where the Sn acts on (S2)n by permutation of the factors.

As with (2.5), we can define projection operators onto irreps of Sn[S2]. For [r] an irrep (we
use square brackets to denote that this is an irrep of Sn[S2] rather than S2n) we define

P[r] =
d[r]

2nn!

∑
σ∈Sn[S2]

χ[r](σ)σ

There are two one-dimensional irreps of Sn[S2] that we will use. The trivial (symmetric) rep-
resentation takes σ to 1, and the anti-symmetric (sign) representation takes σ to (−1)σ. We
denote these two representations by [S]n and [A]n respectively. We will sometimes write these
without the subscript when it is clear which n we are referring to. The projectors of [S]n and
[A]n are given by

P[S]n =
1

2nn!

∑
σ∈Sn[S2]

σ P[A]n =
1

2nn!

∑
σ∈Sn[S2]

(−1)σσ (2.8)

2.2 Tensor space

Let V be the (complex) carrier space for the N -dimensional fundamental representation of U(N)
and SO(N). Then V has two distinct inner products corresponding to the two gauge groups.
The U(N) inner product is a hermitian form, and therefore the dual space to V (with this
inner product) is V ∗, which is defined as the conjugate space to V . These two spaces are non-
isomorphic. The SO(N) inner product is a symmetric form, and therefore the dual space is just
V itself. Hence U(N) (or u(N)) matrices U acting on V have indices U ij while SO(N) (or so(N))

matrices O acting on V can be given indices Oij . In general, upstairs indices will correspond to
objects in V while downstairs indices will correspond to objects in the conjugate space V ∗.

We will be constructing invariants from multiple copies of two matrices, X and Y . Depending
on context, these will belong to u(N) or so(N). In any particular instance, it should be clear
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1

2

3

4

5

6

...

2n− 1

2n

Figure 1: The set on which Sn[S2] acts. A group element can permute the n pairs, while
switching or not switching each individual pair

which is the case from the index structure. For compactness we will use the notation(
X⊗nY ⊗m

)I
J

= Xi1
j1
Xi2
j2
...Xin

jn
Y
in+1

jn+1
Y
in+2

jn+2
...Y

in+m

jn+m(
X⊗nY ⊗m

)I
= Xi1i2 ...Xi2n−1i2nY i2n+1i2n+2 ...Y i2n+2m−1i2n+2m

for u(N) and so(N) respectively.
Sn acts on V ⊗n by permutation of the factors. Explicitly, on a pure product state we have

σ (v1 ⊗ v2 ⊗ ...⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(n)

and the action is extended linearly to the whole of V ⊗n. In index notation, it is simple to check
that this corresponds to

σIJ = σi1i2...inj1j2...jn
= δi1jσ(1)

δi2jσ(2)
...δinjσ(n)

(2.9)

This definition can then be extended linearly to the symmetric algebra C(Sn). Note that since
we use the convention (στ)(i) = τ(σ(i)), we have σIJτ

J
k = (στ)IK .

For U(N), tracing these permutations with the tensor product of X over V ⊗n provides a
nice way of of generating multi-traces of X. Consider σ ∈ Sn with just a single cycle, e.g.
σ = (1, 2, 3, ..., n). Then

Tr
(
σX⊗n

)
= σIJ

(
X⊗n

)J
I

= Xi1
i2
Xi2
i3
...X

in−1

in
Xin
i1

= (Xn)ii = TrXn

By doing this for each cycle, we see that if σ has cycle type p, we have

Tr
(
σX⊗n

)
=
∏
i

(
TrXi

)pi (2.10)

The equivalent statement for SO(N) is

Xi1iσ(1)Xi2iσ(2) ...Xiniσ(n) =
∏
i

(
TrXi

)pi (2.11)

Using (2.9), we can let permutations in S2n act on (X⊗n)
I
. The relation between this action

and the Sn permutations in (2.11) is explained in section 4.2.2.
Note that in (2.10) we have used an unadorned trace to mean traces over two different

spaces. On the left-hand side the trace is over V ⊗n while on the right it is over V . In this paper
we consider traces over various different vector spaces, so wherever there is the potential for
confusion we will add a subscript of the appropriate vector space (e.g. TrR for a trace over the
irrep R). Traces over V and V ⊗n will generally be left unadorned.

9



Since Sn[S2] is a subgroup of S2n it acts on V ⊗2n. The properties of this action are easiest
to see if we label the indices slightly differently. Consider A ∈ V ⊗2n with the indices labelled as
follows

AI = Ai1,1i1,2i2,1i2,2...in,1in,2

Then the Sn part of Sn[S2] act on the first index (j in ij,k) while the n copies of S2 acts on

the second index (k). Therefore if M is a symmetric (anti-symmetric) matrix, (M⊗n)
I

will be
invariant (anti-invariant) under the action of Sn[S2] .

3 Construction and counting of SO(N) quarter-BPS operators

N = 4 super Yang-Mills contains 3 complex (or 6 real) scalar fields in the adjoint of the Lie
algebra of the gauge group. For u(N), the adjoint is the real vector space of anti-Hermitian
matrices, so the complex scalar fields are arbitrary complex matrices. In contrast, so(N) contains
anti-symmetric matrices, which is a linear condition under complexification, and therefore the
orthogonal complex scalar fields are anti-symmetric complex matrices. The quarter-BPS sector
of the theory consists of gauge-invariant combinations of two of these three fields, while the
half-BPS sectors uses just one.

With a U(N) gauge group, both these sectors have been studied extensively for infinite N
and at finite N . A basis for the half-BPS sector was constructed in [5] and used to find exact
correlators of giant gravitons in the AdS dual theory. This basis was labelled by Young diagrams,
and has two important properties that we will look to emulate in the SO(N) theory. Firstly it
is orthogonal under the two-point function, and secondly it allows a simple description of the
finite N cut-off. Going from the infinite N theory to the finite N corresponds to the vanishing
of those operators whose Young diagrams have more than N rows.

This basis was extended to the quarter-BPS sector, via various methods, in [14, 15, 16, 17, 18].
Similarly to the half-BPS basis, these bases are labelled by Young diagrams, are orthogonal under
the two-point function, and have a nice description of the finite N cut-off.

Considering an SO(N) gauge group instead, there is a similar story of bases labelled by
Young diagrams. The half-BPS sector was studied in [24, 25], and the quarter-BPS in [26, 27].
In this section we construct the same operators as found in these papers. Our perspective
is focused on the description of gauge invariant operators in terms of permutations and their
equivalences, where the key features of the construction are described as consequences of these
equivalences. Properties of correlators are developed at a second stage of the discussion (see
section 8). This perspective is close to that of [15, 18] and also, in the context where SO(N)
appears as a flavour group, in [41].

We start by reviewing the approach taken in [24, 25] and how that differs from the argu-
ments presented here. We then construct our basis, and in the process find the classification into
mesonic and baryonic operators. As a by-product of constructing the basis, we obtain an ex-
pression for the counting of gauge-invariant operators. A quick review of the U(N) quarter-BPS
operators allows us to make some nice connections between the permutation algebras relevant
for the construction of SO(N) and U(N) operators.

3.1 Half-BPS sector

In [24], the starting point was the Wick contractions of the scalar field Xij . The authors noticed
that these could be described by the projector onto the symmetric representation of Sn[S2].〈(

X⊗n
)I (

X⊗n
)
J

〉
= 2nn!

(
P[S]n

)I
J

where Xij is the conjugate matrix (X∗)ij . This allowed them to construct operators (TR)I =

(PR)IJ (X⊗n)
J

labelled by R ` 2n that diagonalised the Wick contractions. Finally they con-
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tracted the indices to create gauge-invariant operators that (by construction) diagonalised the
inner product.

OR = (TR)i1i2i2i1i3i4i4i3....in−1ininin−1 (3.1)

Although the TR were labelled by any Young diagram R ` 2n, this contraction was found to be
identically zero for any R not constructed from 2×2 blocks (note that this implies n is even).

The OR - for R constructed from 2×2 blocks - form a basis of the space of gauge-invariant
operators. There are p

(
n
2

)
such R. The generating function for these numbers is known, and is

given by
∞∏
n=1

1

(1− x2n)

To compare with the approach developed here, we rewrite (3.1) in a different form

O = CIβ
I
J

(
X⊗n

)J
(3.2)

where CI , which we call a contractor, is given by

CI = δi1i2δi3i4 ...δi2n−1i2n

and β ∈ C(S2n) is given by

β = ρPR , ρ = (1, 3)(5, 7)...(2n− 3, 2n− 1) (3.3)

The permutation ρ is needed to change the contraction pattern of CI - which contracts indices
in the pairs (1, 2), (3, 4), ..., (2n − 1, 2n) - to the contraction pattern in (3.1) - which has pairs
(1, 4), (2, 3), (5, 8), (6, 7), ..., (2n− 3, 2n), (2n− 2, 2n− 1).

We will approach the problem in the opposite direction to the above, and also generalise
it to the 2-matrix setting. We start with the expression (3.2), but with β ∈ C(S2n) arbitrary
and study the invariance properties of O as a function of β. Since CI is invariant under Sn[S2]
permutations and X⊗n is anti-invariant under Sn[S2] permutations, O remains unchanged under

β 7→ (−1)γαβγ−1 , α, γ ∈ Sn[S2]

This invariance defines a sub-algebra of C(S2n), for which we find a basis. This basis is labelled
by the same Young diagrams as seen in (3.1). The basis of operators then follows by contracting
the algebra basis, and the operators we define differ from (3.1) only by a factor.

3.2 Quarter-BPS set-up

In the quarter-BPS sector we consider operators constructed from 2 complex anti-symmetric
matrices Xij and Y ij . The most general gauge-invariant operator constructed from n copies of
X and m copies of Y is:

O = Ci1i2...i2nj1j2...j2mX
i1i2Xi3i4 ...Xi2n−1i2nY j1j2Y j3j4 ...Y j2m−1j2m

= CI
(
X⊗nY ⊗m

)I
(3.4)

where CI is constructed from SO(N) invariant tensors. We have two such tensors to choose
between, namely δij and εi1i2...iN , and their tensor products. Since two εs can be expressed as
a sum of (N -fold tensor products of) δs, there are two linearly independent possibilities for CI .
Either it is made of n+m δs or (if N is even) n+m− N

2 δs and an ε. In analogy with SU(N)
terminology, we call these mesonic and baryonic operators respectively.

Among mesonic (or baryonic) operators, there are many different ways to arrange the indices
on the n+m δs. However, all the different arrangements are related by permutations. We saw an
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β

... ...

... ...

δ δ δ δ δ

X X X Y Y

Figure 2: A diagrammatic representation of the index contraction in a mesonic operator, where
each line represents an index. There are n Xs and m Y s, and β ∈ C(S2n+2m).

example of this already in (3.3) where we introduced the permutation ρ to change the contraction
from one index arrangement to another.

A mesonic contractor could be composed of a linear combination of all different index ar-
rangements. Using permutations we can absorb all of these into a single permutation algebra
element β and a contractor with the standard index arrangement (defined below). The exact
same process applies for the baryonic operators. We call the contractors with the standard index
arrangement C(δ) and C(ε) respectively. Explicitly, the mesonic operators are:

O(δ)
β = C

(δ)
I βIJ

(
X⊗nY ⊗m

)J
=
(
δi1i2δi3i4 ...δi2n+2m−1i2n+2m

)
β
i1 ... i2n+2m

j1...j2nk1...k2m
(Xj1j2 ...Xj2n−1j2n)(Y k1k2 ...Y k2m−1k2m) (3.5)

Figure 2 shows a diagrammatic representation of this contraction. The baryonic operators are:

O(ε)
β = C

(ε)
I βIJ

(
X⊗nY ⊗m

)J
=
(
εi1...iN δiN+1iN+2 ...δi2n+2m−1i2n+2m

)
β
i1 ... i2n+2m

j1...j2nk1...k2m
(Xj1j2 ...Xj2n−1j2n)(Y k1k2 ...Y k2m−1k2m)

(3.6)

Figure 3 shows this contraction.
The most general gauge-invariant operator is then a sum of (3.5) and (3.6) (clearly β will in

general differ between the two). We now look in more detail at the two types of operator.

3.3 Mesonic operators

3.3.1 Mesonic operators as multi-traces

Examine the definition (3.5) with β = σ ∈ S2n+2m (so we consider a single permutation rather
than a linear combination). We have

Oσ = δi1i2δi3i4 ...δi2n+2m−1i2n+2mδ
i1
jσ(1)

δi2jσ(2)
...δ

i2n+2m

jσ(2n+2m)
Xj1j2 ...Y j2n+2m−1j2n+2m

By evaluating the δs and then rearranging and renaming indices this becomes

Oσ = ±Xi1iτ(1) ...Xiniτ(n)Y in+1iτ(n+1) ...Y in+miτ(n+m) (3.7)

where τ ∈ Sn+m is a permutation related to σ in a non-trivial way that we will study in detail
in section 7.3. The ± arises from the anti-symmetry of X and Y , since during the rearranging
of indices to arrive at this expression, some of the Xs and Y s may be transposed.
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β

...

δ δ

... ...

X X X Y Y

...

ε

Figure 3: A diagrammatic representation of the index contraction in a baryonic operator. The
ε vertex has N legs and there are n Xs, m Y s and q

(
= n+m− N

2

)
δs. For convenience, this

diagram shows N = 2n, but in general this does not have to be the case.

We can see that (3.7) is a multi-trace of X and Y (the one-matrix version is given in (2.11)).
The more general form (3.5) is therefore a linear combination of multi-traces. Clearly any
multi-trace can be generated from (3.7) given the appropriate τ , and we prove in (7.4) that any
τ ∈ Sn+m can be induced from the appropriate σ. Therefore we can generate all multi-traces of
X and Y from the formula (3.5).

Thus the space of mesonic operators is exactly the space of multi-traces. An obvious basis is
therefore just the distinct multi-traces. In the large N limit, this basis is orthogonal under the
two-point function. However at finite N this is no longer the case, and we will find an exactly
orthogonal basis at all N .

3.3.2 Construction and counting

Since X and Y are anti-symmetric, X⊗n⊗ Y ⊗m is anti-invariant under Sn[S2]× Sm[S2] permu-
tations, while the contractor C(δ) is invariant under Sn+m[S2]. Combining this anti-invariance
and invariance means that Oβ is invariant under

β 7→ (−1)γ αβγ−1 α ∈ Sn+m[S2] , γ ∈ Sn[S2]× Sm[S2] (3.8)

We have used γ−1 rather than γ so that this forms an action of the direct product group
Sn+m[S2] × (Sn[S2]× Sm[S2]), but the statement would have been entirely equivalent had we
used just γ instead. For simplicity, we will use γ for the remainder of this section. Using this
invariance and the fact that Oβ is linear in β, we have

Oβ =
1

2(n+m)(n+m)!

∑
α∈Sn+m[S2]

1

2nn!2mm!

∑
γ∈Sn[S2]×Sm[S2]

Osgn(γ)αβγ

= Oβ̄ (3.9)

where

β̄ =
1

22n+2m(n+m)!n!m!

∑
α∈Sn+m[S2]

∑
γ∈Sn[S2]×Sm[S2]

(−1)γαβγ

The elements which are invariant under (3.8) form a subspace of C(S2n+2m) that we call ASOn,m.
Since β̄ is invariant under this transformation, we see that without loss of generality, mesonic
operators are labelled by ASOn,m rather than the full algebra C(S2n+2m). Note that we have put
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SO in the superscript rather than SO(N) because this subspace depends only on the invariance
(3.8) and is therefore independent of N .

It is well known that the group algebra C(Sn) is isomorphic to the algebra of complex
functions on the group (with multiplication defined by convolution). Explicitly, given a function
f : Sn → C, we can define a corresponding algebra element β =

∑
σ∈Sn f(σ)σ. Conversely, given

an algebra element β, the coefficients in its linear expansion give us a function f .
Under this isomorphism, ASOn,m maps to a subspace of the full space of functions. This

subspace consists of functions satisfying the equivalent (anti-)invariance to (3.8), given by

f(σ) = (−1)γf(ασγ)

We call this space Fn,m.
To find a basis of gauge-invariant operators we want to find a basis for ASOn,m. Since this is

isomorphic to Fn,m, we can equivalently find a basis for the function space.
Given an arbitrary function f on the group, we can project it to Fn,m by averaging over the

double coset.

f̄(σ) =
1

2n+m(n+m)!2nn!2mm!

∑
α∈Sn+m[S2]

∑
γ∈Sn[S2]×Sm[S2]

(−1)γf(ασγ)

Note this mapping from an arbitrary function to an (anti-)invariant one is surjective since if f
is already (anti-)invariant, we have f̄ = f . Thus we can produce a spanning set for Fn,m by
averaging a basis of ordinary functions.

An obvious choice for a basis would be the functions {fσ : σ ∈ S2n+2m}, where fσ evaluates
to 1 on σ and 0 on any other permutation. These would lead to the basis of multi-traces that
we already considered at the end of section 3.3.1. Since we want an exactly orthogonal basis for
the Fn,m, we instead consider the matrix elements of the irreducible representations

DT
IJ(σ) = 〈I, T |DT (σ)|J, T 〉 (3.10)

where T ` 2n+ 2m is a Young diagram, and {|T, I〉}, {|T, J〉} are two bases, not necessarily the
same, for the carrier space of T . Clearly I and J must take dT different values each, but these
values may have more structure than just the numbers 1, 2, ..., dT . Averaging (3.10) gives

D̄T
IJ(σ) =

1

22n+2m(n+m)!n!m!

∑
α∈Sn+m[S2]

∑
γ∈Sn[S2]×Sm[S2]

(−1)γDT
IJ(ασγ)

= DT
IJ

(
P[S]n+m

σP[A]n⊗[A]m

)
= DT

IJ

(
P[S]n+m

σ
[
P[A]n ⊗ I2m

] [
I2n ⊗ P[A]m

])
where we have used the projectors defined in (2.8).

Now we see that a convenient choice for the bases {|T, I〉} and {|T, J〉} will be ones that
align nicely with the projectors P[S]n+m

and P[A]n⊗[A]m respectively. This is most easily done by
aligning the bases with arbitrary representations of Sn+m[S2] and Sn[S2]× Sm[S2].

By restricting the representation T of S2n+2m to Sn+m[S2], we get the decomposition

T =
⊕
[t]

νT,[t][t]

Where [t] runs over the irreps of Sn+m[S2] and [t] occurs with multiplicity νT,[t]. So the new
basis is ∣∣T, [t], µT,[t], I[t]

〉
Where 1 ≤ µT,[t] ≤ νT,[t] counts which copy of [t] we are in and 1 ≤ I[t] ≤dim[t] indexes the basis
vectors of [t].
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For Sn[S2]×Sm[S2], we first decompose the representation T of S2n+2m into a direct sum of
representations of S2n × S2m

T =
⊕
R,S

gR,S;TR⊗ S

where R runs over Young diagrams with 2n boxes, S runs over Young diagrams with 2m boxes
and the gR,S;T are the Littlewood-Richardson coefficients. Then R and S can be decomposed
into Sn[S2] and Sm[S2] representations as we did above with T . Doing this, we get the basis∣∣T,R, S, λ, [r], µR,[r], I[r], [s], µS,[s], I[s]

〉
=
∣∣R, λ, [r], µR,[r], I[r]

〉
⊗
∣∣S, λ, [s], µS,[s], I[s]

〉
where 1 ≤ λ ≤ gR,S;T indexes which copy of R⊗ S we are in inside T .

So a spanning set for Fn,m will be the matrix elements of

DT
(
P[S]n+m

σP[A]n⊗[A]m

)
with respect to the Sn+m[S2] basis on the left and the Sn[S2] × Sm[S2] basis on the right.
Explicitly, they are

FT,[t],µT,[t],I[t],R,S,λ,[r],µR,[r],I[r],[s],µS,[s],I[s](σ)

=
〈
T, [t], µT,[t], I[t]

∣∣DT (σ)
( ∣∣R, λ, [r], µR,[r], I[r]

〉
⊗
∣∣S, λ, [s], µS,[s], I[s]

〉 )
(3.11)

It is a result from the representation theory of the wreath product [39, Chapter VII.2] that
when an irrep R of S2n is restricted to be a representation of Sn[S2], the completely symmetric
representation of Sn[S2] appears in the direct sum decomposition if and only if R has an even
number of boxes in each row, and then it appears with multiplicity 1. By transposing the Young
diagrams, the completely anti-symmetric representation of Sn[S2] appears in the direct sum
decomposition if and only if R has an even number of boxes in each column, and then it appears
with multiplicity 1. Therefore, using the adapted bases, we can write the representatives of the
projectors as

DT
(
P[S]n+m

)
=

{
|T, [S]〉〈T, [S]| if T has rows of even length

0 otherwise

DT
(
P[A]n⊗[A]m

)
=

∑
R`2n
S`2m

R,S have columns
of even length

gR,S;T∑
λ=1

|R, λ, [A]〉〈R, λ, [A]| ⊗ |S, λ, [A]〉〈S, λ, [A]|

Where we have dropped the µT,[S]n+m
and I[S]n+m

indices because the multiplicity and dimension
of [S]n+m are 1 (similarly for [A]n and [A]m). Now we see that the vast majority of the functions
(3.11) vanish. They are only non-zero when

T ` 2n+ 2m has even row lengths

[t] = [S]n+m

R ` 2n and S ` 2m have even column lengths

[r] = [A]n

[s] = [A]m

As we already noticed, the µ multiplicities and I dimension indices have become trivial, so we
can drop those. Since [t], [r] and [s] are predetermined, we can also drop them. Therefore the
non-zero functions are indexed only by T,R, S, λ, with 1 ≤ λ ≤ gR,S;T

FT,R,S,λ(σ) =
dT

(2n+ 2m)!
〈T, [S]|DT (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(3.12)
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where T,R, S satisfy the appropriate conditions. Note we have introduced a normalisation factor
for later convenience.

Since FT,R,S,λ are different matrix elements of different irreps of S2n+2m, they are linearly
independent in the full algebra of functions, and therefore they are linearly independent in Fn,m.
Hence they form a basis.

There is an ambiguity in (3.12), stemming from the choice of basis vectors. We chose |T, [S]〉
to be the invariant basis vector, but we could equally well have chosen |T, [S]〉′ = −|T, [S]〉
(since representations of S2n+2m are real, we cannot have a complex phase) and followed the
exact same process. There is a similar ambiguity in the vectors |R, λ, [A]〉 and |S, λ, [A]〉. Since
we are concerned with the function F , it is only the total sign of the matrix element that needs to
be determined. This can be done by selecting a permutation σ and setting its matrix element to
be positive (or negative). Note that this requires the matrix element to be non-zero. FT,R,S,λ is
then determined on the whole of S2n+2m. Unfortunately finding a permutation with guaranteed
non-zero matrix element for a given T,R, S, λ is not easy, so for now we leave FT,R,S,λ defined
up to a sign.

From the basis (3.12) for Fn,m, we get a basis for ASOn,m

βT,R,S,λ =
∑

σ∈S2n+2m

F T,R,S,λ(σ)σ

=
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
σ (3.13)

There is a caveat before we proceed to a basis of gauge-invariant operators. Since N is finite, an
SO(N) vector index can only take a maximum of N distinct values. The construction of Young
diagram representations in V ⊗2n+2m involves anti-symmetrising down each of the columns. Thus
if T has more than N rows (l(T ) > N), the associated operator will vanish. This extra condition
gives a subspace of ASOn,m (similarly for Fn,m) relevant for constructing operators at finite N
(N < n + m). Incorporating the restriction l(T ) ≤ N in addition to those already in place on
R,S and T , the basis of operators is

OT,R,S,λ =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
C

(δ)
I σIJ

(
X⊗nY ⊗m

)J
(3.14)

In this section we have only proved that these operators span the space of (mesonic) gauge-
invariant observables. In section 8 we prove they are orthogonal under the two point function,
and therefore they are also linearly independent. Thus they do form a basis, as claimed.

The operators (3.14) were presented in [26]. The normalisation there differs from (3.14) by

a factor of (2n+2m)!
dT (2n)!(2m)! .

From the labelling in (3.14), we know the number of linearly independent mesonic operators
for n X fields and m Y fields is

N δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

l(T )≤N

gR,S;T (3.15)

This counting of operators (and the baryonic counting (3.21)) can be obtained directly from
group integral formulae for the generating function of the quarter-BPS sector. This calculation
is given explicitly in [26].

We now check that (3.14) and (3.15) agree with the half-BPS results presented in [24]. To
reduce the quarter-BPS objects to half-BPS ones, we set m = 0.

Since S ` 2m, it must now be the empty Young diagram. Therefore R and T must be the
same, and the Littlewood-Richardson coefficient gR,S;T is just 1, so λ is fixed as well. Hence the
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half-BPS operators are labelled only by T , which must be a Young diagram with even column
and row lengths. Thus it must be constructed from 2×2 blocks, just as found in [24]. Since
T ` 2n, this can only occur when n is even.

Define t ` n
2 to be the Young diagram defined by replacing each 2 × 2 block in T with a

single box. More formally, we have T = 2t ∪ 2t. Since t is unconstrained as a partition of n
2 ,

there are p
(
n
2

)
half-BPS operators when n is even, and none when n is odd.

Explicitly, by setting m = 0 in (3.14), the half-BPS operators are

OT =
dT

(2n)!

∑
σ∈S2n

〈T, [S]|DT (σ)|T, [A]〉C(δ)
I σIJ

(
X⊗n

)J
(3.16)

It can be shown that the operators in [24] differ from this by a factor of

1

dT
〈T, [S]|DT (ρ)|T, [A]〉

where ρ = (1, 3)(5, 7)...(2n− 3, 2n− 1) is the same permutation we saw in (3.3).
This matrix element was calculated in [42], and is given by

〈T, [S]|DT (ρ)|T, [A]〉 =
dt

2
n
2 n!

√
(2n)!

dT
(3.17)

This is just a special case of the full result in [42], which gives this matrix element for any
permutation σ ∈ S2n. We need to develop several ideas before we can present this, and it is
given in (4.22).

3.3.3 Resolving sign ambiguity

We noted earlier that (3.12) contained an ambiguity in the choice of basis vectors that meant the
functions FT,R,S,λ (and therefore OT,R,S,λ) were only defined up to a minus sign. The equality
(3.17) allows us to resolve this ambiguity in the half-BPS sector. Since this matrix element is
always non-zero, for any T , we can choose it to be positive (and have already done so implicitly
in (3.17)).

When plugged into (3.5), the permutation ρ produces the multi-trace
(
TrX2

)n
2 , so this gives

us another way of determining the sign of OT . Rather than decreeing that the matrix element

be positive, we could instead choose the coefficient of
(
TrX2

)n
2 in OT to be positive. These

two methods are entirely equivalent. However, the latter allows us to more easily express a
proposed resolution for the quarter-BPS ambiguity. Note that this second approach relies on all

multi-traces being linearly independent, so that the coefficient of
(
TrX2

)n
2 is uniquely defined.

This is true provided n+m ≤ N .(
TrX2

)n
2 is in some sense the ‘simplest’ order n multi-trace one can construct of an anti-

symmetric matrix. We take this idea and extend it to the quarter-BPS sector.

Given both n,m even, the natural equivalent would be the multi-trace
(
TrX2

)n
2
(
TrY 2

)m
2 .

So we propose that choosing the coefficient of this to be positive will resolve the ambiguity.
Certainly this will work for some of the OT,R,S,λ, but for it to be a good prescription for all
T,R, S, λ we would need to prove the coefficients is always non-zero.

Given n,m both odd, we suggest considering (TrXY )
(
TrX2

)n−1
2
(
TrY 2

)m−1
2 , and setting its

coefficient to be positive.
One of the major differences between the half- and quarter-BPS sectors is that the total

number of matrices, n + m, can be odd and we can still have non-zero operators. The lowest
order that this occurs is the operators TrX3Y XY 2 and TrX2Y XY 3. Therefore if we have n

even and m odd, we propose setting the coefficient of
(
TrX3Y XY 2

) (
TrX2

)n−4
2
(
TrY 2

)m−3
2 to

be positive, while if n odd and m even, we suggest using
(
TrX2Y XY 3

) (
TrX2

)n−3
2
(
TrY 2

)m−4
2 .
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Multi-trace with positive coefficient Permutation with positive matrix element(
TrX2

)n
2
(
TrY 2

)m
2 (1, 3)(5, 7)...(2n− 3, 2n− 1)

(2n+ 1, 2n+ 3)...(2n+ 2m− 3, 2n+ 2m− 1)

(TrXY )
(
TrX2

)n−1
2
(
TrY 2

)m−1
2 (1, 2n+ 1)

(3, 5)(7, 9)...(2n− 3, 2n− 1)
(2n+ 3, 2n+ 5)...(2n+ 2m− 3, 2n+ 2m− 1)(

TrX3Y XY 2
) (

TrX2
)n−4

2
(
TrY 2

)m−3
2 (1, 3, 5, 2n+ 1, 7, 2n+ 3, 2n+ 5)

(9, 11)(13, 15)...(2n− 3, 2n− 1)
(2n+ 7, 2n+ 9)...(2n+ 2m− 3, 2n+ 2m− 1)(

TrX2Y XY 3
) (

TrX2
)n−3

2
(
TrY 2

)m−4
2 (1, 3, 2n+ 1, 5, 2n+ 3, 2n+ 5, 2n+ 7)

(7, 9)(11, 13)...(2n− 3, 2n− 1)
(2n+ 9, 2n+ 11)...(2n+ 2m− 3, 2n+ 2m− 1)

Table 1: Correspondence between the two methods of resolving the sign ambiguity in the mesonic
operators

Clearly there are equivalent statements to these involving the matrix elements. We give these
in table 1. The method by which we identify permutations with traces is explained in section 7.

3.4 Baryonic operators

The construction of the baryonic operators follows in exactly the same way as the mesonic case,
just with a different group invariance. The contractor C(ε) involves a single ε and q = n+m− N

2
δs, so the symmetry transformations on the left are now controlled by the group SN × Sq[S2],
where C(ε) is anti-invariant under the SN factor and invariant under the Sq[S2] part. The
invariances on the right are unchanged compared to the mesonic case, so β in (3.6) is invariant
under

β 7→ (−1)α1(−1)γ(α1α2)βγ−1 (α1, α2) ∈ SN × Sq[S2] , γ ∈ Sn[S2]× Sm[S2]

This invariance defines a subspace ASO(N);ε
n,m of C(S2n+2m). Note that this space, unlike ASOn,m,

depends on N , and so we include N in the superscript. As for the mesonic case, we have an
equivalent space of invariant functions on the group which we call FN ;ε

n,m. Running through the

same argument, we find a basis for FN ;ε
n,m

FN ;ε
P,T,µ,R,S,λ(σ) =

dP
(2n+ 2m)!

(
〈[1N ], µ| ⊗ 〈T, µ, [S]|

)
DP (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
With the constraints

T is a Young diagram with 2n+ 2m boxes

T is Young diagram with 2q = 2n+ 2m−N boxes and even row lengths

µ is multiplicity index between 1 and g[1N ],P ;T

R is a Young diagram with 2n boxes and even column lengths

S is a Young diagram with 2m boxes and even column lengths

λ is a multiplicity index between 1 and gR,S;T

where [1N ] is the Young diagram with N rows, each consisting of a single box, i.e. it is the
completely anti-symmetric representation of SN . We see that P is a Young diagram found in
the tensor product [1N ]⊗T , so imposing the constraint that P must have at most N rows means
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it must be formed of a single column of N boxes with the Young diagram T attached to the
right of that column. Using the notation defined in section 2, this is [1N ] + T . For example if
N = 6 and

T =

Then we must have

P = [1N ] + T =

Note that the Littlewood-Richardson coefficient for the triple
(
[1N ], T, [1N ] + T

)
is just one, so

in the basis of gauge-invariant operators we can drop both P and µ. For convenience we also
drop the square brackets from [1N ].

As in the mesonic case, this restriction defines a subspace of ASO(N);ε
n,m that contributes to

making operators. Unlike the mesonic case, this restriction occurs for all N rather than just
N < n+m.

So the bases of the subspaces of FN ;ε
n,m and ASO(N);ε

n,m relevant for operator construction are

FN ;ε
T,R,S,λ(σ) =

d1N+T

(2n+ 2m)!

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(3.18)

βN ;ε
T,R,S,λ =

d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
σ (3.19)

and the operators themselves are given by

OεT,R,S,λ =
d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
C

(ε)
I σIJ

(
X⊗nY ⊗m

)J
(3.20)

From the labelling set of the above, the number of linearly independent baryonic operators using
n X fields and m Y fields is

N ε
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths

T`2n+2m−N with even row lengths
l(T )≤N

gR,S;1N+T (3.21)

Setting m = 0, we see that the gauge-invariant operators are labelled by T only, where T ` 2q =
2n−N has an even number of boxes in each row and column. This confirms conjectures made
in [25]. Similarly to the mesonic case, the operators (3.20) differ from those defined in [25] by a
factor of

1

d1N+T

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (ρ)|1N + T, [A]〉

where ρ = (N + 1, N + 3)(N + 5, N + 7)...(2n − 3, 2n − 1). This matrix element is harder to
evaluate than the mesonic equivalent, and we have not managed to find a simpler expression.

As with the mesonic case, there is a sign ambiguity in (3.18), (3.19) and (3.20) relating to the
choice of basis vectors. It is more difficult to make suggestions for a resolution, as the baryonic
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β

... ...

... ...

X X X X X X Y Y Y Y

Figure 4: Diagrammatic representation of the U(N) contraction. Each vertical line represents
an index, while the horizontal lines at the top and bottom indicate that we have traced over
these indices.

operators are intrinsically a finite N object, and therefore different multi-traces have linear
dependencies among themselves. This means that coefficients of multi-traces are not necessarily
well-defined, and so we cannot base our positivity condition on the coefficient of a particular
multi-trace as we did in section 3.3.3.

3.5 U(N) construction

We briefly review the construction of the quarter-BPS operators in the U(N) gauge theory. The
basis we use was first constructed in [16, 17] following earlier work in [11, 12]. The notation we
use was developed in [43].

As explained in section 2.2, the complex scalar fields are now generic matrices, and have
index structure Xi

j and Y i
j . We start with an expression for the most general gauge-invariant

operator

OU(N) = βJI
(
X⊗nY ⊗m

)I
J

= β
j1j2...jn+m

i1i2...in+m
Xi1
j1
...Xin

jn
Y
in+1

jn+1
...Y

in+m

jn+m
(3.22)

where βIJ is constructed from n + m copies of the only U(N) invariant tensor, δij . Since this

is the only available tensor, βIJ must be formed of N -fold tensor products of δij . In general it
will be a linear combination of the different possible index arrangements. Noting the definition
(2.9), each term in this linear combination is just a permutation acting on the tensor space, and
therefore βIJ is an element of C(Sn+m). Figure 4 gives a diagrammatic description of the index
contraction in (3.22).

Following the example of section 3.3, we look at the group invariances of (3.22). In this case
OU(N) is invariant under the transformation

β 7→ αβα−1 α ∈ Sn × Sm (3.23)

This invariance defines a sub-algebra AUn,m of C(Sn+m). A similar process to that in section 3.3

leads us to a basis for AUn,m, given by

β
U(N)
T,R,S,µ,ν =

dT
(n+m)!

∑
σ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]
σ

where the labels are T ` n+m, R ` n, S ` m and 1 ≤ µ, ν ≤ gR,S;T . The trace

TrT
[
P TR,S;µ→νD

T (σ)
]
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is called the restricted character of σ, and reduces to the standard character if we set one of
n,m = 0.

At finite N (N < n + m), only a subspace of AUn,m is relevant for constructing operators.
This is spanned by those basis elements with l(T ) ≤ N . Adding this restriction to the existing
conditions on R,S, T, µ, ν, the corresponding basis for operators is

OU(N)
T,R,S,µ,ν =

dT
(n+m)!

∑
σ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]
σIJ
(
X⊗nY ⊗m

)J
I

=
dT

(n+m)!

∑
σ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]

Tr
(
σX⊗nY ⊗m

)
(3.24)

The P TR,S;µ→ν are defined to take a vector in the µth copy ofR⊗S inside T to the equivalent vector
in the νth copy. We can write these explicitly by introducing orthonormal bases {|R, I〉}, {|S, J〉}
for R and S (1 ≤ I ≤ dR, 1 ≤ J ≤ dS). Using these, we denote the bases for the µth and νth
copies of R⊗ S by {

|R,µ, I〉 ⊗ |S, µ, J〉
} {

|R, ν, I〉 ⊗ |S, ν, J〉
}

Then we can write

P TR,S;µ→ν =
∑
I,J

(
|R, ν, I〉 ⊗ |S, ν, J〉

)(
〈R,µ, I| ⊗ 〈S, µ, J |

)
It is simple to show that this is independent of the basis used. Note that these satisfy

P TR,S;µ→νP
T
R′,S′;µ′→ν′ = δRR′δSS′δµν′P

T
R,S;µ′→ν

From the labelling in (3.24) we can see that the counting of quarter-BPS operators in the U(N)
gauge theory is given by

NU(N)
n,m =

∑
R`n
S`m

T`n+m
l(T )≤N

g2
R,S;T (3.25)

If we set m = 0 to reduce to the half-BPS case, as studied in [5], the operators are labelled only
by a Young diagram R ` n, and are given by

OU(N)
R =

dR
n!

∑
σ∈Sn

χR(σ)σIJ
(
X⊗n

)J
I

= Tr
(
PRX

⊗n) (3.26)

3.6 SO(N) states (ASOn,m) as a module over U(N) states (AU2n,2m)

For the SO(N) and U(N) gauge theories, the gauge-invariant operators arise from sub-algebras
ASOn,m and AUn,m of C(S2n+2m) and C(Sn+m), defined by the respective invariance properties (3.8)
and (3.23). Both sub-algebras, inherit multiplication from the full symmetric group algebra, and
in this section we study this structure. Multi-matrix operators, and specifically their classifica-
tion, complexity and correlators, have been discussed from the perspective of these algebras in
[44] (for a related discussion see [45]).
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For the SO(N) case, the minus sign in (3.8) means multiplication is identically zero. The
U(N) case is more interesting. Using the definition (3.24), we have

β
U(N)
T,R,S,µ,νβ

U(N)
T ′,R′,S′,µ′,ν′ =

dTdT ′

(n+m)!2

∑
σ,ρ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]

TrT ′
[
P T

′
R′,S′;µ′→ν′D

T ′(ρ)
]
σρ

=
dTdT ′

(n+m)!2

∑
σ,ρ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σρ−1)
]

TrT ′
[
P T

′
R′,S′;µ′→ν′D

T ′(ρ)
]
σ

=
dT

(n+m)!
δTT ′

∑
σ∈Sn+m

TrT
[
P TR′,S′;µ′→ν′P

T
R,S;µ→νD

T (σ)
]

= δTT ′δRR′δSS′δνµ′β
U(N)
T,R,S,µ,ν′ (3.27)

where in going from the second line to the third we have used the orthogonality of matrix
elements, (2.4).

From (3.27) we see that we can represent the β
U(N)
T,R,S,µ,ν as block diagonal matrices. There is

a block for each trio (T,R, S), of size gR,S;T . Explicitly, the representative of β
U(N)
T,R,S,µ,ν is the

matrix containing only zeroes in each block except the (T,R, S) block, in which there is a single
1 in the (µ, ν)th position.

A basis for ASOn,m is given by (3.13). Although they give 0 when multiplied with each other,

we can multiply them on the right by elements of AU2n,2m

β
SO(N);δ
T,R,S,λ β

U(N)
T ′,R′,S′,µ,ν =

dTdT ′

(2n+ 2m)!2

∑
σ,ρ∈S2n+2m

〈T, [S]|DT (σ) (|R, λ, [A]〉 ⊗ |S, λ, [A]〉)σρ

TrT ′
[
P T

′
R′,S′;µ→νD

T ′(ρ)
]

=
dTdT ′

(2n+ 2m)!2

∑
σ,ρ∈S2n+2m

〈T, [S]|DT (σρ−1)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
σ

TrT ′
[
P T

′
R′,S′;µ→νD

T ′(ρ)
]

=
δTT ′dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)P TR′,S′;µ→ν

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
σ

=
δTT ′δRR′δSS′δµλdT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, ν, [A]〉 ⊗ |S, ν, [A]〉

)
σ

= δTT ′δRR′δSS′δµλβ
SO(N);δ
T,R,S,ν (3.28)

So ASOn,m forms a right-module over AU2n,2m. Thinking of the U(N) elements as block diagonal

matrices, β
SO(N);δ
T,R,S,λ form row vectors with zero entries in all sections except that corresponding

to (T,R, S), in which it has a single 1 at the λth position.
This gives a nice interpretation of the SO(N) counting (3.15) and its U(N) equivalent (3.25).

The U(N) counting contains squares of Littlewood-Richardson coefficients because it is com-
posed of block diagonal matrices of size gR,S;T , while the SO(N) counting contains Littlewood-
Richardson coefficients to the first power because it lies in the fundamental (of a subset of the
blocks) of the U(N) algebra.

Similarly, ASO(N);ε
n,m also forms a module of AU2n,2m. The algebra elements are given by (3.19)

and they satisfy

β
SO(N);ε
T,R,S,λ β

U(N)
T ′,R′,S′,µ,ν = δ1N+T,T ′δRR′δSS′δλµβ

SO(N);ε
T,R,S,ν

So the baryonic elements lie in the fundamental of a different set of blocks.

22



4 The orientifold quotient from U(N) to SO(N) in the half-BPS
sector : plethysms, dominoes and branes

In [22], the SO(N) (and Sp(N)) gauge theory was considered as the dual of type IIB string
theory on AdS5×RP 5. This string theory was obtained from the standard AdS5×S5 theory by
performing an orientifold operation on the S5 factor. Depending on topological considerations,
the orientifold quotient can lead to either a SO(N) or a Sp(N) dual theory. We now study this
quotient in the half-BPS sector from the field theory point of view. The distinction between
the orthogonal and symplectic quotient is much less subtle here, we either put the scalar field
X in the adjoint of so(N) or sp(N). Here we only study the orthogonal quotient, and leave the
symplectic case until section 9.

In [5] a basis of the half-BPS sector of the U(N) theory was discussed, while in [24] an
equivalent was found for the SO(N) theory. When we perform the orientifold quotient on an
arbitrary U(N) state, it becomes a linear combination of the SO(N) basis. This section focuses
on finding the coefficients in this expansion. They have a surprising interpretation in terms of
plethysms of Young diagrams, which in turn are related to the combinatorics of domino tableaux.

Explicitly, the quotient takes the matrix X, unconstrained in the U(N) theory, and makes
it anti-symmetric.

This section concerns only the mesonic sector of the SO(N) theory, since the U(N) opera-
tors are all multi-traces, and the Z2 quotient takes multi-traces to multi-traces. The baryonic
operators do not arise from the quotient in this way.

4.1 An example: n = 4

As an example of the quotient we look at the case n = 4, so the U(N) diagrams have 4 boxes
while the SO(N) diagrams have 8. Using the definitions (3.16) and (3.26), the operators are

OU(N)
=

1

4
TrX4 +

1

8

(
TrX2

)2
+

1

4

(
TrX2

)
(TrX)2 +

1

3

(
TrX3

)
(TrX) +

1

24
(TrX)4

OU(N)
= −3

4
TrX4 −3

8

(
TrX2

)2
+

3

4

(
TrX2

)
(TrX)2 +

3

8
(TrX)4

OU(N)
=

1

2

(
TrX2

)2 −2

3

(
TrX3

)
(TrX) +

1

6
(TrX)4

OU(N)
=

3

4
TrX4 −3

8

(
TrX2

)2 − 3

4

(
TrX2

)
(TrX)2 +

3

8
(TrX)4

OU(N)
= ︸ ︷︷ ︸

Survive the Z2 quotient

− 1

4
TrX4 +

1

8

(
TrX2

)2 ︸ ︷︷ ︸
Annihilated by the Z2 quotient

− 1

4

(
TrX2

)
(TrX)2 +

1

3

(
TrX3

)
(TrX) +

1

24
(TrX)4

OSO(N)
=

4√
5

TrX4 +
2√
5

(
TrX2

)2
OSO(N)

= − 4√
5

TrX4 +
2√
5

(
TrX2

)2
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We can see that

OU(N) Z2−→
√

5

16
OSO(N)

(4.1)

OU(N) Z2−→ −3
√

5

16
OSO(N)

(4.2)

OU(N) Z2−→
√

5

8

OSO(N)
+OSO(N)

 (4.3)

OU(N) Z2−→ −3
√

5

16
OSO(N)

(4.4)

OU(N) Z2−→
√

5

16
OSO(N)

(4.5)

In order to perform this projection for larger n, we will need to have an expression for the
operators in terms of multi-traces. Since the operators are defined by sums over Sn and S2n,
this leads us to study how permutations produce multi-traces.

4.2 From permutations to traces

In (3.4) and (3.22) we saw two different ways of contracting the indices of the scalar fields
using the action of permutations on the tensor space. The former is more general: it allows the
construction of arbitrary multi-traces of X,XT , Y and Y T (as well as Pfaffian type objects if
we use the baryonic contractor) and allows us to encode the anti-symmetry of X and Y into
an invariance of C(S2n+2m). However in the U(N) theory a trace made from X and XT is not
gauge invariant, so we instead use the simpler formulation (3.22), which only admits multi-traces
of X and Y . Clearly all SO(N) multi-traces can be constructed using either approach. We now
investigate how different permutations lead to different traces, and the relation between the
two contraction types, in the simpler case when we only have X matrices and no Y s. The full
two-matrix version is studied in section 7.3.

Once we have relations between permutations and traces, we will use these to turn the sums
over permutations in (3.16) and (3.26) into sums over traces (or more accurately their labelling
sets, which will be partitions). To do this, we will also need to know the size of the set of
permutations that lead to a particular multi-trace. These sets are the orbits of group actions
on Sn and S2n, so we devote much of the coming section to studying these actions.

4.2.1 U(N)

U(N) multi-traces of order n are indexed by partitions of n. For a partition p = [1p1 , 2p2 , ...],
the corresponding trace is ∏

i

(
TrXi

)pi (4.6)

This is related to permutations in Sn by (2.10). The set of permutations producing (4.6) is just
the conjugacy class labelled by p. To convert sums over permutations into sums over partitions,
we will need the size of the conjugacy class, which can be found using the orbit-stabiliser theorem.
With the conjugation action, the stabiliser of a permutation σ is just all elements which commute
with it.

For a single cycle, the centraliser is just the cyclic group generated by the cycle. We think of
these as a rotation group, since when they conjugate the cycle they cyclically rotate the elements.
For multiple cycles, we have the direct product of these individual rotation groups, and then

24



additionally a permutation group factor (incorporated via a semi-direct product) arising from
permuting multiple cycles of the same length. Explicitly, for a permutation of cycle type p the
stabiliser group is isomorphic to

×
i

(
Spi n (Zi)pi

)
=×

i

Spi [Zi] (4.7)

where the notation of the right denotes the wreath product of Spi with Zi, as seen in section
2.1. From the explicit form above, we see the stabiliser has size zp, defined in (2.1). Applying
the orbit-stabiliser theorem, the size of the conjugacy classes is

n!

zp
(4.8)

4.2.2 SO(N)

For SO(N), X is anti-symmetric, so TrX =TrX3 =TrX5... = 0, and hence we only consider n
even. Since the odd single traces vanish, the non-zero multi-traces are indexed by a partition
q ` n

2 . The trace corresponding to q is ∏
i

(
TrX2i

)qi (4.9)

The relation to permutations in S2n is more complicated. Taking m = 0 in (3.8) we see that for
β ∈ C(S2n) the SO(N) contraction is invariant under

β 7→ (−1)γαβγ−1 α, γ ∈ Sn[S2] (4.10)

We wish to consider individual permutations, so we look at just the group theory part of this
action. In particular we are interested in the orbits of σ ∈ S2n under the action

σ 7→ ασγ−1 α, γ ∈ Sn[S2] (4.11)

These orbits are called the double cosets of S2n over Sn[S2] and have been well studied. It
was shown in [39, Chapter VII.2] that the double cosets are indexed by partitions of n. For
a partition p ` n, we choose the double coset representative to be any permutation σ ∈ S2n

that fixes {2, 4, 6, ..., 2n} and acts with cycle type p on the set {1, 3, 5, ..., 2n − 1}. Clearly σ is

a member of the subgroup S
(odd)
n ≤ S2n defined by acting only on {1, 3, 5, ..., 2n − 1} (for later

convenience, we also define S
(even)
n in the analogous way). When thinking of σ just as an element

of Sn ≡ S(odd)
n , we call it τ . Using this notation, we have

C
(δ)
I σIJ

(
X⊗n

)J
= δi1j1δi2j2 ...δinjnσ

i1j1i2j2...injn
k1l1k2l2...knln

Xk1l1Xk2l2 ...Xknln

= δi1j1 ...δinjnτ
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
...δjnlnX

k1l1Xk2l2 ...Xknln

= τ i1i2...ink1k2...kn
Xk1i1Xk2i2 ...Xknin

= Xk1kτ(1)Xk2kτ(2) ...Xknkτ(n)

=
∏
i

(
TrXi

)pi (4.12)

where for the last line we recall (2.11). Figure 5 shows a diagrammatic expression of this equality
(excluding the last line). Since odd order single traces vanish, this tells us that if the partition
p has any odd components, the SO(N) contraction of any member of the corresponding double
coset will vanish, as the trace is zero. We are only interested in those double cosets whose
partition p has only even components. From the invariance (4.10) we know that permutations
in the same double coset will produce the same trace up to a sign.
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σ

...

...

δ

X X

δ

X

δ

=
τ

...

...XX X

= τ

...

...XX X

Figure 5: A diagrammatic version of (4.12). The dotted lines represent the fact that σ fixes all
even numbers. The first row keeps the index positions in X constant, while the second breaks

our index conventions and uses the index structure Xi
j = Xij to illustrate that using σ ∈ S(odd)

n

has changed the SO(N) type contraction into the U(N) type contraction (see figures 2 and 4)
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We now give another characterisation, in more group theoretic language, of the double
cosets on which the contraction vanishes. The crucial characteristic is whether we can use
the transformation (4.10) to take σ 7→ −σ. If we can do so, then we have

C
(δ)
I σIJ

(
X⊗n

)J
= −C(δ)

I σIJ
(
X⊗n

)J
= 0 (4.13)

and similarly
〈T, [S]|DT (σ)|T, [A]〉 = −〈T, [S]|DT (σ)|T, [A]〉 = 0 (4.14)

Clearly this occurs if we can find α, γ ∈ Sn[S2] such that ασγ−1 = σ and γ odd. Consider
Stab(σ), the stabiliser group of σ. This is the subgroup of Sn[S2]× Sn[S2] defined by

Stab(σ) =
{

(α, γ) : ασγ−1 = σ
}

Those elements with γ even define a subgroup of Stab(σ)

G(σ) =
{

(α, γ) : ασγ−1 = σ, (−1)γ = 1
}

Note that since ασγ−1 = σ, α and γ must have the same sign. We could therefore have defined
G(σ) with α even instead of γ. This means the analysis done here, and in particular the split into
even and odd double cosets (defined below), applies to the symplectic case, where the invariance
and anti-invariance have switched sides (see section 9).

There are two possibilities for G(σ). Firstly, we could have G(σ) = Stab(σ). In this case,
(4.13) and (4.14) do not hold and we cannot conclude anything further.

Secondly, suppose G(σ) 6= Stab(σ). Therefore there exists a pair (α̂, γ̂) ∈ Stab(σ) with γ̂
odd. It is easy to prove that the coset (α̂, γ̂)G(σ) is the set of permutations with an odd right
hand factor

(α̂, γ̂)G(σ) =
{

(α, γ) : ασγ−1 = σ, (−1)γ = −1
}

Since γ must be even or odd, this implies G(σ) ∪ (α̂, γ̂)G(σ) = Stab(σ). So in this case G(σ)
makes up exactly half of Stab(σ).

Suppose we take σ, τ to be in the same double coset. Then we have τ = ασγ−1 for some
α, γ ∈ Sn[S2]. The stabiliser of τ is given by (α, γ)Stab(σ)(α, γ)−1, and therefore G(τ) is the
same size as G(σ). Thus the behaviour of G(σ) (whether it is the whole stabiliser or half of it) is
a property of the double coset. If a double coset has G(σ) = Stab(σ), we call it an even double
coset, while if G(σ) 6= Stab(σ) we call it an odd double coset.

From (4.13) and (4.14) we know that odd double cosets have vanishing contraction and
matrix element. From (4.12), we also know that a double coset has vanishing contraction if
the corresponding partition has one or more odd component. We now prove that these two
conditions are equivalent.

To do this we study the stabiliser of a coset representative in more detail. Take σ ∈ S(odd)
n

of cycle type p ` n (when discussing the cycle type of σ, we will always ignore the n 1-cycles
arising from the fixed even numbers). This is a representative of the double coset labelled by p.
We want to find (α, γ) ∈ Sn[S2]× Sn[S2] such that

ασγ−1 = σ

Note that this is equivalent to
α = σγσ−1

Therefore rather than searching for the pair (α, γ), we instead look for γ ∈ Sn[S2] such that

σγσ−1 ∈ Sn[S2] (4.15)

It is simple to show that γ satisfying (4.15) form a subgroup of Sn[S2]. This subgroup is
isomorphic to Stab(σ) via the bijection

γ ←→ (σγσ−1, γ)
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Technically, Stab(σ) is a subgroup of Sn[S2] × Sn[S2], but for convenience we will refer to the
subgroup of Sn[S2] defined by (4.15) as Stab(σ). It will be clear from context which we are
talking about, and since the two are isomorphic it makes sense to identify them.

Under this bijection, G(σ) maps to the subgroup of Sn[S2] defined by (4.15) with the addi-
tional condition that γ is an even permutation. Again, we will refer to this subgroup of Sn[S2]
as G(σ).

It is clear from (4.15) that any γ ∈ Sn[S2] that commutes with σ will automatically be in

Stab(σ). Consider a permutation τ (odd) ∈ S(odd)
n . There is an equivalent permutation τ (even) ∈

S
(even)
n which acts exactly the same as τ (odd) but permutes the even numbers instead of the

odd ones. Then the combination τ = τ (odd)τ (even) lies in Sn[S2]. This embedding of Sn into

Sn[S2] (the diagonal subgroup of S
(odd)
n ×S(even)

n ) is exactly the Sn subgroup in the definition of
Sn[S2], since it moves the n pairs around without any swaps. If we take τ (odd) to be a member

of the centraliser of σ in S
(odd)
n , then τ will commute with σ, and hence τ ∈ Stab(σ). Therefore

the centraliser of σ in S
(odd)
n , see (4.7), is a subgroup of Stab(σ). In particular, we have a

rotation subgroup corresponding to each cycle. Note that all τ produced in this way are even
permutations, and are therefore in G(σ).

In addition to these rotations, there are reflection-type elements for each cycle. For example,
if we consider c = (1, 3, 5, .., 2k − 1), one possible reflection is γ = (1, 2k)(3, 2k − 2)...(2k −
3, 4)(2k−1, 2). One can check that both γ and cγc−1 are in Sn[S2], and therefore γ is a member
of Stab(σ). The generator of the rotations is τ = (1, 3, 5, ..., 2k − 1)(2, 4, 6, ..., 2k), and we see
that γτγ−1 = τ−1. This (along with τk = γ2 = 1) is the defining relation between the generators
of the dihedral group Dk, and therefore Stab(c) contains a dihedral subgroup. It is not hard to
prove that this is in fact the whole of Stab(c).

Note that the sign of γ is (−1)k, so γ ∈ G(c) if and only if k, the length of the cycle, is even.
In particular, G(c) 6= Stab(c) when k is odd.

If σ has multiple cycles, the above can be repeated for each one. Therefore the stabiliser
contains a direct product of dihedral groups. There are permutation group factors arising from
permuting cycles of the same length, just as in the U(N) case (4.7). Explicitly, for σ in the
double coset labelled by p ` n, we have

Stab(σ) ∼=×
i

(
Spi n (Di)

pi
)

=×
i

Spi [Di] (4.16)

From the construction of the stabiliser group, we see that G(σ) 6= Stab(σ) exactly when there
is one or more cycle of odd length in σ. Since σ is of cycle type p, this corresponds exactly to p
containing one or more odd component, as claimed.

The dihedral group Dk is defined as the symmetry group of a k-gon, made up of k rotations
and k reflections. It therefore has size |Dk| = 2k. Hence the size of the Stab(σ) is given by∏

i

(2i)pi(pi)! = z2p

where the partition 2p is defined in section 2. It has components that are double those of p.
The factor of two appears here because the cyclic group in (4.7) has been replaced by a dihedral
group in (4.16).

Applying the orbit-stabiliser theorem, the size of a double coset is

|Sn[S2]× Sn[S2]|
|stabiliser|

=
22n(n!)2

z2p
(4.17)

The even double cosets are of the form p = 2q, where q ` n
2 . In terms of q, the size of an even

double coset is
22n(n!)2

z4q
(4.18)
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The above proof of this result was intended to provide intuition in preparation for the more
complicated two-matrix version in section 7.3. It is a well known result, and a more rigorous
treatment can be found in [39, Chapter VII.2].

4.3 Projection coefficients

Let R ` n (n even, otherwise all U(N) operators project to 0) index a U(N) operator, then we
know that

OU(N)
R

Z2−→
∑
T

αTRO
SO(N)
T (4.19)

where T runs over the set of Young diagrams with 2n boxes made from 2 × 2 blocks. When

defining the coefficients αTR, we take N to be infinite (equivalently, N ≥ n) so that all the OSO(N)
T

are linearly independent. This means the αTR are defined uniquely and are independent of N .
The single matrix U(N) and SO(N) operators are defined in (3.26) and (3.16) respectively,

and both contain sums over permutations. Using the results of the previous section, we can
re-express these as sums over partitions of n and n

2 . In the U(N) case this is simply summing
over conjugacy classes, and is possible as the summand of (3.26) is invariant under conjugation.
Similarly, the summand of (3.16) is invariant under pre- or post- multiplication by Sn[S2], and so
we can reduce the sum to one over the double cosets. Using (4.8) and (4.18) for the sizes of the
conjugacy classes and double cosets respectively and recalling from section 4.2 how permutations
get contracted with tensor products of X to produce traces, we have

OU(N)
R = dR

∑
p`n

χR(p)

zp

∏
i

(
TrXi

)pi (4.20)

OSO(N)
T =

dT 22n (n!)2

(2n)!

∑
q`n

2

1

z4q
〈T, [S]|DT (σ2q) |T, [A]〉

∏
i

(
TrX2i

)qi (4.21)

where σ2q ∈ S(odd)
n is of cycle type 2q.

The matrix element 〈T, [S]|DT (σ2q) |T, [A]〉 was calculated in [42]. A different representative
of the double coset was used there, but it is simple to show that this differs by left multiplication
only from an element of the form σ2q, and therefore the matrix element is the same. Explicitly

〈T, [S]|DT (σ2q) |T, [A]〉 =
2l(q)

2nn!

√
(2n)!

dT
χt(q) (4.22)

where t ` n
2 is the Young diagram defined by taking each 2× 2 block in T and replacing it with

a single square, so that T = 2t ∪ 2t.
Recalling (2.2), we find that

OSO(N)
T = 2nn!

√
dT

(2n)!

∑
q`n

2

1

z2q
χt(q)

∏
i

(
TrX2i

)qi (4.23)

We can use the character orthogonality relations (2.6) to invert this, and find the multi-trace in

terms of OSO(N)
T . We see that for a partition p ` n

2

∏
i

(
TrX2i

)pi =
2l(p)

2nn!

∑
t`n

2

√
(2n)!

dT
χt(p)OSO(N)

T (4.24)

Now we consider the projection of the U(N) operators to the SO(N) theory. This sets TrXi = 0
if i odd, so the sum is restricted to only run over partitions with even parts. Reparameterising
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(4.20) in terms of partitions of n
2 , we get

OU(N)
R

Z2−→ dR
∑
p`n

2

1

z2p
χR(2p)

∏
i

(
TrX2i

)pi (4.25)

Substituting in (4.24) gives

OU(N)
R

Z2−→ dR
∑
t`n

2

1

2nn!

√
(2n)!

dT

∑
p`n

2

1

zp
χR(2p)χt(p)OSO(N)

T

Then by comparison with (4.19), we find

αTR =
dR

2nn!

√
(2n)!

dT

∑
p`n

2

1

zp
χR(2p)χt(p) (4.26)

The sum in this expression is particularly interesting, so we drop the normalisation factor to get

ᾱTR =
∑
p`n

2

1

zp
χR (2p)χt(p) (4.27)

which we call reduced projection coefficients. Note that if we normalise O
U(N)
R and O

SO(N)
T

to have identical two-point functions in the leading large N limit (see (4.47) and the m = 0
simplification of (8.5)), the projection coefficients are exactly ᾱTR.

We give some low n examples of ᾱTR in tables 2 and 3, calculated in GAP using the above
formula. The n = 4 coefficients can be read off from (4.1, 4.2, 4.3, 4.4, 4.5). We see that
the reduced projection coefficients are integers, and further numerical exploration gives many
nice relations between the different coefficients. Since they are integers, we hope to find some
combinatoric interpretation that will shed light on these relations. We find two combinatoric
rules involving domino tableaux of shape R and T respectively, given in (4.35) and (4.36).

Note that one pattern we see in tables 2 and 3 that does not generalise is
∣∣ᾱTR∣∣ ≤ 1. The first

coefficient that breaks this pattern has is found at n = 12, with R = [4, 4, 2, 2] and t = [3, 2, 1].
For this R, t we have ᾱTR = 2.

We now manipulate (4.27) into a suitable form to relate the coefficients to the combinatorics
of domino tableaux.

Using (4.8), we see we can replace the sum over partitions of n
2 by a sum over Sn

2
.

ᾱTR =
1(
n
2

)
!

∑
σ∈Sn

2

χR (στ)χt(σ) (4.28)

Where τ ∈ Sn is defined by

τ =
(

1, 1 +
n

2

)(
2, 2 +

n

2

)
...
(n

2
, n
)

(4.29)

and we have embedded Sn
2

in Sn by having it act on {1, 2, ..., n2 }. It is then easy to check that
if σ ∈ Sn

2
has cycle type p, στ will have cycle type 2p.

The sum over Sn
2

in (4.28) is proportional to the projector onto irrep t of Sn
2
, defined in

(2.5). So we have

ᾱTR =
1

dt
TrR (Ptτ)

From the definition (4.29), we see that τ switches the sets {1, 2, ..., n2 } and
{
n
2 + 1, n2 + 2, ..., n

}
.

So for σ ∈ Sn
2
, conjugating by τ takes σ to the equivalent element of a different embedding of
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[3] [2,1] [1,1,1]

[6] 1 0 0

[5,1] -1 0 0

[4,2] 1 1 0

[4,1,1] 0 -1 0

[3,3] -1 -1 0

[3,2,1] 0 0 0

[3,1,1,1] 0 1 0

[2,2,2] 0 1 1

[2,2,1,1] 0 -1 -1

[2,1,1,1,1] 0 0 1

[1,1,1,1,1,1] 0 0 -1

Table 2: Reduced projection coefficients ᾱTR at n = 6. The leftmost column indexes R ` n while
the top row indexes t ` n

2 . The T in ᾱTR is constructed from t by replacing each individual
square in the Young diagram with a 2× 2 block.

[4] [3,1] [2,2] [2,1,1] [1,1,1,1]

[8] 1 0 0 0 0

[7,1] -1 0 0 0 0

[6,2] 1 1 0 0 0

[6,1,1] 0 -1 0 0 0

[5,3] -1 -1 0 0 0

[5,2,1] 0 0 0 0 0

[5,1,1,1] 0 1 0 0 0

[4,4] 1 1 1 0 0

[4,3,1] 0 0 -1 0 0

[4,2,2] 0 1 1 1 0

[4,2,1,1] 0 -1 0 -1 0

[4,1,1,1,1] 0 0 0 1 0

[3,3,2] 0 -1 0 -1 0

[3,3,1,1] 0 1 1 1 0

[3,2,2,1] 0 0 -1 0 0

[3,2,1,1,1] 0 0 0 0 0

[3,1,1,1,1,1] 0 0 0 -1 0

[2,2,2,2] 0 0 1 1 1

[2,2,2,1,1] 0 0 0 -1 -1

[2,2,1,1,1,1] 0 0 0 1 1

[2,1,1,1,1,1,1] 0 0 0 0 -1

[1,1,1,1,1,1,1,1] 0 0 0 0 1

Table 3: Reduced projection coefficients ᾱTR at n = 8. The leftmost column indexes R ` n while
the top row indexes t ` n

2 .The T in ᾱTR is constructed from t by replacing each individual square
in the Young diagram with a 2× 2 block.
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Sn
2
, namely that defined by acting on {n2 + 1, n2 + 2, ..., n}. Therefore conjugating Pt by τ gives

the projector onto the t irrep of this different embedding of Sn
2
. We call this P̂t.

Then using properties of projectors and traces

ᾱTR =
1

dt
TrR (PtPtτ)

=
1

dt
TrR

(
PtP̂tτ

)
=

1

dt
TrR (Pt⊗tτ)

where Pt⊗t = PtP̂t = P̂tPt is the projector onto the irrep t⊗ t of Sn
2
×Sn

2
. From this expression

we can see that ᾱTR is related to the Littlewood-Richardson coefficient gt,t;R, since this keeps
track of the number of distinct copies of t ⊗ t contained in R. One immediate consequence is
that if gt,t;R = 0, we must have ᾱTR = 0.

To go further in evaluating ᾱTR, we use Schur-Weyl duality to change the trace from one over
an irrep of Sn to one over an irrep of U(N).

Let V be the vector space for the fundamental of U(N). Then by the standard rules of tensor
product representations, V ⊗n carries a representation of U(N). We can also define an action
of Sn by permutation of the tensor factors. Schur-Weyl duality states that these two actions
commute and that the tensor product space can be decomposed as

V ⊗n =
⊕
R`n

l(R)≤N

V
U(N)
R ⊗ V Sn

R (4.30)

where V
U(N)
R and V Sn

R are the representation spaces for the irreps of U(N) and Sn labelled by

R. We denote the dimensions of the U(N) representations by d
U(N)
R and keep the notation dR

for the Sn representations. On the right hand side of this identification, U(N) acts only on
the U(N) tensor factor, and similarly for Sn. Note the restriction l(R) ≤ N . This means the
following arguments only apply when l(R) ≤ N . However, since αTR are independent of N , the
conclusion (4.32) holds true for all N .

The structure (4.30) means that traces over V ⊗n can be decomposed into traces over U(N)
and Sn irreps

TrV ⊗n (σU) =
∑
R`n

(
Tr

V
U(N)
R

U
)(

Tr
V SnR

σ
)

σ ∈ Sn, U ∈ U(N)

In direct analogy to the projector (2.5) we can define an operator that projects onto the R irrep
of U(N). Since U(N) is a compact Lie group, the sum is replaced by an integral over the Haar
measure (normalised so that the volume of the group is 1).

P
U(N)
R =

∫
dU χ

U(N)
R

(
U−1

)
U

We can use this to express ᾱTR as a trace over the whole of V ⊗n

ᾱTR =
1

dt
Tr

V SnR
(Pt⊗t τ)

=
1

d
U(N)
R dt

Tr
V
U(N)
R ⊗V SnR

(Pt⊗t τ)

=
1

d
U(N)
R dt

TrV ⊗n
(
P
U(N)
R Pt⊗t τ

)
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To reduce this to a trace over a U(N) representation, we now decompose V ⊗n in a way that will

allow us to use Pt⊗t in the same manner that P
U(N)
R was used above.

Trivially, we have V ⊗n = V ⊗
n
2 ⊗ V ⊗

n
2 , so we can do a Schur-Weyl decomposition on each of

the two factors

V ⊗n =

⊕
r`n

2

V U(N)
r ⊗ V

Sn
2

r

⊗
⊕
t`n

2

V
U(N)
t ⊗ V

Sn
2

t


=
⊕
r,t`n

2

V U(N)
r ⊗ V U(N)

t ⊗ V
Sn

2
r ⊗ V

Sn
2

t (4.31)

The permutation τ acts on V ⊗
n
2 ⊗ V ⊗

n
2 by exchanging the two factors

τ (u, v) = (v, u) u, v ∈ V ⊗
n
2

After decomposing the two copies of V ⊗
n
2 , (4.31), we see that for r 6= t, τ exchanges the spaces

labelled by (r, t) and (t, r). However, on the spaces with r = t, τ splits into a tensor product
operator

τ = τU(N) ⊗ τSn

where τU(N) acts on V
U(N)
t ⊗V U(N)

t and τSn acts on V
Sn

2
t ⊗V

Sn
2

t , both by exchanging the factors.
This allows us to go further in evaluating ᾱTR

ᾱTR =
1

d
U(N)
R dt

TrV ⊗n
(
Pt⊗tP

U(N)
R τ

)
=

1

d
U(N)
R dt

Tr
V
U(N)
t ⊗V U(N)

t ⊗V
Sn

2
t ⊗V

Sn
2

t

(
P
U(N)
R τ

)
=

1

d
U(N)
R dt

Tr
V
U(N)
t ⊗V U(N)

t

(
P
U(N)
R τU(N)

)
Tr

V
Sn

2
t ⊗V

Sn
2

t

(
τSn
)

We can split V
Sn

2
t ⊗V

Sn
2

t into its symmetric part and its anti-symmetric part, on which τSn acts
as 1 and −1 respectively. This gives us

Tr
V
Sn

2
t ⊗V

Sn
2

t

(
τSn
)

= Dim

[
S2

(
V
Sn

2
t

)]
−Dim

[
Λ2

(
V
Sn

2
t

)]
=
dt (dt + 1)

2
− dt (dt − 1)

2
= dt

We can apply the same process to V
U(N)
t ⊗ V U(N)

t , giving

ᾱTR =
1

d
U(N)
R

[
Tr

S2
(
V
U(N)
t

) (PU(N)
R

)
− Tr

Λ2
(
V
U(N)
t

) (PU(N)
R

)]

Each of the two terms is just the multiplicity of the R irrep of U(N) in S2
(
V
U(N)
t

)
and

Λ2
(
V
U(N)
t

)
respectively. So we have

ᾱTR = Mult
[
R,S2

(
V
U(N)
t

)]
−Mult

[
R,Λ2

(
V
U(N)
t

)]
= P(t, [2], R)− P(t, [1, 1], R) (4.32)
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where the plethysm coefficients P(t,Λ, R) were defined in the introduction.
The Littlewood-Richardson coefficient is

gt,t;R = Mult
(
R, V

U(N)
t ⊗ V U(N)

t

)
= P(t, [2], R) + P(t, [1, 1], R) (4.33)

so again we see that gt,t;R = 0 is a sufficient condition for αTR = 0. Additionally, this shows that
the parity of gt,t;R is the same as the parity of ᾱTR.

The plethysm coefficients P(t, [2], R) and P(t, [1, 1], R) were the subject of the paper [30].
They present two combinatorial rules, the first gives the difference P(t, [2], R)−P(t, [1, 1], R) =
ᾱTR directly, while the second gives the two plethysm coefficients individually. Both rules involve
Yamanouchi domino tableaux, which we now define.

4.4 Domino tableaux and combinatorics of plethysms

A domino tiling of shape R ` n (n even) is a tiling of the shape R with 2× 1 or 1× 2 rectangles,
which are called dominoes. A domino tableau is a tiling where each domino contains a positive
integer, such that the numbers increase weakly along the rows and strictly down the columns.
Note that each domino occupies 2 rows and 1 column (or 2 columns and 1 row), and the integers
contained within the dominoes must be correctly ordered in both rows (columns).

Each column in a domino tableau defines a word by reading the numbers in the column
from bottom to top, where horizontal dominoes, which span two columns, only contribute to
the leftmost column. The column reading of the tableau is then defined by concatenating these
words, starting on the left and ending on the right.

A Yamanouchi word is a word on the alphabet of positive integers such that each suffix
contains at least as many 1s as 2s, at least as many 2s as 3s, and, more generally, at least as
many is as i+ 1s for every i. A Yamanouchi domino tableau is a domino tableau for which the
column reading is a Yamanouhci word.

For a given Yamanouchi domino tableau, let the number of integers i in the tableau be given
by λi. We define the evaluation of the tableau to be λ = [λ1, λ2, ...]. Clearly

∑
i λi = n

2 , and the
Yamanouchi condition ensures that λ is a partition of n

2 , i.e. the λi are weakly decreasing.
As an example of the above definitions, figure 6 gives the ten Yamanouchi domino tableaux

of shape [4, 4, 3, 3, 1, 1] along with their evaluations.
A key property of a domino tiling is the number of horizontal or vertical dominoes. Take

R ` n, with components R1, R2, ..., Rk. Assume that R admits a domino tiling, and let r be
such a tiling. Then define hi(r) to be the number of horizontal dominoes in row i of r, vi(r) be
the number of vertical dominoes with their uppermost box in row i, and h(r) and v(r) be the
total number of horizontal and vertical dominoes. Then we have

R1 = 2h1(r) + v1(r)

R2 = 2h2(r) + v1(r) + v2(r)

R3 = 2h3(r) + v2(r) + v3(r)

...

Rk−1 = 2hk−1(r) + vk−2(r) + vk−1(r)

Rk = 2hk(r) + vk−1(r)

Therefore

(−1)R1+R3+... = (−1)2(h1(r)+h3(r)+...)+v1(r)+v2(r)+...+vk−1(r) = (−1)v(r) (4.34)

Crucially, if a domino tiling of shape R exists, the parity of v(r) (and therefore the parity of
h(r)) depends only on R, and not on how the dominoes are arranged. In light of this, we define
ε2(R), the 2-sign of R, to be (−1)v(r) if R admits a domino tiling, and 0 otherwise.
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Figure 6: The possible Yamanouchi domino tableaux of shape [4,4,3,3,1,1]. The evaluation of
each tableau is given beneath.

This allows us to give the first combinatorial rule, proved in [30], for finding ᾱTR. Defining
DR
λ to be the number of Yamanouchi domino tableau of shape R and evaluation λ, we have

ᾱTR = P(t, [2], R)− P(t, [1, 1], R) = ε2(R)DR
t (4.35)

Note this means the sign of the non-zero ᾱTR depends only on R and not T , since DR
t ≥ 0. This

can be seen in tables 2 and 3, where each row consists only of zeroes and positive numbers, or
zeroes and negative numbers.

For the second rule, consider T ` 2n, constructed from 2 × 2 blocks. Clearly we can tile T
with dominoes by putting 2 horizontal dominoes in each 2× 2 block. Therefore in any domino
tableau of T , there must be an even number of horizontal (and vertical) dominoes. We split the
domino tableau of shape T into two classes, based on the number of pairs of horizontal dominoes.
If a tableau has an even number of pairs, we say it has spin 1, while if it has an odd number
of pairs it has spin −1. So for T of this type, we define DT

+,R and DT
−,R to be the number of

Yamanouchi domino tableaux of evaluation R and positive and negative spin respectively. The
second combinatorial rule, which gives the two plethysm coefficients individually, is

P (t, [2], R) = DT
+,R P (t, [1, 1], R) = DT

−,R (4.36)

This leads to a second expression for (4.32)

ᾱTR = DT
+,R −DT

−,R (4.37)

Note that DT
+,R +DT

−,R = DT
R, so from (4.33) we have

gt,t;R = DT
R

The two combinatoric methods of finding ᾱTR are independent of each other. For example if
we take R = [3, 2, 1], then there are no domino tableau of shape R, so (4.35) gives 0 trivially.
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However if we look at Yamanouchi domino tableau of shape T = [4, 4, 2, 2] (corresponding to
t = [2, 1]) and evaluation R, we find two such tableaux, one contributing to each of the two
plehtysm coefficients. These two tableaux are

3

2

1 1
1

2

2 3

1 1
1

2
(4.38)

We see that the first tableau has spin +1 while the second has spin −1. Using (4.36), we get
P(t, [2], R) = P(t, [1, 1], R) = 1, and therefore ᾱTR = 0 as claimed.

The two tableaux in (4.38) can also be interpreted with the roles of T and R switched. If we
take R = [4, 2, 2] and t = [3, 2, 1] then these tableaux contribute to DR

t , and by (4.35) we find
ᾱTR = 2. This is the lowest n example of a reduced projection coefficient taking a value with
modulus greater than 1.

For most Young diagrams, it is hard to be more explicit that the two rules (4.35) and (4.36).
However for two large families, namely Hook diagrams and ‘staircases + dominoes’, we can
evaluate these rules in general and provide explicit formulae for the projection coefficients.

In tables 2 and 3 we gave some low n (n = 6, 8) examples of ᾱTR, calculated using (4.27). In
addition, the n = 4 coefficients can be read off (4.1, 4.2, 4.3, 4.4, 4.5). We have then checked
these tables against the two combinatorial rules (4.35) and (4.36). In all cases the results match.

4.5 Hook diagrams

For R a hook diagram, we can use the rules (4.35) and (4.36) to find αTR explicitly. Consider

R = c

r

...

. . .

where n = r + c − 1. For gt,t;R to be non-zero, t must be contained within R, and therefore it
must also be a hook diagram. By considering possible Littlewood-Richardson tableaux, we see
that there is only one possible hook t (and corresponding T ) for which gt,t;R 6= 0, namely

t =
⌈
c
2

⌉

⌈
r
2

⌉

...

. . .

T = 2
⌈
c
2

⌉

2
⌈
r
2

⌉

...
...

. . .

. . .

The dimension of a Young diagram representation of Sn is given by the hook length formula.

dR =
n!

HR
(4.39)
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where HR is defined to be the product of the hook lengths of each box in R. Therefore we can
rewrite the normalisation in (4.26) as

αTR =
1

2n

√
HT

HR
ᾱTR

It is simple to find HT and HR

HR = n(r − 1)!(c− 1)!

HT = [n (dre2 − 2)! (dce2 − 2)!]2 (n+ 1)(n− 1) (dre2 − 1) (dce2 − 1)

where we have defined dre2 = 2
⌈
r
2

⌉
to be r rounded up to the nearest multiple of 2. Then

splitting into cases for r even and odd (and recalling that c = n+1− r, so c and r have opposite
parity)

√
HT

HR
=
√
n2 − 1


√

c
r−1 r even√
r
c−1 r odd

To evaluate ᾱTR we can use either (4.35) and (4.36). Clearly both methods give the same answer,
so we give the tableaux for both as an example of their use. In either case we only have one
tableau to consider.

The form of the tableaux depend on the parity of r. We look at r even first. In this case the
relevant tableaux are

c

r

c+1
2

...

3

2

1 1 . . . 1

c+ 1

r

c

...

3

2

1 1 1 . . . 1

The tableau on the left has c−1
2 vertical dominoes, so its 2-sign is ε(R) = (−1)

c−1
2 . The tableau

on the right has c − 1 horizontal dominoes, so its spin is (−1)
c−1

2 . So with either method we

find ᾱTR = (−1)
c−1

2 .
For r odd we have

c

r

c
2

...

2

1
1 . . . 1

c

r + 1

c

...

4

3

1 1 1 . . . 1
1

2
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The tableau on the left has c
2 vertical dominoes, so its 2-sign is ε(R) = (−1)

c
2 , while the tableau

on the right has c horizontal dominoes, and therefore the spin is (−1)
c
2 . Either way ᾱTR = (−1)

c
2 .

Putting together the results for r even and odd, we get

αTR =

√
n2 − 1

2n
(−1)b

c
2c

√

c
r−1 r even√
r
c−1 r odd

(4.40)

One can check that this formula agrees with the coefficients in (4.1, 4.2, 4.3, 4.4, 4.5) and tables
2 and 3.

4.6 Vanishing coefficients

From equation (4.35) we see that there is a family of R for which the projection coefficient αTR
vanishes for all T , or equivalently, a family for which OU(N)

R vanishes under the Z2 projection.
These R are characterised by not admitting a domino tiling. We already saw, at the end of
section 4.4, that R = [3, 2, 1] has this property.

We can give an alternative characterisation using the Murnaghan-Nakayama rule (for a math-
ematical description of the rule see [46], and see [47] for a free fermion description). Consider the

character χR (p), where R ` n and p is the partition
[
2
n
2

]
. For this p, border strip tableaux are

just standard domino tableaux (standard means that each positive integer from 1 to n
2 appears

once in the tableau) of shape R, and the sign of the border strip tableaux is given by the parity
of the number of vertical dominoes. Since this parity depends only on R (it is just the 2-sign of
R), all of the border strip tableaux contribute to χR (p) with the same sign. Therefore

χR (p) = ε(R) ( # of standard domino tableau of shape R)

Clearly R admits a domino tiling if and only if it admits a standard domino tableau. Therefore
αTR vanishes for all T if and only if χR(p) vanishes.

We have not been able to find a more explicit characterisation of the diagrams R which
vanish when projected to the SO(N) theory. However, we have found a large family of such
diagrams, and we hypothesise that these cover every such R.

As already noted, R = [3, 2, 1] has this property. Now consider S formed by adding a domino
onto R. There are only two ways of doing this such that S is a legal Young diagram, given by

S = or

Clearly these S also don’t admit a domino tiling, and therefore αTS = 0 for all T (see table 3).
By repeating the same process, any Young diagram that can be constructed by adding dominoes
onto R will vanish when projected to the SO(N) theory.
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The same argument applies for other ‘staircase’ diagrams

where we have only included those with an even number of boxes. Adding dominoes to all such
staircase diagrams produces a large family which we know vanish under the Z2 projection.

One can see in tables 2 and 3 that the only R which vanish under the projection are of this
form, and our numerical experiments confirm this pattern up to n = 16. Therefore we conjecture
that the family of ‘staircases + dominoes’ completely spans this space.

4.7 Conjugation

To examine how αTR behaves under conjugation of its arguments, we return to the formula (4.26).
For S an arbitrary Young diagram, we have Sc =sgn⊗S, so dSc = dS and χSc(p) = (−1)pχS(p).
Therefore the summand in (4.26) changes by a factor of (−1)p(−1)2p. By definition we have
(−1)p = (−1)p2+p4+p6+.... The doubled partition 2p has (−1)2p = (−1)p1+p2+p3+.... The product
is

(−1)p(−1)2p = (−1)p1+2p2+3p3+... = (−1)|p| = (−1)
n
2

Therefore
αT

c

Rc = (−1)
n
2 αTR (4.41)

One can see this relation at n = 4 by comparing the coefficients in (4.1, 4.2, 4.3, 4.4, 4.5) and
at n = 6 and 8 in tables 2 and 3 respectively.

4.8 Semi-classical giant graviton regimes and brane interpretation of domino
algorithm

Half-BPS operators labelled by Young diagrams R with a single column of length comparable
to N are dual to single giant gravitons which are S3 expanding in S5. Multiple column Young
diagrams with a number of columns of order 1 and column lengths comparable to N , are dual to
multi-giants having S3 expanding in the AdS5. It is instructive to consider the domino algorithm
for ᾱTR in these regimes and develop a heuristic interpretation in terms of branes and orientifolds.

A natural first postulate is that the analogous picture for the connection between branes
and rows or columns of the Young diagram works for t in the SO(N) theory. A single column
t, with length comparable to N , is a single giant graviton with a large S3 world-volume in the
directions inside RP 5 of AdS5 ×RP 5. Multiple long columns correspond to multi-giants of this
type. A single long row with length of order N corresponds to a single giant, with large spatial
world-volume in AdS5. Multiple long rows correspond to multiple giants of this type. Note that
among the giants which are large in the RP 5 we also have those with worldvolume RP 3 [48]
corresponding to baryonic operators involving the ε-invariant. Since our focus here is on the
projection to mesonic operators, these will not be part of the discussion that follows here.

One simple qualitative property which can be anticipated from the brane interpretation
of R and t is an inequality constraining the number of rows/columns in t by the number of
rows/columns in R. A brane state which survives the orientifold projection can consist of pairs
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of branes in spacetime related as mirror images under the Z2 action. At the other extreme, we
can have a single brane state which is Z2 invariant. Focusing on a regime of long-rowed Young
diagrams corresponding to AdS giants, the number of rows, equivalently the length of the first
column, is the number of giant gravitons. Allowing for the two types of Z2 invariant states, we
expect

c1(R)

2
≤ c1(t) ≤ c1(R) (4.42)

Similar reasoning in the regime of sphere giants suggests

r1(R)

2
≤ r1(t) ≤ r1(R) (4.43)

The last inequality is easy to derive from the domino algorithm. To maximise r1(t), we need
to maximise the number of dominoes in the first row of R. This maximum is achieved if all
the dominoes involved in the first row are vertical (this requires that r2(R) = r1(R)), and
leads to r1(t) = r1(R). The minimum is achieved when all the dominoes in the first row of
R are horizontal. This leads to r1(t) = r1(R)/2. This prove the inequality. By applying the
conjugation property of the projection coefficients, (4.41), we obtain (4.43).

We can also formulate a more detailed brane interpretation of the domino algorithm. For a
single column Young diagram R, a domino tiling exists only if the length of the first column is
even. Single giant gravitons with L units of angular momentum can be usefully thought of as
composites of L quanta. Pairs of quanta are invariant under the orientifold action, consistent
with the fact that only single column Young diagrams of even length survive the projection.
The projection of these single column Young diagrams R are single column Young diagrams t,
which should therefore also be interpreted as single giants in the orientifold theory. Similarly the
quanta of angular momentum forming a single long row (AdS giant) are paired by the domino
algorithm into Z2 invariant pairs, resulting in a single giant in the quotient.

Now consider 2-row Young diagrams with row lengths (r1, r2), in the regime where r1, r2

are comparable to N and their difference is also comparable to N , e.g. (r1, r2) = (2N,N).
Consider a domino tiling with a number s1 < r2 of vertical dominoes, with the remaining boxes
(r1− s1, r2− s1) occupied by horizontal dominoes. This results in t = ((r1 + s1)/2, (r2− s2)/2).
The vertical dominoes stretch across boxes in the first and second row, which can be viewed as
quanta constituting the two branes described by the Young diagram R. The horizontal dominoes
are constituents of the same brane. A horizontal domino in row one or two of R contributes
a box to the first or second row of t. The vertical dominoes, even though they span row one
and two of R, contribute to the first row of t. The domino combinatorics thus encodes, in a
precise way, a recombination of angular momentum quanta between the two branes of angular
momenta r1, r2 described by R, which accompanies the orientifold procedure. For multi-row
Young diagrams, the domino algorithm pairs quanta of angular momentum in adjacent rows,
equivalently adjacent giant gravitons in the LLM plane. An analogous discussion holds for multi-
column states, where horizontally tiled dominoes pair quanta from distinct giants and vertically
tiled dominoes pair quanta qithin a giant worldvolume.

It would be interesting to deduce connections between the brane interpretation of the ori-
entifold projection coefficients discussed heuristically above, from more general frameworks for
brane dynamics in the presence of orientifolds, as developed for example in [49, 50]. In the
AdS/CFT context, a useful discussion of orientifolds is in [48].

4.9 Inverse projection coefficients and U(N) correlators of SO(N) operator

In section 4.2, we saw that the U(N) half-BPS sector is spanned by multi-traces of the form
(4.6), while the SO(N) half-BPS sector is spanned by multi-traces of the form (4.9). Therefore
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one can consider half-BPS sector of the SO(N) theory as a subspace of the equivalent in the
U(N) theory.

This leads to the question, what does the U(N) inner product look like on this subspace?
Clearly the SO(N) theory has its own inner product (studied in detail in section 8), but this is
a different pairing which will have a different structure. In this paper, we have made extensive
use of permutations as a way to describe bases of gauge-invariant operators in different theories
(U(N), SO(N), Sp(N)). They give us a uniform way of talking about operators in different
gauge theories, namely about how the indices of matrices X,Y are contracted without being
specific about whether these are generic matrices in the Lie algebra u(N), anti-symmetric matri-
ces in so(N), or matrices in sp(N). These different theories, via AdS/CFT duality, correspond
to different string theory backgrounds. In this sense, permutations are background independent
structures, while the pairings we put on them are theory-dependent. Here we will see that ex-
ploring the U(N) inner product which survive the projection to SO(N) has interesting relations
to an appropriately defined inverse of the plethysm coefficients we encountered earlier.

Consider the SO(N) operators (4.23), but where X is an arbitrary complex matrix rather
than anti-symmetric. We can express this as a sum of U(N) operators

OSO(N)
T =

∑
R`n

βRTO
U(N)
R (4.44)

If we consider taking the Z2 quotient of this expression, clearly the left hand side remains
unchanged, while we can can evaluate the right hand side using definition (4.19). This leads to

OSO(N)
T =

∑
R`n

∑
T ′

βRT α
T ′
R O

SO(N)
T ′

Since this holds for all T , we have ∑
R`n

βRT α
T ′
R = δT

′
T (4.45)

so we call βRT inverse projection coefficients. Clearly they are not true inverses to αTR, since R
has more degrees of freedom than T , and so summing over T will not lead to δRR′ , as one would
expect for true inverses. For the same reason, the relation (4.45) does not uniquely define the
βRT (note that they are well defined by (4.44)).

To find βRT , we can use the orthogonality relation (2.6) to invert (4.20) to give traces in terms
of Young diagram operators ∏

i

(
TrXi

)pi =
∑
R`n

1

dR
χR(p)OU(N)

R

Plugging this into (4.23), we have

OSO(N)
T = 2nn!

√
dT

(2n)!

∑
p`n

2

1

z2p
χt(p)

∑
R`n

1

dR
χR(2p)OU(N)

R

and therefore

βRT =
2nn!

dR

√
dT

(2n)!

∑
p`n

2

1

z2p
χR(2p)χt(p) (4.46)

Notice the similarities between (4.46) and (4.26). The normalisation factor is upside down and
we have an extra factor of 2l(p) inside the sum over partitions (turning zp into z2p). We have
not managed to find a combinatoric interpretation of βRT .
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We can now give the U(N) correlators of the SO(N) operators. The correlators of OU(N)
R

were given in [5] (their operators differ in normalisation by a factor of dR) and are given by〈
OU(N)
R OU(N)

S

〉
= δRSdRn!d

U(N)
R (4.47)

where d
U(N)
R is the dimension of the U(N) representation labelled by R.

It is then simple to show that〈
OSO(N)
T OSO(N)

T ′

〉
=
∑
R`n

βRT β
R
T ′dRn!d

U(N)
R

So the SO(N) orthogonal basis operators are not orthogonal under the U(N) inner product,
even at large N .

5 Periodicities of traces and integer-graded word combinatorics
in U(N) quarter-BPS counting.

The counting of quarter-BPS operators in the free limit N = 4 SYM for U(N) gauge group (at
large N) was given in terms of an infinite product generating function in [33].

FU(N)(x, y) =

∞∏
k=1

1

1− xk − yk
(5.1)

The factors are obtained from the substitutions (x, y) → (xi, yi) in what we will call the root
function (1−x− y)−1. In [20], an interpretation of the root function in terms of word counting
was given and this interpretation was extended to the generating function for the counting of
gauge-invariants in free quiver gauge theories with U(N) gauge groups, derived in [19]. This
combinatorics of gauge invariants is closely related to paths on graphs, which have interesting
number theoretic aspects studied recently [51].

Consider, for the 2-matrix case, the root function

1

1− x− y
The coefficient of xnym is

(
n+m
n

)
, which counts the number of different ways of ordering n xs and

m ys, or equivalently the number of different words that can be made from n x̂s and m ŷs, in
the space of words generated freely by two generators x̂, ŷ. This space of words form a monoid,
where the product is given by concatenation. In this paper, we will consider the implications of
interpretaing the whole infinite product FU(N)(x, y) in terms of words. The coefficient of xnym

in (1− x2 − y2)−1 counts the number of words formed from n x̂s and m ŷs, but now the letters
have weight 2. We denote the x̂s and ŷs with weight one by x̂1 and ŷ1 and those with weight 2
by x̂2 and ŷ2. Multiplying the two generating functions then counts words made from all four
available letters, where the weight 1 letters commute with weight 2 letters. So the coefficient of
xnym in

1

(1− x− y)(1− x2 − y2)

counts words constructed from n1 x̂1s, m1 ŷ1s, n2 x̂2s and m2 ŷ2s such that n1 + 2n2 = n and
m1 + 2m2 = m and the (x̂1, ŷ1)s always precede the (x̂2, ŷ2)s. Equivalently, we can take the
x̂1, ŷ1 to commute with the x̂2, ŷ2. Repeating this process, we see that FU(N)(x, y) counts words
constructed from x̂s and ŷs of all weights (i.e. x̂k, ŷk with k any positive integer), where within
each level, x̂k and ŷk are non-commutative, but different levels commute with each other. We
will refer to this kind of word counting problem as an integrally-graded word combinatorics.
A natural problem is to give a bijection between the words in this counting and the traces of
two matrices X,Y in the large N limit. In this section, we will describe such a bijection. The
analogous results for gauge invariants in SO(N) gauge theory will be developed in section 6.
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5.1 Structure of the space of U(N) gauge-invariant functions of two matrices

First we consider the global structure of the set of multi-traces, as well as how this structure is
reflected in (5.1). We find it is simplest to express this in the language of vector spaces, so we
consider T , the space spanned by the U(N) multi-traces.

The generating function (5.1) is then the Hilbert series of T , where T is graded by how many
Xs and Y s appear in each multi-trace. More explicitly, we can split T into a direct sum of
subspaces T(n,m) spanned by those multi-traces composed of n Xs and m Y s. Then the Hilbert
series is defined by

HT (x, y) =
∑
n,m

xnymdimT(n,m)

When studying the structure of T , we will need to keep track of how this interacts with the
grading.

Note that we use the term ‘Hilbert Series’ only with reference to graded vector spaces. When
the vector space also has the structure of an algebra, the Hilbert series imparts information about
the relations between the generating elements of the algebra. While many of the vector spaces
we consider do have an algebra structure, we will not focus on this aspect.

To describe the factorisation of multi-traces into single traces, we divide the full space T into
subspaces Tr spanned by multi-traces formed from r single traces.

T =

∞⊕
r=0

Tr

Then T0 is the one-dimensional space spanned by 1, thought of as the trivial multi-trace (the
multi-trace containing no single traces). We define TST to be the space spanned by the single
traces, so that T1 is just TST . T2 contains multi-traces with two single traces in their factorisation.
Initially we might think this space is simply TST ⊗TST , but this is not quite right. In this space
there is a distinction between t1⊗ t2 and t2⊗ t1, but given the two traces t1 and t2, clearly there
is a unique multi-trace formed from their product. Instead we have T2 = Sym2 (TST ), defined to
be the symmetric part of TST ⊗ TST . Similarly, Tr = Symr (TST ), defined to be the completely
symmetric part of (TST )⊗r. So we have

T = C⊕ TST ⊕ Sym2 (TST )⊕ ...

=

∞⊕
r=0

Symr (TST )

:= Sym (TST )

Clearly TST is graded by how many Xs and Y s appear in a single trace, and so has its own
Hilbert series, which is the generating function for the counting of single traces. The counting of
single traces is obviously related to the counting of multi-traces. This relation is made explicit
in the plethystic exponential. Given the generating function

f(x, y) =
∑
n,m

An,mx
nym

for the single traces, the generating function for the multi-traces is given by

F (x, y) = PExp(f)(x, y) = exp

( ∞∑
k=1

f(xk, yk)− f(0, 0)

k

)

=
∏

{n,m}6={0,0}

1

(1− xnym)An,m
(5.2)
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Note that this definition subtracts the constant term of f (this is required for convergence of
the infinite product), so we can choose any value we like for f(0, 0) (equivalently A0,0) and still
reproduce the same multi-trace counting. Therefore if we view f purely as a stepping stone on
the way to obtaining the multi-trace counting, the constant term is arbitrary. However, if we
instead view it as significant in itself, since it counts the single traces, there are two sensible
values one could consider. Either we count 1 as a single trace (of the identity matrix), or we do
not. This corresponds to setting the constant term to 1 or 0 respectively. We already noted that
1 should be thought of as the trivial multi-trace (the multi-trace containing no single traces),
and we take the same viewpoint here. We will therefore implicitly set the constant term to 0
here and in all later countings of single traces.

For an explanation of why the plethystic exponential takes the single trace counting to
the multi-trace counting, and for more details on the interesting properties of the plethystic
exponential, see [37, 52].

The plethystic exponential can be inverted, up to the arbitrary constant already discussed,
using the plethystic logarithm

f(x, y) = PLog(F )(x, y) =
∞∑
k=1

µ(k)

k
logF (xk, yk) (5.3)

where µ is the Möbius function defined in (A.3). The proof that these two are inverses of each
other comes from the identity (A.4). See appendix A for a more detailed description of the
useful properties of the Möbius function.

So the Hilbert series for T and TST are related by

HT = PExp (HTST ) HTST = PLog (HT ) (5.4)

Now we look at the structure of TST . A single trace can be written as Tr(...)k, where the
interior of the brackets is an aperiodic matrix word, and k is some positive integer that we
call the periodicity. So for example TrXY has periodicity 1 while TrXYXY =Tr(XY )2 has
periodicity 2. Clearly the periodicity and the aperiodic matrix word (which is only defined up
to cyclic rotations) identify the trace. Therefore we have

TST = K ⊗ T (1)
ST

where T
(1)
ST is spanned by the aperiodic (periodicity 1) single traces and K is spanned by the

positive integers. Consider an element k ⊗ w, where w is an aperiodic single trace of weight
(n,m) (i.e. contains n Xs and m Y s), then the weight of k ⊗ w is (kn, km). So the two tensor
factors interact non-trivially with respect to the weightings. Taking account of this, the Hilbert

series of TST and T
(1)
ST are related by

HTST (x, y) =
∞∑
k=1

H
T

(1)
ST

(xk, yk) (5.5)

where the kth term in the sum corresponds to the subspace k⊗T (1)
ST of TST = K⊗T (1)

ST . Defining
the coefficients of the two Hilbert series by

HTST (x, y) =
∑
n,m

An,mx
nym H

T
(1)
ST

(x, y) =
∑
n,m

an,mx
nym (5.6)

the relation (5.5) becomes

An,m =
∑
d|n,m

an
d
,m
d

(5.7)

where d|n,m means d is a divisor of both n and m.
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We can invert this relation using the Möbius inversion formula (A.8) to get

an,m =
∑
d|n,m

µ(d)An
d
,m
d

(5.8)

In terms of the Hilbert series, this becomes

H
T

(1)
ST

(x, y) =

∞∑
k=1

µ(k)HTST (xk, yk) (5.9)

We call H
T

(1)
ST

the Möbius transform of HTST

H
T

(1)
ST

=M (HTST ) HTST =M−1
(
H
T

(1)
ST

)
In full, T can be decomposed as

T = Sym
(
K ⊗ T (1)

ST

)
(5.10)

and the corresponding decomposition in the generating function is

HT = PExp
[
M−1

(
H
T

(1)
ST

)]
= PExp

[ ∞∑
k=1

H
T

(1)
ST

(xk, yk)

]

=
∞∏
k=1

PExp
[
H
T

(1)
ST

]
(xk, yk) (5.11)

So far, we have split the multi-traces into single traces, and then decomposed the single traces
by periodicity. We could have done this the other way round. A multi-trace can be split into
factors, where each factor is a multi-trace of a specified periodicity. We can then decompose
these factors into single traces of a specified periodicity. Doing things in this order gives the
structure

T =
[
T (1)

]⊗K
:=
[
Sym

(
T

(1)
ST

)]⊗K
(5.12)

where by V ⊗K , we mean

V ⊗K = V1 ⊗ V2 ⊗ V3 ⊗ ... =
∞⊗
k=1

Vk

and each Vk is a copy of V but with all weights multiplied by k. The Hilbert series of V ⊗K is
then given by

HV ⊗K (x, y) =

∞∏
k=1

HV (xk, yk)

Just as for the sum (5.5), we can invert this

HV (x, y) =

∞∏
k=1

HV ⊗K (xk, yk)µ(k)

The proof of this inversion replies on the multiplicative version of the Möbius inversion formula,
(A.6). We say HV is the multiplicative Möbius transform of HV ⊗K

HV =Mmult (HV ⊗K ) HV ⊗K =M−1
mult (HV )
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So the generating function version of (5.12) is

HT =M−1
mult (HT (1)) =M−1

mult

[
PExp

(
H
T

(1)
ST

)]
HT (x, y) =

∞∏
k=1

HT (1)(xk, yk) =

∞∏
k=1

PExp
[
H
T

(1)
ST

]
(xk, yk) (5.13)

which matches (5.11). So we see that the (not immediately obvious) result

Sym (K ⊗ V ) = (SymV )⊗K

corresponds to the trivial result

PExp

( ∞∑
k=1

HV

)
=

∞∏
k=1

PExp (HV )

Comparing (5.13) with (5.1) we see that HT (1) is what we called the root function. Additionally,
we find the root function is not the most fundamental object. It is the plethystic exponential of
H
T

(1)
ST

, and we should think of this Hilbert series as the fundamental object of interest. It would

be interesting to see whether this additional structure of the root function has an analogue in
the general quiver theory explored in [20].

The structure described above, both for the vector spaces and their associated Hilbert series,
is summarised in figure 7.

5.2 Explicit Hilbert series (generating functions)

In the above (and summarised in figure 7), we explained the relations between the Hilbert series

associated to T , TST , T (1) and T
(1)
ST . Since these relations are invertible, we can find all the

Hilbert series from just one of them. We know HT counts U(N) multi-traces, as does (5.1), so
we have

HT (x, y) = FU(N)(x, y) =

∞∏
k=1

1

1− xk − yk
(5.14)

Comparing with (5.13), we see that

HT (1)(x, y) =
1

1− x− y
(5.15)

which counts aperiodic multi-traces. This allows us to interpret the product in (5.14). The
factor (1−x− y)−1 counts multi-traces constructed only from aperiodic single traces. Similarly
the factor (1− xk − yk)−1 counts multi-traces constructed only from periodicity k single traces.

Applying the plethystic logarithm to (5.14) and (5.15) gives

HTST (x, y) =
∞∑
l=1

µ(l)

l
log

( ∞∏
k=1

1

1− xkl − ykl

)

= −
∞∑

k,l=1

µ(l)

l
log
(

1− xkl − ykl
)

= −
∞∑
d=1

log
(

1− xd − yd
)∑

l|d

µ(l)

l

= −
∞∑
d=1

φ(d)

d
log
(

1− xd − yd
)

(5.16)

H
T

(1)
ST

(x, y) = −
∞∑
d=1

µ(d)

d
log
(

1− xd − yd
)

(5.17)
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T
(1)
ST

H
T

(1)
ST

Counts aperiodic single traces

TST = K ⊗ T (1)
ST

HTST =M−1
(
H
T

(1)
ST

)
Counts single traces

T (1) = Sym
(
T

(1)
ST

)
HT (1) = PExp

(
H
T

(1)
ST

)
Counts aperiodic multi-traces

T = Sym
(
K ⊗ T (1)

ST

)
= Sym

(
T

(1)
ST

)⊗K
HT = PExp

[
M−1

(
H
T

(1)
ST

)]
=M−1

mult

[
PExp

(
H
T

(1)
ST

)]
Counts all multi-traces

Tensor with K

M−1

Sym

PExp

Sym

PExp

Tensor power of K

M−1
mult

Figure 7: Diagram summarising the structure of T , the space of U(N) multi-traces, and its

relation to T
(1)
ST , the space of U(N) aperiodic single traces
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where in the first calculation we have changed variables from (k, l : 1 ≤ k, l ≤ ∞) to (d, l : 1 ≤
l ≤ ∞, l|d) by setting d = kl. We have also used the identity (A.10), and φ(d) is the Euler
totient function defined in (A.9).

These two series count single traces and aperiodic single traces respectively. Later it will be
important to have explicit formulae for the counting of these traces.

Expanding the logarithm in (5.16), we get

HTST (x, y) =

∞∑
d,k=1

φ(d)

dk
(xd + yd)k =

∞∑
d,k=1

φ(d)

dk

k∑
r=0

(
k

r

)
xdryd(k−r)

We wish to find an expression for the coefficient of xnym, so reparameterise r and k in terms of
n = dr and m = d(k − r)

HTST (x, y) =
∑
n,m

xnym
1

n+m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
(5.18)

where the sum excludes n = m = 0. Similarly we find

H
T

(1)
ST

(x, y) =
∑
n,m

xnym
1

n+m

∑
d|n,m

µ(d)

(n+m
d
n
d

)

Comparing with (5.6), we see that

An,m =
1

n+m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
(5.19)

an,m =
1

n+m

∑
d|n,m

µ(d)

(n+m
d
n
d

)
(5.20)

The counting interpretation of these sequences is as follows: an,m is the number of aperiodic
single traces that can be constructed from n Xs and m Y s, while An,m is the number of single
traces of any periodicity that can be constructed from n Xs and m Y s. Tables of values for
these sequences are given in appendix C. Note that they are related by (5.7) and (5.8).

Recall from our discussion of the plethystic exponential in section 5.1 that we have implicitly
set A0,0 = a0,0 = 0, so there is no issue with the definitions (5.19) and (5.20) when n = m = 0.

5.3 Bijection between words and traces

Since FU(N)(x, y) counts both multi-traces and words, we hope to find some kind of natural
bijection between the two. Before we can describe the bijection, we need to define Lyndon
words. For simplicity, we will use the alphabet {0, 1} in the definition, and then replace this
with {x̂, ŷ} when constructing the bijection.

A Lyndon word is an aperiodic word which is smallest among cyclic rotations of its letters.
For example the word 000101 is aperiodic and is smaller than its cyclic rotations 001010, 010100,
101000, 010001,100010, and is therefore a Lyndon word. The Lyndon words of length ≤ 5 are

0 , 1

01

001 , 011

0001 , 0011 , 0111

00001 , 00011 , 00101 , 00111 , 01011 , 01111

48



The usefulness of Lyndon words comes from the Chen-Fox-Lyndon theorem [36, Theorem, 5.1.5]
which states that all words can be uniquely factorised as a sequence of ‘non-increasing’ Lyndon
words.

Before going further, we must define the ordering on Lyndon words (and indeed all other
words), so that ‘non-increasing’ makes sense. With the binary alphabet, this is particularly easy.
View the strings as being the binary expansions of numbers between 0 and 1. Then the ordering
we want (called the lexicographic ordering) is just the same as the ordinary ordering of numbers
between 0 and 1. If two words would form the same number (for example 01, 010, 0100, etc),
then the longer word is larger. This last provision gives the set of words a total ordering, but is
not needed for Lyndon words as they cannot end in a 0 (with the exception of 0 itself).

We provide some factorisations as an example

100101 = 1 ◦ 00101

110010 = 1 ◦ 1 ◦ 001 ◦ 0

011010 = 011 ◦ 01 ◦ 0

where we have used ◦ as the binary operation in the free monoid on 0 and 1. Note that we
require the restriction to non-increasing sequences of Lyndon words, otherwise for example we
could also factorise the first word as 1 ◦ 001 ◦ 01, or even 1 ◦ 0 ◦ 0 ◦ 1 ◦ 0 ◦ 1.

We need to consider words constructed not just from x̂1, ŷ1, but also x̂2, ŷ2, x̂3, ŷ3, .... To deal
with this we consider the set of Lyndon words for each level. The factorisation of a multi-level
word then consists of the factorisation of its level one component, the factorisation of its level
two component, and so on.

In section 5.1 we saw the structure of the vector space of traces. Clearly for a bijection to
exist between traces and words, the vector space of words must also have the same structure.
Define W to be the space spanned by the multi-level words. As argued in section 5.1, the
factorisation of words into (multi-level) Lyndon words corresponds to

W = Sym (WLW )

where WLW is the space spanned by the Lyndon words of all levels. Clearly a Lyndon word is
identified by its level and an un-levelled Lyndon word. As before, this corresponds to

WLW = K ⊗W (1)
LW

where the weight of a levelled Lyndon word k⊗ l is given by k times the weight of the un-levelled
Lyndon word l. This is exactly the structure we saw in T .

So to find a bijection between the bases of W and T (i.e. between words and traces), we only

need to find a bijection between W
(1)
LW and T

(1)
ST . Intuitively, what we have done is matched the

two factorisations (words into Lyndon words and multi-traces into single traces) and the two
level structures (periodicities and word level). Therefore we only need to find a bijection between
level 1 Lyndon words and aperiodic single traces to find a bijection between all multi-level words
and all multi-traces.

The final ingredient is now clear. An aperiodic trace is equivalent to an aperiodic word
constructed from X and Y , up to cyclic rotations. In particular we can choose a representative
from the orbit of cyclic rotations as that which is smallest (where the ordering is as defined
earlier with X replaced by 0 and Y by 1). Then the aperiodic word, by definition, is just a
Lyndon word on the two letters X and Y . Replacing those letters with x̂1 and ŷ1 gives us a
bijection.

5.4 SO(2, 1) representation

The structure found in section 5.1 carries a representation of the algebra so(2, 1). Let ek (k =
1, 2, 3, ...) be the basis vectors for K. The generators for so(2, 1) are J+, J−, J3. We define their
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action on K by

J+ek = k ek+1

J3ek = k ek

J−ek =

{
kek−1 k > 1

0 k = 1

The commutation relations for these are

[J3, J+] = J+

[J3, J−] = −J−
[J+, J−] = −2J3

Which are indeed the commutation relations for so(2, 1).
Using the standard rules of tensor product representations, we can use this to show TST =

K ⊗ T (1)
ST carries a representation of so(2, 1), where T

(1)
ST is given the trivial representation.

Let V be the carrier space for an arbitrary representation of so(2, 1). We note that Symr (V )
is an invariant subspace of V ⊗r with the standard tensor product representation. Therefore
Symr (V ) is also the carrier space for a representation of so(2, 1). Using this fact, it is easy to
see that T = Sym (TST ) carries a representation of so(2, 1).

It will be interesting to investigate whether this so(2, 1) can be interpreted geometrically
in terms of spectrum generating algebras (SGAs) in the dual space-time, in the context of
gauge-string duality for the zero coupling quarter BPS sector. SGAs of the form SO(p, 1) were
discussed in the context of AdS/CFT in [53].

6 SO(N) generating functions at infinite N and SO(N) analogues
of Lyndon words

In section 5 we investigated the structure of the space of U(N) gauge-invariant functions of two
matrices in the large N limit. In particular we looked at the level structure corresponding to
periodicity of traces, and the factorisation arising from the decomposition of multi-traces into
their single trace constituents. These two processes were reflected in the Hilbert series by the
inverse Möbius transformM−1, defined in (5.5), and the plethystic exponential. This structure,
for both vector space and Hilbert series, is summarised in figure 7. Furthermore, we found
a bijection between U(N) aperiodic single traces and Lyndon words, which generalised to a
bijection between the full space of multi-traces and a levelled word monoid.

In this section we find the analogue picture for the SO(N) theory. Let T̃ be the space of
SO(N) gauge-invariant functions of two matrices in the large N limit (note this means there are
no baryonic operators). We find that the structure exhibited in figure 7 also applies to T̃ , with
the aperiodic single traces of the U(N) theory being replaced by minimally periodic traces in the
SO(N). These correspond to a transformed set of Lyndon words that we call orthogonal Lyndon
words. As suggested by the change in name, the minimally periodic traces can have periodicity
one or two. This leads to an alternate structure of T̃ which respects absolute periodicity. The
two different structures of T̃ are summarised in figures 8 and 9.

These two structures give relations between the Hilbert series for the relevant vectors spaces.
However, unlike the U(N) case, we do not already have the Hilbert series for T̃ . In appendix
B we present an argument that derives it directly from the formula (3.15). Here we will give a
shorter, more direct approach to finding the function that gives more insight into its structure.
This generating function is of interest to mathematicians [38], and we believe that our explicit
evaluation of it is a new mathematical result.
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6.1 Structure of the space of SO(N) multi-traces

As in section 5, we will consider various different vector spaces in addition to T̃ . In general,
those relating to SO(N) traces will have a tilde on top, whereas those primarily to do with
U(N) objects will not. Some vector spaces we define will be relevant to both, so the divide is
not a sharp one. Similarly to the notation used in section 5.1, we use superscripts in brackets
to refer to a space of specified periodicity, and subscripts to add extra information on the type
of traces being considered.

To get from the U(N) theory to the SO(N) theory, we replace the generic complex matrices
of the U(N) theory with the anti-symmetric complex matrices of the SO(N) theory. This is a
Z2 quotient on the space of traces.

We examine the effect of the Z2 quotient by looking at an arbitrary U(N) single trace. It is
specified by a periodicity k, and an aperiodic matrix word W . Since a trace is invariant under
transposition, we have

TrW k = Tr
(
W T

)k
After the quotient, X and Y are related to their transposes, so this relation reduces the number
of independent single traces. The transpose reverses the matrix word - we call the reversed word
W (r) - and introduces a factor of (−1)k l(W ), where l(W ) is the length of W .

TrW k = (−1)k l(W )Tr
(
W (r)

)k
(6.1)

There are now two sets of two possibilities: either W and W (r) are the same (up to cyclic
rotations), or they are not, and k l(W ) is either even or odd.

If W 6= W (r), then (6.1) tells us that two distinct traces that were previously unrelated are
no longer independent. This is true whether k l(W ) is even or odd.

If W = W (r), then (6.1) does depend on whether k l(W ) is even or odd. If it is even, then
(6.1) is trivial, and gives us no new information. If it is odd, then (6.1) implies that the trace
vanishes. So for example, TrX, TrY 3, TrX2Y and Tr(X4Y )5 all vanish.

To encode this structure into the U(N) vector space T we split T
(1)
ST into three distinct

subspaces

T
(1)
ST = T

(1)
ST ;inv;even ⊕ T

(1)
ST ;inv;odd ⊕ T

(1)
ST ;var (6.2)

The first space is spanned by those traces of even length with W = W (r) (‘inv’ stands for
invariant); the second space is spanned by traces of odd length with W = W (r); the third space
is spanned by traces of any length with W 6= W (r) (‘var’ stands for variant). From previous

arguments, T
(1)
ST ;inv;even is unchanged under the Z2 quotient. The other two spaces are more

complex.
We saw that for reversal-invariant W of odd length, the determining factor between whether

the trace vanishes or not is whether k is odd or even respectively. If k is even, T
(1)
ST ;inv;odd is

unchanged by the quotient, while if k is odd, it vanishes. So we have

K ⊗ T (1)
ST ;inv;odd −→Z2

Keven ⊗ T (1)
ST ;inv;odd (6.3)

where Keven is the space spanned by the even integers. Clearly this is isomorphic to K, but we
cannot just replace Keven with K as then we lose information about the weight of a given trace.
Formally, they are isomorphic as vector spaces but not as graded vector spaces. However, we
can recover K as a tensor factor of the graded vector space if we double the weight of the space
TST ;inv;odd to make up for halving the weight of the Keven factor. So we have

Keven ⊗ T (1)
ST ;inv;odd = K ⊗

(
T

(2)
ST ;inv;odd

)
(6.4)
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Effectively what we have done here is say rather than consider X (or Y , X2Y , X4Y ,...) as the
aperiodic word identifying the trace, instead we consider X2 (or Y 2, (X2Y )2, (X4Y )2,...) as the
‘aperiodic word’. Since these are the lowest order at which the aperiodic words appear, we call
the doubled versions minimally periodic words.

Finally we consider T
(1)
ST ;var. It is spanned by aperiodic matrix words (up to cyclic rotations)

which change under reversal. So we can split the spanning set into orbits (of size 2) under

reversal. Then defining T̃
(1)
ST ;var to be the space spanned by these orbits, we have

T
(1)
ST ;var −→Z2

T̃
(1)
ST ;var (6.5)

It will be useful later to note that T
(1)
ST ;var is just two copies of T̃

(1)
ST ;var

T
(1)
ST ;var = T̃

(1)
ST ;var ⊕ T̃

(1)
ST ;var (6.6)

In full, the Z2 quotient of TST is

TST = K ⊗ T (1)
ST −→Z2

T̃ST = K ⊗ T̃ (min)
ST = K ⊗

(
T

(1)
ST ;inv;even ⊕ T

(2)
ST ;inv;odd ⊕ T̃

(1)
ST ;var

)
(6.7)

where the ‘min’ superscript refers to the words being minimally periodic, as opposed to aperiodic
(periodicity 1). Extrapolating to the full space of multi-traces

T = Sym
(
K ⊗ T (1)

ST

)
−→
Z2

T̃ = Sym
(
K ⊗ T̃ (min)

ST

)
(6.8)

We see this has the same structure as (5.10), but with a base space T̃
(min)
ST . This allows us to

reproduce figure 7, but with the new base space, shown in figure 8.
Furthermore, we saw in section 5.4 that the structure (5.10) allowed T to carry a represen-

tation of so(2, 1). By the same argument, T̃ will also carry such a representation.
In section 5.3 we saw that Lyndon words on x and y give a good description of the spanning

set for T
(1)
ST . The definition of T̃

(min)
ST (implicit in (6.7)) allows us to give it a similar description

in terms of ‘orthogonal’ Lyndon words.
These orthogonal Lyndon words fall into one of three categories, depending on whether the

corresponding trace comes from the spanning set for T
(1)
ST ;inv;even, T

(2)
ST ;inv;odd or T̃

(1)
ST ;var. We say

the orthogonal Lyndon words are of types 1A,1B or 2 respectively. Type 1A orthogonal Lyndon
words are normal Lyndon words of even length that are invariant under reversal (up to cyclic
rotations). A type 1B word is a repeated normal Lyndon word of odd length that is invariant
under reversal. A type 2 word is the first (lexicographically) of a pair of normal Lyndon words
that transform into each other when reversed. The lowest order examples of the three types are
shown in table 4.

6.2 Periodicity structure

We now briefly return to the description of the U(N) single trace space TST . We had

TST = K ⊗ T (1)
ST =

(
1⊗ T (1)

ST

)
⊕
(

2⊗ T (1)
ST

)
⊕
(

3⊗ T (1)
ST

)
⊕ ...

We know that T̃ST also has this structure, but there is a difference in interpretation. The

subspace k ⊗ T
(1)
ST of TST corresponds to the traces of periodicity k, whereas the subspace

k ⊗ T̃ (min)
ST of T̃ST does not. This stems from T̃

(min)
ST containing not only aperiodic traces, but

traces of periodicity 2 as well. We now look for a decomposition of T̃ST that does correctly
reflect the periodicity structure. Explicitly, we want to find Vk such that

T̃ST = (1⊗ V1)⊕ (2⊗ V2)⊕ (3⊗ V3)⊕ ...
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xy
Type 1A x3y , x2y2 , xy3

x5y, x4y2, x3yxy, x3y3, x2y4, xyxy3, xy5

x2, y2

Type 1B x2yx2y, xy2xy2

x4yx4y, x3y2x3y2, x2yxyx2yxy, x2y3x2y3, xyxy2xyxy2, xy4xy4

x2yxy2

Type 2 x3yxy2, x2yxy3

x3yx2y2, x4yxy2, x3yxy3, x2yxyxy2, x2yxy4, x2y2xy3

Table 4: Lowest order examples of the three distinct types of ‘orthogonal’ Lyndon words

T̃
(min)
ST

H
T̃

(min)
ST

Counts minimally periodic single traces

T̃ST = K ⊗ T̃ (min)
ST

H
T̃ST

=M−1
(
H
T̃

(min)
ST

)
Counts single traces

T̃ (min) = Sym
(
T̃

(min)
ST

)
H
T̃ (min) = PExp

(
H
T̃

(min)
ST

)
Counts minimally periodic multi-traces

T̃ = Sym
(
K ⊗ T̃ (min)

ST

)
= Sym

(
T̃

(min)
ST

)⊗K
H
T̃

= PExp
[
M−1

(
H
T̃

(min)
ST

)]
=M−1

mult

[
PExp

(
H
T̃

(min)
ST

)]
Counts all multi-traces

Tensor with K

M−1

Sym

PExp

Sym

PExp

Tensor power of K

M−1
mult

Figure 8: Diagram summarising the structure of T̃ , the space of SO(N) multi-traces, and its

relation to T̃
(min)
ST , the space of SO(N) minimally periodic single traces.
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and k ⊗ Vk is the vector space of single traces of periodicity k.
We saw in (6.3) that for odd length, reversal invariant aperiodic matrix words, only the

even periodicities survive the Z2 projection. For all other aperiodic matrix words, there is no
distinction between even and odd periodicities. Therefore Vk will depend only on whether k
is even or odd. From the discussions in section 6.3, we can write down the appropriate vector
spaces. They are

T̃
(odd)
ST = T

(1)
ST ;inv;even ⊕ T̃

(1)
ST ;var (6.9)

T̃
(even)
ST = T

(1)
ST ;inv ⊕ T̃

(1)
ST ;var

= T
(1)
ST ;inv;even ⊕ T

(1)
ST ;inv;odd ⊕ T̃

(1)
ST ;var (6.10)

Note that the odd and even superscripts refer to periodicities, while the odd and even subscripts
refer to the length of the aperiodic trace/matrix word. Splitting K = Kodd ⊕ Keven in the
obvious way, we have

T̃ST =
(
Kodd ⊗ T̃

(odd)
ST

)
⊕
(
Keven ⊗ T̃ (even)

ST

)
Now the combination of Kodd and Keven keeps track of the true periodicities of the traces.

Doing a analysis of the Hilbert series associated with these vector spaces, similar to that
done in section 5.1, we arrive at the relations shown in figure 9. The transformations S and
Smult are defined by

S [f, g] (x, y) =
∑
k odd

f(xk, yk) +
∑
k even

g(xk, yk)

Smult [f, g] (x, y) =

( ∏
k odd

f(xk, yk)

)( ∏
k even

g(xk, yk)

)
Note that S, while being similar to M−1, has a distinct disadvantage to it’s analogue, namely
it is not invertible. Given S[f, g], there are multiple f, g which would produce the same S. This

means we cannot instantly find the Hilbert series for T̃
(odd)
ST and T̃

(even)
ST just from the Hilbert

series for T̃ . Instead we need to investigate the structures (6.9) and (6.10).
In order to do this, we introduce names for the coefficients of various Hilbert series. These

are shown in table 5, along with a description of which set of traces these coefficients count.
Tables of values are given in appendix C.

Recall that an,m are the coefficients in the Hilbert series for T
(1)
ST . Then from definition (6.2),

and recalling (6.6), we have
an,m = ainvn,m + 2avarn,m

The lower case sequences count aperiodic single traces, while the upper case ones count single
traces of all periodicities. This leads to relations (5.7) and (5.8) between the as and As (although
shown only for the undecorated versions, this is also true for both superscripts). Using these,
we have

An,m = Ainvn,m + 2Avarn,m

From the definitions (6.9) and (6.10), we also get

b(even)
n,m = avarn,m + ainvn,m

=
1

2

[
an,m + ainvn,m

]
(6.11)

b(odd)
n,m =

{
avarn,m + ainvn,m n+m even

avarn,m n+m odd

=
1

2

[
an,m + (−1)n+mainvn,m

]
(6.12)
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T̃
(odd)
ST

H
T̃

(odd)
ST

Counts single traces of a specified periodicity

T̃ST = Kodd ⊗ T̃
(odd)
ST ⊕Keven ⊗ T̃ (even)

ST

H
T̃ST

= S
(
H
T̃

(odd)
ST

, H
T̃

(even)
ST

)
Counts all single traces

T̃ (odd) = Sym
(
T̃

(odd)
ST

)
H
T̃ (odd) = PExp

(
H
T̃

(odd)
ST

)
Counts multi-traces of a specified periodicity

T̃ = Sym
(
Kodd ⊗ T̃

(odd)
ST ⊕Keven ⊗ T̃ (even)

ST

)
= Sym

(
T̃

(odd)
ST

)⊗Kodd
⊗ Sym

(
T̃

(even)
ST

)⊗Keven
H
T̃

= PExp
[
S
(
H
T̃

(odd)
ST

, H
T̃

(even)
ST

)]
= Smult

[
PExp

(
H
T̃

(odd)
ST

)
, PExp

(
H
T̃

(even)
ST

)]
Counts all multi-traces

Tensor with Kodd and

S

Sym

PExp

Sym

PExp

Smult

T̃
(even)
ST

H
T̃

(even)
ST

T̃ (even) = Sym
(
T̃

(even)
ST

)
H
T̃ (even) = PExp

(
H
T̃

(even)
ST

)
Keven respectively

Tensor power of Kodd
and Keven respectively

Figure 9: Diagram summarising the structure of T̃ , the space of SO(N) multi-traces, and its

relation to T̃
(odd)
ST , the space of SO(N) single traces of a specified odd periodicity, and T̃

(even)
ST ,

the space of SO(N) single traces of a specified even periodicity.
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Hilbert series coefficients Vector space Counting interpretation

ainvn,m T
(1)
ST ;inv aperiodic, reversal invariant

U(N) single traces

avarn,m T̃
(1)
ST ;var aperiodic pairs of U(N) single traces

that reverse into each other

Ainvn,m TST ;inv = K ⊗ T (1)
ST ;inv all reversal invariant U(N) single traces

Avarn,m T̃ST ;var = K ⊗ T̃ (1)
ST ;var all pairs of U(N) single traces

that reverse into each other

b
(odd)
n,m T̃

(odd)
ST SO(N) single traces of a

specified odd periodicity

b
(even)
n,m T̃

(even)
ST SO(N) single traces of a

specified even periodicity

Table 5: Definition of various trace counting sequences. Formally, they are defined as the
coefficients of Hilbert series for certain vector spaces. We also give the counting interpretation.

So to find the desired Hilbert series, we first need to find the generating function for the ainvn,m,
or equivalently the Ainvn,m, since they are related by (5.7) and (5.8).

In (6.2) we decomposed T
(1)
ST into subspaces that were invariant or variant under reversal.

We now do the same to TST .

TST = TST ;inv ⊕ TST ;var = (TST ;inv;odd ⊕ TST ;inv;even)⊕ TST ;var

where the odd and even parts refer to the length of the entire single trace, not (as before) the
length of the aperiodic matrix word which, along with the periodicity, defined the single trace.
We have

TST ;inv = K ⊗ T (1)
ST ;inv TST ;var = K ⊗ T (1)

ST ;var

but the split into odd and even parts does not respect the K tensor product. Instead, we have

TST ;inv;even =
(
K ⊗ T (1)

ST ;inv;even

)
⊕
(
Keven ⊗ T (1)

ST ;inv;odd

)
(6.13)

TST ;inv;odd = Kodd ⊗ T
(1)
ST ;inv;odd (6.14)

By repeating the earlier analysis, or by comparing (6.13) and (6.14) with (6.3), (6.4) and (6.5),
we see that under the Z2 quotient, TST ;inv;odd disappears, TST ;inv;even is unchanged, and TST ;var

is ‘halved’ to T̃ST ;var as before. So looking at all single traces, rather than just aperiodic single
traces, we have

TST −→
Z2

T̃ST = TST ;inv;even ⊕ T̃ST ;var (6.15)

We know that Bn,m, defined in (6.26), are the coefficients of H
T̃ST

, and therefore

Bn,m =

{
Avarn,m +Ainvn,m n+m even

Avarn,m n+m odd

=
1

2

[
An,m + (−1)n+mAinvn,m

]
(6.16)

We previously found a formula for An,m, (5.19), and in the next section we find an expression
for Bn,m, (6.26). Comparing these with (6.16) allows us to find Ainvn,m. Since ainvn,m are related to
Ainvn,m via the Möbius transform, we can then use (6.11) and (6.12) to find the Hilbert series for

T̃
(even)
ST and T̃

(odd)
ST .
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6.3 Derivation of Hilbert series

The previous two sections have found the structure of T̃ and how this structure is made manifest
in the Hilbert series H

T̃
. We now find the various related Hilbert series explicitly.

As explained in section 3.3.1, the mesonic operators are just multi-traces of X and Y . At
finite N there are non-trivial relations between these traces, but in the large N limit each distinct
multi-trace is a linearly independent operator. As we saw in 5.1, the plethystic exponential, (5.2),
takes the single trace generating function to the multi-trace generating function, so if we can
find the single trace counting Bn,m, and the associated generating function fSO(N)(x, y), then
the multi-trace counting is immediate.

To find the Bn,m, think about the matrix words contained inside the traces. These words
are constructed from n Xs and m Y s. In the U(N) gauge theory, they are equivalent up to
cyclic rotations only, but in the SO(N) gauge theory, we also have to consider the effect of
transposition. As seen in (6.1), this reverses the word and also multiplies by a factor of (−1)M

(M = n+m is the total number of matrices in the trace). The cyclic rotations and the reversal
act as DM on the matrix word. Note that we already encountered a dihedral group in section
4.2.2, where it arose in the stabiliser group of an individual cycle. Since single cycles correspond
to single traces, this is the same dihedral group as appears here.

The factors of −1 mean this dihedral group action on its own is not sufficient to describe the
effect of the anti-symmetry. Rather than consider DM acting on the set of words, we consider
it acting on the vector space spanned by the set of words. Explicitly, let V be the vector space
spanned by two vectors, eX and eY . Then a basis for V ⊗M is clearly labelled by the set of words
of length M constructed from X and Y . Let σ be the generator of rotations in DM and τ the
reflection/transposition. Then they act as

σ [ei1 ⊗ ei2 ⊗ ...⊗ eiM ] = ei2 ⊗ ei3 ⊗ ...⊗ eiM ⊗ ei1
τ [ei1 ⊗ ei2 ⊗ ...⊗ eiM ] = (−1)MeiM ⊗ ...⊗ ei2 ⊗ ei1 (6.17)

where ij ∈ {X,Y }. This action of the dihedral group on the space of matrix words was considered
in [54].

To get the vector space spanned by traces of anti-symmetric matrices, we project down to
those states which are invariant under this action of DM . This is done using the projector

P =
1

2M

∑
ρ∈DM

ρ =
1

2M

M∑
i=1

σi(1 + τ)

At this point, we’ve only sorted the words by their length, as opposed to how many Xs and Y s
they contain. To do this more refined sorting, we define an operator Q on V by

QeX = xeX QeY = yeY

Let Q̂ = Q ⊗ ... ⊗ Q be the equivalent on V ⊗M . Then words constructed from n Xs and m
Y s have eigenvalue xnym under Q̂, so it is the action of P on the eigenspaces of Q̂ that we
are interested in (clearly the number of Xs and Y s in a word is not changed by the action of
DM , and therefore Q̂ and P commute, or equivalently, P acts on each of the eigenspaces of
Q̂ independently of the other eigenspaces). The Bn,m are then the dimension of the projected
eigenspaces. To find these we consider

Tr (Q̂P ) =
∑

n+m=M

xnymBn,m (6.18)

This can be calculated explicitly by noting that if we take ρ ∈ DM to be purely a permutation
on the factors of V ⊗M (so we forget about the factor of (−1)M in (6.17) briefly), we have

Tr (ρQ̂) = ( Tr Q)c1(ρ)( Tr Q2)c2(ρ)( Tr Q3)c3(ρ)....

= (x+ y)c1(ρ)(x2 + y2)c2(ρ)(x3 + y3)c3(ρ)...
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where ci(ρ) is the number of i-cycles in the cycle decomposition of ρ as a permutation on M
objects. We have already seen the above statement in (2.10). Now restoring the (−1)M and
using (6.18), we have

∑
n+m=M

xnymBn,m =
1

2M

[
M∑
i=1

(x+ y)c1(σi)(x2 + y2)c2(σi)(x3 + y3)c3(σi)...

+ (−1)M
M∑
i=1

(x+ y)c1(σiτ)(x2 + y2)c2(σiτ)(x3 + y3)c3(σiτ)...

]
(6.19)

We can evaluate this using the cycle index polynomial ofDM . For a subgroupH of the symmetric
group SM , the cycle index polynomial of H is defined to be

ZH(t1, t2, ...) =
1

|H|
∑
ρ∈H

t
c1(ρ)
1 t

c2(ρ)
2 t

c3(ρ)
3 ...

=
∑
p`M

ZHp
∏
i

tpii (6.20)

where ZHp is the number of elements of H with cycle type p divided by |H|.
Were it not for the (−1)M in (6.19), we could just replace ti with xi + yi in ZDM to get the

order M part of the generating function for the Bn,m. As it is, we need to know slightly more
about the structure of the ZDM polynomials. Fortunately they are well known

ZDM (t1, t2, ...) =
1

2M

∑
d|M

φ(d)t
M
d
d +

1
2 t1t

M−1
2

2 M odd

1
4 t

M−2
2

2

(
t21 + t2

)
M even (and ≥ 2)

where φ(d) is the Euler totient function defined in (A.9). The first part of the polynomials is
just half the cycle index polynomial of the cyclic group CM . This corresponds to the rotations
in DM . The second part is the reflections, where the differences between M odd and even
come from the fact that odd-sided polygons only have one type of line of symmetry, those going
through a vertex and bisecting the opposite side; while even-sided polygons have two types of
lines of symmetry, those going through pairs of opposite vertices and those bisecting pairs of
opposite lines. Now we know which part of ZDM comes from reflections, we can see that (6.19)
is ∑

n+m=M

xnymBn,m =
1

2M

∑
d|M

φ(d)(xd + yd)
M
d

+

{
−1

2(x+ y)(x2 + y2)
M−1

2 M odd
1
4(x2 + y2)

M−2
2

[
(x+ y)2 + (x2 + y2)

]
M even

(6.21)

To find Bn,m explicitly we binomially expand the above. The first half of the expression was
already expanded in (5.18), and is just (half) the order M generating function for the An,m, so
we focus on the second half. We have

(x+ y)
(
x2 + y2

)M−1
2 =

M−1
2∑

r=0

(M−1
2

r

)(
x2r+1yM−2r−1 + x2ryM−2r

)
(6.22)

for M odd, and

(x2 + xy + y2)
(
x2 + y2

)M−2
2 =

M−2
2∑

r=0

(M−2
2

r

)(
x2r+2yM−2r−2 + x2r+1yM−2r−1 + x2ryM−2r

)
(6.23)
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for M even.
Consider the coefficient of xnym if both n and m are even. Two of the three terms in (6.23)

can contribute. Provided n,m ≥ 2, we get contributions from r = n
2 ,

n
2 − 1. This leads to the

coefficient (n+m
2 − 1
n
2

)
+

(n+m
2 − 1
n
2 − 1

)
=

(n
2 + m

2
n
2

)
(6.24)

Checking the cases where n = 0 or m = 0, we get 1 as a coefficient, which agrees with (6.24).
Performing similar analyses for the other possible parity combinations leads to the coefficients(n

2 + m−1
2

n
2

)
n even,m odd(n−1

2 + m
2

n−1
2

)
n odd,m even(n−1

2 + m−1
2

n−1
2

)
n odd,m odd

All four cases can be summarised by the coefficient(
bn2 c+ bm2 c
bn2 c

)
Taking account of the signs and factors of a half in (6.21), we have

Bn,m =
1

2
An,m +

(−1)n+m

2

(
bn2 c+ bm2 c
bn2 c

)
(6.25)

=
1

2n+ 2m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
+

(−1)n+m

2

(
bn2 c+ bm2 c
bn2 c

)
(6.26)

To find the full generating function for Bn,m, we sum (6.21) from M = 1 to ∞. We already
know how to sum the first half of this expression from (5.16) (it is just the generating function
for An,m), and the second half is simple to evaluate directly. Explicitly, we get

fSO(N)(x, y) = H
T̃ST

(x, y) =
1

2

[
−
∞∑
d=1

φ(d)

d
log(1− xd − yd) +

x2 + xy + y2 − x− y
1− x2 − y2

]
(6.27)

We can now take the plethystic exponential, given in (5.2), to get the multi-trace generating
function

FSO(N)(x, y) = H
T̃

(x, y) =

∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(6.28)

where to evaluate the infinite products/sums we have used a change of variables similar to those
in (5.17) and (5.18) as well as the identity (A.9). After completion of this paper we became
aware of [55], which gives a similar counting formula in the context of SO(N) superconformal
indices.

As a sanity check, we can set y = 0 and check that we recover the generating function for
single matrix operators found in [25]. Using (5.2), this gives us

FSO(N)(x, 0) =

∞∏
n=1

1

(1− xn)Bn,0
(6.29)
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Setting m = 0 in (6.26) and using (A.9) we get

Bn,0 =
1

2
(1 + (−1)n) =

{
1 n even

0 n odd

Plugging this into (6.29) gives us

FSO(N)(x, 0) =
∞∏
n=1

1

1− x2n

which matches the result found in [25].
We can now use the relations given in figure 8 to find H

T̃ (min) and H
T̃

(min)
ST

. Taking the

Möbius transform (see (5.9)) of (6.27) gives

H
T̃

(min)
ST

(x, y) =
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d − xd − yd

1− x2d − y2d

]
(6.30)

where we have used the identity (A.11). Then taking the plethystic exponential, we get

H
T̃ (min)(x, y) =

1√
1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2k − xk − yk

1− x2k − y2k

∑
d|k

dµ(d)


where we have used the identity (A.4).

The numbers appearing in the exponential here, ck =
∑

d|k dµ(d), form an interesting math-
ematical sequence. It is sequence A023900 in the OEIS, and has the alternative expression

ck =
∏
p|k

p prime

(1− p)

To find the Hilbert series for the vector spaces relevant to the periodicity structure, as seen in
section 6.2, we first compare (6.16) with (6.26) and (5.19) to find

Ainvn,m =

(
bn2 c+ bm2 c
bn2 c

)
Summing over n,m gives the Hilbert series for TST ;inv

HTST ;inv
(x, y) =

(1 + x)(1 + y)

1− x2 − y2
− 1 =

x2 + xy + y2 + x+ y

1− x2 − y2
(6.31)

where the −1 comes from setting Ainv0,0 = 0. Note that we already saw this as the second half of
the generating function (6.27).

Since Ainvn,m and ainvn,m are related by a Möbius transform, we have

H
T

(1)
ST ;inv

(x, y) =M
(
HTST ;inv

)
(x, y) =

∞∑
d=1

µ(d)
x2d + xdyd + y2d + xd + yd

1− x2d − y2d
(6.32)

Then using the Hilbert series equivalents or the formulae (6.11) and (6.12), we have

H
T̃

(odd)
ST

(x, y) =
1

2

[
H
T

(1)
ST

(x, y) +HTST ;inv
(−x,−y)

]
=

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + (−x)d + (−y)d

1− x2d − y2d

]
H
T̃

(even)
ST

(x, y) =
1

2

[
H
T

(1)
ST

(x, y) +HTST ;inv
(x, y)

]
=

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + xd + yd

1− x2d − y2d

]
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Note the similarities between these series, which count odd and even periodicity single traces,
and the minimally periodic version (6.30). The only difference between the three series is in the
sign of the last two terms.

We can also derive explicit expressions for the coefficients ainvn,m, b
(odd)
n,m and b

(even)
n,m . These are

given in appendix C.
Finally, taking the plethystic exponential gives

H
T̃ (odd)(x, y) =

1√
1− x− y

∞∏
k=1

exp

∑
d|k

dµ(d)

2k

x2k + xkyk + y2k + (−1)d(xk + yk)

1− x2k − y2k


H
T̃ (even)(x, y) =

1√
1− x− y

∞∏
k=1

exp

x2k + xkyk + y2k + xk + yk

2k(1− x2k − y2k)

∑
d|k

dµ(d)


where we have used the identity (A.4). This gives us all the Hilbert series featured in figure 9.

7 The orientifold quotient in the quarter-BPS sector

In section 4 we looked at the orientifold quotient that takes the U(N) theory to the SO(N)
theory in the half-BPS sector. This map had remarkable connections to plethysms of Young
diagrams and the combinatorics of domino tableaux. The key result that enabled us to link
these together was the matrix element (4.22), proved in [42].

We now generalise to the quarter-BPS sector. As with the half-BPS sector, the quotient
simply takes the matrices X and Y and makes them anti-symmetric. Since the U(N) operators
are multi-traces, their quotient must also be multi-traces, and therefore (similarly to half-BPS)
the baryonic operators do not feature. However, as demonstrated in sections 5.1 and 6.1, the
set of two-matrix traces is significantly more complicated than the one-matrix version. Our first
task is to give a labelling set for generic multi-traces in both the U(N) and SO(N) theories.
These make use of Lyndon words and orthogonal Lyndon words respectively.

After establishing a notation for generic multi-traces, we investigate how an individual U(N)
multi-trace behaves under the quotient. This is more complicated than the half-BPS case since
two distinct U(N) multi-traces can now give the same (non-zero) SO(N) multi-trace. For
example TrX2Y XY 2 and TrX2Y 2XY are distinct in the U(N) theory but when X and Y are
made anti-symmetric, they reduce to the same object.

Both the U(N) basis (3.24) and the mesonic SO(N) basis (3.14) are defined in terms of sums
over permutations. Following the route in 4.2, we investigate how these reduce to sums over (the
labelling sets of) multi-traces. To do this, we study the group action which leaves the mesonic
contraction invariant, (3.8), and in particular we find the stabiliser group for a representative of
a double coset.

We then put all the pieces together to find the coefficients involved in the quotient of a
U(N) operator to a linear combination of SO(N) operators. Unfortunately we have not found
an analogue of (4.22), so the simplifications of the half-BPS do not occur here and we have not
been able to find a combinatoric interpretation of our results.

7.1 Labelling of traces

A U(N) single trace is described by a Lyndon word w and a periodicity, while a multi-trace
is defined by a collection of these single traces. Consider a generic U(N) multi-trace, and let
the number of constituent single traces with Lyndon word w and periodicity i be pw,i, then the
multi-trace can be written

T
U(N)
P =

∏
w,i

(
TrW i

)pw,i
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P T
U(N)
P

px = [1, 1] , py = [1, 1] (TrX)2 (TrY )2

px = [1, 1] , py = [2] (TrX)2 (TrY 2
)

px = [2] , py = [1, 1]
(
TrX2

)
(TrY )2

px = [1] , py = [1] , pxy = [1] (TrX) (TrXY ) (TrY )
px = [2] , py = [2]

(
TrX2

) (
TrY 2

)
pxy = [1, 1] (TrXY )2

px2y = [1] , py = [1]
(
TrX2Y

)
(TrY )

pxy2 = [1] , px = [1] (TrX)
(
TrXY 2

)
pxy = [2] Tr(XY )2

px2y2 = [1] TrX2Y 2

Table 6: The 10 different U(N) multi-traces at n = m = 2 along with their labels. Any
constituent partitions of P that are not explicitly listed are set to zero.

where W is the matrix word equivalent of the Lyndon word w. This trace is characterised by
the set of numbers {pw,i}. A convenient way to package these numbers is to define a partition
pw for each Lyndon word

pw = (1pw,1 , 2pw,2 , ...)

Then the label for a U(N) multi-trace is

P = {pw : w a Lyndon word} =
{
px, py, pxy, px2y, pxy2 , ...

}
Define lx(w), ly(w) and l(w) be the number of xs, the number of ys and the total length of w
respectively. Then clearly l(w) = lx(w) + ly(w), and the number of Xs and Y s in a multi-trace
is

n =
∑
w

lx(w)|pw| m =
∑
w

ly(w)|pw|

We summarise this with P  (n,m).
As an example of this labelling, table 6 lists the 10 different P  (2, 2) and their associated

multi-traces.
A SO(N) single trace is described by an orthogonal Lyndon word w̃ (as defined in section

6.1) and a periodicity. Consider a SO(N) multi-trace, and let pw̃,i be the number of constituent
single traces with orthogonal Lyndon word w̃ and periodicity i. Then we have a partition
pw̃ = (1pw̃,1 , 2pw̃,2 , ...) for each orthogonal Lyndon word and we denote the combination by

P̃ = {pw̃ : w̃ an orthogonal Lyndon word} =
{
px2 , pxy, py2 , px3y, px2y2 , pxy3 , ..., px2yxy2 , ...

}
The multi-trace corresponding to P̃ is

T
SO(N)

P̃
=
∏
w̃,i

(
TrW̃ i

)pw̃,i
(7.1)

where W̃ is the matrix word corresponding to the orthogonal Lyndon word w̃. As for the normal
Lyndon words, let lx(w̃), ly(w̃) and l(w̃) be the number of xs, number of ys and total length of
w̃ respectively. Then

n =
∑
w̃

lx(w̃)|pw̃| m =
∑
w̃

ly(w̃)|pw̃|

We use the same notation P̃  (n,m) as for the U(N) traces. It will always be clear whether
we are referring to a SO(N) or U(N) trace.
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P̃ T
SO(N)

P̃
px2 = [1] , pxy = [1] , py2 = [1]

(
TrX2

)
(TrXY )

(
TrY 2

)
pxy = [1, 1, 1] (TrXY )3

px3y = [1] , py2 = [1]
(
TrX3Y

) (
TrY 2

)
px2y2 = [1] , pxy = [1]

(
TrX2Y 2

)
(TrXY )

pxy3 = [1] , px2 = [1]
(
TrXY 3

) (
TrX2

)
pxy = [2, 1] Tr (XY )2 (TrXY )
px3y3 = [1] TrX3Y 3

px2yxy2 = [1] TrX2Y XY 2

pxy = [3] Tr(XY )3

Table 7: The 9 different SO(N) multi-traces at n = m = 3 along with their labels. Any
constituent partitions of P̃ that are not explicitly listed are set to zero.

We give the 9 different P̃  (3, 3) in table 7.
It will also be helpful to consider traces of symmetric matrices X and Y . A single trace

will be labelled by a Lyndon word up to reversal, w̄, and a periodicity. This means w̄ can be
split into two types; either it is a Lyndon word that is invariant under reversal (type 1), or it
is the first (lexicographically) of a pair of Lyndon words that transform into each other under
reversal (type 2). This differs from the SO(N) case (anti-symmetric matrices) in that there is
no distinction between odd and even length words. We define pw̄, P̄, W̄ , lx(w̄), ly(w̄), l(w̄) and
 in an analogous way to the U(N) and SO(N) traces.

7.2 Projection of a trace

Consider a U(N) multi-trace T
U(N)
P and project it to the SO(N) theory by turning each of the

Xs and Y s into anti-symmetric matrices. If any of the constituent single traces vanish when X
and Y are anti-symmetric, then clearly the projection is zero. In section 6.1 we studied how

the single traces behave under the projection. In the language of this section, T
U(N)
P will vanish

if pw,i 6= 0 for a pair (w, i) such that i is odd and w is reversal-invariant and of odd length.
Equivalently, if P contains a partition pw (where w is reversal-invariant and of odd length)
which has an odd component.

For the remaining P, T
U(N)
P projects to a non-zero SO(N) multi-trace, whose constituent

single traces fall into 4 categories. They are (powers of) type 1A orthogonal Lyndon words, type

1B words, type 2 words or the reversal of type 2 words. To turn the trace into the form T
SO(N)

Q̃
for some Q̃ we transpose the traces in the last category. For a single trace with Lyndon word
w = w̃(r) and periodicity i, this introduces a factor of (−1)i l(w), as shown in (6.1). Multiplying
up all the sign factors from the constituent single traces gives

OrthSign(P) =
∏
w,i

where w=w̃(r) for
w̃ an orthogonal Lyndon

word of type 2

(−1)i l(w)pw,i =
∏
w

where w=w̃(r) for
w̃ an orthogonal Lyndon

word of type 2

(−1)l(w)|pw|

So for those T
U(N)
P which don’t vanish under the projection, we have

T
U(N)
P

Z2−→ OrthSign(P)T
SO(N)
Orth(P) (7.2)
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U(N) multi-trace Image after projection(
TrX2Y XY 2

)2 (
TrX2Y XY 2

)2(
TrX2Y XY 2

) (
TrX2Y 2XY

) (
TrX2Y XY 2

)2(
TrX2Y 2XY

)2 (
TrX2Y XY 2

)2(
TrX3Y XY 2

)2 (
TrX3Y XY 2

)2(
TrX3Y XY 2

) (
TrX3Y 2XY

)
−
(
TrX3Y XY 2

)2(
TrX3Y 2XY

)2 (
TrX3Y XY 2

)2
Table 8: Examples of projections of individual U(N) multi-traces

U(N) Permutation SO(N) Permutation Corresponding trace

(1, 2, n+ 1, n+ 2) (1, 3, 2n+ 1, 2n+ 3) TrX2Y 2

(1, n+ 1, 2, n+ 2) (1, 2n+ 1, 3, 2n+ 3) Tr(XY )2

(1, 2, 3, n+ 1, 4, n+ 2) (1, 3, 5, 2n+ 1, 7, 2n+ 3) TrX3Y XY

(1, 2, n+ 1, 3, 4, n+ 2) (1, 3, 2n+ 1, 5, 7, 2n+ 3) Tr
(
X2Y

)2
Table 9: Examples of multi-traces and the permutations which produce them via the SO(N)
contraction (3.5) and the U(N) contraction (3.22).

where Orth(P) is the SO(N) multi-partition composed of qw̃,i, defined by

qw̃,i =


pw̃,i w̃ of type 1A

p√w̃,2i w̃ of type 1B

pw̃,i + pw̃(r),i w̃ of type 2

and for w̃ of type 1B, we define
√
w̃ to be the Lyndon word that, when repeated, gives w̃. So

for example
√
x2 = x and

√
x2yx2y = x2y.

We give a few examples of the full projection in table 8.

7.3 From permutations to traces

7.3.1 U(N)

Permutations σ ∈ Sn+m produce multi-traces via the formula (3.22). As in the half-BPS case,
each cycle in the permutation corresponds to a single trace, but we can now have two cycles of
the same length producing different traces. We give a few examples in the first column of table
(9).

These examples make it clear how a permutation produces a trace. Writing out the per-
mutation in cycle notation, a number in {1, 2, ..., n} corresponds to an X while a number in
{n + 1, n + 2, ..., n + m} corresponds to a Y . From (3.23), we see that the set of permutations
producing the same multi-trace is no longer a standard conjugacy class, but is instead the orbit
under conjugation by Sn × Sm.

Each different conjugacy class produces a different multi-trace, and conversely each multi-
trace corresponds to a conjugacy class. Therefore the labelling set for the conjugacy classes is
exactly the same as that for the traces, given by the P defined in section 7.1.

The size of these conjugacy classes is found using the orbit-stabiliser theorem. Take σ to be
a representative member of the conjugacy class labelled by P. The stabiliser of σ is composed
of the elements of Sn× Sm that commute with σ. As in the half-BPS, each cycle has a rotation
subgroup attached to it. However, conjugation by Sn × Sm rather than by Sn+m means we can
only rotate the numbers 1, 2, ..., n amongst themselves (and similarly for n+ 1, n+ 2, ..., n+m).

64



Therefore for a single cycle labelled by Lyndon word w and periodicity i (remember cycles
correspond to single traces), the rotation group has size i (rather than il(w), which is the length
of the cycle). As in the half-BPS case, different cycles with the same labels can be permuted,
and therefore the stabiliser is given by

Stab(σ) ∼=×
w,i

Spw,i [Zi]

which has size
ZP =

∏
w,i

ipw,i (pw,i)! =
∏
w

zpw

So by the orbit-stabiliser theorem, the size of Sn × Sm conjugacy classes is

n!m!

ZP

7.3.2 SO(N)

Permutations σ ∈ S2n+2m, or elements of C(S2n+2m), produce traces via the formula (3.5). This
contraction is invariant under the algebra transformation (3.8). Following the route we took in
section 4.2.2, we study the orbits of σ ∈ S2n+2m under the action

σ 7→ ασγ−1 α ∈ Sn+m[S2] , γ ∈ Sn[S2]× Sm[S2] (7.3)

These orbits are called double cosets, but in contrast to the half-BPS case, the groups are
different on the left and right. If we took X and Y to be symmetric matrices in (3.5), then it
would be invariant under (7.3). Therefore the orbits under this action correspond to multi-traces
of symmetric matrices. Thus the P̄, defined in section 7.1, form the labelling set for the orbits.

We can repeat the steps in (4.12) and figure 5, but including copies of both X and Y , to show

that if σ ∈ S(odd)
n+m ≤ S2n+2m, the SO(N)-style contraction reduces to the U(N)-style contraction.

Explicitly, let τ ∈ Sn+m be the equivalent permutation to σ, then

C
(δ)
I σIJ

(
X⊗nY ⊗m

)J
= Xk1kτ(1) ...Xknkτ(n)Y kn+1kτ(n+1) ...Y kn+mkτ(n+m) (7.4)

So by comparison with the U(N), if we write out σ ∈ S(odd)
n+m in cycle notation, an odd number in

{1, 3, 5, ..., 2n−1} will correspond to an X, while an odd number in {2n+1, 2n+3, ..., 2n+2m−1}
will correspond to a Y . Examples are given in the second column of table 9. From (7.4), we can

see that any multi-trace can be produced by permutations in S
(odd)
n+m , and therefore we can take

the double coset representatives to be in S
(odd)
n+m .

As with their half-BPS equivalents, the double cosets can be split into two categories, odd
and even, depending on whether the stabilisers of a representative element can have an odd
permutation in their right hand factor. By analogous reasoning to (4.13) and (4.14), the odd
double cosets produce vanishing traces and matrix elements. Just as in the half-BPS case, the
even double cosets are those which produce non-zero traces, so we expect (and prove below)
that they will be labelled by P̃ (defined in 7.1).

With the half-BPS even/odd double cosets we were able to characterise them more simply
by whether the corresponding partition had all even components or not. We now find the
corresponding characterisation for the quarter-BPS double cosets, for which purpose we study
the detailed structure of the stabiliser.

Take σ ∈ S(odd)
n+m to be a representative of the double coset labelled by P̄. The pair (α, γ) ∈

Sn+m[S2] × (Sn[S2]× Sm[S2]) is in the stabiliser of σ if ασγ−1 = σ. This is equivalent to
α = σγσ−1, so we look for γ ∈ Sn[S2]× Sm[S2] such that

σγσ−1 ∈ Sn+m[S2] (7.5)
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Similarly to the half-BPS case, this is trivially true if γ commutes with σ. By following the
same argument as given in section 4.2.2, we can embed Sn × Sm into S2n+2m in such a way

that the conjugation (by S
(odd)
n × S(odd)

m ) stabiliser of σ in S
(odd)
n+m is a subgroup of the SO(N)

stabiliser. This is exactly the group we already found in section 7.3.1. Note that the form of
this embedding means that all members of this subgroup are even in S2n+2m.

This tells us that for each individual cycle of type (w̄, i) we have a corresponding rotation
group of order i. Just as for half-BPS, the SO(N) stabiliser differs from the U(N) one in that
it has reflections as well these rotations. However, unlike the half-BPS case, this does not occur
for all cycles. To see why, we explain how these reflections are constructed by giving examples
and then explain the general case.

If we take c = (1, 2n + 1, 3, 2n + 3, 5, 2n + 5) (this is labelled by w̄ = xy and i = 3),
a reflection is given by γ = (1, 2)(2n + 1, 2n + 6)(3, 6)(2n + 3, 2n + 4)(5, 4)(2n + 5, 2n + 2).
Given c = (1, 3, 2n + 1, 5, 7, 2n + 3) (labelled by w̄ = x2y and i = 2), a reflection is γ =
(1, 8)(3, 6)(2n+ 1, 2n+ 2)(5, 4)(7, 2)(2n+ 3, 2n+ 4).

In general, for a cycle c ∈ S(odd)
n+m labelled by w̄ and i, the reflections γ can be constructed from

i l(w̄) transpositions, each consisting of one odd and one even number. Order the transpositions
so that the odd numbers appear in the same order as they do in c. Then the even numbers
should appear in the reverse order. This produces a γ ∈ Sn+m[S2] satisfying (7.5), but for
γ ∈ Stab(c) we need γ ∈ Sn[S2] × Sm[S2]. This can only be done if it is possible to match the
even and odd numbers so that each transposition only consists of numbers ≤ 2n or ≥ 2n + 1.
Since the ordering of the numbers is governed by the word w̄, this can only be done if w̄ is
invariant under reversal (up to cyclic rotations).

Therefore w̄ of type 1 do have a reflection symmetry in their stabiliser group, while w̄ of type
2 do not. The sign of the reflections is given by (−1)i l(w̄), so if σ contains a cycle labelled by
an odd length w̄ of type 1 with an odd periodicity, σ represents an odd double coset. In terms
of P̄, the double coset is odd if any of the constituent partitions pw̄, for reversal-invariant (type
1) w̄ of odd length, has an odd component.

Therefore for even double cosets, the partitions pw̄ (type 1 w̄ of odd length) must have
even components, and we can therefore give a more streamlined parameterisation by setting
pw̄ = 2pw̄w̄ for pw̄w̄ ` 1

2 |pw̄|. Note that w̄w̄ is exactly a type 1B orthogonal Lyndon word.
Replacing all such constituent partitions of P̄ with their ‘halved’ counterparts, we see that the
even double cosets are indeed labelled by P̃.

Consider an even double coset P̃ and a representative member σ. The contraction (3.5) will

produce the trace T
SO(N)

P̃
, up to a possible sign. We call σ a positive or negative representative

depending on this sign.
From the above analysis of the stabiliser, we see that for σ a representative for the double

coset P̄, we have

Stab(σ) ∼=

 ×
w̄ of type 1

i

Spw̄,i [Di]

×
 ×
w̄ of type 2

i

Spw̄,i [Zi]


which has size

Z̄P̄ =

 ∏
w̄ of type 1

z2pw̄

 ∏
w̄ of type 2

zpw̄


Since we are only interested in even double cosets, we can re-express these for P̃

Stab(σ) ∼=

 ×
w̃ of type 1A

i

Spw̃,i [Di]

×
 ×
w̃ of type 1B

i

Spw̃,i [D2i]

×
 ×
w̃ of type 2

i

Spw̃,i [Zi]

 (7.6)
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and

Z̃P̃ =

 ∏
w̃ of type 1A

z2pw̃

 ∏
w̃ of type 1B

z4pw̃

 ∏
w̃ of type 2

zpw̃


In this formula the 2pw̃ in the first factor has come from the dihedral group replacing the cyclic
group in the first factor of (7.6), while the 4pw̃ in the type 1B factor has come from the dihedral
group combined with the doubled periodicity for even double cosets (since odd periodicity traces
vanish).

By the orbit-stabiliser theorem, the size of an even double coset is

|Sn+m[S2]× (Sn[S2]× Sm[S2])|
|stabiliser|

=
22n+2mn!m!(n+m)!

Z̃P̃
(7.7)

As well as the abstract interpretation of Z̃P̃ as the size of an orbit, it has a physical interpretation.

Using the quarter-BPS correlators in section 8, one can show that Nn+mZ̃P̃ is the large N
normalisation of the two point function for multi-traces.

In this section we have described the equivalence classes in S2n+2m that lead, via the contrac-
tion (3.5), to the different SO(N) traces. These classes were orbits under the group action (7.3),
and we separated the orbits into two types (odd/even) depending on whether they produced
non-vanishing traces.

The U(N)-type contraction, (3.22), also produces SO(N) traces if we treat X and Y as
antisymmetric matrices, and therefore we can give an equivalent description using equivalence
classes in Sn+m. Explicitly, given σ ∈ Sn+m, we have

σ ∼ ασα−1 α ∈ Sn × Sm (7.8)

and in addition, σ is related to any permutation that can be obtained by inverting some subset
of the cycles of σ. Explicitly, if the cycle decomposition of σ is σ = c1c2...cr then

σ ∼ ci11 c
i2
2 ...c

ir
r ij ∈ {−1, 1} (7.9)

As before, we can split these equivalence classes into those that produce non-zero traces and
those whose contraction vanishes. If σ contains a cycle c of odd length such that c is conjugate
(under Sn × Sm) to c−1, then the contraction vanishes. If σ contains no such cycle, then it and
the corresponding equivalence class produce a non-vanishing trace.

The combination of (7.8) and (7.9) in Sn+m is equivalent to (7.3) in S2n+2m. We see that
the Sn+m version is more complicated, and explicitly depends on the cycle structure of σ. It
therefore cannot be described as a group action on Sn+m, unlike (7.3).

7.4 Projection coefficients

The quarter-BPS operators are given in (3.14) and (3.24) for SO(N) and U(N) respectively.
Using the results of the previous section we can turn these into sums over traces

O
U(N)
T,R,S,µ,ν =

dTn!m!

(n+m)!

∑
P(n,m)

1

ZP
TrT

[
P TR,S;µ→νD

T (σP)
]
T
U(N)
P (7.10)

O
SO(N)
T,R,S,λ =

dT 22n+2mn!m!(n+m)!

(2n+ 2m)!

∑
P̃(n,m)

1

Z̃P̃
〈T, [S]|DT

(
σP̃

)
|R,S, λ, [A]〉TSO(N)

P̃
(7.11)

where σP ∈ Sn+m is a representative member of the conjugacy class labelled by P and σP̃ ∈
S2n+2m is a positive representative member of the even double coset labelled by P̃. Note that
for convenience we have introduced |R,S, λ, [A]〉 = |R, λ, [A]〉 ⊗ |S, λ, [A]〉.
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To evaluate the projection coefficients, we would like to invert (7.11) and write the traces in
terms of the operators. We do this by finding an orthogonality relation for the coefficients

CP̃T,R,S,λ =
dT

(2n+ 2m)!

22n+2mn!m!(n+m)!

Z̃P̃
〈T, [S]|DT

(
σP̃

)
|R,S, λ, [A]〉

These are just change of basis coefficients taking us from the basis of multi-traces to the orthog-
onal Young diagram basis, so there must be an inverse set of coefficients DT,R,S,λ

P̃
satisfying∑

T,R,S,λ

CP̃T,R,S,λD
T,R,S,λ

Q̃
= δP̃Q̃

∑
P̃

CP̃T,R,S,λD
T ′,R′,S′,λ′

P̃
= δT

′
T δ

R′
R δ

S′
S δ

λ′
λ (7.12)

Note that proving either of these two relations is sufficient. We define the inverse coefficients to
be

DT,R,S,λ

P̃
= 〈R,S, λ, [A]|DT

(
σ−1

P̃

)
|T, [S]〉 (7.13)

and prove the second relation in (7.12).
Plugging C and D in gives∑

P̃

CP̃T,R,S,λD
T ′,R′,S′,λ′

P̃

=
dT 22n+2mn!m!(n+m)!

(2n+ 2m)!

∑
P̃

1

Z̃P̃
〈R′, S′, λ′, [A]|DT ′

(
σ−1

P̃

)
|T ′, [S]〉〈T, [S]|DT

(
σP̃

)
|R,S, λ, [A]〉

=
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈R′, S′, λ′, [A]|DT ′
(
σ−1

)
|T ′, [S]〉〈T, [S]|DT (σ) |R,S, λ, [A]〉

= δTT ′〈T, [S]|T ′, [S]〉〈R′, S′, λ′|R,S, λ〉

= δT
′

T δ
R′
R δ

S′
S δ

λ′
λ

where to augment the sum to one over S2n+2m we have used the invariance of the summand
under (7.3), the size of the even double cosets (given in (7.7)) and the fact that these matrix
elements vanish on odd double cosets. To evaluate the sum over S2n+2m, we have then used the
orthogonality relation for matrix elements of an irreducible representation, (2.4).

Using (7.12) to invert (7.11) gives

T
SO(N)

P̃
=

∑
T,R,S,λ

〈R,S, λ, [A]|DT
(
σ−1

P̃

)
|T, [S]〉OSO(N)

T,R,S,λ

We can now use (7.2) to project the U(N) operators (7.10) to the SO(N) theory, and then use
the above inversion to express this in terms of the SO(N) operators

O
U(N)
T,R,S,µ,ν

Z2−→ dTn!m!

(n+m)!

∑
Q̃

 ∑
P:Orth(P)=Q̃

1

ZP
OrthSign(P)TrT

[
P TR,S;µ→νD

T (σP)
]T

SO(N)

Q̃

=
dTn!m!

(n+m)!

∑
Q̃

∑
T ′,R′,S′,λ′

 ∑
P:Orth(P)=Q̃

1

ZP
OrthSign(P)TrT

[
P TR,S;µ→νD

T (σP)
]

〈R′, S′, λ′, [A]|DT ′
(
σ−1

Q̃

)
|T ′, [S]〉OSO(N)

T ′,R′,S′,λ′

=
∑

T ′,R′,S′,λ′

αT
′,R′,S′,λ′

T,R,S,µ,ν O
SO(N)
T ′,R′,S′,λ′
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where the projection coefficients are

αT
′,R′,S′,λ′

T,R,S,µ,ν =
dTn!m!

(n+m)!

∑
Q̃

 ∑
P:Orth(P)=Q̃

1

ZP
OrthSign(P)TrT

[
P TR,S;µ→νD

T (σP)
]

〈R′, S′, λ′, [A]|DT ′
(
σ−1

Q̃

)
|T ′, [S]〉 (7.14)

8 Correlators

The mesonic operators (3.14) were presented in [26], where the author calculated their correlators
using techniques from [24]. The conventions here will differ in two important ways, but these
do not affect the calculation of the correlator and we can quote the result in order to find the
mesonic two-point function.

In contrast, the baryonic operators (3.20) have not been studied in detail before, and their
correlator (in the half-BPS sector) was left unevaluated in [24]. The methods of [26] can be
simply extended to prove that the mesonic and baryonic operators are orthogonal to each other,
as well as giving an expression for the baryonic correlator in terms of index contractions over
the tensor space. We then proceed in two ways. In appendix E we evaluate this intermediate
expression directly by generalising the methods of [24].

Alternatively, in this section, we partially contract this expression while leaving some indices
free. We can then use Schur-Weyl duality on the free indices to relate it to the equivalent
expression for the mesonic correlator, and then use the mesonic result to give the baryonic
version. Before we begin, we first define the complex conjugate of the operators (3.14) and
(3.20) and explain how the conventions here differ from those in [26] and [24].

The complex conjugate of Xij is (X∗)ij = Xij , where this defines Xij , and similarly for

Y ij and Yij . Therefore the complex conjugate of (X⊗nY ⊗m)
I

is (X⊗nY ⊗m)I . Noting that

σIJ =
(
σ−1

)J
I

and C
(δ)
I = C(δ) I (and both are real), we see that[

C
(δ)
I σIJ

(
X⊗nY ⊗m

)J]∗
=
(
X⊗nY ⊗m

)
I

(
σ−1

)I
J
C(δ) J

Therefore the complex conjugate of the mesonic operator OδT,R,S,λ (defined in (3.14)) is

OδT,R,S,λ =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(
X⊗nY ⊗m

)
I

(
σ−1

)I
J
C(δ) J (8.1)

and similarly, the complex conjugate of the baryonic operator OεT,R,S,λ (defined in (3.20)) is

OεT,R,S,λ =
d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(
X⊗nY ⊗m

)
I

(
σ−1

)I
J
C(ε) J (8.2)

Note that the relations between T and n+m are different in these two formulae. In the mesonic
operators, T ` 2n+ 2m, whereas in the baryonic operators T ` 2q = 2n+ 2m−N .

The two point function of Xij with Xkl and Y ij with Ykl is

〈XijXkl〉 = δikδ
j
l − δ

i
lδ
j
k = 〈Y ijYkl〉 (8.3)

Initially, this appears to be the same as the two point function used in [24] and [26], however

they have used the definition Xij =
(
X†
)ij

= − (X∗)ij , so there is actually a relative minus
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sign. The convention (8.3) ensures the positivity of the two point function between Xij and its
conjugate Xij .

We can follow the arguments in [24] and [26] (keeping track of the implicit minus sign), to
show that 〈(

X⊗nY ⊗m
)I (

X⊗nY ⊗m
)
J

〉
=

∑
σ∈Sn[S2]×Sm[S2]

(−1)σσIJ

= 2n+mn!m!
(
P[A]n⊗[A]m

)I
J

(8.4)

This differs from the answer in [24] and [26] by a factor of (−1)n+m.

Both [24] and [26] define their conjugate operators, (8.1) and (8.2), in terms of
(
X†
)ij

rather

than (X∗)ij , and hence there is also a (−1)n+m factor difference in their definition of conjugate
operators compared with (8.1) and (8.2). This cancels with the minus sign in (8.4), and we can
use their results to give the mesonic correlators directly.

In [26], Kemp presented the mesonic operators and calculated their correlators. The nor-

malisation in (3.14) differs from his by a factor of dT (2n)!(2m)!
(2n+2m)! , so rescaling his result gives

〈OδT,R,S,λO
δ
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλ,λ′

dT 22n+2m(n+m)!n!m!

(2n+ 2m)!

∏
i∈ odd

columns of T

(N + ci) (8.5)

Where ci is the content of a box, as defined in (D.1), and i runs over the boxes in the Young
diagram T that are in the odd numbered columns of T . So for example, i would run over the
starred boxes in the following

∗ ∗
∗ ∗
∗
∗

∗ ∗ ∗ ∗
∗ ∗
∗

∗
∗
∗
∗
∗
∗

The calculation of the mesonic correlators goes via the intermediary result

〈OδT,R,S,λO
δ
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′

dT 2n+mn!m!

(2n+ 2m)!

∑
σ∈S2n+2m

〈T |DT (σ)|T 〉C(δ)
I σIJC

(δ) J

= δTT ′δRR′δSS′δλλ′2
n+mn!m!C

(δ)
I (AT )IJC

(δ) J (8.6)

where for notational simplicity we have used |T 〉 = |T, [S]〉, and AT ∈ C(S2n+2m), given by

AT =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T |DT (σ)|T 〉σ

The method used to acquire this intermediary result works just as well for the correlators of
baryonic operators, as well as the two-point function of a baryonic operator with a mesonic one.
As expected, the mesonic and baryonic operators are orthogonal

〈OεT,R,S,λO
δ
T ′,R′,S′,λ′〉 = 0

while in the purely baryonic case, we find

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉

= δTT ′δRR′δSS′δλλ′
d1N+T 2n+mn!m!

(2n+ 2m)!

∑
σ∈S2n+2m

〈1N + T |D1N+T (σ)|1N + T 〉C(ε)
I σIJC

(ε) J

(8.7)
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BT

B1N+T

P1N

= B1N+T=

Figure 10: BT is a partial trace of B1N+T multiplied by the projector P1N . B1N+T has N + 2q
indices, which are split into a set of N and a set of 2q. The two lines represent these two sets
respectively. The horizontal lines then indicate we trace over the first N indices, while the open
line indicates the remaining 2q indices are left free.

where we have used |1N + T 〉 =
∣∣1N〉⊗ |T, [S]〉.

In appendix E we evaluate (8.7) explicitly. Here, we relate the baryonic correlator to the
mesonic case by introducing

(
B1N+T

)I
J

=
d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

〈1N + T |D1N+T (σ)|1N + T 〉σIJ (8.8)

(BT )
i1i2...i2q
j1j2...j2q

=
1

N !
εk1k2...kN ε

l1l2...lN
(
B1N+T

)k1k2...kN i1i2...i2q
l1l2...lN j1j2...j2q

(8.9)

so that

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+mn!m!C
(ε)
I

(
B1N+T

)I
J
C(ε) J

= δTT ′δRR′δSS′δλλ′2
n+mn!m!N !C

(δ)
I (BT )IJ C

(δ) J (8.10)

Note that BT has fewer indices than the permutations from which it is constructed. Since
the permutations are partially contracted, we cannot (immediately) state that BT is in C(S2q).
Instead it is just an endomorphism on V ⊗2q.

We now want to compare AT and BT for the same Young diagram T . As noted earlier,
the relations between T and n,m are different for mesonic and baryonic operators, so to avoid
confusion, for the rest of the section we will use the baryonic relations. Explicitly, T ` 2q =
2n+ 2m−N . This means the coefficient in front of AT (and the operators in (3.14) and (8.1))
is dT

(2q)! rather than dT
(2n+2m)! .

In (4.30) we saw one statement of Schur-Weyl duality. We now use a different version. The
group algebra of S2q and the diagonal action of U(N) are sub-algebras of the endomorphism
algebra of V ⊗2q. Schur-Weyl duality states that these two sub-algebras are each other’s cen-
traliser within the larger endomorphism algebra. Therefore proving that BT commutes with the
diagonal action of U(N) is sufficient to show that it is in C(S2q).

Firstly, note that

εk1k2...kN ε
l1l2...lN =

∑
τ∈SN

(−1)ττ l1l2...lNk1k2...kN
= N ! (P1N )LK (8.11)

From the definition of |1N +T 〉, given after (8.7), we know that P1N leaves it invariant. Using the
definition (8.8), it follows that B1N+T is invariant under multiplication by P1N . This simplifies
the definition (8.9), which is given diagrammatically in figure 10.

Figure 11 then uses this definition and the statement of Schur-Weyl duality to prove that
BT commutes with U(N), and hence BT ∈ C(S2q).

Note that AT is invariant under pre- or post- multiplication by Sq[S2]. This follows from
the vector |T 〉 being invariant under multiplication by Sq[S2] permutations. In fact, the set
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BT

U

B1N+T

=
U

=

B1N+T

UU

U †

=
B1N+T

UU

U †

=
B1N+T

U

BT

U

=

Figure 11: Diagrammatic proof that BT commutes with U(N). The two lines represent these
two sets respectively. Here U stands for the diagonal action of U on the tensor space, so more
properly we should write U⊗N on the left hand side and U⊗2q on the right hand side. The
central equality follows from Schur-Weyl duality, which implies U⊗N+2q commutes with B1N+T ,
and the cyclicity of trace.

{AT : T ` 2q with even row lengths} forms a basis of the sub-algebra of C(S2q) defined by this
invariance. One can derive this result by following a similar argument to that in section 3.3.

Similarly, |1N + T 〉 is invariant under Sq[S2], and it follows that pre- or post- multiplication
of BT leaves it unchanged. Therefore BT must be a linear combination of the AT .

To determine which AT contribute to BT , consider the projector PR for R ` 2q. This acts
identically on |T 〉 if R = T and annihilates it if R 6= T . It follows that PRAT = δRTAT .

Similarly, D1N+T (PR)|1N + T 〉 = δR,T |1N + T 〉 (where PR ∈ S2q is embedded into S2n+2m by
acting on {N + 1, N + 2, ..., N + 2q = 2n+ 2m}), and therefore PRBT = δRTBT . We conclude
that BT is proportional to AT .

To find the constant of proportionality, we look at the traces of AT and BT .

Tr (AT ) =
dT

(2q)!

∑
σ∈S2q

〈T |DT (σ)|T 〉Tr(σ)

=
dT

(2q)!

∑
σ∈S2q

〈T |DT (σ)|T 〉N c(σ)

=
dT

(2q)!
〈T |DT (Ω)|T 〉

=
dT

(2q)!

∏
i∈ boxes

of T

(N + ci)

where c(σ) is the number of cycles in σ, Ω is as defined in (D.4) and we have used (D.5) to
evaluate the matrix element 〈T |DT (Ω)|T 〉.

Since BT is just the partial trace of B1N+T , the trace of BT is just the full trace of B1N+T

Tr (BT ) = Tr
(
B1N+T

)
=

d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

〈1N + T |D1N+T (σ)|1N + T 〉N c(σ)

=
d1N+T

(2n+ 2m)!
〈1N + T |D1N+T (Ω)|1N + T 〉

=
d1N+T

(2n+ 2m)!

∏
i∈ boxes
of 1N+T

(N + ci)

To compare the traces of AT and BT , we now find the ratio of the dimensions dT and d1N+T

and the ratio of the products of N + ci. The dimensions can be found using the hook length
formula (4.39).
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Now 1N + T is the diagram T with a single column of N boxes set to the left of it. Clearly
the T part of the diagram has exactly the same hook lengths as T itself. Denote the components
(row lengths) of T by T1, T2, ..., TN (some of the Ti may vanish). Then the hook length of the
jth box in the first column of 1N + T is N + Tj − j + 1. Therefore

H1N+T = HT

N∏
j=1

(N + Tj − j + 1) (8.12)

We can also think of 1N +T as the diagram made by adding a single box to the end of each row
of T (including empty rows if l(T ) < N). The content of the extra box added to the jth row is
Tj − j + 1. Therefore

∏
i∈ boxes
of 1N+T

(N + ci) =

 ∏
i∈ boxes

of T

(N + ci)


 N∏
j=1

(N + Tj − j + 1)

 (8.13)

The latter factors of (8.12) and (8.13) are the same, so using (4.39), we can simplify the ratio
between BT and AT

BT =
d1N+T

(2n+ 2m)!

(2q)!

dT

 ∏
i∈ boxes
of 1N+T

(N + ci)


 ∏
i∈ boxes

of T

1

N + ci

AT
=

HT

H1N+T

 N∏
j=1

(N + Tj − j + 1)

AT
= AT

Comparing (8.5) with (8.6), and recalling the change in conventions, we see that

C
(δ)
I (AT )IJ C

(δ) J = 2qq!
dT

(2q)!

∏
i∈ odd

columns of T

(N + ci)

We can now evaluate (8.10) to get the full baryonic correlator

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+m+qn!m!q!N !
dT

(2q)!

∏
i∈ odd

columns of T

(N + ci)

In the description of baryonic operators we have chosen to use T as the label. We could instead
have used 1N +T , in which case we would want to express the correlator in terms of this Young
diagram. By performing similar manipulations on the hook lengths and contents of T and
1N + T , one can show

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+m+qn!m!q!N !
d1N+T

(2n+ 2m)!

∏
i∈ odd

columns of 1N+T

(N + ci)

(8.14)

9 Symplectic gauge group

There are many connections between the orthogonal group and the symplectic group. It was
proved in [56] that dimensions of SO(N) and Sp(N) irreps (both labelled by Young diagrams)
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are related by conjugation of the Young diagram and N → −N . This general pattern of anti-
symmetrisation (conjugation) and N → −N was also found in [25, 27], and will occur repeatedly
in this section.

Since the orthogonal group and the symplectic group are so closely related, one would expect
that repeating the working of the previous sections for the symplectic case would involve only
minor changes. This expectation is correct, and the majority of the work is either identical or
directly analogous.

We start by constructing a basis of symplectic gauge-invariant operators. As before, we use
the group invariances of the index contractions to guide us. These are similar to the orthogonal
versions encountered in (3.8), but the invariance and anti-invariance have switched places. This
time there is no distinct sector of baryonic operators. While we can use ε to contract indices,
the operators this produces are within the mesonic sector. The symplectic operators are labelled
by a trio of Young diagrams conjugate to those labelling the orthogonal mesonic operators. As
conjugation of Young diagrams corresponds to anti-symmetrisation, we find that the two sets of
operators are related by anti-symmetrisation.

In the large N limit, we prove that symplectic and orthogonal multi-traces have exactly the
same form, and therefore the structures given in figure 8 and 9 apply to the space of Sp(N)
two-matrix multi-traces.

Replacing the unconstrained U(N) matrices X and Y with matrices satisfying the symplectic
condition (9.1), we find that the half-BPS symplectic projection coefficients are exactly the same
as their orthogonal equivalents. For the quarter-BPS sector they are related by a change of sign
inside the sum.

Finally we review symplectic correlators. These were calculated already in [27], and as the
symplectic theory has no baryonic sector, this completed the story for symplectic operators.

9.1 Symplectic operators

The Lie algebra sp(N) is composed of N by N (N even) matrices X satisfying

XT = ΩXΩ (9.1)

where

Ω =

(
0 I
−I 0

)
and I is the N

2 by N
2 identity matrix.

Note that the condition (9.1) is equivalent to saying that ΩX (or XΩ) is a symmetric matrix.
In the Sp(N) gauge theory, the quarter-BPS sector is made up of two scalar fields X and Y

lying in the adjoint of sp(N). Gauge invariant operators can then be constructed in much the
same way as in section 3. Rather than using the matrices X and Y directly, we use the symmetric
combinations ΩX and ΩY . Clearly this is an equivalent approach, as Ω is an invertible matrix,
but it has the advantage that the symmetry properties of ΩX and ΩY allow us to use the same
techniques as we employed for the special orthogonal group.

In analogy to (3.4), the most general gauge-invariant operator in the Sp(N) theory can be
written as

O = CI
[
(ΩX)⊗n (ΩY )⊗m

]I
where CI is a contractor constructed from Sp(N) invariant tensors. For the orthogonal group
we had two such tensors, which split operators into mesonic and baryonic sectors. Here, there
is only one independent invariant tensor, namely Ωij . We could also consider the ε tensor, but
it is not independent of Ω. At N = 2, 4 we have

εij = Ωij

εijkl = ΩijΩkl + ΩikΩlj + ΩilΩjk
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β

... ...

... ...

ΩX ΩX ΩX ΩY ΩY

Ω Ω Ω ΩΩ

Figure 12: Diagrammatic representation of the contraction pattern for symplectic mesonic op-
erators.

while more generally we have

εi1i2...iN =
1

2
N
2

(
N
2

)
!

∑
σ∈SN

Ωiσ(1)iσ(2)
Ωiσ(3)iσ(4)

...Ωiσ(N−1)iσ(N)
(9.2)

The normalisation factor of 2
N
2

(
N
2

)
! comes from the SN

2
[S2] stabiliser group of the index struc-

ture Ωi1i2Ωi3i4 ...ΩiN−1iN . After removing this redundancy, we are left with (N − 1)!! terms,
corresponding to the different ways of splitting {1, 2, ..., N} up into N

2 pairs.
So, unlike SO(N), we need only consider one type of contractor, the mesonic ones containing

n+m Ωs. As argued in section 3.2, different index arrangements can be absorbed into an element
β of C (S2n+2m). Therefore the most general mesonic operator is

O(Ω)
β = C

(Ω)
I βIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.3)

where the standard index arrangement on the contractor is

C
(Ω)
I = Ωi1i2Ωi3i4 ...Ωi2n+2m−1i2n+2m

The contraction (9.3) is given diagrammatically in figure (12).
This time, β is invariant under the transformation

β 7→ (−1)ααβγ−1 α ∈ Sn+m[S2] , γ ∈ Sn[S2]× Sm[S2] (9.4)

which has the same group structure as the (3.8), but the invariance and anti-invariance have
swapped sides. This is the first example of the orthogonal and symplectic groups being related
by anti-symmetrisation.

The invariance (9.4) defines a subspace ASpn,m of C(S2n+2m). As in section 3.3, we can find
a basis for this space. Imposing the finite N restriction - that all Young diagrams must have
at most N rows - reduces this basis (and the space it spans) to that relevant for constructing
operators. Explicitly, we have

βT,R,S,λ =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [A]|DT (σ)
(
|R, λ, [S]〉 ⊗ |S, λ, [S]〉

)
σ (9.5)
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where the constraints on T,R, S, λ are

T ` 2n+ 2m with even column lengths

l(T ) ≤ N
R ` 2n with even row lengths

S ` 2m with even row lengths

1 ≤ λ ≤ gR,S;T

(9.6)

Just as in the SO(N) case, the space ASpn,m forms a right module of AU2n,2m. By following the
same argument as (3.28), we have the multiplication relation

β
Sp(N)
T,R,S,λβ

U(N)
T ′,R′,S′,µ,ν = δTT ′δRR′δSS′δµλβ

Sp(N)
T,R,S,ν

From the basis (9.5) we proceed to find the bases of gauge-invariant operators

OΩ
T,R,S,λ =

dT
(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [A]|DT (σ)
(
|R, λ, [S]〉 ⊗ |S, λ, [S]〉

)
C

(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.7)

The labelling for this basis allows us to give the number of gauge-invariant operators of order
n,m

NΩ
n,m =

∑
R`2n with even row lengths
S`2m with even row lengths

T`2n+2m with even column lengths
l(T )≤N

gR,S;T (9.8)

We can make (9.7) and (9.8) look more similar to their SO(N) equivalents (3.14) and (3.15) by
making use of the conjugate partitions Rc, Sc and T c.

Let VT be the representation space for T . Then since T c =sgn⊗T , we have an orthogonal
map ρ from VT to VT c satisfying

DT c(σ) = (−1)σρDT (σ)ρ−1 (9.9)

Now |T, [A]〉 and is defined by its behaviour under Sn+m[S2] in the T representation. Similarly
|R,S, λ, [S]〉 = |R, λ, [S]〉⊗|S, λ, [S]〉 is defined by its behaviour under PR⊗S and Sn[S2]×Sm[S2]
(as well as a choice of basis vector in the Littlewood-Richardson multiplicity space). Explicitly,
these behaviours are

DT (σ)|T, [A]〉 = (−1)σ|T, [A]〉 σ ∈ Sn+m[S2]

DT (τ) |R,S, λ, [S]〉 = DT (PR⊗S) |R,S, λ, [S]〉 = |R,S, λ, [S]〉 τ ∈ Sn[S2]× Sm[S2]

So from (9.9), the equivalent actions in the T c representation is

DT c(σ)ρ|T, [A]〉 = ρ|T, [A]〉 σ ∈ Sn+m[S2]

DT c (τ) ρ|R,S, λ, [S]〉 = DT c (PRc⊗Sc) ρ|R,S, λ, [S]〉 = (−1)τρ|R,S, λ, [S]〉 τ ∈ Sn[S2]× Sm[S2]

Therefore ρ|T, [A]〉 lies in the [S] subspace of T c, and ρ|R,S, λ, [S]〉 lies in the [A] subspace of
Rc ⊗ Sc, which is itself a subspace of T c. Note that gR,S;T = gRc,Sc;T c , and therefore Rc ⊗ Sc
is indeed a subspace of T c. This means we can choose the multiplicity index λ to be the same
before and after conjugation. Therefore we have

|T c, [S]〉 ∝ ρ|T, [A]〉 |Rc, Sc, λ, [A]〉 ∝ ρ|R,S, λ, [S]〉 (9.10)
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Since ρ is orthogonal and S2n+2m representations are real, the constants of proportionality must
be ±1. It is only the relative sign of the two which is important, but without a positivity
condition (similar to (3.17), but for the quarter-BPS sector) we cannot determine what this
should be. We discussed such conditions in section 3.3.3, and suggested a possible candidate for
the orthogonal case.

Using (9.10) and the orthogonality of ρ, we can rewrite (9.7) in terms of T c, Rc and Sc

OΩ
T,R,S,λ =

dT c

(2n+ 2m)!

∑
σ∈S2n+2m

(−1)σ〈T c, [S]|DT c(σ)|Rc, Sc, λ, [A]〉C(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.11)

Clearly a partition with even row lengths is conjugate to a partition with even column lengths
and vice versa. Therefore, rather than labelling the symplectic operators with the conditions
(9.6) we can instead use the conditions

T ` 2n+ 2m with even row lengths

l(T c) ≤ N
R ` 2n with even column lengths

S ` 2m with even column lengths

1 ≤ λ ≤ gR,S;T

(9.12)

where the corresponding operator is

OΩ
T,R,S,λ =

dT
(2n+ 2m)!

∑
σ∈S2n+2m

(−1)σ〈T, [S]|DT (σ)|R,S, λ, [A]〉C(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.13)

Therefore the labelling set for symplectic operators is exactly the same as the orthogonal baryonic
ones, except for the finite N condition imposes a limit on the length of the rows instead of the
length of the columns.

Note that the matrix element in (9.13) is the same as that in (3.14). The only differences
are the factor of (−1)σ and the different contractions.

In section (9.2) we prove that the Sp(N) contraction produces exactly the same multi-
trace as the SO(N) equivalent when using the same double coset representative (compare equa-
tions (9.22) and (7.4)). So by restricting the sums in (9.13) and (3.14) to run over traces (or
equivalently even double cosets) rather than permutations (as done in sections 4 and 7), we
see that symplectic operators and orthogonal mesonic operators are just anti-symmetrisations
of each other. By this we mean that if a symplectic operator contains a term of the form
cTrW1TrW2...TrWk for some constant c and matrix words W1,W2, ...Wk, then the orthogonal
mesonic operator with the same labels (or conjugate labels, depending on the labelling set being
used) will contain a term of the form (−1)l(W )cTrW1TrW2...TrWk. Note that the matrices X and
Y that make up the matrix words satisfy different conditions in the orthogonal and symplectic
theories, so one cannot compare these two operators directly, only their form.

The result of this conjugation argument for the counting of operators is that we may rewrite
(9.8) as

NΩ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

l(T c)≤N

gR,S;T

This is now identical to the SO(N) formula (3.15) except for the restriction l(T c) ≤ N instead
of l(T ) ≤ N . Note that in the large N limit, both of these restrictions disappear, so the counting
is the same in either group. In particular we have the same generating function (6.28) for N δ

n,m

and NΩ
n,m.
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For the remainder of this section we will use the labelling set (9.6) as standard, and will refer
to (9.12) as the conjugate labels.

9.2 Symplectic projection

In section 4 we looked at projecting from the U(N) theory into the SO(N) theory in the half-
BPS sector by replacing the generic matrix X with an anti-symmetric one. We now study the
equivalent in the Sp(N) setting. This replaces the generic X with one satisfying (9.1). This
implies

TrXn = Tr(XT )n

= Tr (ΩXΩ)n

= Tr
(
Ω2X

)n
= Tr (−X)n

= (−1)nTrXn (9.14)

where we have used Ω2 = −1. So, just as in the SO(N) case, the odd order single traces vanish
while the even ones remain unchanged.

Applying the same logic to the quarter-BPS case, we again find the Sp(N) relations between
traces are the same as those for SO(N). For a trace with periodicity k and aperiodic matrix
word W , we have

TrW k = (−1)k l(W )Tr
(
W (r)

)k
(9.15)

As claimed, this is identical to (6.1).
Returning to the half-BPS sector, (9.14) means the symplectic quotient of a half-BPS U(N)

operator (defined in (3.26)) vanishes if n odd, and if n even we have

OU(N)
R

Z2−→ dR
∑
p`n

2

1

z2p
χR(2p)

∏
i

(
TrX2i

)pi
=
∑
T

α
SP (N);T
R OΩ

T (9.16)

where the second line defines the projection coefficients α
SP (N);T
R . While the first line appears

identical to (4.25), X satisfies different conditions here.
We now study how these multi-traces relate to the Sp(N) operators (9.7). In the half-BPS

sector (m = 0), these reduce to

OΩ
T =

dT
(2n)!

∑
σ∈S2n

〈T, [A]|DT (σ)|T, [S]〉C(Ω)
I σIJ

[
(ΩX)⊗n

]J
(9.17)

Since the contractor C(Ω) is constructed from Ωs, the contraction C
(Ω)
I σIJ

[
(ΩX)⊗n

]J
will be

some multi-trace of Ω and X. We know the contraction is invariant under

σ 7→ (−1)αασγ−1 α, γ ∈ Sn[S2] (9.18)

(this is just the m = 0 version of (9.4)). If we ignore the minus sign for a moment, we have
exactly the same action that we saw in (4.11). We studied the orbits of this action, called double
cosets, in detail. In particular, they were labelled by partitions p ` n, with representatives

σ ∈ S
(odd)
n , where σ acts with cycle type p on the odd numbers. We split the double cosets

into two categories, even and odd, and gave two different characterisations of this split. Firstly,
a double coset was odd if one or more components of the corresponding partition were odd.
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Secondly, a double coset was odd if the stabiliser of a representative element contained at least
one odd permutation in either factor of the direct product (Stab(σ) ≤ Sn[S2] × Sn[S2]). This
second condition is equivalent to saying that it is possible to use the action (9.18) to take σ to
−σ. Therefore we can repeat the arguments in (4.13) and (4.14) to show the Sp(N) contraction
and matrix elements vanish for odd double cosets.

Consider σ ∈ S(odd)
n the representative of some double coset labelled by p ` n. Let τ ∈ Sn

be the equivalent permutation in Sn (so τ has cycle type p). Then we have

C
(Ω)
I σIJ

[
(ΩX)⊗n

]J
= Ωi1j1Ωi2j2 ...Ωinjnσ

i1j1i2j2...injn
k1l1k2l2...knln

(ΩX)k1l1 (ΩX)k2l2 ... (ΩX)knln

= Ωi1j1Ωi2j2 ...Ωinjnτ
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
...δjnln (ΩX)k1l1 (ΩX)k2l2 ... (ΩX)knln

= Ωi1j1 (ΩX)j1k1 Ωi2j2 (ΩX)j2k2 ...Ωinjn (ΩX)jnkn τ i1i2...ink1k2...kn

= τ i1i2...ink1k2...kn

(
Ω2X

)i1k1
(
Ω2X

)i2k2 ...
(
Ω2X

)inkn
= (−1)nτ i1i2...ink1k2...kn

Xi1k1Xi2k2 ...Xinkn

= (−1)nX
i1iτ−1(1)X

i2iτ−1(2) ...X
iniτ−1(n)

=
∏
i

(
TrXi

)pi (9.19)

where for the last line we have used (2.11), noting that τ and τ−1 have the same cycle type. The
same calculation (excluding the last line) is shown diagrammatically in figure 13. Therefore,
just as with SO(N), the double coset labelled by p leads to the expected trace.

So using results from section 4.2.2 we can re-express (9.17) in terms of multi-traces

OΩ
T =

dT 22n(n!)2

(2n)!

∑
p`n

2

1

z4p
〈T, [A]|DT (σ2p)|T, [S]〉

∏
i

(
TrX2i

)pi (9.20)

where σ2p ∈ S
(odd)
n is a representative of the even double coset with partition 2p. Now since

representations of S2n are orthogonal we have

〈T, [A]|DT (σ2p)|T, [S]〉 = 〈T, [S]|DT (σ−1
2p )|T, [A]〉

Then as σ−1
2p is also in S

(odd)
n with cycle type 2p, we could equally well have chosen this to be

our double coset representative. So we can apply the formula (4.22) to the symplectic matrix
element in exactly the same way as we could for the special orthogonal case. Plugging this into
(9.20) we have

OΩ
T = 2nn!

√
dT

(2n)!

∑
p`n

2

1

z2p
χt(p)

∏
i

(
TrX2i

)pi (9.21)

We see that (9.16) and (9.21) are exactly the same as (4.25) and (4.23) respectively, so the

projection coefficients α
SP (N);T
R are exactly the same as the αTR we found in section 4.3.

Note that the equality of (9.21) and (4.23) does not contradict the earlier statement that
orthogonal and symplectic operators are anti-symmetrisations of each other. This result stated
that OΩ

T was an anti-symmetrisation of OδT c , while the above states that OΩ
T ≈ OδT (where ≈

denotes the fact that the symplectic and orthogonal operators have the exact same form in terms
of traces, but the matrix X satisfies different conditions, so they are not strictly equal). One
can check that OΩ

T is the anti-symmetrisation of OΩ
T c , and therefore the two statements agree

with each other.
We could also consider the projection to the symplectic theory in the quarter-BPS sector.

The logic in (9.19) can be extended, and gives

C
(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
= (−1)n+m

(
X⊗nY ⊗m

)i1iτ−1(1)i2iτ−1(2)...in+miτ−1(n+m)

= (−1)n+mX
i1iτ−1(1) ...X

iniτ−1(n)Y
in+1iτ−1(n+1) ...Y

in+miτ−1(n+m)
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σ

Ω

Ω X

Ω

Ω X

Ω

Ω X

...

...

= (−1)n
τ

...

...X X X

= (−1)n τ−1
...

...X X X

Figure 13: A diagrammatic version of (9.19). The dotted lines represent the fact that σ fixes all
even numbers. By following the index contractions on the left, we see that τ should be contracted
with n copies of the matrix ΩXΩT . Using the condition (9.1), this is just −XT . We have pulled
out the factors of −1 and the transpose means the X indices switch roles (compare with figure
5). In the second row, we convert this result into a U(N) type contraction by breaking our index
conventions and setting Xi

j = Xij . Note that the role switch of the X indices on the first line
means τ is inverted on the second line.
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From (9.15) we know that we can reverse a single trace at the expense of a minus sign corre-
sponding to the length of the trace. Since reversing a single trace corresponds to inverting a
cycle in the permutation τ , we can invert τ at the expense of a factor of (−1)n+m. Therefore
we have

C
(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
= Xk1kτ(1) ...Xknkτ(n)Y kn+1kτ(n+1) ...Y kn+mkτ(n+m) (9.22)

which is the Sp(N) equivalent of (7.4).
Following the procedures in section 7, we can use (9.22) to find the symplectic quarter-BPS

projection coefficients. The expression is exactly as in (7.14) but with the [A] and [S] swapped
(and the implicit difference in constraints on Young diagrams). Using the conjugate labels for
symplectic operators swaps the [A] and [S] and removes the difference in constraints at the cost
of introducing a factor of (−1)σQ̃ . So using these labels, the symplectic quarter-BPS projection
coefficients differ from the orthogonal ones only by a sign in the summation over Q̃.

9.3 Structure of symplectic space of gauge-invariant operators

In section 6, we showed that the large N generating function for N δ
n,m had a lot of structure,

associated with corresponding structures in the space of SO(N) multi-traces. Since NΩ
n,m =

N δ
n,m, the generating function for Sp(N) is the same, and we therefore expect the vector space

of Sp(N) traces at large N to share this structure.
For SO(N), the structures shown in figure 8 and 9 are derived from the relation (6.1), and

we have the exact same statement for Sp(N) in (9.15). Therefore, at large N , the structures of
the Sp(N) and SO(N) quarter-BPS sectors are identical.

9.4 Symplectic correlators

As for SO(N), we define the complex conjugate of Xij to be (X∗)ij = Xij , and similarly for
Y ij . This leads to the conjugate operators

OΩ
T,R,S,λ =

dT
(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [A]|DT (σ)
(
|R, λ, [S]〉 ⊗ |S, λ, [S]〉

)
[
(ΩX)⊗n (ΩY )⊗m

]
I

(
σ−1

)I
J
C(Ω) J

The two point function for symplectic matrices is

〈XijXkl〉 = δikδ
j
l − Ωi

lΩ
j
k = 〈Y ijYkl〉 (9.23)

which is equivalent to 〈
(ΩX)ij (ΩX)kl

〉
= δikδ

j
l + δilδ

j
k =

〈
(ΩY )ij (ΩY )kl

〉
(9.24)

Again the definition (9.23) looks the same as that in [25], but they used the definition Xij =(
X†
)ij

, so there is a distinction. The convention used here ensures the positivity of the two
point function of Xij with its conjugate Xij .

The definition (9.24) leads to〈[
(ΩX)⊗n (ΩY )⊗m

]I [
(ΩX)⊗n (ΩY )⊗m

]
J

〉
=

∑
σ∈Sn[S2]×Sm[S2]

σIJ

= 2n+mn!m!
(
P[S]n⊗[S]m

)I
J

(9.25)

In [27], Kemp presented the symplectic operators and calculated their two point functions.
He used the same conventions, (9.25), for the two point function, so we can directly quote his
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result, taking into account the normalisation difference of dT
(2n+2m)22n+2m

√
n!m!(n+m)! relative

to (9.7).〈
OΩ
T,R,S,λO

Ω
T ′,R′,S′,λ′

〉
= δTT ′δRR′δSS′δλλ′2

2n+2mn!m!(n+m)!
dT

(2n+ 2m)!

∏
i∈ odd

rows of T

(N + ci)

(9.26)
This is very similar to the correlator (8.5), except for the product running over rows rather than
columns (and the implicit differences due to different conditions on T,R, S).

It is not difficult to show that∏
i∈ odd

rows of T

(N + ci) = (−1)n+m
∏

i∈ odd
columns of T c

(−N + ci)

therefore the symplectic correlator (9.26) evaluated with N → −N is the same (up to a factor
of (−1)n+m) as the orthogonal mesonic correlator (8.5) with conjugate labels.
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10 Discussion

We discuss here a selection of interesting questions raised by the results of this paper.

10.1 Giant graviton branes and Plethyms

The classification of half BPS operators in terms of Young diagrams allows an elegant map
between these operators and quantum states obtained from semi-classical giant gravitons [5, 4].
Young diagrams with order 1 long columns, and column lengths of order N , were proposed to
be dual to giant gravitons which are three-spheres expanded in S5 of AdS5 × S5. Single giant
states are dual to single column Young diagrams, and multiple giants are dual to multiple-
column Young diagrams. A similar picture holds for giant gravitons which are three-spheres in
the AdS5 directions. This map receives confirmation from a number of directions: holographic
comparison of correlators of two Young diagrams with a trace [57, 58, 59, 60], moduli space
quantization [61, 62] and strings attached to giants [11, 13, 63, 12, 64, 65, 66].

In AdS/CFT, the AdS background dual to SO(N) gauge theories is obtained from the AdS
dual of U(N) by an orientifold operation, which acts as a Z2 in space-time accompanied by an
orientation reversal on the string worldsheet. Analogously to the map between branes and states
in U(N) theories, we expect, for the SO(N) theories, a similar detailed map between Young
diagram states and branes in the dual AdS5 × RP 5 background. This motivated us to conduct
a study of the orientifold projection operation on the Young diagram bases.

The projection is captured by integer coefficients ᾱTR, which were found to be related to a
plethystic refinement of Littlewood-Richardson coefficients

ᾱTR = Mult[R,S2(t)]−Mult[R,Λ2(t)]

= P(t, [2], R)− P(t, [1, 1], R) (10.1)

The sum of these is the LR coefficient

gt,t;R = Mult[R,S2(t)] + Mult[R,Λ2(t)]

= P(t, [2], R)− P(t, [1, 1], R) (10.2)

As we have seen in section 4, ᾱTR has an interpretation in terms of the combinatorics of domino
tilings, and we have discussed a brane interpretation of this combinatorics in section 4.8. Here we
will discuss another approach to physically understand the nature of the projection coefficient.

Interestingly, the LR coefficient gt,t;R appears in the extremal correlator in the U(N) theory

〈χtχtχ†R〉 [5]. Given the correspondence between Young diagrams and branes, this extremal
correlator is naturally interpreted as the amplitude for the overlap between the composite system
consisting of the pair of branes (t, t) and the brane R. The effect of the orientifold operation is
to change the amplitude of interaction t⊗ t→ R by introducing the sign in (10.1).

A very interesting problem is to derive this relative sign from the point of view of strings
propagating in AdS5 × S5 and the orientifold of this background. The argument above, which
says that the effect of the orientifold is to change the sign of the anti-symmetric part of the
interaction, is based on assuming AdS/CFT and using the relation about gauge invariant opera-
tors corresponding to branes. The problem is to explain this sign without using facts about the
dual CFT. This is not straightforward. The consistency of brane physics in spacetime with the
formula in terms of LR coefficients has been tested in various limits e.g. [57, 58, 59, 60, 67]. How-
ever a general understanding, directly from the spacetime perspective, of why the interaction of
branes is given by the Littlewood-Richardson coeffients is not currently available. Understand-
ing the sign from the physics of orientifolds would probably also shed light on this question of
why, based purely on the physics of strings in the AdS spacetime without assuming AdS/CFT
duality, LR coefficients appear in the interactions of branes. Insights from discussions of signs in
orientifolds, such as those in [68] may be useful. We will leave this as a very interesting question
for the future.
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10.2 Weak coupling

The quarter BPS sector undergoes a step change when going from zero to weak coupling: for
a review with extensive references to the previous litereture see [69]. In the U(N) theory this
change is equivalent to allowing the matrices to commute inside the trace. These states are
related to the quanitzation of moduli spaces of giant gravitons [70]. An analogous discussion for
the SO(N) theory, and the relation of these states to the quantization of giant graviton moduli
spaces would be interesting to develop.

10.3 General quivers

The generating function (5.1) has been generalised to arbitrary U(N) quivers [19, 20]. The
structure of the function, with its infinite product of a root function, was found to be very
general, and the root function had an interpretation in terms of counting words made from
loops in the quiver. Is there an analogous generalization of (6.28) for SO(N) (or Sp(N)) gauge
theory?

10.4 Permutations as background independent structures in string theory

In this paper, we have made extensive use of permutations as tools for understanding gauge in-
variant operators. The formula for the orientifold projection map in the half-BPS sector, which
made contact with domino combinatorics, was given as a sum of permutation group characters.
The projection map relates different backgrounds of string theory. We also explored (section 4.9)
the U(N) inner product of gauge invariant operators which survive the orientifold projection to
SO(N), and observed a connection to an appropriately defined inverse of the plethysm coeffi-
cients. The U(N) and SO(N) inner products for the same operators can be viewed as different
(background-dependent) pairings on permutations which are background independent charac-
terizations of gauge invariants. Other diverse applications of permutations in gauge invariant
operators (for a short review see [71]) have seen applications of Littlewood-Richardson coeffi-
cients as well as Kronecker coefficients in multi-matrix bases and correlators. An interesting ex-
ercise is to revisit these applications and disentangle the aspects of permutations and associated
representation theory which contain information about specific backgrounds, and those that are
common to different backgrounds, or relate different backgrounds. The integrally-graded word
combinatorics (involving Lyndon words and their orthogonal generalisations) which we have
here identified as key structures in understanding the space of gauge invariant operators in both
U(N) and SO/Sp gauge theories may well be structures which contain background independent
information. In this connection, it is interesting that another recent physics application of Lyn-
don words is in connection with knot invariants associated with intersections of M2-branes and
M5-branes [72, 73]. It would be interesting to seek a background-independent characterization
of how word combinatorics appears in the physics of BPS states in string theory.
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A Möbius inversion

Proposition: The Möbius Inversion Formula
Let {an} and {bn} be two sequences indexed by the positive integers. If an can be expressed as

an =
∑
d|n

bd =
∑
d|n

bn
d

(A.1)

where d runs over all divisors of n, denoted by d|n, then

bn =
∑
d|n

µ
(n
d

)
ad =

∑
d|n

µ(d)an
d

(A.2)

where µ is the Möbius function defined by

µ(d) =


1 d = 1

(−1)n d a product of n distinct prime factors

0 d has a repeated prime in its prime factorisation

(A.3)

The proof of this proposition relies on
Lemma ∑

d|n

µ(d) =

{
1 n = 1

0 n > 1
(A.4)

Proof of Lemma
This is obvious for n = 1, so we will only prove the case n > 1. Writing n in terms of its prime
factors, we have

n = pr11 p
r2
2 ...p

rk
k

where ri ≥ 1 for each i. The divisors of n which contribute to the sum (A.4) are those which
are square free. Explicitly, they can be written

d = ps11 p
s2
2 ...p

sk
k

where si ∈ {0, 1} for each i.
We define S to be the set of distinct prime factors of n: S = {p1, p2, ...pk}. Then subsets of

S correspond exactly to the divisors d defined above

d = ps11 p
s2
2 ...p

sk
k ←→ {pi : si = 1} ≤ S (A.5)

From the definition (A.3), we see that

µ(d) = (−1)|subset of S corresponding to d|

So ∑
d|n

µ(d) = # of subsets of S with even size−# of subsets of S with odd size

But we have a bijective map between even subsets and odd subsets given by

A −→

{
A ∪ {p1} p1 6∈ A
A/{p1} p1 ∈ A

and therefore ∑
d|n

µ(d) = 0
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Proof of Proposition
The first step in the proof is to note that the an determine the bn uniquely via the relation
(A.1). Indeed, we have b1 = a1, b2 = a2− a1, b3 = a3− a1. To prove it in general, we use strong
induction with these three as the base cases. Assuming bn is determined by the sequences of as
for all n ≤ k, we can rearrange (A.1) to get

bk+1 = ak+1 −
∑

d|(k+1)
d6=k+1

bd

Then since the sum over d only includes d ≤ k, we know inductively that bd is determined by
the as, and hence bk+1 is also determined by the as.

We now notice that the bn, as defined in (A.2), satisfy (A.1):∑
d|n

bd =
∑
d|n

∑
e|d

µ

(
d

e

)
ae

=
∑
e|n

ae
∑
f |n
e

µ(f)

= an

In going from the 1st to the 2nd line we have reordered the sums and reparameterised by f = d
e ,

and in going from the 2nd to the 3rd we have used the lemma (A.4).
Since the bn have a unique solution, (A.2) must therefore be the correct formula for the bn,

as claimed. �

Note that in this proposition, there was nothing special about addition, the result and proof
follow exactly the same way if we replace the addition by multiplication. Explicitly, given

bn =
∏
d|n

ad =
∏
d|n

an
d

we can invert uniquely to get

an =
∏
d|n

b
µ(nd )
d =

∏
d|n

b
µ(d)
n
d

(A.6)

In this paper, we come across relations of the form

an,m =
∑
d|n,m

bn
d
,m
d

(A.7)

so we would like a generalisation of the Möbius inversion formula for two variables. This gener-
alisation is

Lemma
The bn,m are determined uniquely by (A.7), with

bn,m =
∑
d|n,m

µ(d)an
d
,m
d

(A.8)

Proof
To prove this, consider fixing n̄, m̄ to be coprime. We then define

āk = akn̄,km̄ b̄k = bkn̄,km̄

86



In terms of these sequences (A.7) reads

āk =
∑

d|kn̄,km̄

b k
d
n̄, k
d
m̄

=
∑
d|k

b̄ k
d

where we have used the fact that n̄, m̄ are coprime to conclude that d|kn̄, km̄ is equivalent to
d|k. Then by the standard Möbius inversion formula, we have

b̄k =
∑
d|k

µ(d)ā k
d

or in terms of as and bs
bkn̄,km̄ =

∑
d|kn̄,km̄

µ(d)a kn̄
d
, km̄
d

This is true for all k, and coprime n̄, m̄. So to prove (A.8) for an arbitrary n,m we pick
k = gcd(n,m), n̄ = n

k , m̄ = m
k .

�

The Möbius inversion formula can be used to prove some useful identities. We start with the
well known identity ∑

d|n

φ(d) = n (A.9)

where φ(n) is the Euler totient function that counts the number of numbers less than n that are
coprime to n. Applying the Möbius inversion formula gives

φ(n)

n
=
∑
d|n

µ(d)

d
(A.10)

and applying it again gives

µ(n) =
∑
d|n

dµ(d)φ
(n
d

)
=
∑
d|n

n

d
µ
(n
d

)
φ(d) (A.11)

B Alternative derivation of SO(N) infinite N generating func-
tion

We now derive the generating function (6.28) directly from (3.15), ignoring the finite N con-
straint l(T ) ≤ N .

The first step is to find an alternative formula for (3.15) that lends itself more easily to explicit
calculation of the generating function. This is done using results from the theory of symmetric
functions, and gives an expression involving the coefficients of the cycle index polynomial of
Sn[S2].

Using this alternative formula we can express the generating function as a product of inte-
grals, each of which can be explicitly evaluated.

B.1 An alternative counting formula

Expanding gR,S;T in terms of characters gives

N δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

1

(2n)!(2m)!

∑
σ∈S2n
τ∈S2m

χR(σ)χS(τ)χT (σ ◦ τ)
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where σ ◦ τ means the permutation in S2n+2m that acts as σ on the first 2n objects and τ on
the last 2m. Since the characters only depend on the cycle type of σ and τ , we can rewrite this
as

N δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

∑
p`2n
q`2m

χR(p)χS(q)χT (p ∪ q)
zpzq

(B.1)

where p∪ q was defined in section 2, and zp and zq arise because the number of permutations in

S2n with cycle type p is given by (2n)!
zp

.
Now we’d like to evaluate ∑

R`2n with even
row/column lengths

χR(q) (B.2)

To do this we need to review some facts from the theory of symmetric functions. These are
defined as formal polynomials in an infinite number of variables t1, t2, ... which are completely
symmetric under permutations of the ti. We will use two different bases for the order n symmetric
functions. The power sum polynomials are defined for integer r by

Pr(t1, t2, ...) =
∑
i

tri

and for a partition q = [λ1, λ2, ...] by

Pq = Pλ1Pλ2 ...

The Pλ for λ ` n are a basis for the order n symmetric functions.
Schur polynomials, also indexed by partitions (Young diagrams) R ` n, are defined by

sR(t1, t2, ...) =
∑
q`n

1

zq
χR(q)Pq(t1, t2, ...)

From the orthogonality of characters, (2.6), we can invert this definition to write the power sum
polynomials in terms of the Schur polynomials. Therefore the Schur polynomials also form a
basis.

We now introduce the Hall inner product on the space of symmetric functions. It is defined
by

〈Pp, Pq〉 = δpqzp

This enables us to extract the coefficient of the power sum polynomials from sR. Explicitly

χR(q) = 〈sR, Pq〉

So ∑
R`2n with even

row lengths

χR(q) =

〈 ∑
R with even
row lengths

sR , Pq

〉

Note that on the right hand side, R can range over all partitions with even row length, not just
those with |R| = 2n, since the inner product with Pq is non-zero only for those R with |R| = 2n.

In MacDonald’s book [39, Chapter I.5] he shows that

s(t1, t2, ...) =
∑

R with even
row lengths

sR =
∏
i

1

1− t2i

∏
i<j

1

1− titj
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To find the inner product of s with Pq we need to express s in terms of the Pq. It turns out to
be easier to look at logs

log s = −
∑
i

log(1− t2i )−
∑
i<j

log(1− titj)

=
∞∑
r=1

1

2r

∑
i,j

tri t
r
j +

∑
i

t2ri


=

∞∑
r=1

1

2r

(
P 2
r + P2r

)
=
∞∑
r=1

1

r
ZS2(Pr, P2r)

where ZS2 is the cycle index polynomial of the group S2 as defined in (6.20). Therefore

s = exp

[ ∞∑
r=1

1

r
ZS2(Pr, P2r)

]
(B.3)

Before we proceed further, we recall two useful facts. Firstly, the generating function for the
cycle index polynomials of Sn is [40, Chapter 5.13]

∞∑
n=0

xnZSn(t1, t2, ...) = exp

[ ∞∑
m=1

1

m
xmtm

]
(B.4)

and secondly, the cycle index polynomial of a wreath product group is [74, Chapter 15.5]

ZG[H](t1, t2, ...) = ZG(r1, r2, ...) (B.5)

where
ri = ZH(ti, t2i, t3i, ...)

Combining (B.4) and (B.5) tells us that the generating function for the cycle index polynomials
of Sn[S2] is

∞∑
n=0

xnZSn[S2](t1, t2, ...) =

∞∑
n=0

xn
∑
q`2n

ZSn[S2]
q

∏
i

tqii = exp

[ ∞∑
r=1

1

r
xrZS2(tr, t2r)

]
(B.6)

Putting together (B.6) and (B.3)

s =
∞∑
n=0

ZSn[S2](P1, P2, ...)

=

∞∑
n=0

∑
q`2n

ZSn[S2]
q Pq

Therefore the inner product with Pq gives∑
R`2n with even

row lengths

χR(q) = 〈s, Pq〉 = ZSn[S2]
q zq (B.7)

Clearly a Young diagram has even row lengths if and only if its conjugate has even column
lengths, so to evaluate the column version of (B.2), we just conjugate the summation variable
R. Now Rc =sgn⊗R, so the characters are related by

χRc(q) = (−1)qχR(q)
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Therefore ∑
R`2n with even
column lengths

χR(q) = (−1)qZSn[S2]
q zq (B.8)

Plugging (B.7) and (B.8) into (B.1) gives

N δ
n,m =

∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q (B.9)

B.2 The generating function

We now want to find the function

F (x, y) =
∑
n,m

xnymN δ
n,m =

∑
n,m

xnym
∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q (B.10)

Our approach is to build candidate generating functions by introducing the terms on the right
hand side one by one. We begin by using (B.6) twice

exp

[ ∞∑
k=1

1

2k
(xk + yk)(t2k + t2k)

]
=
∑
n,m

xnym
∑
p`2n
q`2m

ZSn[S2]
p ZSn[S2]

q

∏
i

tpi+qii

The third cycle index in (B.9) comes with a factor of (−1)p∪q. To introduce this into (B.6), we
just replace tk with −tk for n even. Multiplying through by this modified version with a new
set of variables sk and no overall level (no equivalent to x, y) gives

exp

[ ∞∑
k=1

1

2k
(s2
k − s2k) +

∞∑
k=1

1

2k
(xk + yk)(t2k + t2k)

]
=
∑
n,m,o

xnym
∑
p`2n
q`2m
r`2o

(−1)rZSn[S2]
p ZSm[S2]

q ZSo[S2]
r

∏
i

tpi+qii srii

This looks similar to (B.10), but we need to introduce a factor of zp∪q and enforce r = p ∪ q
(and hence o = n+m). We do this in two steps, corresponding to the two parts of

zp∪q =
∏
i

ipi+qi(pi + qi)!

To get the powers of i, we can just replace tk and sk with
√
ksk and

√
ktk.

exp

[ ∞∑
k=1

(
1

2
s2
k −

1√
2k
s2k

)]
exp

[ ∞∑
k=1

(xk + yk)

(
1

2
t2k +

1√
2k
t2k

)]
=
∑
n,m,o

xnym
∑
p`2n
q`2m
r`2o

(−1)p(−1)qZSn[S2]
p ZSm[S2]

q ZSo[S2]
r

∏
i

i
1
2

(pi+qi+ri)tpi+qii srii

Now getting the powers of i in zp∪q just reduces to the same condition we already needed,
r = p ∪ q. So now we just need to replace

∏
i t
pi+qi
i srii with δri,pi+qi(pi + qi)!. This can be done

via the integral ∫
C

dzdz̄

2π
e−zz̄zpz̄r = δp,rp!
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So replacing tk with zk, sk with z̄k, multiplying by e−
∑
k zk z̄k , and integrating over a copy of C

for each k gives us

F (x, y) =
∑
n,m

xnym
∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q

=

∫ ( ∞∏
k=1

dzkdz̄k
2π

)
exp

[ ∞∑
k=1

(
1

2
z̄2
k −

1√
2k
z̄2k

)]

exp

[ ∞∑
k=1

(xk + yk)

(
1

2
z2
k +

1√
2k
z2k

)]
exp

[
−
∞∑
k=1

zkz̄k

]

=
∏
k odd

∫
dzdz̄

2π
exp

[
1

2
(z̄2 − 2zz̄ + (xk + yk)z2)

]
∏
k even

∫
dzdz̄

2π
exp

[
1

2

(
z̄2 − 2zz̄ + (xk + yk)z2 − 2√

k

(
z̄ −

(
x
k
2 + y

k
2

)
z
))]

(B.11)

So we have two integrals to compute. To do them we split z into its real and imaginary parts.

Using z = u+ iv, z̄ = u− iv, and for simplicity writing λ = xk + yk, µ = x
k
2 + y

k
2 , we have

z̄2 − 2zz̄ + λz2 = −(1− λ)(u+ iv)2 − 4v2

z̄2 − 2zz̄ + λz2 − 2√
k

(z̄ − µz) = −(1− λ)

(
u+ iv +

1− µ√
k(1− λ)

)2

− 4

(
v − i

2
√
k

)2

+
λ− 2µ+ µ2

k(1− λ)

So by changing variables from (z, z̄) to (u, v) (and remembering that dzdz̄ = 2dudv), both odd
and even integrals can be evaluated using the standard Gaussian integral∫ ∞

−∞
du e−a(u+b)2

=

√
π

a
(B.12)

where a, b are complex numbers with Re(a) > 0. Explicitly, the integrals are∫
dzdz̄

2π
exp

[
1

2
(z̄2 − 2zz̄ + λz2)

]
=

1√
1− λ

and ∫
dzdz̄

2π
exp

[
1

2

(
z̄2 − 2zz̄ + λz2 −

√
2

k
(z̄ − µz)

)]
=

1√
1− λ

exp

[
λ− 2µ+ µ2

2k(1− λ)

]
Plugging these into (B.11) gives

F (x, y) =

( ∏
k odd

1√
1− xk − yk

)( ∏
k even

1√
1− xk − yk

exp

[
xk + x

k
2 y

k
2 + yk − x

k
2 − y

k
2

k(1− xk − yk)

])

=

∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
which matches the result (6.28), as expected.
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C List of sequences and generating functions

We introduce a lot of different single and multi-trace counting sequences in this paper. Here we
present all of them in one place. For each sequence we give the definition of the (n,m)th term,
the first few terms, the generating function and (for the single trace sequences) the plethystic
exponential of the generating function. We also give the vector spaces which have these functions
as Hilbert series.

Many of the results here can be found together with their derivations in sections 5 and 6.
The single trace sequences are only considered at infinite N , while the multi-trace sequences are
defined for finite N , but we have only found their generating functions at infinite N .

After listing the sequences, we give the relations between them and their generating functions.

C.1 Single trace sequences

All of the following definitions are valid provided we have one of n,m 6= 0. For all single-trace
sequences, we implicitly set the n = m = 0 term to 0.

C.1.1 An,m

The An,m count single traces of generic matrices (U(N) single traces). They are defined by

An,m =
1

n+m

∑
d|n,m

φ(d)

(n+m
d
n
d

)

Their generating function is

fU(N)(x, y) = −
∞∑
d=1

φ(d)

d
log(1− xd − yd)

which is the Hilbert series for the vector space TST . The plethystic exponential is

FU(N)(x, y) =
∏
n,m

1

(1− xnym)An,m
=
∞∏
k=1

1

1− xk − yk
(C.1)

which is the Hilbert series for the vector space T = Sym (TST ).
The values of An,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6
3 1 1 2 4 5 7 10 12 15 19 22
4 1 1 3 5 10 14 22 30 43 55 73
5 1 1 3 7 14 26 42 66 99 143 201
6 1 1 4 10 22 42 80 132 217 335 504
7 1 1 4 12 30 66 132 246 429 715 1144
8 1 1 5 15 43 99 217 429 810 1430 2438
9 1 1 5 19 55 143 335 715 1430 2704 4862
10 1 1 6 22 73 201 504 1144 2438 4862 9252
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C.1.2 an,m

The an,m count aperiodic single traces of generic matrices (U(N) aperiodic single traces), or
equivalently Lyndon words. They are defined by

an,m =
1

n+m

∑
d|n,m

µ(d)

(n+m
d
n
d

)

Their generating function is

f̄U(N)(x, y) = −
∞∑
d=1

µ(d)

d
log(1− xd − yd)

which is the Hilbert series for the vector space T
(1)
ST . The plethystic exponential is

FU(N)(x, y) =
∏
n,m

1

(1− xnym)an,m
=

1

1− x− y

which is the Hilbert series for the vector space T (1) = Sym
(
T

(1)
ST

)
.

The values of an,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 2 2 3 3 4 4 5 5
3 0 1 2 3 5 7 9 12 15 18 22
4 0 1 2 5 8 14 20 30 40 55 70
5 0 1 3 7 14 25 42 66 99 143 200
6 0 1 3 9 20 42 75 132 212 333 497
7 0 1 4 12 30 66 132 245 429 715 1144
8 0 1 4 15 40 99 212 429 800 1430 2424
9 0 1 5 18 55 143 333 715 1430 2700 4862
10 0 1 5 22 70 200 497 1144 2424 4862 9225

C.1.3 Ainvn,m

The Ainvn,m count matrix words (up to cyclic rotations) which don’t change when reversed (up to
cyclic rotations). They are defined by

Ainvn,m =

(
bn2 c+ bm2 c
bn2 c

)
Their generating function is

finv(x, y) =
x2 + xy + y2 + x+ y

1− x2 − y2

which is the Hilbert series for the vector space TST ;inv. The plethystic exponential is

Finv(x, y) =
∏
n,m

1

(1− xnym)A
inv
n,m

=

∞∏
k=1

exp

[
x2k + xkyk + y2k + xk + yk

k(1− x2k − y2k)

]
which is the Hilbert series for the vector space Tinv = Sym (TST ;inv)

The values of Ainvn,m for n,m ≤ 10 are shown below
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0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4 5 5 6
3 1 1 2 2 3 3 4 4 5 5 6
4 1 1 3 3 6 6 10 10 15 15 21
5 1 1 3 3 6 6 10 10 15 15 21
6 1 1 4 4 10 10 20 20 35 35 56
7 1 1 4 4 10 10 20 20 35 35 56
8 1 1 5 5 15 15 35 35 70 70 126
9 1 1 5 5 15 15 35 35 70 70 126
10 1 1 6 6 21 21 56 56 126 126 252

C.1.4 ainvn,m

The ainvn,m count aperiodic matrix words (up to cyclic rotations) which don’t change (up to cyclic
rotations) when reversed. They are defined by

ainvn,m =
∑
d|n,m

µ(d)

(
b n2dc+ bm2dc
b n2dc

)
Their generating function is

f̄inv(x, y) =
∞∑
d=1

µ(d)
x2d + xdyd + y2d + xd + yd

1− x2d − y2d

which is the Hilbert series for the vector space T
(1)
ST ;inv. The plethystic exponential is

F̄inv(x, y) =
∏
n,m

1

(1− xnym)a
inv
n,m

=
∞∏
k=1

exp

x2k + xkyk + y2k + xk + yk

k(1− x2k − y2k)

∑
d|k

dµ(d)


which is the Hilbert series for the vector space T

(1)
inv = Sym

(
T

(1)
ST ;inv

)
The values of ainvn,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 2 2 3 3 4 4 5 5
3 0 1 2 1 3 3 3 4 5 4 6
4 0 1 2 3 4 6 8 10 12 15 18
5 0 1 3 3 6 5 10 10 15 15 20
6 0 1 3 3 8 10 17 20 32 33 53
7 0 1 4 4 10 10 20 19 35 35 56
8 0 1 4 5 12 15 32 35 64 70 120
9 0 1 5 4 15 15 33 35 70 68 126
10 0 1 5 6 18 20 53 56 120 126 245

C.1.5 Bn,m

The Bn,m count single traces of anti-symmetric matrices (SO(N) single traces). They are defined
by

Bn,m =
1

2n+ 2m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
+

(−1)n+m

2

(
bn2 c+ bm2 c
bn2 c

)
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Their generating function is

fSO(N)(x, y) =
1

2

[
−
∞∑
d=1

φ(d)

d
log(1− xd − yd) +

x2 + xy + y2 − x− y
1− x2 − y2

]

which is the Hilbert series for the vector space T̃ST = TST ;inv;even ⊕ T̃ST ;var. The plethystic
exponential is

FSO(N)(x, y) =
∏
n,m

1

(1− xnym)Bn,m

=

∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(C.2)

which is the Hilbert series for the vector space T̃ = Sym
(
T̃ST

)
.

The values of Bn,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0
2 1 0 2 0 3 0 4 0 5 0 6
3 0 1 0 3 1 5 3 8 5 12 8
4 1 0 3 1 8 4 16 10 29 20 47
5 0 1 0 5 4 16 16 38 42 79 90
6 1 0 4 3 16 16 50 56 126 150 280
7 0 1 0 8 10 38 56 133 197 375 544
8 1 0 5 5 29 42 126 197 440 680 1282
9 0 1 0 12 20 79 150 375 680 1387 2368
10 1 0 6 8 47 90 280 544 1282 2368 4752

C.1.6 bn,m

The bn,m count minimally periodic single traces of anti-symmetric matrices, or equivalently
orthogonal Lyndon words. They are defined by

bn,m =
1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+ (−1)

n+m
d

(
b n2dc+ bm2dc
b n2dc

)]
Their generating function is

f̄SO(N)(x, y) ==
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d − xd − yd

1− x2d − y2d

]

which is the Hilbert series for the vector space T̃
(min)
ST = T

(1)
ST ;inv;even⊕T

(2)
ST ;inv;odd⊕ T̃

(1)
ST ;var. The

plethystic exponential is

F̄SO(N)(x, y) =
∏
n,m

1

(1− xnym)bn,m

=
1√

1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2k − xk − yk

1− x2k − y2k

∑
d|k

dµ(d)


which is the Hilbert series for the vector space T̃ (min) = Sym

(
T̃

(min)
ST

)
.
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The values of bn,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0
2 1 0 1 0 3 0 3 0 5 0 5
3 0 1 0 2 1 5 3 8 5 11 8
4 0 0 3 1 6 4 16 10 26 20 47
5 0 1 0 5 4 15 16 38 42 79 90
6 0 0 3 3 16 16 46 56 125 150 275
7 0 1 0 8 10 38 56 132 197 375 544
8 0 0 5 5 26 42 125 197 432 680 1278
9 0 1 0 11 20 79 150 375 680 1384 2368
10 0 0 5 8 47 90 275 544 1278 2368 4735

C.1.7 b
(odd)
n,m

The b
(odd)
n,m count single traces of a specified odd periodicity for anti-symmetric matrices. Note

that n,m refer to the number of Xs and Y s contained in the aperiodic root of the trace, rather
than in the whole trace. They are defined by

b(odd)
n,m =

1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+ (−1)n+m

(
b n2dc+ bm2dc
b n2dc

)]
Their generating function is

f̄
(odd)
SO(N)(x, y) =

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + (−x)d + (−y)d

1− x2d − y2d

]
which is the Hilbert series for the vector space T̃

(odd)
ST = T

(1)
ST ;inv;even ⊕ T̃

(1)
ST ;var. The plethystic

exponential is

F̄
(odd)
SO(N)(x, y) =

∏
n,m

1

(1− xnym)b
(odd)
n,m

=
1√

1− x− y

∞∏
k=1

exp

∑
d|k

dµ(d)

2k

x2k + xkyk + y2k + (−1)d(xk + yk)

1− x2k − y2k


which is the Hilbert series for the vector space T̃ (odd) = Sym

(
T̃

(odd)
ST

)
.

The values of b
(odd)
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0
2 0 0 1 0 2 0 3 0 4 0 5
3 0 1 0 2 1 5 3 8 5 11 8
4 0 0 2 1 6 4 14 10 26 20 44
5 0 1 0 5 4 15 16 38 42 79 90
6 0 0 3 3 14 16 46 56 122 150 275
7 0 1 0 8 10 38 56 132 197 375 544
8 0 0 4 5 26 42 122 197 432 680 1272
9 0 1 0 11 20 79 150 375 680 1384 2368
10 0 0 5 8 44 90 275 544 1272 2368 4735

96



C.1.8 b
(even)
n,m

The b
(even)
n,m count single traces of an even specified periodicity for anti-symmetric matrices. Note

that n,m refer to the number of Xs and Y s contained in the aperiodic root of the trace, rather
than in the whole trace. They are defined by

b(even)
n,m =

1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+

(
b n2dc+ bm2dc
b n2dc

)]
Their generating function is

f̄
(even)
SO(N)(x, y) =

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + xd + yd

1− x2d − y2d

]

which is the Hilbert series for the vector space T̃
(even)
ST = T

(1)
ST ;inv;even⊕T

(1)
ST ;inv;odd⊕ T̃

(1)
ST ;var. The

plethystic exponential is

F̄
(even)
SO(N)(x, y) =

∏
n,m

1

(1− xnym)b
(even)
n,m

=
1√

1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2n + xk + yk

1− x2k − y2k

∑
d|k

dµ(d)


which is the Hilbert series for the vector space T̃ (even) = Sym

(
T̃

(even)
ST

)
.

The values of b
(even)
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 2 2 3 3 4 4 5 5
3 0 1 2 2 4 5 6 8 10 11 14
4 0 1 2 4 6 10 14 20 26 35 44
5 0 1 3 5 10 15 26 38 57 79 110
6 0 1 3 6 14 26 46 76 122 183 275
7 0 1 4 8 20 38 76 132 232 375 600
8 0 1 4 10 26 57 122 232 432 750 1272
9 0 1 5 11 35 79 183 375 750 1384 2494
10 0 1 5 14 44 110 275 600 1272 2494 4735

C.2 Multi-trace sequences

C.2.1 N
U(N)
n,m

The N
U(N)
n,m count the multi-traces of generic matrices. For finite N they are defined by

NU(N)
n,m =

∑
R`n
S`m

T`n+m
l(T )≤N

g2
R,S;T

At infinite N , An,m and N
U(N)
n,m are related by the plethystic exponential, so the generating

function is given by (C.1), which is the Hilbert series for T .

The values of N
U(N)
n,m for n,m ≤ 10 are shown below
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0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 3 5 7 11 15 22 30 42
1 1 2 4 7 12 19 30 45 67 97 139
2 2 4 10 18 34 56 94 146 228 340 506
3 3 7 18 38 74 133 233 385 623 977 1501
4 5 12 34 74 158 297 550 951 1614 2627 4202
5 7 19 56 133 297 602 1166 2133 3775 6437 10692
6 11 30 94 233 550 1166 2382 4551 8424 14953 25835
7 15 45 146 385 951 2133 4551 9142 17639 32680 58659
8 22 67 228 623 1614 3775 8424 17639 35492 68356 127443
9 30 97 340 977 2627 6437 14953 32680 68356 136936 264747
10 42 139 506 1501 4202 10692 25835 58659 127443 264747 530404

C.2.2 N δ
n,m

The N δ
n,m count the multi-traces of anti-symmetric matrices. For finite N they are defined by

N δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

l(T )≤N

gR,S;T

At infiniteN , Bn,m andN δ
n,m are related by the plethystic exponential, so the generating function

is given by (C.2), which is the Hilbert series for T̃ .
The values of N δ

n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 2 0 3 0 5 0 7
1 0 1 0 2 0 4 0 7 0 12 0
2 1 0 4 0 9 0 19 0 35 0 62
3 0 2 0 9 1 23 4 52 10 105 22
4 2 0 9 1 33 6 85 21 198 56 410
5 0 4 0 23 6 86 33 243 114 600 313
6 3 0 19 4 85 33 297 152 845 512 2137
7 0 7 0 52 21 243 152 879 664 2646 2227
8 5 0 35 10 198 114 845 664 3003 2742 9168
9 0 12 0 105 56 600 512 2646 2742 9702 11033
10 7 0 62 22 410 313 2137 2227 9168 11033 33704

C.3 Relations between different sequences

The an,m are the Möbius transform of the An,m.

An,m =
∑
d|n,m

an
d
,m
d

an,m =
∑
d|n,m

µ(d)An
d
,m
d

fU(N)(x, y) =

∞∑
k=1

f̄U(N)(x
k, yk) f̄U(N)(x, y) =

∞∑
k=1

µ(k)fU(N)(x
k, yk)

FU(N)(x, y) =
∞∏
k=1

F̄U(N)(x
k, yk) F̄U(N)(x, y) =

∞∏
k=1

FU(N)(x
k, yk)µ(k)
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The ainvn,m are the Möbius transform of the Ainvn,m.

Ainvn,m =
∑
d|n,m

ainvn
d
,m
d

ainvn,m =
∑
d|n,m

µ(d)Ainvn
d
,m
d

finv(x, y) =
∞∑
k=1

f̄inv(x
k, yk) f̄inv(x, y) =

∞∑
k=1

µ(k)finv(x
k, yk)

Finv(x, y) =
∞∏
k=1

F̄inv(x
k, yk) F̄inv(x, y) =

∞∏
k=1

Finv(x
k, yk)µ(k)

The Bn,m can be expressed in terms of the An,m and the Ainvn,m.

Bn,m =
1

2

[
An,m + (−1)n+mAinvn,m

]
fSO(N)(x, y) =

1

2

[
fU(N)(x, y) + finv(−x,−y)

]
The bn,m are the Möbius transform of the Bn,m.

Bn,m =
∑
d|n,m

bn
d
,m
d

bn,m =
∑
d|n,m

µ(d)Bn
d
,m
d

fSO(N)(x, y) =

∞∑
k=1

f̄SO(N)(x
k, yk) f̄SO(N)(x, y) =

∞∑
k=1

µ(k)fSO(N)(x
k, yk)

FSO(N)(x, y) =

∞∏
k=1

F̄SO(N)(x
k, yk) F̄SO(N)(x, y) =

∞∏
k=1

FSO(N)(x
k, yk)µ(k)

The b
(odd)
n,m and b

(even)
n,m can be expressed in terms of the an,m and the ainvn,m.

b(odd)
n,m =

1

2

[
an,m + (−1)n+mainvn,m

]
b(even)
n,m =

1

2

[
an,m + ainvn,m

]
f̄

(odd)
SO(N)(x, y) =

1

2

[
f̄U(N)(x, y) + f̄inv(−x,−y)

]
f̄

(even)
SO(N)(x, y) =

1

2

[
f̄U(N)(x, y) + f̄inv(x, y)

]
D Jucys-Murphy elements

Take a Young diagram R ` n, and label each box by their row and column number, where
the top left box is (1, 1) and numbers increase to the right and downwards. Then for the box
i = (r, c), we define the content of that box to be ci = c − r. For example, the contents of
R = [4, 4, 2, 2], [8, 4, 2] and [2, 2, 2, 2, 2, 2] are shown below

0 1 2 3

−1 0 1 2

−2 −1

−3 −2

0 1 2 3 4 5 6 7

−1 0 1 2

−2 −1

0 1

−1 0

−2 −1

−3 −2

−4 −3

−5 −4

(D.1)

The contents of a box relate to the eigenvalues of a certain set elements of C(Sn) called the
Jucys-Murphy elements, defined by

Jk =
k−1∑
i=1

(i, k) (D.2)
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These span a maximal commuting sub-algebra of C(Sn), and therefore one can choose a basis
of any irreducible representation to be eigenvectors of the Jk. To describe this basis, we first
recall the definition of a standard Young tableaux.

For a Young diagram R ` n, a Young tableaux of shape R is produced by placing a positive
integer into each box of R. The tableaux is called semi-standard if the numbers increase weakly
along the rows and strictly down the columns. It is called standard if in addition the n integers
are the numbers 1 to n. For example, the possible standard Young tableaux of shape R = [3, 2]
are

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 3 4

2 5

1 3 5

2 4

In an irrep R ` n of Sn, the basis of eigenvectors for the Jucys-Murphy elements are labelled by
the standard Young tableaux of shape R. Consider such a tableau r. Then the eigenvalue of |r〉
under Jk is the content of the box containing k in r. So for example if we have R = [3, 2, 1] the
contents of the cells are

0 1 2

−1 0

−2

so the eigenvalues of the Jucys-Murphy elements on 4 of the 16 different standard Young tableaux
are

1 2 3

4 5

6

1 3 5

2 6

4

1 2 6

3 4

5

1 4 6

2 5

3

J2 1 -1 1 -1
J3 2 1 -1 -2
J4 -1 -2 0 1
J5 0 2 -2 0
J6 -2 0 2 2

We will be particularly interested in the product

Ω =
n∏
i=1

(N + Ji) (D.3)

It is a standard result, see for example [75], that this can also be written

Ω =
n∏
i=1

(N + Ji) =
∑
σ∈Sn

N c(σ)σ (D.4)

where c(σ) is the number of cycles in σ. From this second expression we can see that Ω is in the
centre of the C(Sn).

αΩα−1 =
∑
σ∈Sn

N c(σ)ασα−1

=
∑
σ∈Sn

N c(α−1σα)σ

= Ω

Therefore, by Schur’s lemma, in any irrep of Sn the representative of Ω is proportional to the
identity. To find the constant of proportionality, consider Ω acting on a standard Young tableaux
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r of shape R ` n. Since the product in (D.3) includes all the Jucys-Murphy elements, the content
of every box will be picked up. Therefore

DR (Ω) |r〉 =

 ∏
i∈ boxes

of R

(N + ci)

 |r〉
As expected, the eigenvalue of Ω on r does not depend on r, only on the irrep R. So we have

DR (Ω) =
∏

i∈ boxes
of R

(N + ci) (D.5)

Another important result, similar in spirit to (D.4), is as follows: consider Sn[S2] as a subgroup
of S2n. Then one can choose the left coset representatives of this subgroup such that∑

β left coset
representatives

C
(δ)
I βIJC

(δ) Jβ =
n∏
i=1

(N + J2i−1) (D.6)

This is the key result behind the evaluation of the mesonic correlator in [24, 26], and is proved
inductively in [75].

E Alternative derivation of baryonic correlator

To evaluate (8.7) explicitly, we first look at how the equivalent mesonic calculation was performed
in [26]. The mesonic starting point is (8.6), and the first step is to split the sum over S2n+2m into
two, one over the subgroup Sn+m[S2] and the other over the (left) coset representatives of said

subgroup. The invariance properties of |T 〉 and C
(δ)
I mean the subgroup sum becomes trivial and

merely contributes a normalisation factor. The sum over the coset representatives is evaluated
using (D.6). Finally the correlator is found by evaluating the product of Jucys-Murphy elements
on the vector |T 〉.

This process works for the baryonic case, but with subgroup SN×Sq[S2] (where q = n+m−N
2 )

instead of Sn+m[S2]. Splitting the sum as before, we see that both |1N+T 〉 and C(ε) are invariant
(up to minus signs, which cancel) under SN × Sq[S2], so the subgroup sum becomes trivial and

just produces a factor of N !2qq!. Writing C(β) for C
(ε)
I βIJC

(ε)J , the sum we are left with is

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉

= δTT ′δRR′δSS′δλλ′
d1N+T 2n+m+qn!m!N !q!

(2n+ 2m)!
〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉

(E.1)

Since β are the coset representatives of SN × Sq[S2], we cannot use (D.6). Instead we prove a
generalisation, (E.3), that performs the same role, expressing the sum over coset representatives
in terms of Jucys-Murphy elements. The majority of this section is taken up by proving this
result, following the methods used by [75] in proving (D.4) and (D.6). After the proof, we then
determine how the product of Jucys-Murphy elements acts on the vector |1N + T 〉.

Since we are using left coset representatives, a generic element σ ∈ S2n+2m can be written
σ = βτ where β is the coset rep and τ ∈ SN × Sq[S2]. The cosets are labelled by a choice of q
pairs from {1, 2, ..., N + 2q}. Let the set of all such choices be Pq. An element of p ∈ Pq then
has the form

p =
{
{i1,1, i1,2}, {i2,1, i2,2}, ..., {iq,1, iq,2}

}
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The coset representative for p could be any permutation βp satisfying

βp(p) =
{
{N + 1, N + 2}, {N + 3, N + 4}, ..., {N + 2q − 1, N + 2q}

}
(E.2)

Using this notation for the cosets, we propose

Proposition

The coset representatives βp can be chosen such that

∑
p∈Pq

C(βp)βp = N !

q∏
i=1

N +

N∑
j=1

(j,N + 2i− 1) +

N∑
j=1

(j,N + 2i) +

2i−2∑
j=1

(N + j,N + 2i− 1)


= N !

q∏
i=1

[N + JN+2i−1 + (N + 1, N + 2i)JN+1(N + 1, N + 2i)] (E.3)

where the product is ordered [i = 1][i = 2]...[i = q].

Proof

We prove this by induction on q at fixed N , following the example of [75]. First we consider the
base case with q = 1. The possible p, along with the associated βp and C(βp) are

p {N + 1, N + 2} {k,N + 1} {k,N + 2} {l1, l2}
βp 1 (k,N + 2) (k,N + 1) (l1, N + 1)(l2, N + 2)

C(βp) N !N N ! N ! 0

where 1 ≤ k, l1, l2 ≤ N and l1, l2 are distinct. It is simple to check that these βp satisfy the
conditions in (E.2) and therefore serve as coset representatives. The calculations for C(βp) are
shown diagrammatically in figure 14. For simplicity the figure shows k = N in the pairings
p = {k,N + 1}, {k,N + 2} and l1 = N − 1, l2 = N in the pairing p = {k1, k2}, but it is clear
that the results hold for all k, l1, l2.

So we have ∑
p∈P1

C(βp)βp = N !

N +
N∑
j=1

(j,N + 1) +
N∑
j=1

(j,N + 2)


as claimed in (E.3).

Now assume the claim is true for q − 1. In particular this means that there is a map from
Pq−1 → SN+2q−2, namely p → βp, such that for each p, βp satisfies (E.2), and the βp combine
so as to satisfy (E.3).

Now we consider the case at q. The pairings p ∈ Pq fall into 5 categories depending on how
N + 2q − 1 and N + 2q pair (or don’t pair) up with the first N + 2q − 2 numbers.

1. {N + 2q − 1, N + 2q} is a pair

2. {k1, N + 2q − 1} and {k2, N + 2q} are pairs, for some k1, k2 < N + 2q − 1, k1 6= k2

3. N + 2q is unpaired and {k,N + 2q − 1} is a pair, for some k < N + 2q − 1

4. N + 2q − 1 is unpaired and {k,N + 2q} is a pair, for some k < N + 2q − 1

5. N + 2q − 1 and N + 2q are both unpaired
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ε

ε

...

ε

ε

...

ε

ε

...

ε

ε

...

Figure 14: Diagrammatic calculation of C(β) for β = 1, (N,N + 1), (N,N + 2) and (N − 1, N +
1)(N,N + 2) respectively. Two εs fully contracted contribute εi1...iN ε

i1...iN = N ! while a loop
gives δijδ

ij = N . Since ε is anti-symmetric and δ is symmetric, a contraction between the two
gives 0.

We now split up the sum over Pq into five sums, one for each type of pairing.

Type 1

Let Pq;1 be the set of pairings that are of type 1. Given p ∈ Pq,1, first note that p reduces
uniquely to a p̄ ∈ Pq−1 given by p̄ = p\{N + 2q − 1, N + 2q}. Using this p̄, we choose the coset
representative of p to be

βp = βp̄

By which we mean that βp acts as βp̄ on {1, 2, ..., N + 2q− 2} and as the identity on {N + 2q−
1, N + 2q}. It is simple to check that this satisfies the conditions (E.2).

To calculate C(βp), add an extra label q onto the contractor C(ε) to record how many indices
it has. So C(ε;q) will have N + 2q indices, the first N in an ε and the remaining 2q in q δs.

Then we can write C
(ε;q)
i1...iN+2q

= C
(ε;q−1)
i1...iN+2q−2

δiN+2q−1iN+2q . Since C
(ε;q)
i1...iN+2q

is the contractor used

in C(βp), while C
(ε;q−1)
i1...iN+2q

is used in C(βp̄), this allows us to relate C(βp) and C(βp̄). This
calculation is shown diagrammatically at the top left of figure 15. In particular we find

C(βp) = NC(βp̄)

Given a p̄ ∈ Pq−1, there is a unique p ∈ Pq;1 which reduces to p̄, namely p = p̄ ∪ {N + 2q −
1, N + 2q}. Therefore ∑

p∈Pq;1

C(βp)βp = N
∑

p̄∈Pq−1

C(βp̄)βp̄ (E.4)

Type 2

We follow the same route as for type 1. Let Pq;2 be the set of pairings that are of type 2. Given
p ∈ Pq,2, we define p̄ ∈ Pq−1 by p̄ = (p ∪ {k1, k2}) \{{k1, N + 2q − 1}, {k2, N + 2q}}. We then
choose the coset representative of p to be

βp = βp̄ (βp̄(k2), N + 2q − 1) = (k2, N + 2q − 1)βp̄

Again, one can check that this satisfies the conditions (E.2).
The calculation for C(βp) is shown diagrammatically in figure 15 in the middle of the top

row. For simplicity, the calculation shown has k2 = N + 2q − 2, but it is clear that for any k2

we arrive at the relation
C(βp) = C(βp̄)

Consider p̄ ∈ Pq−1. We can explicitly write this out as

p̄ =
{
{l1,1, l1,2}, {l2,1, l2,2}, ..., {lq−1,1, lq−1,2}

}

103



C(ε;q−1)

...

ε

ε

C(ε;q−1)

...

βp̄

C(ε;q−1)

...

C(ε;q−1)

...

βp̄

C(ε;q−1)

...

C(ε;q−1)

...

βp̄

...

...
...

Figure 15: Diagrammatic calculation of C(β) for various β ∈ SN+2q. The top row shows
β = βp̄, (N + 2q−2, N + 2q−1)βp̄ and (N + 2q−2, N + 2q)βp̄ respectively, where βp̄ ∈ SN+2q−2.
The bottom row shows a β with β(N + 2q − 1) = 1 and β(N + 2q) = 2. These two values of β
are enough to ensure C(β) = 0, so the remaining parts of β are not included in the diagram.

Now consider the different p which reduce to p̄. For each pair {li,1, li,2}, we obtain 2 possible p
by setting k1 = li,1 and k2 = li,2 or k1 = li,2 and k2 = li,1. Therefore we can specify a p ∈ Pq;2
by the trio (p̄, i, j), where the two cases above correspond to j = 2 and j = 1 respectively (so p
has k2 = li,j). Changing variables in this way, we have

∑
p∈Pq;2

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

q−1∑
i=1

2∑
j=1

(βp̄(li,j), N + 2q − 1)

From (E.2) we know that βp̄({li,j}) = {N + 1, N + 2, ..., N + 2q − 2}, so we can simplify this to

∑
p∈Pq;2

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

2q−2∑
j=1

(N + j,N + 2q − 1) (E.5)

Types 3 and 4

Let Pq;3 be the set of pairings that are of type 3. Given p ∈ Pq,3, we define p̄ ∈ Pq−1 by
p̄ = p\{k,N + 2q − 1}. We then choose the coset representative of p to be

βp = βp̄ (βp̄(k), N + 2q) = (k,N + 2q)βp̄

The calculation for C(βp) is shown diagrammatically at the top right of figure 15, and demon-
strates that

C(βp) = C(βp̄)

For simplicity, the calculation shown has k = N + 2q− 2, but clearly k can be arbitrary and we
still arrive at the same result.

Take p̄ ∈ Pq−1. This contains q − 1 pairs from the set {1, 2, ...N + 2q − 2}, so there are N
numbers that are omitted. Let these be {l1, ..., lN}. The different p which reduce to p̄ are then
given by p̄∪ {li, N + 2q− 1} for i = 1, 2, ..., N . Therefore a p ∈ Pq;3 can be specified by the pair
(p̄, i). Changing to these variables, we have∑

p∈Pq;3

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N∑
i=1

(βp̄(li), N + 2q)
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From (E.2) we know that βp̄({li}) = {1, 2, ..., N}, therefore this simplifies to

∑
p∈Pq;3

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N∑
j=1

(j,N + 2q) (E.6)

We can repeat the above process with N + 2q − 1 and N + 2q swapped to give the sum over
type 4 pairings ∑

p∈Pq;4

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N∑
j=1

(j,N + 2q − 1) (E.7)

Type 5

Let Pq;5 be the set of pairings that are of type 5. Given p ∈ Pq,5, we can choose the coset
representative βp such that

βp(N + 2q − 1) = 1, βp(N + 2q) = 2

We do not need to specify the remaining values of βp as this is enough to show that C(βp)
vanishes. The calculation is shown diagrammatically on the bottom row of figure 15. This
means ∑

p∈Pq;5

C(βp)βp = 0 (E.8)

Adding together (E.4), (E.5), (E.6), (E.7) and (E.8), we get∑
p∈Pq

C(βp)βp

=
∑

p̄∈Pq−1

C(βp̄)βp̄

N +
N∑
j=1

(j,N + 2q − 1) +
N∑
j=1

(j,N + 2q) +

2q−2∑
j=1

(N + j,N + 2q − 1)


The factor on the right is just the i = q factor in (E.3), so plugging in the inductive assumption
proves the proposition.
�

We now study how the two Jucys-Murphy elements in (E.3), JN+2i−1 and the conjugate of JN+1,
act on |1N + T 〉 and its constituents. We start with JN+1.

The vector |1N + T 〉 is a linear combination of various standard Young tableaux of shape
1N + T . Let r be one of these tableaux. Since |1N + T 〉 is completely anti-symmetric under the
SN acting on {1, 2, ..., N}, the first column of r must consist of the numbers 1, 2, ..., N . Then as
|1N+T 〉 is invariant under the Sq[S2] acting on the pairs {{N+1, N+2}, ..., {N+2q−1, N+2q}},
the numbers {N + 1, N + 2, ..., N + 2q−1, N + 2q} must appear in pairs, with each even number
appearing directly to the right of the preceding odd number (this is proved in [75]). This means
that the odd numbers greater than N occupy the 2nd, 4th, 6th,... columns of r while the
even numbers greater than N occupy the 3rd, 5th, 7th, ... columns. So for example, given
T = [4, 4, 2], the possible r are displayed in figure 16.

Since the numbers 1, 2, ..., N take up the first column of r, the number N + 1 must in the
first box of the second column (one can see that this is the case for all the tableaux shown in
figure 16). The content of this box is 1, and therefore JN+1 has eigenvalue 1 when acting on r:

D1N+T (JN+1) |r〉 = |r〉

We are interested in the conjugate of JN+1, where the conjugating element is (N + 1, N + 2i),

1 ≤ i ≤ q. Since SN commutes with (N + 1, N + 2i), we know that D1N+T [(N + 1, N + 2i)]|r〉
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1 N + 1 N + 2 N + 3 N + 4

2 N + 5 N + 6 N + 7 N + 8

3 N + 9 N + 10

4

...

N

1 N + 1 N + 2 N + 3 N + 4

2 N + 5 N + 6 N + 9 N + 10

3 N + 7 N + 8

4

...

N

1 N + 1 N + 2 N + 5 N + 6

2 N + 3 N + 4 N + 7 N + 8

3 N + 9 N + 10

4

...

N

1 N + 1 N + 2 N + 5 N + 6

2 N + 3 N + 4 N + 9 N + 10

3 N + 7 N + 8

4

...

N

1 N + 1 N + 2 N + 7 N + 8

2 N + 3 N + 4 N + 9 N + 10

3 N + 5 N + 6

4

...

N

Figure 16: The standard Young tableaux that contribute to the vector |1N + T 〉 for T = [4, 4, 2]
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is still anti-symmetric under SN , and hence, by the same argument as above, it is made up of
standard Young tableaux with N + 1 in the first box of the second column. Therefore

D1N+T [JN+1(N + 1, N + 2i)] |r〉 = D1N+T [(N + 1, N + 2i)]|r〉

Multiplying by D1N+T [(N + 1, N + 2i)] gives

D1N+T

 N∑
j=1

(j,N + 2i)

 |r〉 = D1N+T [(N + 1, N + 2i)JN+1(N + 1, N + 2i)] |r〉 = |r〉

This gives the behaviour of the second term in each factor of (E.3). We now look at the other
term, of the form JN+2i−1.

Denote the contents of the cell labelled by k in r by c(r, k). Then

D1N+T (JN+2i−1) |r〉 = c(r,N + 2i− 1)|r〉

Decomposing |1N + T 〉 into its constituent standard Young tableaux, we have

|1N + T 〉 =
∑
r

αr|r〉

for some coefficients αr. Therefore

〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉

= N !〈1N + T |
q∏
i=1

[N + JN+2i−1 + (N + 1, N + 2i)JN+1(N + 1, N + 2i)]
∑
r

αr|r〉

= N !〈1N + T |
∑
r

αr

q∏
i=1

[N + 1 + c(r,N + 2i− 1)] |r〉 (E.9)

As we noted earlier, the odd numbers greater than N occupy the even numbered columns of r,
so the set {c(r,N + 2i − 1) : 1 ≤ i ≤ q} is just the contents of these columns. Therefore the
product in (E.9) does not depend on r, just on the shape of 1N + T , and we can pull it out of
the sum. Using the same notation as for the mesonic correlator, we have

〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉

= N !
∏

i∈ even
columns of 1N+T

(N + 1 + ci)〈1N + T |1N + T 〉

= N !
∏

i∈ even
columns of 1N+T

(N + 1 + ci)

Now we note that ∏
i∈ even

columns of 1N+T

(N + 1 + ci) =
∏

i∈ odd
columns of 1N+T

excluding first column

(N + ci)
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and
N ! =

∏
i∈ first

column of 1N+T

(N + ci)

Therefore

〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉 =
∏

i∈ odd
columns of 1N+T

(N + ci)

Reinstating the normalisation factor from (E.1), the full baryonic correlator is

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+m+qn!m!N !q!
d1N+T

(2n+ 2m)!

∏
i∈ odd

columns of 1N+T

(N + ci)

which, as expected, agrees with (8.14).
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