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ON FACTOR-FREE DYCK WORDS WITH HALF-INTEGER SLOPE

DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

Abstract. We study a class of rational Dyck paths with slope 2m+1

2
corresponding to

factor-free Dyck words, as introduced by P. Duchon. We show that, for the slopes con-
sidered in this paper, the language of factor-free Dyck words is generated by an auxiliary
language that we examine from the algebraic and combinatorial points of view. We provide
a lattice path description of this language, and give an explicit enumeration formula in
terms of partial Bell polynomials. As a corollary, we obtain new formulas for the number
of associated factor-free generalized Dyck words.

1. Introduction

In these notes we consider the set of factor-free words belonging to the generalized Dyck
language constructed from the alphabet A = {a, b} with valuations h(a) = 2m+ 1, m ∈ N,
and h(b) = −2. This is an instance of the two-letter Dyck language studied by P. Duchon
for which words correspond to Dyck paths with rational slope. In the case at hand, the
slope is 2m+1

2 .
In [9], Duchon provided an algebraic grammar for generalized Dyck languages (as intro-

duced by Labelle and Yeh [10]) and proved that words in such a language can be obtained
uniquely by inserting words of the language into factor-free words of the same language.

Recall that a factor of a word w is any word w′ such that w = w1w
′w2. If w1 and w2

are not both the empty word, w′ is a proper factor of w. For a given alphabet A we let
A∗ denote the set of all words made from A, together with the empty word ε. A word w

in A∗ is said to be a generalized Dyck word if it satisfies the conditions that h(w) = 0, and
for each left factor w1 of w, h(w1) ≥ 0. We denote by DA,h the set of generalized Dyck
words over the alphabet A with valuation given by h. Moreover, we say that a word in A∗

is DA,h-factor-free (or simply factor-free if the underlying Dyck language is clear) if it has
no proper factor belonging to DA,h. The set of factor-free words in DA,h will be denoted by
DA,h.

As shown in [9, Section 5], the algebraic grammars for DA,h and DA,h can be described
by a system of derivation rules in terms of certain auxiliary languages with restrictions on
their total and partial valuations. As we will see in Section 2, for Dyck words with slope
2m+1

2 , the aforementioned derivation rules may be reduced to a single core language that
we denote by U , or U 2m+1

2

if we wish to emphasize the slope.

The main focus of this paper is to study the auxiliary language U from the algebraic and
combinatorial points of view. We provide a description of U in terms of lattice paths and,
based on a polynomial equation satisfied by the generating function, we give an explicit
enumeration formula involving partial Bell polynomials. As a corollary, we obtain new
formulas for the enumeration of the corresponding factor-free generalized Dyck words. In
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Section 4 we illustrate our results for slopes 3
2 and 5

2 . In particular, we discuss a bijection
between the elements of U 5

2

and certain colored trees having nonleaf nodes of outdegrees 2

or 4. In the last section of the paper, we provide the building blocks needed to create factor-
free words with slope 7

2 , we give an interesting connection between the auxiliary language
U and certain colored Dyck paths, and we briefly discuss the use of factor-free Dyck words
to generate cross-bifix-free (non-overlapping) codes of binary words with variable length.

2. Grammar for factor-free words and the auxiliary language U

In this section, we will review some of the terminology introduced by Duchon in [9] and
will discuss the reduced algebraic grammar for the two-letter sublanguage of factor-free
Dyck words with slope 2m+1

2 . In addition, we define the language U alluded to in the
introduction and describe its elements in terms of lattice paths.

First, consider the auxiliary languages Li and Rj defined as follows:

• Li is the set of factor-free words w ∈ A∗ with total valuation i, such that each
nonempty left factor w1 of w has h(w1) > i,
• Rj is the set of factor-free words w ∈ A∗ with total valuation −j, such that each
nonempty left factor w1 of w has h(w1) > 0.

Using Duchon’s results [9, Section 5], we conclude that if A = {a, b} is a two-letter
alphabet with valuations h(a) = 2m + 1 and h(b) = −2, then the set D = DA,h of factor-
free Dyck words in A∗ may be described via the derivation rules:

D = ε+ L1R1 + L2R2,

Li = Li+1R1 + Li+2R2 for 1 ≤ i ≤ 2m− 1,

L2m = L2m+1R1, L2m+1 = a,

R1 = L1R2, R2 = b,

which can be reduced to

(1)

D = ε+ L1L1b+ L2b,

L2m+1 = a, L2m = aL1b,

Li = Li+1L1b+ Li+2b for 1 ≤ i ≤ 2m− 1.

This is an unambiguous context-free grammar.

Definition 1. Let U = U 2m+1

2

be the set consisting of the empty word ε together with all

factor-free words w ∈ A∗ with total valuation 0, having at least one left factor with negative
valuation, and such that each left factor w1 of w has h(w1) > −2m.

By identifying the letter a with an east-step (1, 0) and the letter b with a north-step
(0, 1), each nonempty word in U corresponds to an east-north lattice path from (0, 0) to
the line y = 2m+1

2 x with the following properties:

⊲ it has no two lattice points on a line with slope 2m+1
2 such that the path connecting

them lies completely below that line (factor-free),
⊲ it crosses the line y = 2m+1

2 x at least once,

⊲ it stays strongly below the line y = 2m+1
2 x+m.
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Observe that, factoring L1 = aUbm, the derivation rules (1) give

(2)

D = ε+ aUbmaUbm+1 + L2b,

L2m+1 = a, L2m = aaUbm+1,

Li = Li+1aUbm+1 + Li+2b for 1 ≤ i ≤ 2m− 1.

In other words, the set of factor-free Dyck words with slope 2m+1
2 is completely determined

by the auxiliary language U . Note that the length of a word in U is necessarily a multiple
of 2m+ 3.

Example 2 (slope 3
2 ). If m = 1, then the derivation rules (2) become

D = ε+ aUbaUbb+ L2b,

L3 = a, L2 = aaUbb,

L1 = L2aUbb+ L3b,

which yield the equations

(3)
D = ε+ aUbaUbb+ aaUbbb,

U = ε+ aUbbaUb.

In particular, abbab is the only word in U of length 5, and the words in U of length 10
are obtained by inserting abbab into itself according to (3). Thus we obtain the two words
aabbabbbab and abbaabbabb, see Figure 1.

Figure 1. Lattice paths corresponding to abbab, aabbabbbab, abbaabbabb ∈ U 3

2

.

As already pointed out in [9], in the case of slope 3
2 the elements of U are enumerated by

the Catalan numbers.

Example 3 (slope 5
2 ). If m = 2, then (2) gives

D = ε+ aUbbaUbbb+ L2b,

L5 = a, L4 = aaUbbb, L3 = L4aUbbb+ L5b,

L2 = L3aUbbb+ L4b, L1 = L2aUbbb+ L3b,

which yield

(4)
D = ε+ aUbbaUbbb+ a(aUbbb)3b+ abaUbbbb+ aaUbbbbb,

U = ε+ (aUbbb)3aUb+ baUbbbaUb+ aUbbbbaUb+ aUbbbaUbb.
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In particular, babbbab, abbbbab, and abbbabb are the only words of length 7 in U , and
abbbabbbabbbab is the only word of length 14 in U that cannot be derived from the three
primitive words of length 7, see Figure 2.

Figure 2. Lattice paths for babbbab, abbbbab, abbbabb, abbbabbbabbbab ∈ U 5

2

.

For some enumerative and asymptotic results for rational Dyck paths with slope 5
2 , see

[1].

3. Enumeration of U and factor-free 2m+1
2 -Dyck words

In this section we prove a polynomial equation satisfied by the generating function U(τ)
of U , and use it to find an enumeration formula in terms of partial Bell polynomials.
As a corollary, we obtain formulas for the enumeration of the corresponding factor-free
generalized Dyck words.

Recall that the auxiliary languages Li satisfy:

L2m+1 = a, L2m = aL1b,

Li = Li+1L1b+ Li+2b for 1 ≤ i ≤ 2m− 1.

This is an unambiguous grammar, so the above equations map to algebraic equations for
the corresponding generating functions Li(τ):

(5)
L2m+1(τ) = τ, L2m(τ) = τ2L1(τ),

Li(τ) = τL1(τ)Li+1(τ) + τLi+2(τ) for 1 ≤ i ≤ 2m− 1.

Proposition 4. The following relations hold:

L1(τ) =

m
∑

j=0

(

m+j
m−j

)

τ j+m+1
L
2j
1 (τ) and L2(τ) =

m−1
∑

j=0

(

m+j
m−j−1

)

τ j+m+1
L
2j+1
1 (τ).

Proof. Let ℓi = L2m+1−i(τ) for i = 0, . . . , 2m. Then (5) gives the recurrence relation:

ℓ0 = τ, ℓ1 = τ2L1,

ℓi = (τL1)ℓi−1 + τℓi−2 for 2 ≤ i ≤ 2m.
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Using [5, Prop. 1] and the fact that Bn,j(c1, 2c2, 0, . . . ) =
n!
j!

( j
n−j

)

c
2j−n
1 c

n−j
2 , we find a closed

formula for ℓn:

ℓn =

n
∑

j≥n/2

(

j

n− j

)

τ j+1
L
2j−n
1 .

This implies

L1 = ℓ2m =

2m
∑

j=m

(

j

2m− j

)

τ j+1
L
2j−2m
1 =

m
∑

j=0

(

m+ j

m− j

)

τ j+m+1
L
2j
1 ,

and similarly,

L2 = ℓ2m−1 =
m−1
∑

j=0

(

m+ j

m− j − 1

)

τ j+m+1
L
2j+1
1 .

�

Since L1 = aUbm, we have L1(τ) = τm+1U(τ), and Proposition 4 gives

τm+1
U(τ) =

m
∑

j=0

(

m+ j

m− j

)

τ j+m+1(τm+1
U(τ))2j .

Thus

U(τ) =

m
∑

j=0

(

m+ j

m− j

)

(

τ2m+3
U
2(τ)

)j
.

Moreover, since the length of any nonempty word of valuation 0 with slope 2m+1
2 must be

a multiple of 2m+ 3, the generating function U is of the form 1+
∑∞

n=1 unτ
(2m+3)n, where

un denotes the number of words in U of length (2m+ 3)n.
Therefore, with the change of variables t = τ2m+3, and denoting the generating function

again by U, we obtain

(6) U(t) = 1 +
m
∑

j=1

(

m+ j

m− j

)

tjU2j(t).

For a fixed m ∈ N, let µj =
(m+j
m−j

)

for j ≥ 0. Note that µj = 0 for j ≥ m+ 1.

Theorem 5. If un is the coefficient of tn in U(t), then

(7) un =

n
∑

k=1

(

2n

k − 1

)

(k − 1)!

n!
Bn,k(1!µ1, 2!µ2, . . . ).

Proof. With X(t) = 1 +
∑m

j=1 µjt
j, identity (6) means U(t) = X(tU2(t)). Denote the

right-hand side of (7) by vn and let V(t) = 1 +
∑∞

n=1 vnt
n.

We will prove that V(t) also satisfies V(t) = X(tV2(t)), hence U(t) = V(t) and so un = vn
for every n.
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First, using the identity (cf. [7, Sec. 11.2, Eqn. (11.11)])

Bn,k+1(z1, z2, . . . ) =

n−1
∑

ℓ=k

(

n−1
ℓ

)

zn−ℓBℓ,k(z1, z2, . . . ),

we have

n!vn =

n
∑

k=1

( 2n
k−1

)

(k − 1)!Bn,k(1!µ1, 2!µ2, . . . )

=

n
∑

k=1

(

2n
k−1

)

(k − 1)!

n−1
∑

ℓ=k−1

(

n−1
ℓ

)

(n− ℓ)!µn−ℓBℓ,k−1(1!µ1, . . . )

=

n−1
∑

k=0

(

2n
k

)

k!

n−1
∑

ℓ=k

(

n−1
ℓ

)

(n − ℓ)!µn−ℓBℓ,k(1!µ1, . . . )

=

n−1
∑

ℓ=0

(n−1
ℓ

)

(n− ℓ)!µn−ℓ

ℓ
∑

k=0

(2n
k

)

k!Bℓ,k(1!µ1, . . . )

= n!µn +

n−1
∑

ℓ=1

n!
ℓ!µn−ℓ Sn,ℓ(1!µ1, 2!µ2, . . . ),

where Sn,ℓ(1!µ1, 2!µ2, . . . ) = 2(n− ℓ)
∑ℓ

k=1

(2n−1
k−1

)

(k − 1)!Bℓ,k(1!µ1, 2!µ2, . . . ).

On the other hand, if (wn) is defined by tV2(t) =
∑∞

n=1 wnt
n, then Faà di Bruno’s formula

(cf. [8, Sec. 3.4, Theorem A]) implies

n![t]nX(tV2(t)) =

n
∑

ℓ=1

ℓ!µℓBn,ℓ(1!w1, 2!w2, . . . ).

Moreover, by Equation (3ℓ) in [8, Sec. 3.3], and since w1 = 1, we get

Bn,ℓ(1!w1, 2!w2, . . . ) =

ℓ
∑

k=2ℓ−n

n!
(n−ℓ)!k!Bn−ℓ,ℓ−k(1!w2, 2!w3, . . . )

=
n−ℓ
∑

k=0

n!
(n−ℓ)!(ℓ−k)!Bn−ℓ,k(1!w2, 2!w3, . . . ).

Therefore,

n![t]nX(tV2(t)) =

n
∑

ℓ=1

ℓ!µℓ

n−ℓ
∑

k=0

n!
(n−ℓ)!(ℓ−k)!Bn−ℓ,k(1!w2, 2!w3, . . . )

=

n−1
∑

ℓ=0

(n− ℓ)!µn−ℓ

ℓ
∑

k=0

n!
ℓ!(n−ℓ−k)!Bℓ,k(1!w2, 2!w3, . . . )

= n!µn +
n−1
∑

ℓ=1

n!
ℓ! µn−ℓ Tn,ℓ(1!w2, 2!w3, . . . ),
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where Tn,ℓ(1!w2, 2!w3, . . . ) =
∑ℓ

k=1

(

n−ℓ
k

)

k!Bℓ,k(1!w2, 2!w3, . . . ).

Now, using [8, Sec. 3.5, Thm. B] we can write
(

V2(t)
)n−ℓ

and V2n−2ℓ(t) in terms of partial
Bell polynomials as follows:

(

1 + w2t+ w3t
2 + · · ·

)n−ℓ
= 1 +

∞
∑

ℓ=1

ℓ
∑

k=1

(

n−ℓ
k

)

k!
ℓ!Bℓ,k(1!w2, 2!w3, . . . )t

ℓ,

(

1 + v1t+ v2t
2 + · · ·

)2n−2ℓ
= 1 +

∞
∑

ℓ=1

ℓ
∑

k=1

(2n−2ℓ
k

)

k!
ℓ!Bℓ,k(1!v1, 2!v2, . . . )t

ℓ.

This implies Tn,ℓ(1!w2, 2!w3, . . . ) = ℓ![tℓ]
(

V2(t)
)n−ℓ

= ℓ![tℓ]V2n−2ℓ(t), and so

Tn,ℓ(1!w2, 2!w3, . . . ) =
ℓ

∑

k=1

(2n−2ℓ
k

)

k!Bℓ,k(1!v1, 2!v2, . . . )

= 2(n − ℓ)

ℓ
∑

k=1

(

2n−2ℓ−1
k−1

)

(k − 1)!Bℓ,k(1!v1, 2!v2, . . . ).

Finally, applying [4, Theorem 15] with λ = 2n− 2ℓ− 1 on the expression

ℓ!vℓ =

ℓ
∑

k=1

( 2ℓ
k−1

)

(k − 1)!Bℓ,k(1!µ1, 2!µ2, . . . ),

we get

ℓ
∑

k=1

(

2n−2ℓ−1
k−1

)

(k − 1)!Bℓ,k(1!v1, . . . ) =

ℓ
∑

k=1

(

2n−1
k−1

)

(k − 1)!Bℓ,k(1!µ1, . . . ).

Multiplying both sides by 2(n − ℓ), we finally obtain

Tn,ℓ(1!w2, 2!w3, . . . ) = Sn,ℓ(1!µ1, 2!µ2, . . . ),

which implies V(t) = X(tV2(t)). �

Let us now address the enumeration of the set D of factor-free Dyck words with slope
2m+1

2 . Let D denote the generating function of D. As discussed in Section 2, we have

D = ε+ L2
1b+ L2b.
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Thus Proposition 4 together with the factorization L1(τ) = τm+1U(τ) give

D = 1 + τ(τm+1
U(τ))2 +

m−1
∑

j=0

( m+j
m−j−1

)

τ j+m+2(τm+1
U(τ))2j+1(τ)

= 1 + τ2m+3
U
2(τ) +

m−1
∑

j=0

(

m+j
m−j−1

)

τ (2m+3)(j+1)
U
2j+1(τ)

= 1 + τ2m+3
U
2(τ) +

m
∑

j=1

(m+j−1
m−j

)

τ (2m+3)j
U
2j−1(τ).

Setting again t = τ2m+3 and denoting the generating functions with the same letters (U
and D, respectively) but as functions of t, we arrive at

(8) D(t) = 1 + tU2(t) +
m
∑

j=1

(

m+ j − 1

m− j

)

tjU2j−1(t).

As a consequence of (8) and Theorem 5, we obtain:

Corollary 6. If we write D(t) = 1 +
∑

n≥1 θnt
n, then

θn =

min(m,n−1)
∑

ℓ=0

(

m+ ℓ+ 1

m− ℓ

)

∆n−ℓ−1,ℓ,

where

∆ν,ℓ =
2ℓ+ 1

2ν + 2ℓ+ 1

ν
∑

k=0

(

2ν + 2ℓ+ 1

k

)

k!

ν!
Bν,k(1!µ1, 2!µ2, . . . ).

Proof. We use a similar strategy as for the proof of Theorem 5. Here we write the powers
of U(t) in terms of partial Bell polynomials, and then apply [4, Theorem 15] to rewrite all
expressions in terms of the sequence µ1, µ2, . . . . For convenience, let !µ denote the sequence
(1!µ1, 2!µ2, . . . ).

We will work with D(t) as given in (8). First, let us consider tU2(t). Using (7) together
with [8, Sec. 3.5, Theorem B] and [4, Theorem 15] with λ = 1, we obtain

[tn]tU2(t) =

n−1
∑

k=1

2
(2n−1
k−1

) (k−1)!
(n−1)!Bn−1,k(!µ)

=

n−1
∑

k=1

(

(2n−2
k−1

)

+ 2n+k−2
2n−1

(2n−1
k−1

)

)

(k−1)!
(n−1)!Bn−1,k(!µ)

=

n−1
∑

k=1

1
2n−1

(

2n−1
k

)

k!
(n−1)!Bn−1,k(!µ)

+
n−2
∑

k=0

1
2n−1

(2n−1
k

)

k!
(n−1)!

(

2(n − 1) + k + 1
)

Bn−1,k+1(!µ).
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Now, using identities [7, Sec. 11.2, Eqns. (11.11) & (11.12)] we get

(

2(n − 1) + k + 1
)

Bn−1,k+1(!µ) =

n−k−1
∑

ℓ=1

(2ℓ+ 1)
(

n−1
ℓ

)

ℓ!µℓBn−1−ℓ,k(!µ),

and thus [tn]tU2(t) can be written as

[tn]tU2(t) =
n−1
∑

ℓ=0

2ℓ+1
2n−1

(m+ℓ
m−ℓ

)

n−ℓ−1
∑

k=0

(2n−1
k

)

k!
(n−1−ℓ)!Bn−ℓ−1,k(!µ).

Similarly, but now applying [4, Theorem 15] with λ = 2ℓ− 2, we obtain

[tn]tℓU2ℓ−1(t) = 2ℓ−1
2n−1

n−ℓ
∑

k=1

(

2n−1
k

)

k!
(n−ℓ)!Bn−ℓ,k(!µ).

This implies

[tn]

m
∑

ℓ=1

(m+ℓ−1
m−ℓ

)

tℓU2ℓ−1 =

m−1
∑

ℓ=0

2ℓ+1
2n−1

( m+ℓ
m−ℓ−1

)

n−ℓ−1
∑

k=1

(2n−1
k

)

k!
(n−ℓ−1)!Bn−ℓ−1,k(!µ).

Finally, the corollary follows by combining the above formulas. �

4. Examples: Factor-free words with slope 3/2 and 5/2

The purpose of this section is to illustrate Theorem 5 for factor-free words with slope 3
2

and 5
2 . In the case of slope 3

2 , we recover the results obtained by Duchon [9, Sec. 6.3] who
observed that (un) is the sequence of Catalan numbers (Cn). Indeed, by Theorem 5, the
number of words of length 5n in U 3

2

is given by

un =

n
∑

k=1

( 2n
k−1

) (k−1)!
n! Bn,k(1, 0, . . . ) =

(

2n

n− 1

)

(n− 1)!

n!
= Cn.

Moreover, since U(t) = 1 + tU2(t) by (6), identity (8) implies

D(t) = 1 + tU2(t) + tU(t) = U(t) + tU(t).

Thus the number of factor-free Dyck words with slope 3
2 and length 5n is given by

θn = un + un−1 = Cn + Cn−1,

as already established in [9, Proposition 5].

Let us now look at the set U for the case m = 2 (slope 5
2).
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By Theorem 5, the number of words of length 7n in U 5

2

is given by

un =

n
∑

k=1

( 2n
k−1

) (k−1)!
n! Bn,k(3, 2, 0, . . . )

=
n
∑

k=⌈n/2⌉

1

k

(

2n

k − 1

)(

k

n− k

)

32k−n

=
1

2n+ 1

n
∑

k=⌈n/2⌉

(

2n+ 1

k

)(

k

n− k

)

32k−n,

which gives the numbers 3, 19, 153, 1390, 13581, 139315, 1479855, . . .
Moreover, by Corollary 6, the number of factor-free Dyck words with slope 5

2 and length
7n is given by

θn =

min(2,n−1)
∑

ℓ=0

(

ℓ+ 3

2− ℓ

)

∆n−ℓ−1,ℓ,

where

∆ν,ℓ =
2ℓ+ 1

2ν + 2ℓ+ 1

ν
∑

k=0

(

2ν + 2ℓ+ 1

k

)(

k

ν − k

)

32k−ν .

Hence θ1 = 3, θ2 = 13, and for n ≥ 3 we have

θn =

2
∑

ℓ=0

(

ℓ+ 3

2− ℓ

)

∆n−ℓ−1,ℓ = 3∆n−1,0 + 4∆n−2,1 +∆n−3,2

This gives the sequence 3, 13, 94, 810, 7667, 76998, 805560, . . . , [11, A274052].

Combinatorial interpretation of U 5

2

. As discussed in Example 3, the language U = U 5

2

has the grammar

U = ε+ aUbbbaUbbbaUbbbaUb+ baUbbbaUb+ aUbbbbaUb+ aUbbbaUbb.

This suggests a natural bijection to rooted planar trees. Specifically:

The words of length 7n in U 5

2

are in one-to-one correspondence with rooted

trees with 2n edges having nonleaf nodes of outdegrees 2 or 4, where nodes
of outdegree 2 may be colored in three different ways.

We finish this section with a discussion of this bijection.
Note that babbbab, abbbbab, abbbabb, and abbbabbbabbbab, are the basic words needed to

build all other words in U . We identify these building blocks with colored trees as follows:

babbbab ←→ ba
b3a

b abbbbab ←→ a
b4a

b abbbabb ←→ a
b3a

b2

abbbabbbabbbab ←→ a

b
3
a b

3
a b

3
a

b
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The grammar of U implies that any word of length 7n can be formed by inserting (right
after an a):

(i) a word of length 7(n− 1) into one of the three words of length 7,
(ii) or a word of length 7(n − 2) into the word abbbabbbabbbab.

Therefore, an ‘a’ or a ‘ba’ that is not part of a bbba string is always followed by one element
of the set of subwords {a, ba, bbba, bbbba}.

For any word u ∈ U of length 7n, we will construct a tree with the properties stated in
the bijection. To this end, traverse the word from left to right and do the following (labeling
the left edges accordingly):

◦ For every a or ba that is not part of a bbba string, draw a left edge and move to the
leaf just created. If the edge is labeled with ‘ba’, color the parent node blue.
◦ For every bbba that is not part of a bbbba string, draw a right edge from the parent
node and move to the leaf just created.
◦ For every bbbba, there are two possible steps:

– If the edge created last was a left edge, draw a right edge from the parent node,
move to the leaf just created, and color the parent node red.

– Otherwise, draw a right edge from the grandparent node and move to the leaf
just created.

◦ For every bb that is not part of a bbba or a bbbba string, move to the grandparent
node unless the current node is a leaf of a binary subtree whose left edge is labeled
with an ‘a’. In the latter case, just move to the parent node and color it green.
◦ For every b that doesn’t fall into any of the previous cases, move to the parent node.

Since every appearance of a is responsible for the creation of an edge, a word in U of length
7n corresponds to a tree with 2n edges.

The reverse algorithm is clear. Given a colored tree with 2n edges, label each of the
four building subtrees according to the identification given above. Then traverse the tree
counterclockwise, starting at the root, and record the labels writing the letters from left to
right. Depending on the color of the nodes, write a or ba when traveling down along a left
edge, write bbba or bbbba when traveling up and down between adjacent edges, and write b

or bb when traveling up along a right edge. The resulting word has length 7n and belongs
to U 5

2

.

a
b4a

b

a

b
3
a b

3
a b

3
a

b

a
b3a

b2

ba
b3a

b

Figure 3. Tree representation of abbbbaabbbabbbaababbbabbbbabbbbbabb.



12 DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

5. Further remarks and applications

5.1. Slope 7
2 . If m = 3, we get µ1 =

(

4
2

)

= 6, µ2 =
(

5
1

)

= 5, and µ3 =
(

6
0

)

= 1. Thus there
are 12 basic words that may be used as building blocks to create all words in U 7

2

:

abbbbabbb abbbbabbbbabbbbabb

abbbbbabb abbbbabbbbabbbbbab

abbbbbbab abbbbabbbbbabbbbab

babbbbabb abbbbbabbbbabbbbab

babbbbbab babbbbabbbbabbbbab

bbabbbbab abbbbabbbbabbbbabbbbabbbbab

5.2. Connection to colored Dyck paths. Combining equation (7) with [3, Theorem 3.5],
we conclude that there is a one-to-one correspondence between the words in U 2m+1

2

of length

(2m+ 3)n and the set of Dyck words of semilength 2n created from strings of the form ‘d’
and ‘u2jd’ for j = 1, . . . ,min(m,n), such that each maximal 2j-ascent may be colored in
µj different ways. For example, for m = 2 this means that there is a bijection between the
words in U 5

2

of length 7n and the set of Dyck words of semilength 2n with ascents of length

2 or 4 and such that each ascent of length 2 may be colored in three different ways.

5.3. Factor-free words. The importance of factor-free Dyck words relies on the fact that,
as shown in [9, Section 4], words in a generalized Dyck language can be obtained uniquely by
inserting words of the language into factor-free words of the same language. In particular,
in the case of a two-letter alphabet, for which words correspond to rational Dyck paths,
Duchon [9, Theorem 9] established a direct generating function connection between rational
Dyck paths and their subset of factor-free elements.

As discussed in this paper, when the slope of the Dyck words is 2m+1
2 , understanding

the auxiliary language U introduced in Section 2 suffices to generate and enumerate the set
of corresponding factor-free Dyck words with same slope. An explicit enumeration formula
is given in (7). The language U turned out to have interesting combinatorial properties,
which we have illustrated for the cases of slope 3

2 and 5
2 .

5.4. Cross-bifix-free codes. By definition, if w is a factor-free Dyck word in DA,h, then for
any representation w = w1w2 with nonempty subwords w1 and w2, we must have h(w1) > 0
and h(w2) < 0. Therefore, no prefix of any length of any factor-free word is the suffix of
any other factor-free word. This means that any set of factor-free words in DA,h is a cross-

bifix-free set, and in the case of slope 2m+1
2 , we can generate these sets using the auxiliary

language U and the derivation rules (2).
For example, the set of factor-free Dyck words over the alphabet {0, 1} with h(0) = 3

and h(1) = −2 (slope 3
2) gives a cross-bifix-free set (non-overlapping code) of binary words

with variable length ≡ 0 modulo 5. Here are the words in D 3

2

of length 5, 10, and 15:

00111, 01011,

0100110111, 0001101111, 0011011011,

010011001101111, 010001101110111, 001101100110111, 000110011011111,

001100110111011, 000011011101111, 000110111011011,
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and here are the nineteen words in D 3

2

of length 20:

01001100110011011111, 01001100011011101111, 01000110111001101111,

01000110011011110111, 01000011011101110111, 00110110011001101111,

00110110001101110111, 00110011011100110111, 00011011101100110111,

00011001100110111111, 00110011001101111011, 00011000110111011111,

00110001101110111011, 00001101110011011111, 00011011100110111011,

00001100110111101111, 00011001101111011011, 00000110111011101111,

00001101110111011011.

Of course, similar sets can be constructed by means of U for binary Dyck words with
slope 2m+1

2 . However, if we require words in the set to have a fixed length (as it is customary
in the literature, see e.g. [2, 6]), the codes obtained with these slopes may be too restrictive.
Nonetheless, rational lattice paths of other slopes may be used to produce larger codes
along the lines of those given by Bilotta et al. [2]. For instance, there is a straightforward
bijection between the set CBFS2(2m + 1) constructed in op. cit. and the set of rational
Dyck paths from (0, 0) to (m,m+ 1).
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