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ABSTRACT OF THE DISSERTATION

Several topics in Experimental Mathematics

by Andrew Lohr

Dissertation Director: Dr. Zeilberger

This thesis deals with applications of experimental mathematics to a number of prob-

lems. The first problem is related to random graph statistics.We consider a certain class

of Galton-Watson random trees and look at the total height statistic. We provide an au-

tomated procedure for computing values of the moments of this statistic. Taking limits,

we confirm via elementary methods that the limiting (scaled) distributions are all the

same.

Next, we investigate several problems related to lattice paths staying below a line of

rational slope. These results are largely data-based. Using the generated data, we are

able to find recurrences for the number of such paths for the cases of slopes 3/2 and 5/2.

There is also investigation of a generalization of these problems to three dimensions.

We also examine generalizations of Sister Celine’s method and Gosper’s algorithm for

evaluating summations. For both, we greatly extend the classes of applicable functions.

For the generalization of Sister Celine’s method, we allow summations of arbitrary prod-

ucts of hypergeometric terms and linear recurrent sequences with rational coefficients. For
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the extension of Gosper’s algorithm, we extend it from solely hypergeometric sequences

to any multi-basic sequence. For both, we have numerous applications to proving, or

reproving in an automated way, interesting combinatorial problems.

We also show a partial result related to the bunk bed conjecture, a problem concerning

random finite graphs. Let G be a finite graph. Remove edges from G�K2 independently

and with the same probability. In G�K2, there is an edge placed between all vertices of

G and the corresponding vertex in a copy of G. Then, label these vertices as either (v, 0)

or (v, 1) for each v ∈ V (G). The conjecture says that for any x, y ∈ V (G), it is least as

likely to have (x, 0) connected to (y, 0) as to have (x, 0) connected to (y, 1). We prove

the conjecture in the case that only two of the edges going between the two copes of G

are retained.
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Chapter 1

Introduction

The main characteristic of what makes something experimental mathematics is the in-

volvement of a computer at a deep level into discovering new mathematics. This often

involves taking some higher level mathematical concepts and rephrasing them in such

a way that questions of interest are instead mechanical computations. In this thesis,

the basic mechanical computations that we will be reducing the questions of interest to

are taking partial derivatives of expressions and solving systems of linear equations. Of

course these are, themselves, not trivial operations, but they are tasks that have already

been taught to computers. By rephrasing out problems in terms of things that can be au-

tomated, we’re able to leverage the fact that computers are faster, cheaper, and less prone

to errors when trying to solve the original problems. In chapter 2 we are able to convert a

combinatorial problem involving trees into a mechanical problem involving multi-variable

Calculus and symbolic computation. Another use for computers that shows up in this

thesis is to compute many, many values of some sequence, and then perform statistical

calculations on this data in order to suggest possible conjectures for future work. This

is primarily the content of chapter 3. That chapter’s results are mainly conjectures that

are noticed in computed data. In comparison, the other chapters are more able to give

techniques for machine made proofs. In chapters 4 and 5 we will address problems in

summation.
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Throughout, there will be some sort of computer based handling of integer sequences

in order to analyze their behavior. Recurrence relations will be showing up in abundance.

The kinds of recurrences that we will be considering are sometimes called P-recursive

recurrences, and they are finite order linear recurrences with rational functions as coeffi-

cients. That is, we will have some quantity, either an integer sequence or an expression

sequence xn, and will show that it satisfies some

N∑
j=0

(Q(n)Rj)xn = 0

where R is the so called “shift operator” which is to say that for any sequence xn, Rxn

stands for xn+1. We then call N the order of the recurrence. We will sometimes call this

whole expression the recurrence, and sometimes we will refer to only
∑N

j=0(Q(n)Rj) as

the recurrence that xn satisfies.

There is a wealth of information on how to analyze a sequence once it is known to

satisfy a particular recurrence. So, for our cases, if we can analyze a sequence to the point

that we know some such recurrence that is satisfies, we will consider it solved. Since we

are often starting summation problems with some undetermined number of terms that

is allowed to grow arbitrarily large, any time that such a nice finite description exists,

it is a cause for joy. It is not always the case that such a recurrence will exist for all

possible sequences that we will consider. Since we greatly expand the classes of problems

considered, we lose the completeness results enjoyed by older techniques. All of the

recurrences that we consider will be of this form that they can be represented as some

polynomial in n and the shift operator times the sequence is equal to zero. There is

a large variety of other, far more complicated kinds of recurrences that could define
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the sequence in question, like nested recurrences. However, not only are these more

complicated expressions harder to find, but we are also able to determine less about

the sequence automatically once we discover those recurrences. Indeed there are whole

papers dedicated to analyzing the behavior of sequences defined by nested recurrences,

so we are not so much “solving” the problem of analyzing the sequence by finding some

way of finding such a recurrence, even though it is also a compact way of describing the

sequence.

In chapter 6, we have used computation to obtain numerical information to bolster our

confidence before attempting (and eventually finding) a proof. In addition, computation

has helped provide insight in how to break down a complicated probability distribution

through conditioning on different events. This verification-as-you-go approach has helped

steer the direction of the proof, as many reasonable things that could be said about

the problem turn out to not actually be true. Being able to rule out related problems

by having a computer search for small counter examples has helped immensely. This

chapter is the least experimental in its results, instead having proofs worked out by hand.

This chapter’s results may be able to be expanded, as the proof technique suggests that

automatable proofs may be possible for related special cases of the original bunk bed

conjecture. There is a purely experimental component though, in that the conjecture

was verified to be true for all graphs on six vertices. To each graph, independently

randomly removing each edge from G�K2 also introduces a polynomial in p representing

the difference of probabilities in question in the conjecture. This polynomial may be of

interest independent of the truth of this conjecture.

All of the code used for the results here, as well as results of the computations that

are too bulky to fit in this document can be found at
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http://sites.math.rutgers.edu/~ajl213/DrZ/.

The code itself has documentation describing how to use it. These topics are rich with

open problems, which will be mentioned at the end of each of their respective chapters.
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Chapter 2

Limiting Total Height Distributions for Galton Watson

Trees

The results of this chapter have been accepted for publication, and appear in [31].

2.1 Background

While many natural families of combinatorial random variables, Xn, indexed by a positive

integer n, (for example, tossing a coin n times and noting the number of heads, or counting

the number of occurrences of a specific pattern in an n-permutation) have different expec-

tations, µn, and different standard deviations, σn, and (usually) largely different asymp-

totic expressions for these, yet the centralized and scaled versions, Zn := Xn−µn
σn

, very of-

ten, converge (in distribution) to the standard normal distribution whose probability den-

sity function is famously 1√
2π
exp(−x2

2 ), and whose moments are 0, 1, 0, 3, 0, 5, 0, 15, 0, 105, . . . .

Such sequences of random variables are called asymptotically normal. Whenever this is

not the case, it is a cause for excitement [Of course, excitement is in the eyes of the

beholder]. One celebrated case (see [36] for an engaging and detailed description) is

the random variable ‘largest increasing subsequence’, defined on the set of permutations,

where the intriguing Tracy-Widom distribution shows up.

Other, more recent, examples of abnormal limiting distributions are described in [46],

[12],[13], and [15].
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In this chapter we consider, from an elementary, explicit, symbolic-computational,

viewpoint, the random variable ‘sum of distances to the root’, defined over an arbitrary

family of ordered rooted trees defined by degree restrictions. For analysis of this statistic

over uniformly chosen random rooted trees, see [41] and [42]. The asymptotic behavior

of this statistic for that uniform distribution of random rooted trees is given in [43].

It turns out that the families of trees considered in this paper are special cases of

Galton-Watson trees. These have been studied extensively by continuous probability

theorists for many years, with a nice, comprehensive introduction given by Janson in

[27]. For an analysis of unlabeled Galton-Watson trees, see the work Wagner[44]. In

particular, they are trees that are determined by determining the number of children

that every node has by independently sampling some fixed distribution with expected

value at most 1. Like the trees considered here (described below), they are also types of

Galton-Watson trees. It was shown in a three part sequence of papers by Aldous ([1],

[2], [3]) and later by Marckert and Mokkadem ([33]) that all Galton-Watson generated

from a finite variance distribution of vertex degrees followed the same distribution as

the area under a Brownian excursion, also a topic well studied in advanced probability

theory. In particular, Janson, in section 14 of [25], presents a complicated infinite sum

which converges to this distribution originally discovered by Darling (1983). Asymptotic

analysis of mean, variance, and higher moments for Galton-Watson trees can be found

in [28].

All these authors used continuous, advanced, probability theory, that while very pow-

erful, only gives the limit. We are interested in explicit expressions for the first few

moments themselves, or failing this, for explicit expressions for the generating functions,

for any family of rooted ordered trees given by degree restrictions. In particular, we study
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in detail the case of complete binary trees, famously counted by the Catalan numbers.

We proceed in the same vein as in [13]. In that article, the random variable ‘sum of

the distances from the root’, defined on the set of labelled rooted trees on n vertices, was

considered, and it was shown how to find explicit expressions for any given moment, and

the first 12 moments were derived, extending the pioneering work of John Riordan and

Neil Sloane ([35]), who derived an explicit formula for the expectation. The exact and

approximate values for the limits, as n→∞, of α3 (the skewness), α4 (the kurtosis), and

the higher moments through the ninth turn out to be as follows.

α3 =

(
6π − 75

4

)√
3
√

π
10−3π

10− 3π
= 0.7005665293596503 . . . ,

α4 =
−189π2 + 315π + 884

7 (10− 3π)2
= 3.560394897132889 . . . ,

α5 =

(
36π2 + 75

2 π −
105845
224

)√
3
√

π
10−3π

(10− 3π)2
= 7.2563753582799571 . . . ,

α6 =
15

16016

−144144π3 − 720720π2 + 3013725π + 2120320

(10− 3π)3
= 27.685525695770609 . . . ,

α7 =

(
162π3 + 6615

4 π2 − 103965
32 π − 101897475

9152

)√
3
√

π
10−3π

(10− 3π)3
= 90.0171829093603301 . . . ,

α8 = 3
−488864376π4 − 8147739600π3 − 455885430π2 + 86568885375π + 32820007040

2586584 (10− 3π)4

= 358.80904151261251 . . . ,

α9 =

(
648π4 + 15795π3 + 591867

16 π2 − 461286225
2288 π − 188411947088175

662165504

)√
3
√

π
10−3π

(10− 3π)4

= 1460.7011342971821 . . . .

[Note that when the moments are not centralized, the expressions are simpler, but we
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prefer it this way].

2.2 Overview

In this chapter we extend the work of [13] and treat infinitely many other families of

trees. For any given set of positive integers, S, we will have a ‘sample space’ of all

ordered rooted trees where a vertex may have no children (i.e. be a leaf) or it must have

a number of children that belongs to S. If S = {2} we have the case of complete binary

trees.

For each such family, defined by S, we will show how to derive explicit expressions for

the generating functions of the numerators of the straight moments, from which one can

easily get many values, and very efficiently find the numerical values for the moments-

about-the-mean and hence the scaled moments. For the special case of complete binary

trees, we will derive explicit expressions for the first nine moments (that may be extended

indefinitely), as well as explicit expressions for the asymptotics of the scaled moments,

and indeed (as predicted by the above-mentioned authors) they coincide exactly with

those found in [13] for the case of labeled rooted trees. This is a specific example of a

more general statement about Galton Watson trees given in [28].

2.3 Rooted Ordered Trees

Recall that an ordered rooted tree is an unlabeled graph with the root drawn at the top,

and each vertex has a certain number (possibly zero) of children, drawn from left to right.

For any finite set of positive integers, S, let T (S) be the set of all rooted labelled trees

where each vertex either has no children, or else has a number of children that belongs
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to S. The set T (S) has the following structure (“grammar”)

T (S) = {·}
⋃
i∈S
{·} × T (S)i .

Fix S, Let fn be number of rooted ordered trees in T (S) with exactly n vertices. It

follows immediately, by elementary generatingfunctionology, that the ordinary generating

function

f(x) :=
∞∑
n=0

fn x
n ,

(that is the sum of the weights of all members of T (S) with the weight xNumberOfV ertices

assigned to each tree) satisfies the algebraic equation

f(x) = x

(
1 +

∑
i∈S

f(x)i

)
.

Given an ordered tree, t, define the random variable H(t) to be the sum of the

distances to the root of all vertices. Let Hn be its restriction to the subset of T (S), let

us call it Tn(S), of members of T (S) with exactly n vertices. Our goal in this chapter

is to describe a symbolic-computational algorithm that, for any finite set S of positive

integers, automatically finds generating functions that enable the fast computation of

the average, variance, and as many higher moments as desired. We will be particularly

interested in the limit, as n→∞, of the centralized-scaled distribution, and we confirm

that it is always the same as the one for rooted labelled trees found in [13] as we would

expect by [28].

Let Pn(y) be the generating polynomial defined over Tn(S), of the random variable,
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‘sum of distances from the root’. Define the grand generating function

F (x, y) =
∞∑
n=0

Pn(y)xn .

Consider a typical tree, t, in Tn(S), and now define the more general weight by

xNumberOfV ertices yH(t) = xn yH(t). If t is a singleton, then its weight is simply x1y0 =

x, but if its sub-trees (the trees whose roots are the children of the original root) are

t1, t2, . . . ti (where i ∈ S), then

H(t) = H(t1) + · · ·+H(ti) + n− 1 ,

since when you make the tree t, out of subtrees t1, . . . , ti by placing them from left to right

and then attaching them to the root, each vertex gets its ‘distance to the root’ increased

by 1, so altogether the sum of the vertices’ heights gets increased by the total number of

vertices in t1, . . . , ti (i.e. n− 1). Hence F (x, y) satisfies the functional equation

F (x, y) = x ·

(
1 +

∑
i∈S

F (xy, y)i

)
,

that can be used to generate many terms of the sequence of generating polynomials

{Pn(y)}.

Note that when y = 1, F (x, 1) = f(x), and we get back the algebraic equation satisfied

by f(x).
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2.4 From Enumeration to Statistics in General

Suppose that we have a finite set, A, on which a certain numerical attribute, called

random variable, X, (using the language of probability and statistics) is defined.

For any non-negative integer i, let us define

Ni :=
∑
a∈A

X(a)i .

In particular, N0(X) is the number of elements of A.

The expectation of X, E[X], denoted by µ is, of course,

µ =
N1

N0
.

For i > 1, the i-th straight moment is

E[Xi] =
Ni

N0
.

The i-th moment about the mean is

mi := E[(X − µ)i] = E[

i∑
r=0

(
i

r

)
(−1)rµrXi−r] =

i∑
r=0

(−1)r
(
i

r

)
µrE[Xi−r]

=

i∑
r=0

(−1)r
(
i

r

)(
N1

N0

)r Ni−r
N0

=
1

N i
0

i∑
r=0

(−1)r
(
i

r

)
N r

1N
i−r−1
0 Ni−r .

Finally, the most interesting quantities, statistically speaking, apart from the mean
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µ and variance m2 are the scaled-moments, also known as, alpha coefficients, defined

by

αi :=
mi

m
i/2
2

.

2.5 Using Generating Functions

In our case X is Hn (the sum of the vertices’ distances to the root, defined over rooted

ordered trees in our family, with n vertices), and we have

N1(n) = P ′n(1)

Ni(n) = (y
d

dy
)iPn(y)

∣∣
y=1

.

It is more convenient to first find the numerators of the factorial moments

Fi(n) = (
d

dy
)iPn(y)|y=1 ,

from which Ni(n) can be easily found, using the Stirling numbers of the second kind.

2.6 Automatic Generation of Generating Functions for the (Numera-

tors of the) Factorial Moments

Let us define

P (X) = 1 +
∑
i∈S

Xi ,

then our functional equation for the grand-generating function, F (x, y) can be written

F (x, y) = xP (F (xy, y)) .
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If we want to get generating functions for the first k factorial moments of our random

variable Hn, we need the first k coefficients of the Taylor expansion, about y = 1, of

F (x, y). Writing y = 1 + z, and

G(x, z) = F (x, 1 + z) ,

we get the functional equation for G(x, z)

G(x, z) = xP (G(x+ xz, z)) . (FE)

Let us write the Taylor expansion of G(x, z) around z = 0 to order k

G(x, z) =

k∑
r=0

gr(x)
zr

r!
+O(zk+1) .

It follows that

G(x+ xz, z) =
k∑
r=0

gr(x+ xz)
zr

r!
+O(zk+1) .

We now do the Taylor expansion of gr(x+ xz) around x, getting

gr(x+ xz) = gr(x) + g′r(x)(xz) + g′′r (x)
(xz)2

2!
+ . . . + g(k)r (x)

(xz)k

k!
+ O(zk+1) .

Plugging all this into (FE), and comparing coefficients of respective terms of zr for

r from 0 to k we get k + 1 equations relating g
(j)
r (x) to each other. It is easy to see that

one can express gr(x) in terms of g
(j)
s (x) with s < r (and 0 ≤ j ≤ k) .

Using implicit differentiation, the derivatives of g0(x), g
(j)
0 (x) (where g0(x) is the same

as f(x)), can be expressed as rational functions of x and g0(x). As soon as we get an
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expression for gr(x) in terms of x and g0(x), we can use calculus to get expressions for

the derivatives g
(j)
r (x) in terms of x and g0(x). At the end of the day, we get expressions

for each gr(x) in terms of x and g0(x) (alias f(x)), and since it is easy to find the first

ten thousand (or whatever) Taylor coefficients of g0(x), we can get the first ten thousand

coefficients of gr(x), for all 0 ≤ r ≤ k, and get the numerical sequences that will enable

us to get very good approximations for the alpha coefficients.

The beauty is that this is all done by the computer! Maple knows calculus.

We can do even better. Using the methods described in [19], one should be able

to get, automatically, asymptotic formulas for the expectation, variance, and as many

moments as desired. Using these techniques, it may be possible to obtain expressions for

the leading terms of all moments, and so show weak convergence of this distribution to

a particular limiting distribution. This should be an interesting future project.

For the special case of complete binary trees, everything can be expressed in terms of

Catalan numbers, and hence the asymptotic is easy. For more general S sets, we do not

have the same beatutiful formula that we get for the binary case, but we can still give

information about the asymptotics. Our beloved computer, running the Maple package

TREES.txt (mentioned above), obtained the results in the next section.

Computer-Generated Theorems About the Expectation, Variance, and

First Nine Moments for the Total Height on Complete Binary Trees on n

Leaves

See the output file

http://www.math.rutgers.edu/~zeilberg/tokhniot/oTREES3.txt .
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2.7 Universality

The computer output, given in the above webpage, proved that for this case, of complete

binary trees, the limits of the first nine scaled moments coincide exactly with those found

in [13], and given above. This confirms, by purely elementary, finitistic methods, the

universality property mentioned above. We do it for one family at a time, and only for

finitely many moments, but on the other hand, we derived explicit expressions for the

first twelve moments in the case of complete binary trees, and explicit expressions for the

generating functions for the moments for other families.



16

Chapter 3

Rational Sloped Paths

3.1 Background

There is a rich study of Dyck paths in combinatorics. Some of the most ubiquitous results

are for the case that the slope of the line is 1. In particular that the number of paths

from (0,0) to (n,n) is counted by the Catalan numbers. When we change it from 1 to

another rational number a/b, we enter the realm of appropriately named rational Catalan

combinatorics. For notational convenience, we will let Aa,b,n denote the number of paths

from (0, 0) to (bn, an) staying on or below the line y = a/bx.

Figure 3.1: One of the paths counted by A3,2,3

.
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It was shown by Duchon in 2000 that for any slope a
b , the number of paths below a

line of that slope is asymptotically Θ
(

1
n

(
(a+b)n
an

))
[11]. However, it is still unknown what

the constant out front is. To show the asymptotics, Duchon showed that the content is

somewhere between 1
a+b and 1

a . This upper bound on the number of paths was known at

least as far back as 1950 to Grossman. Grossman also had an interesting result, the first

proof of which is given by Bizley in 1954 in a now defunct actuarial journal [8]. It gives

that gives an exact formula for every Aa,b,n. Of course, this precision comes at a cost,

The formula is given as a sum over a large set of weighted integer partitions. There is

no good way to extract estimates from this formula that we know, but it seems powerful

and may be useful for this problem in the future. It would be great to have a simpler

explanation of the simpler problem of determining this value up to a (1 + o(1)) factor

It is clear that Aa,b,n = Ab,a,n because you could take any valid path, rotate it by a

quarter turn and take a reflection. So in this discussion, we will assume that we always

have a > b.

For the case b = 1, there is an exact solution known, using Fuss-Catalan numbers

1
1+an

(
(1+a)n
an

)
.

3.2 Approach

We would like to try to find the coefficient out front, that is, α so that the number of

paths is (1 + o(1)) αn
(
(a+b)n
an

)
. In an effort to do this, we first are tasked with computing

many terms of the sequence

Through a simple dynamic programming algorithm, we are able to compute the num-

ber of paths from (0, 0) to (bn, an) for n around 1000. This gives us enough data to

try and find a recurrence relation that it satisfies using the maple package available at
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Algorithm 1 Dynamic programming approach to generating data

1: a[∗, 0] = 1
2: for i from 1 to an do
3: for j from 1 while bj ≤ ai do
4: a[i,j] = a[i-1,j] + a[i,j-1]
5: end for
6: forget a[i− 1, ∗]
7: end for
8: Aa,b,n = a[an, bn]

http://www.math.rutgers.edu/ zeilberg/tokhniot/FindRec.txt However, we were

only able to successfully find recurrences for the slopes 3/2 and 5/2. Armed with these

recurrences we are able to blindingly fast crank out many thousands more terms of this

sequence. The recurrence in the data file for slope 3/2 is order 4, whereas the one for 5/2

is order 8 and monstrously long. Though we cannot guarantee this is the minimal recur-

rence, it still gives a massively way faster of counting the paths for these two unknown

slopes, and potentially for many more slopes that our computer was not keen enough to

find this time.

Then, once we have exact numbers, we do a statistical fit of the data for many values

of n against the model
(
α
n + β

n2 + γ
n3 + δ

n4

) (
(a+b)n
an

)
to get our estimate of α. Adding

more error terms did not affect the value of α much. We estimate how close this is to

the truth by running it for the first 100 values of n, and the first 200 values of n, and

seeing how much our estimate stays the same. We can get quite good estimates of these

numbers!

3.3 Data and Figures

There are many more slopes for which we have very exact estimates of α, and are available

on line at
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Table 3.1: Estimates for α part 1

a\b 2 3

2 1
3 0.240706636 1
4 0.50000000 0.15972479544
5 0.1613399969 0.1372518253
6 0.333333333 0.50000000
7 0.1216701970 0.1073342967
8 0.250000000 0.09683505915

Table 3.2: Estimates for α part 2

a\b 4 5 6 7

4 1
5 0.119952918 1
6 0.240706636 0.09621264003 1
7 0.09639805178 0.08763172133 0.08039623916 1
8 0.5000000 0.08048157890 0.159724795 0.06908631788

http://www.math.rutgers.edu/~ajl213/DrZ/RSP.html in the extra data file.

Though we knew it already with Duchon’s result that the value of the coefficient is at

most 1/a, it still seems surprising that the value of the coefficient is not monotone in the

value of the slope, that is the actual number a/b. We can notice a few simple patterns

here, in particular, except in the cases that a and b are not in lowest terms, the value of

coefficient decreases as you increase either a or b.

We can investigate this second observation a little further. A similar, but interesting

and distinct problem is to try letting something else go to infinity in Aa,b,n other than n,

as we had before.

Suppose instead that we were to let a go to infinity while b is fixed. There is a nice

pattern that appears. In particular, we have the conjecture that α is asymptotically equal

to gcd(a,b)
a . The gcd(a, b) factor is expected because it makes the expression only depend

on the value of a/b, as it should.
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Figure 3.2: aα as a function of a for b = 2

Figure 3.3: aα as a function of a for b = 8

3.4 Time Above The Line

A well known result for the case of slope 1 lines is the so called “Arc-sine law” which

concerns the time that a random walk from (0, 0) to (n, n) spends to one side or the

other of the line y = x. For a discussion of this principle see chapter 6 of [29], or, for a

more focused discussion of this, see the lecture notes [38]. Follow a random lattice walk

from (0, 0) to (n, n) and after each step, you make a note of whether you are above or

below the line. Then, if you look at the value of the number of times you were above
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minus the number of times you were below, it is very unlikely that they were roughly the

same. More precisely, if you correctly normalize this difference, then asymptotically, the

distribution of this difference is going towards

1

π
√
k(n− k)

.

So there are large spikes near all the time above the line and all the time below the line,

with a very low trough in the middle corresponding to equal amounts of time above and

below the line. It gets its name because its CDF given by arcsine. Even though this

may suggest that there is a geometric proof of the fact, none of its proofs are geometric.

There is a nice proof that the time above the line statistic follows this distribution using

the reflection principle given by Sparre Andersen in [5].

For our approach, we are able to compute this quantity extremely quickly using a

technique involving generating functions. In Figure 3.4, we plot the number of paths

from (0, 0) to (400, 600) with exactly 5k time intervals above the line for each value of k.

Notice that empirically, this distribution is the same as for the well studied case of a

slope 1 line. However, there are some important distinctions to mention.

Since we are plotting 5k, we are only going to be considering one congruence class

of possible times spent above the axis. This is also true of the slope 1 result, in that it

only considers even times above the axis. However, for the slope 1 case, this is because

there are no paths with an odd amount of time above the axis. For the other congruence

classes with slope 3/2, we do get paths with that much time spent above the axis, they

are just not as well behaved, usually possessing a significant skew one way or the other.
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Figure 3.4: analog of arc sine law for slope 3/2

This is also a reason that the reflection principle that is used to prove the arcsine result

for slope 1 fails for our slope 3/2. Put another way, it fails because there are multiple

different ways you could cross the line, you could cross at a point in your lattice, or in

between points in the lattice. This is unlike in the slope 1 case where they all look the

same, since you need to cross at a point in the lattice. See figure 3.5 for the example

where we only consider paths that are length 4 mod 5. Of all the offsets, it is the most

extremely skewed in favor of staying below the line.

3.5 Three Dimensional Lattice Walks

A much less studied area concerns paths in a three dimensional lattice(Z3) that have

to stay to stay in a region bounded by planes. It is simple to extend the dynamic

programming solution to this situation. However, since there many more lattice points,

the runtime goes up from Θ(n2) to Θ(n3). This keeps us from getting anywhere near as

much data as we did in the previous section. With the data we do have, we have the

suggestion that something much more interesting than in the 2D case is happening!



23

Figure 3.5: analog of arc sine law for slope 3/2 with offset

There is a treatment of multidimensional lattice walks in a text on combinatorics by

Bona [9] where they are able to get wonderful exact results using a generating function

approach. However, their problem is a bit different than the generalization that we chose

in that they require that their planes look like d ≥ ax+ by+ cz with strictly positive a, b,

and c. They also only consider a single plane, and so it seems unlikely that the approach

that they mention would apply to our problem. It is, however, a really striking result

that is able to completely nail down the problem and so would likely be of interest to

those tackling our problem that we present here.

The way that we set up the three dimensional problems, is that we take the number

of paths with steps in {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉}. Instead of the 2D problem of requiring

ax < by, we define and instance of the counting problem to be indexed by three numbers,

a, b, c, and require of our paths that they satisfy ax ≤ by ≤ cz that end at x = bc, y =

ac, z = ab. If we have a = b = c = 1, this has the precise formula of the 3D Catalan

numbers (A005789 in [39]) 2
(n+1)2(n+2)

(
3n
n,n,n

)
. However, there is a lot left to understand in

this problem, and some things that are distinctly different than the 2D case. In particular,
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Table 3.3: a=1

b\c 1 2 3 4 5 6 7

1 3.0 2.7 2.6 2.5 2.5 2.4 2.4
2 3.7 3.3 3.0 2.9 2.8 2.7 2.6
3 4.3 3.7 3.4 3.2 3.1 3.0 2.9
4 4.8 4.1 3.8 3.5 3.4 3.2 3.1
5 5.2 4.5 4.1 3.8 3.6 3.4 3.3
6 5.7 4.8 4.4 4.1 3.8 3.6 3.5
7 6.0 5.2 4.6 4.3 4.0 3.8 3.7

Table 3.4: a=2

b\c 1 2 3 4 5 6 7

1 2.7 2.5 2.5 2.4 2.4 2.3 2.3
2 3.3 3.0 2.8 2.7 2.6 2.6 2.5
3 3.7 3.4 3.2 3.0 2.9 2.8 2.8
4 4.1 3.7 3.5 3.3 3.1 3.0 3.0
5 4.5 4.0 3.7 3.5 3.4 3.2 3.2
6 4.8 4.3 4.0 3.7 3.6 3.4 3.3
7 5.2 4.6 4.2 4.0 3.8 3.6 3.5

for 2D, it was always Θ
(

1
n

(
(a+b)n
an

))
. That is, the slope of the line did not affect the fact

that you always had a Θ( 1
n) fraction of all paths. For the already known a = b = c = 1,

it is a Θ( 1
n3 ) fraction of all paths, however this appears to change for different choices of

a, b, c. We have some data on the value of this coefficient in tables 3.3 and 3.4.

Our problem is in a way very related to the multi-candidate ballot problem presented

in [20] which is phrased in terms of Weyl chambers. For their technique, they are instead

requiring that a = b = c = 1, so, looking at higher dimensional generalizations (of what

is already known in this three dimensional problem).

By fitting this data (with many more digits of each number than we have listed in

this table), we are able to get conjecturally that

α = 2 +
1√
c
.
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This is really bizarre that not only are we having fractional powers of n of the path,

but irrational powers of n showing up. This would also suggest that applications of the

techniques of chapter 4 would not be useful here as the Birkhoff-Tirijinski method [45]

for finding dominant asymptotics is unable to yield irrational powers of n in its dominant

asymptotics.

For analyzing these paths, it is often helpful to view them as words instead. They

are words in the three basic steps that are allowed to be taken, either a unit step in the

positive x direction, in the positive y direction, or in the positive z direction, denoted by

the letters x, y, and z respectively. So, for example, if we have a = 2, b = 1, c = 3 and

n = 1 we could have zyyxzyyyxy from among the 54 possible paths with that choice of

a, b, and c.

From these tables, one simple lower bound that one might notice is that none of

these coefficients is greater than two. Before we get to proving this fact, we introduce

a definition that will be useful. We say that two words w1 and w2 are y-conjugated if

we can factor them in such a way that there is a v1 and v2, such that w1 = v1yv2 and

w2 = v2yv1. Another way of viewing this is that we can get the the y-conjugates of

a word w by attaching a y to the end, performing some number of cyclic shifts of this

word until a y is once again at the end, and finally peeling of the trailing y. This second

interpretation makes it much clearer that this is an equivalence relation. Motivated by

this standard definition of conjugation about a letter, we define a new kind of conjugation

about a pair of letters.

Define xz-conjugation by first picking two particular occurrences of an x and a y and

then split up the word w into w = v1xv2yv3. Define the xy conjugate to be w′ = v3yv2xv1.

If our occurrence of y was first, then that is not an issue, define the conjugate of v1yv2xv3
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to be v3xv2yv1. We show that this is also an equivalence relation. It is clearly symmetric

since the operation is its own inverse, picking the same occurrences of x and y.

Further analyzing these sequences seems like a fruitful place to make progress, as very

little is known about their growth.
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Chapter 4

Generalization of Sister Celine’s Method

The results of this chapter have been accepted for publication, and appear in [32].

4.1 Background

One of the earliest steps in automatically proving identities dates back to Sister Mary

Celine Fasenmyer’s 1945 Ph.D. thesis [17]. She gave a technique for computing sums of

proper hypergeometric terms, also see [18]. Her technique concerns sequences of the form

xn =
∑

kH(n, k), where the sum is over all k so that H(n, k) is non-zero. Because it is

summing over all of these k, the problems that it can be applied to only make sense if for

each n there are only finitely many values of k that cause H(n, k) to be non-zero. Many

expressions constructed from binomial coefficients fit these requirements. It also requires

that H(n, k) is proper hypergeometric, meaning that it can be written in the form:

F (n, k) = P (n, k)

∏U
i=0(ain+ bik + ci)!∏V
i=0(uin+ vik + wi)!

xk

. For some finite U, V , i, ai, bi, ci, ui, vi, wi ∈ Z, x an indeterminate, and P a polynomial.

A simpler way to phrase this is that H needs to be a polynomial times some rational

expression of factorials. One implication of this is that both H(n,k+1)
H(n,k) and H(n+1,k)

H(n,k) are

rational functions in n and k. In order to determine if there is an order I recurrence for
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the sequence, her technique picks some J and considers

0 =

I∑
i=0

J∑
j=0

yi,j(n)H(n+ i, k + j),

where yi,j(n) is an as yet unknown rational function of n. If the value picked for J was not

large enough then this procedure will fail, and a higher value for J would be considered.

Then, by H being hypergeometric, it is able to reduce all of the H(n + i, k + j) =

Gi,j(n, k)H(n, k) where Gi,j is some rational function of n and k. From there, divide

everything through by H(n, k). Now, we have something of the form

0 =

I∑
i=0

J∑
j=0

Gi,j(n, k)yi,j(n).

Combining denominators on the right hand side, and multiplying through by the

common denominator, we get that the right hand side becomes a polynomial in n,k, and

{yi,j(n)}. Collect terms by what power of k appears, and then solve for what the {yi,j(n)}

have to be in order to make all of the coefficients of powers of k equal to zero. We may

get unlucky and have no solution. Then, we would need to try a larger I and J to begin

with. If however, we find a solution, we plug that into where we first introduced yi,j(n).

Since these have no k’s in them, and xn is obtained by summing over all values of k that

make the summand nonzero, we have

0 =
I∑
i=0

J∑
j=0

yi,j(n)H(n+ i, k + j) =
I∑
i=0

 J∑
j=0

yi,j(n)

xn+i.
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Which we may write in shift operator notation as

0 =

 I∑
i

 J∑
j=0

yi,j(n)

N i

xn.

At this point we say that we are done. First, having a recurrence allows us to compute

the sequence out to very large values very quickly, storing only a constant number of

terms. Also, once we have a rational recurrence like this for xn then we can extract as

good asymptotics as desired like using techniques by Birkhoff-Trjizinski which has been

nicely summarized in [45]. Sometimes, but not always, we are able to recover a really

nice formula such as a product of rational functions, factorials, and binomial coefficients.

Some of the recurrences found by our procedure are very complicated, so there is little

hope to always be able to recover a formula.

For a more complete explanation of Sister Celine’s method, look at chapter 4 of [34].

There are some generalizations of Sister Celine’s method given in [47], in particular to

certain classes of multiple summations and to a continuous analog.

Some of our applications of the expanded method presented in this paper relate to

binomial transforms of functions. There are nice treatments of binomial transforms of

Fibonacci like sequences given in [40].

4.2 Overview

We take the described technique of Sister Celine and extend it to allow many more kinds

of summands. In particular, the sequence can be of the form xn =
∑n

k a
d
kH(k, n) where

d is any number, H is hypergeometric, and ak is some sequence defined by a rational

recurrence relation. Since so many sequences can be so described by rational recurrence
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relations, this is a significant extension in scope.

It works very similarly to Sister Celine’s method, in that we will consider ratios of

successive terms. That is, to find a recurrence with order at most I, start with

I∑
i=0

J∑
j=0

H(n+ i, k + j)

H(n, k)
adj+kyi,j(n).

Let D be the order of the recurrence describing {ak}. Then, we use that relation to

rewrite all of the {ak+j}Jj=D in terms of {ak+j}D−1j=0 . That is, by repeatedly applying the

relation, we can write each aj+k as a linear combination:

aj+k =

D−1∑
m=0

ck,j,mak+m,

where for the j < D, we just let

ck,j,m =


1 j = m

0 j 6= m

.

Then, since we have an expression with D terms to the d, we can expand that out

to get at most Dd terms. Then, unlike in Sister Celine’s method, where we have a

polynomial in k, we now have a polynomial in {k, ak, ak+1, . . . ak+D−1}. But, once we

have collected the coefficients of each of the combinations of those variables, we set all of

them equal to zero, and then try to solve for the yi,j(n). Since we are able to keep the

number of variables that it is a polynomial in bounded by D, we are able to be sure that

the number of equations won’t exceed
(D+|J |
|J |
)
, while the number of rational functions

that we are allowing us to pick is |I||J |. So, when we are looking for a recurrence, we can
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try and allow us larger and larger orders, until we have the freedom needed to find all of

the rational functions needed to make the recurrence true. As in Sister Celine’s method,

we are not guaranteed that we can find such a solution for our particular choice of I and

J . We are guaranteed by WZ theory [34] that for a large enough choice of I and J , it

gives us a recurrence relation that looks like

0 =

 I∑
i=0

 J∑
j=0

yi,j(n)

N i

xn.

Our whole technique is implemented in a Maple package whose address is given at the

beginning of this paper. The usefulness of our technique comes from being easily carried

out by a computer, since the systems of equations involved quickly get too large for a

person. We invite the reader to use this package the next time that the come across a

type of summation problem that they want to analyze.

4.3 Application to Enumerating Chess King Walks

Suppose that there is a king wandering around on an infinite d-dimensional chess board.

We want to know how many of the (3d − 1)n walks of length n that the king could take

would end up bringing him back to where he started. Given a polynomial p, we use the

notation Ct(p) to denote the constant term of p. Then, by using the powers of zi to keep
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track of our total displacement in the i dimension, we have:

xn = Ct

(((
d∏
i=1

zi + z−1i + 1

)
− 1

)n)

= Ct

 n∑
k=0

(
d∏
i=1

zi + z−1i + 1

)k (
n

k

)
(−1)n−k


=

n∑
k=0

Ct

( d∏
i=1

zi + z−1i + 1

)k(n
k

)
(−1)n−k

=

n∑
k=0

Ct
((
z + z−1 + 1

)k)d(n
k

)
(−1)n−k.

Luckily for us, Ct
((
z + z−1 + 1

)k)
is already well understood. It is the sequence of

central trinomial coefficients (A002426 [39]). Also luckily, it is known that this sequence

satisfies the recurrence

0 =

(
N2 − 2n− 1

n
N − 3n− 3

n

)
xn.

So, we are in exactly the set up of our technique. In which case, if we let ak =

Ct
((
z + z−1 + 1

)k)
, we can describe the number of d dimensional king walks which end

at the origin after taking n steps by

n∑
k=0

adk

(
n

k

)
(−1)n−k.

Once the counting problem has been rewritten as this sum, it clearly falls into the

scope of our technique. Using it we are able to find rational recurrences (effectively solve)
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for all dimensions up to 4. For a two dimensional king walking around, if we let

g(n,N) =(3n3 + 40n2 + 175n+ 250)N3

+ (9n3 + 138n2 + 703n+ 1190)N2

+ (108n3 + 1548n2 + 7364n+ 11632)N

+ 96n3 + 1280n2 + 5632n+ 8192

then

0 = g(n,N)xn.

Although this recurrence already looks a little ugly, at least it is short, which is more than

can be said of those expressions describing higher dimensions. But they are included in

an appendix. Also important is that they were found by a computer.

Something more insightful than looking at the walls of text you see when looking at

the recurrences that exactly describe these sequences is looking at their their asymptotics:

For the two dimensional king, the number of paths of length n is:

c2
8n

n

(
1− 4

9n
+

1

18n2
+O

(
1

n3

))
,

For three dimensions the number is:

c3
26n

n
3
2

(
1− 11

18n
+

683

5832n2
+O

(
1

n3

))
.
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and for four dimensions the number is:

c4
80n

n2

(
1− 25

9n
+

36439

6561n2
+O

(
1

n3

))
.

The dominant asymptotics are somewhat unsurprising. The exponential part is all

possible paths. The dominant power of n is
(

1√
n

)d
. It is well known that the central

binomial coefficient is asymptotically 2n√
n

, and we are doing something somewhat like

that in d dimensions. The value of c2 is approximately equal to 2
3π . This value for c2

can be proven in a rigorous way using classical analysis. For c3 and c4, we are not so

lucky, instead, all we can say from non-rigorous observation is that c3 ≈ .110225343716

and c4 ≈ .068412392872. There might be some way using a more traditional approach

that would get us the true value of these constants.

The d = 2 case was first worked out by a computer using a different approach.

For more information on this, see [14]. Their approach expresses the quantity as a

double contour integral and applies their own automated techniques to evaluate it. For

information on the techniques, see [6]. A completely human produced analysis of this

sequence proves more illusive.

4.4 Application to Other Sequences

Our technique also allows for computing binomial transforms of interesting sequences.

An example of this is if we were to let Fk denote the k-th Fibonacci number and consider

the sequence

xn =

n∑
k=0

Fk

(
n

k

)
,
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we immediately receive that the recurrence that defines xn is 0 = (−N2 + 3N − 1)xn.

This recurrence is identical to the recurrence given for (A001906) which is the sequence

describing the sum. Though this is already a known fact, if we just bump the power up

on Fk to F 3
k , we still get a rather nice recurrence relation for the sum, in particular it

is described by 0 = (−N4 + 7N3 − 9N2 − 2N + 4)xn. This integer sequence is recently

added as number(A298591 [39]). All powers of Fibonacci follow this nice pattern that

a linear recurrence where the terms do not depend on n suffices, instead of in general

for our technique, where the recurrence may need rational functions of n showing up to

describe the next term. We would know for free that it must be P-recursive, but it is an

interesting conjecture that it also need be C-finite. These C-finite sequences are discussed

in greater detail in [48]. The techniques given in that paper can also be applied to some

of the problems considered here.

Also of interest, suppose that ak is be the m-Fibonacci sequence, defined as a0 = 0,

a1 = 1, and ak+2 = mak+1 + ak for k ≥ 0. Then, since the program was implemented in

a symbolic way, doing this type of problem is no more work than the ones we’ve already

considered.

xn =
n∑
k=0

ak

(
n

k

)
,

we have

xn+2 = (2 +m)xn+1 − xn.

This is also known, but is the main theorem of a twelve page paper by Falcon and

Plaza [16].

Since so many sequences of interest in combinatorics already have recurrences found

for them, this makes our technique even more powerful. All we need is a recurrence
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for the non-hypergeometric factors living inside the summand, and then we are set for

getting an automatic answer. For example, suppose that you took the Motzkin numbers

Mn (A001006) which appears in many guises, but one way of defining it is as the number

of (classical) Dyck words on U and R that avoid UUU . Among the many forumlae that

are known for it is

Mn =
∑
k

n!

k!(k + 1)!(2n− k)!
.

We can then apply the original Celine’s algorithm to obtain that Mn satisfies the

recurrence:

(n+ 2)Mn+2 = (2n+ 1)Mn+1 + (3n− 3)Mn.

Then, once there is a recurrence to work with, there are so many possible summation

that open up to us. For example, if we wanted to describe the sum

xn =
∑
k

M2
k

(
n

k

)
..

After the computer takes several minutes to think, it is able to show that this sequence

satisfies the recurrence
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0 =(−120n4 − 1240n3 − 4440n2 − 6440n− 3120)xn

+ (132n4 + 1520n3 + 6320n2 + 11300n+ 7368)xn+1

+ (18n4 + 318n3 + 2044n2 + 5660n+ 5712)xn+2

+ (−33n4 − 578n3 − 3761n2 − 10760n− 11400)xn+3

+ (3n4 + 61n3 + 458n2 + 1500n+ 1800)xn+4.

Judging just by how complex the expression is, it seems unlikely to be easily discovered

by classical (non-automated) approaches. And even though its messiness is a barrier to

gaining much human understanding of xn, as already mentioned, there are automated

tools of Birkhoff and Tirijinski [45] to take recurrences and then distill out facts that are

of human interest (such as asymptotics).

4.5 Application to Multiple Summations

Another promising application of our technique is to evaluating multiple sums over hy-

pergeometric terms. A toy example of this would be computing

n∑
i=0

i∑
k=0

(
i

k

)(
n

i

)
.

To find a recurrence for this sequence, pick out any of the factors which contain

k, and run some automated process to evaluate single summation such as the Zeilberger

Algorithm [34]. Often, this sum will not have a nice formula, so we are left with a possibly

high order recurrence describing it. However, that is precisely what the techniques here
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are made to handle, so we can feed this partial evaluation into the procedure. Given

enough computing this allows any number of summation signs to be dealt with. For

each summation, we have the usual requirements of the original Sister Celine’s method,

namely that for each summation, the boundaries extend as far as the terms can be without

becoming zero. In this particular case, evaluating the inner sum yields 0 = (N−2)xn, and

substituting in that recurrence, we get that the whole sum satisfies 0 = (N−3)zn. Which

is to say, the sum evaluates to 3n. Though this has a nice combinatorial proof counting

the number of assignments from {1, . . . , n} to {1, 2, 3} by first picking the k elements that

map to either 1 or 2, and then, from those k elements, picking the i elements that map to

2. That requires a moment of thought where such a simple recurrence for the computer

only requires less than a second of ‘thought’. Alternatively, consider the harder problem,

where we would want to compute

n∑
i=0

n∑
k=0

(
i− k
k

)2(n
i

)
.

It may be possible to evaluate this in a more human way, but for the computer it

can easily determine that the solution is described by the recurrence

0 = (−(n+9)N5+(7n+54)N4−(17n+103)N3+(21n+97)N2−(15n+50)N+5n+5)xn.

A Maple package for multiple summations has already been described in [6] and is avail-

able at:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/multiZ.html

However our package takes roughly the same time on the simple first example given,
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and is faster than their package on the second example. Their package, however, gives

a ‘better’ analysis of the summation, in that it does indefinite summation, and does

not require that on the bounds of summation, the summand is zero. That is, theirs

generalizes Zeilberger’s algorithm, instead of Sister Celine’s method.

4.6 Example Usage of this Maple Package

Hopefully by this point, the usefulness of our package has been made clear. Though there

is more detailed documentation in the maple package itself, here is a brief description of

how they are used. The first step is to figure out the recurrence that is satisfied by ak,

called rec1. Then, call findrec(I,J,timeout,rec1,F,d,n,N) where both rec1 and the output

are in shift operator notation, with N denoting the shift operator. This call will attempt

to find the recurrence for the sum:

xn =
n∑
k=0

adkH(n, k),

where the recurrence is of order at most I, and degree at most J . Timeout is the most

time (in seconds) to wait on a particular attempt, if it exceeds that time, the procedure

exits.

There is a complete description of how to format these problems to make use of

the maple package are included in its documentation. The package can be found at

http://sites.math.rutgers.edu/ ajl213/DrZ/Celine/RecSum.txt. Just read the

package in and type “Help()” to see the documentation.
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4.7 Future Directions

The techniques here could easily be extended to allowing arbitrary products of factors,

each of which satisfy a known recurrence. This would require only a little bit of modifi-

cation of these techniques, but simply has not yet been implemented.
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Chapter 5

A Practical Variation on Gosper’s Algorithm

5.1 Background

Gosper’s algorithm [21] gives a technique for “solving” summations of hypergeometric

sequences, that is, given a hypergeometric F (n, k), and a sum of the form

xN =

N−1∑
n=0

F (n), ‘

it is able to find a formula for xN as a constant plus a hypergeometric term, if one

exists. For a detailed description of how (and why) Gosper’s algorithm works, we refer

the reader to chapter five of the book A=B [34].

However, many sequences of interest are not hypergeometric, so there is definitely

room for further work along this same goal of computing indefinite summations.

5.2 Overview

Instead of starting with sequences more complicated than hypergeometric, we will start

with applying our approach to sequences that are less complicated, and move up from

there. Consider rational functions. Suppose that we have some summation

xN =
N−1∑
n=0

P (n)

Q(n)
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and we want to say what rational function this is equal to. We know that one

exists because we could always of expanded out the summand by rational functions

that telescope, notice some cancellation, and then add together what is left over to get

a rational expression. In Gosper’s algorithm, we are able to tell precisely when some

summation is equal to a constant plus a hypergeometric term. However, to pay the

price for expanding the possible values that it could sum to, we will have to give up

this guarantee of knowing for certain that if our algorithm fails to figure out such a

summation, then there is none. Instead, it could be that it only failed for the considered

degree of the recurrence, and it may instead find a recurrence that the summation satisfies

by simply increasing the order of the recurrence or the degree of the rational functions

that are used as coefficients in the recurrence.

First, we try to identify an expression for the limit L of the summation. For our

considered summations of a rational summand, we know that the limit will always be

rational, and so, by looking at partial fraction decompositions of larger and larger partial

summations. Looking at the decomposition, one entry blows up while everything before

that entry stays the same, giving us a very good guess that the limit is the part of the

decomposition before the entry blowing up. Then, once we know the value of the limit

of the summation, we construct the sequence

yN =
∞∑
N

P (n)

Q(n)
,

that is,

yN = L− xN
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Then, we generate may terms of this sequence and try to identify the result as a

hypergeometric sequence. This step in particular allows for a lot of freedom. If instead

of hypergeometric, we were looking for descriptions of this sequence as a higher order

recurrence, we could just use that information to change the set of linear equations

that need to be solved. The other class of functions that we are considering are called

multibasic sequences. They are ones where the ratio of successive terms is some fraction

of multinomials in different expressions depending on n instead of just polynomials in n.

So, for example, to evaluate

N∑
n=0

−1

4

(22n+2n2 + 2n23n − 24n + 3n22n + n2n+1 + 4n2 − 23n − 722n − 42n − 12)

(n!(22n−2 + 1)(22n + 1))

It is found to be

e+
(2N +N + 3 + 22N )

((22N + 1)N !)

That is, it is Euler’s constant plus a multibasic expression in N and 2N of max degree

2.

The drawback of this technique is that of identifying L. It works fine if the function

is very quickly converging, but it starts to perform poorly as the sum converges more

slowly, and is completely worthless when the sum does not have a finite limit. Instead of

solving the set of linear equations that we set up, also allow this limit to be an unknown,

and solve a resulting non-linear set of equations. Of course this is much slower, and so

this techniques is only best used for summations that rapidly converge.

Another broad class of summands to which this can apply are not just when we
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extend the rato of successive terms to some fixed rational expression of atoms that are

hypergeometric,

P (a1, a2, . . . , ak)

P (a1, a2, . . . , ak)

where ai is something such as 2n or n!. Instead, what if we were to allow ai to be more

free in how it depends on ai. For example imagine that we had that successive terms

had the ratio Fn+1

Fn
where Fn for this little example represents the nth Fibonacci number.

More generally, the structure about this that is helpful to us is that our new atoms that

we are exploiting is that they are C − finite. This allows us to reduce occurrences of

them for larger n to a number of starting terms equal to the order minus one, possibly

times rational expressions in n that come from the recurrence that they satisfy.

5.3 Examples and Motivations

Many of the examples here are constructed in order to show the usefulness of this proce-

dure, instead of arising organically. Any, In general, non-cooked up examples would also

yield results. The only problem with that is that the degrees that would be required for

for the solution could be very very high. There is not a way to know before hand how

high of degrees would need to be considered, so our procedure needs to look for higher

and higher degree solutions.

The example that initiated this whole investigation was the monthly problem that

asks the reader to compute the value of

∞∑
n=0

1

(n4 + n2 + 1)n!
.
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The immediate impulse of expanding using partial factions does not work, since we

cannot factor the bottom in such a way to get the terms to telescope and leave us with

our answer. The other go-to resource for evaluating sums, Maple, is also helpless when

faced with this problem. All it does is parrot back the sum. Mathematica managed to

compute the value of the infinite sum, but gave an expression far more complicated than

necessary to express the value of the partial sums. However, the trick for finding a simple

expression is to notice that if we took our sum and subtracted off

∞∑
n=0

1

2

1

n!
,

Then, the sum becomes

∞∑
n=0

(
1

n4 + n2 + 1
− 1

2

)
1

n!
=
∞∑
n=0

(
2

2n4 + 2n2 + 2
− n4 + n2 + 1

2n4 + 2n2 + 2

)
1

n!

=
∞∑
n=0

1− n2 − n4

2n4 + 2n2 + 2

1

n!

=

∞∑
n=0

1

2

(
−n

n2 − n+ 1
+

1 + n

n2 + n+ 1

)
1

n!
.

Since these two terms telescope, that is, plugging in n := n+ 1 into the first gets you

the second, we have that the value of the partial sum is given just by

1 +N

N2 +N + 1

1

N !
.

So, once we have subtracted off 1
2e in a fancy way, the resulting sum clearly goes to

zero.
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When we were drawing inspiration from this problem, as mentioned earlier, we gave

up hope that the algebra would always work out so nicely as this toy problem. The part

that we kept from this motivation was that it required some sort of guessing at the value

of the limit. Once a value for the limit is guessed, we find a summation that goes to

that value and matches factors found in the input summation. So, even though there is

initially guessing at the value of the limit, once the guess is made, it is possible to go

back and prove that that guess was correct.

For the case of this problem, the system is able to correctly simplify the hypergeo-

metric representation that it finds of the partial sum to this equally simple expression.

This is far better than Mathematica’s result for the partial sum which is littered with

complex hypergeometric expressions and takes about half a page to display.

Some more complicated sums that you might encounter that this same approach can

consider are ones such as:

xn =
∑
n

n2 + 1

(2n)!

Then, without any changes, the same experimental approach that solved for us the

last problem gets us that the sum appears to be converging to:

5/4 cosh(1) + 1/4sinh(1)

Then, subtracting off the taylor series for that, it is able to identify a hypergeoemtric

ratio that seems to be satisfied as

xn+1

xn
=

n+ 1

2n2(n+ 1)
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Once it has figured that out, it is then able to find a closed form expression for this

indefinite summation

xn =
1

2

n+ 1

(2n+ 1)!

once it has found this (with guessing along the way) it is able to easily verify that

this expression does describe the value of the sum, since to check, all you need to do is

subract xn from xn−1 and verify that you get the summand

As a stress test, we may even consider some sum as messy as:

xn =
∑
k

36n9 − 126n8 + 489n7 − 1343n6 + 1633n5 − 784n4 − 582n3 − 310n2 − 735n+ 237

(n3 − 2n2 + 11n− 3)(n3 + n2 + 10n+ 7)(2n)!

Then, the procedure is still able to make progress towards an answer. It makes a

guess for the value of the sum of

11cosh(1)

and is then able to guess a value for the hypergeometric ratio.

xn+1

xn
=

(9n4 + 3n2 + 2)(n3 − 2n2 + 11n− 3)

2n(2n− 1)(n3 + n2 + 10n+ 7)(9n4 − 36n3 + 57n2 − 42n+ 14)

and finally outputs that a formula for xn is

xn =
9n4 + 3n2 + 2

(n3 + n2 + 10n+ 7)(2n)!
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which can then be rigorously, automatically checked.

Of course these examples are somewhat cherry picked as you would not expect a typ-

ical random summation that you would want to compute to even have a Hypergeometric

representation. We saw this fact in the previous chapter where we were instead hunting

for recurrences to describe the summation. Even though many sums would not admit a

hypergeometric solution, for those that do, it is a much better description of the indefinite

summation.

Another major limitation of this technique is that it requires the summand to be very

quickly decreasing to zero. This is because the guessing procedure that is used in order

to figure out how much to shift the summation by relies on being able to compute out

many, many digits of precision for the sum. It gets an estimate of how many digits it can

trust by computing the partial sums out to different lengths, and then seeing up though

how many digits the two approximations agree.

5.4 Using this Maple Package

Hopefully by this point, the potential usefulness of these procedures has been made

clear. Though there is more detailed documentation in the maple package itself, here

is a breif description of how they are used. To try and figure out a hypergeometric

expression for the indefinite sum, allowing degree at most d, and starting at n = 0, call

PMG(expression, n, d, 0). The procedure will then spit out its guess for the summation,

followed by a line that contains a constant followed by the ratio of consecutive terms

satisfied by the sequence. Lastly, it will attempt to return a closed form expression for

the summation, which may often not exist.

For The version that is multibasic, instead call PMGMB, with the same format for
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arguments. The main difference however is that we now allow for more complicated

expressions as outputs than just hypergeometric expressions. This has been more thor-

oughly discussed in an earlier section.

For both of the packages, the guessing system occasionally requires some hints. This

can be given in the form of an optional last argument, where you list atoms that you

might expect to appear in the answer. For example, if the summation converged to e+e−1

you could just as well say that it converges to 2sinh(1). As a human, you would need

to inspect the summation to see if there is a (2n)! factor, which would indicate that the

latter is a better way to interpret the number that it is converging to, and pass in the

hint [sinh(1)] as an argument.

5.5 Future Directions

While this procedure helps to solve more types of sums, there is very limited application

of it to computing many more. Apart from its usefulness to solve sums that couldn’t

be gotten using the existing techniques, it also reexamines sums that could already be

solved from a much, much more simple approach than Gosper’s algorithm does. This

simplicity is a benefit in and of itself, even though it does not have the same assurances

of completeness that Gosper’s algorithm does, it is no less rigorous in the correctness of

its answer if it is able to find a solution. In principle, there is some selection of degrees

and basic sequences that would cause this procedure to find a formula for a convergent

sum. However, finding some finite bound on this search space, if one exists at all, is a

good candidate for future investigation.
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Chapter 6

Bunk Bed Conjecture

6.1 Introduction

The bunk bed conjecture is one of the many problems in percolation which seems obvious,

and yet is elusive. It was mentioned as early as 1985 by [22] in a slightly different form

and more formally by [23] in which it is already acknowledged as folklore.

There are many notions of closeness in graphs, and it being true lends credence to a

notion of closeness of random graphs which seems natural. In particular, we describe two

vertices in a graph as being closer if they have higher probabilities of being connected.

By making an identical copy of the graph that is connected and adjacent, by an intuitive

sense, we would think of a vertex that is in the other copy as further away. In fact, in

the conventional, non-random definition of distance in a graph it is precisely distance

one more away. Since the copy of the graph is identical, it holds the most hope of not

having some strange behavior introduced by the candidate notion of closeness in a random

graph. Proving this conjecture confirms that considering likelihood of being in the same

component as a notion of closeness agrees with this intuition. A different notion which

also seems reasonable, where we look at the expected hitting time under a random walk

does not agree with this [23], even though at face value it seems like it would of been a

reasonable notion of closeness.

As a very simple example, consider that we pick out graph G to be a copy of K2,
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then, when we compute G�K2, we get C4, then out start vertex s and our ending vertex

f are in the same component with probability p + p3 − p4 whereas s and f ′ lie in the

same component with probability p2 + p2 − p4, which is less than the former quantity

regardless of the probability p that any particular edge is retained because 1 + p2 ≥ 2p.

There has only been piecemeal progress in proving it. In [10] they show that the

conclusion of the conjecture is true for complete graphs, and even then, only when we

fix the probability of retaining an edge p = 1
2 . In [37] they give a few simple relations

between the original conjecture and related conjectures. In [30] they build on these,

relating the original conjecture to even more general seeming conjectures, via looking at

some complicated generalizations of the conjecture to randomly directed graphs, they are

able to recover that the original conclusion is true for outer planar graphs. Our approach

does not depend on the structure of the original finite graph G.

6.2 Definitions

The Cartesian graph product G1�G2 is defined as the graph on the vertex set V (G1)×

V (G2), where there is an edge between (u, v) and (y, w) if either

• u = y and there is an edge between v and w in G2 or

• v = w and there is an edge between u and y in G1

For this problem we will concern ourselves just where the case that G2 = K2 with

vertex set {0, 1}. We will write {(v, 0)}v∈G1 as G andl {(v, 1)}v∈G1 as G′. Similarly, for

v ∈ G, we’ll let v′ ∈ G′ be the vertex that is obtained by flipping the 0 to a 1. Also, for

convenience, let v′′ = v. Our graph product places an edge between them. We’ll call an

edge going between G and G′ an outside edge. The goal is going to be to prove that the
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probability s ∈ V (G) is connected to f ∈ V (G) is greater than or equal to the probability

s ∈ V (G) is connected to f ′ ∈ V (G′). As mentioned in [30] we may assume that the

outside edge from s to s′ and from f to f ′ are absent. Assume this throughout.

We will call a particular choice of which edges remain, and which do not, a configu-

ration.

For each configuration of edges there will be some set of outside edges that remain.

We will show that conditioning on this set of outside edges, then the conclusion of the

bunk bed conjecture still holds. That is, that the probability that s is connected to f is

at least the probability that s is connected to f ′. Let X ⊂ V (G) be the set of vertices

that are incident to an outside edge that has not been removed. If we show that the

conjecture holds for each possible X, then when we combine them together, weighting

by the probability that that X occurs, then we will of shown it for the original problem,

not conditioned on a particular X. However, our approach only works for the situation

that |X| = 2, an improvement on that it is known for |X| = 1.

We introduce the events Au,v for any u, v ∈ V (G). We say that Au,v occurs if there is

a path from u to v so that all of the path, except possibly the endpoints lie in V (G) \X.

Similarly define A′u′,v′ for paths going between vertices of G′. Notice that {Au,v} are

positively correlated and {A′u′,v′} are positively correlated, both by Harris’s inequality

[24]. Also notice that since each Au,v and A′u′,v′ are either true or false based off of

which edges remain from E(G) and E(G′) respectively, they are independent. In fact,

in order to maintain as much generality as possible, we will only be using they are not

positively correlated, that is, for A ⊆ {Au,v} and B ⊆ {A′u′,v′}, we have P (A|B) ≤ P (A).

The last property that we will use frequently is a symmetry property, that is for any

S1, S2 ⊆ {Au,v}, if S′1 means just replacing each A event in S1 with the corresponding A′
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event, then we have P (S1|S2) = P (S′1|S′2).

Now, we will further condition the problem and show that the conclusion of the bunk

bed conjecture still holds. Define the shadow of a path p on G�K2 to be the walk

obtained by replacing each v′ ∈ V (G′) on the path with v, and removing any duplicates

that arise because the path was traveling along an outside edge. Note that the shadow of

a path is not necessarily a path, as the original path may use both a vertex in x ∈ G and

x′. Assume that there is some path p from s to either f or f ′ in G�K2 whose shadow

is ps. We are assuming that such a path exists because if no such path exists, then the

configuration in question trivially has the conjecture hold in that both probabilities are

zero. Given this path, look at its shadow in G, call that path s = y0, y1, . . . , yk = f . Now,

let m = |{yi}i ∩X|. Define x0 = s, {yi}i ∩X = {x1, x2, . . . , xm}, and finally xm+1 = f .

6.3 Main Proof

We will prove that the statement of the bunk bed conjecture is true if |X| = 2

If s is connected to no vertices in X, then there is no way for s to be connected to f ′,

so the statement is trivially true.

Fix any subset ∅ 6= Y ⊆ X of vertices that are connected to s. To say that s is con-

nected to Y is equivalent to requiring that there is some spanning tree T = {{vi, wi}}|Y |i=1

on the vertices {s} ∪ Y , so that for each i, either Avi,wi or A′v′i,w′i
occurs. Also, any time

that one of the two vertices is s, we need that it needs to be the A event, not the A′

event that happens, because there is no outside edge on s. Then, we have that there is

some Y2 ⊆ Y so that {As,y}y∈Y2 occurs. We also see that for every z ∈ Y ,

P (Az,f |{As,y}y∈Y2) ≥ P (Az,f ) = P (A′z′,f ′) ≥ P (A′z′,f ′ |{As,y}y∈Y2)
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The first inequality because of positive correlation, the second by symmetry. The last

inequality is actually an equality for the statement of the bunk bed conjecture that we

have mentioned so far because the edges remaining in one copy of the original graph do

not influence the edges remaining in the other. We leave it as an inequality here because

we will only have inequality in an extension mentioned later.

All of the other events that we are conditioning on for vertices of Y to be connected

to s are symmetric, because they are of the form Avi,wi or A′v′i,w′i
occurs. And since the

asymmetry is already on the side of requiring more A events than A′ events, it is at least

as likely for each of these conditions that we have Avi,wi as A′v′i,w′i
, which only further

tips the scales for the A events. Put more concretely, suppose that we have the events

indexed by I1 ⊆ [|Y |] occurring as A events and not as A′ events, and I2 ⊆ [|Y |] occurring

as A′ events but not as A events. We know that |I1| ≥ 1 by above comments. Let I3 be

the times that both occur. Then, we have by positive correlation that:

For ease of notation, let BI = {Avi,wi}i∈I and B′I = {A′v′i,w′i}i∈I . Let S1 be the indices

of edges of T incident to s, and S2 = [|Y |] \ S1. Then, put into these symbols, the event

that s reaches all of Y is identical to there being a S1 6= ∅ so that BS1CS2 happens.

Lemma 1. Suppose that we have two sets of A events D1 and D2, then, for any Bi,

P (D1|(Bi ∨B′i)D2) ≥ P (D′1|(Bi ∨B′i)D2)
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Proof.

P (D1(Bi ∨B′i)D2)− P (D′1(Bi ∨B′i)D2)

= P (D1BiD2)− P (D′1BiD2) + P (D1B
′
iD2)− P (D′1B

′
iD2)

− P (D1BiB
′
iD2) + P (D′1BiB

′
iD2)

= P (D1BiD2)− P (BiD2)P (D′1) + P (D1D2)P (B′i)− P (D2)P (D′1B
′
i)

− P (D1BiD2)P (B′i) + P (BiD2)P (D′1B
′
i)

= P (D1|BiD2)P (D2|Bi)P (Bi)− P (D2|Bi)P (Bi)P (D1)

+ P (D1D2)P (Bi)− P (D2)P (D1|Bi)P (Bi)

− P (D1|BiD2)P (D2|Bi)P (Bi)P (Bi) + P (D2|Bi)P (Bi)P (D1Bi|CI)P (Bi)

Everything has a factor of P (Bi) so divide through by that, and combine the first

and fifth terms.

= P (D1|BiD2)P (D2|Bi)(1− P (Bi))− P (D2|Bi)P (D1)

+ P (D1D2)− P (D2)P (D1|Bi) + P (D2|Bi)P (Bi)P (D1Bi)

≥ P (D1|Bi)P (D2|Bi)(1− P (Bi))− P (D2|Bi)P (D1)

+ P (D1D2)− P (D2)P (D1|Bi) + P (D2|Bi)P (Bi)P (D1Bi)

= P (D1|Bi)P (D2|Bi)− P (D2|Bi)P (D1) + P (D1D2)− P (D2)P (D1|Bi)

≥ P (D1|Bi)P (D2|Bi)− P (D2|Bi)P (D1) + P (D1)P (D2)− P (D2)P (D1|Bi)
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Dividing through by P (D1)P (D2), and factoring, this expression becomes

=

(
P (Di|Bi)
P (D1)

− 1

)(
P (D2|Bi)
P (D2)

− 1

)
≥ 0

Throughout these steps, we are making heavy use of the fact that A events and A′

events are independent of one another, that A events are positively correlated, and that

A events and A′ events are symmetric.

We have that s is connected to f if at least one of As,f , {Az,f}z∈Y occur, and it is

connected to f ′ if at least one of {A′z′,f ′}z′∈Y ′ occur. This is because we know that the s

is not connected to any other vertices in X than Y , and so any of the paths from s to f

or f ′ must last hit X at a vertex in Y . Having the part of that hypothetical path that is

past the last time that it is in X is exactly captured by either an event in {Az,f}z∈Y or an

event in A{A′z′,f ′}z′∈Y ′ being true. If |Y | = 1, then we an just apply Harris’s inequality.

For the case of |Y | = 2, then either s is connected to both using edges in G (just A

events), or there is just one vertex in Y which is hit by an A event from s. The other one

is connected to that vertex by either an A event or an A′ event. This places us exactly

in the conditions of Lemma 1 where D2 is the A event getting us to Y , (Bi ∧B′i) is what

is connecting the two vertices of Y , and D1 is any one of As,f , {Az,f}z∈Y .Since we are

assuming that s is connected to all of Y , we use our inequality over all z ∈ Y to get the

conclusion that it is at least as likely that s is connected to f as that s is connected to

f ′. Since this is true for any choice X and Y ⊆ X, then it is true when we instead do
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not condition on these things by just summing over all the choices for X and Y.

6.4 Extensions and Related Results

While still conditioning on X, we cannot have a hope of proving that the inequality is

strict. For example consider G = P3, the path with three vertices, and let X consist

of the middle vertex. Then, picking s and f to be the ends of the path, we have equal

likelihood that s connected to f as having s connect to f ′.

This proof also gives us information on which values of X will have the two prob-

abilities be equal. In particular, we want that for each step of the induction, when we

multiply by P (Li+1|Li)−P (Li+1), we are not multiplying by zero. Everything thing else

that we do would preserve a strict inequality that we start with since (R0) < 1. So, we

need that for some path shadow ps, for each i, the set of edges which Axi−1,xi and Axi,xi+1

are not disjoint. as we have a strictly positive correlation between two events that have

some coin that they depend on in common.

Conjecture 1. A graph with a known collection of vertices with outside edges X will

satisfy the bunk bed conjecture strongly if and only if there is a path from s to f in the

subgraph of G induced by removing the vertices in X.

Since we showed at least a weak inequality for any selection of |X| = 2 for the cross

edges, we can get strong inequality in the original statement of the conjecture if you

assume at most . In the original bunk bed conjecture, we have a non-zero probability

that X = ∅. For this X, then the probability that s is connected to f ′ is zero, while

the probability that s is connected to f is positive because there is some chance that we

retain a spanning tree of G, for example.
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Our approach seems like it would also generalize to being able to prove the stronger

conjecture (2.5) presented in [30] (Still under the assumption of at most two outside

edges). In this paper they introduce a model of randomness we loose independence

between the random choices made on the edges of G and on the edges of G′. Here, they

flip coins randomly for one of the two copies of the graph, say G. Then, to determine the

edges of G′, they include an edge if and only if it is not remain in G. Note that this will

mean that {Au,v} and {A′u′,v′} are negatively correlated. The statement of our lemma

is actually able to be a bit simpler, since in this context, we have that Bi and B′i are

mutually exclusive, so that we do not have to track the term that we got in that proof

from inclusion-exclusion.

In [30] they also present a form of the conjecture formulated in terms of hypergraphs.

It is doubtful that the approach that we have given here would be useful to proving that

different conjecture, since there is not as simple of a way of breaking down the notion of

“connected to” that they use in terms of the existence of paths of retained hyperedges.

It seems like it might be fruitful to further investigate if any of these ideas here can be

related to this similar statement of the conjecture.

By looking at polynomials produced by going back to the model where we randomly

remove with probability p and taking the difference of the likelihood that we are connected

to f and to f ′, we are able to associate a polynomial to the graph in an interesting way.

In particular, by a recursive approach, we are able to get that the formula depth for the

polynomial is at most O(E(G)). That is, for each edge that we process, we either place

p times the polynomial that we get from definitely including the edge plus (1− p) times

the polynomial from definitely excluding the edge. Finally as a base case, we associate

a 1 to any configuration which has s connected to f but not f ′. Associate a -1 to any
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configuration which has s connected to f ′ but not f . To any other configuration, associate

0. This allows us a somewhat quicker way that we used of verifying the conjecture for

small graphs. Actually expanding out this polynomial to make sure that it is nonnegative

for any p in [0, 1] still is a quite slow operation.

6.5 Experimental Component

As is always good when faced with a conjecture, it is worthwhile to check small cases,

even if it seems obvious from an intuitive point of view. Using the techniques in this

section, we checked all graphs up though size six, and may graphs of size 7. While it is

always the hope to find a counterexample, as that is much easier to prove and resolve the

question, there was no such counterexample. However, The procedure that we used spits

out a polynomial that encodes information about the graph. That is, as a polynomial

in p, what is the difference between the probability that s and f are connected and the

probability that s and f ′ are connected. It is easy to notice the way in which the graph

determines some of the polynomial considered.

The procedure begins by taking two copies of the bunk bed graph. One copy will

denote the edges that we have yet to flip a coin for, and the other the edges that are

currently remaining. As a base case, if there is a path from s to f or f ′ in the retained

edges minus the edges left to flip, then we have that our probability in question is either

1, 0, or −1. Once we have obtained the polynomial describing the difference of these two

probabilities, it is a very simple task of checking to make sure that it is non-negative on

[0, 1]. Of all the polynomials generated, it is the case that they have a factor of p to the

length of the shortest path in G between s and f , and a factor of 1 − p to the size of

the smallest cut set between s and f . The rest of the polynomial in all graphs of size
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at most six is irreducible. This seems kind of surprising, and so is definitely worthy of

further investigation.

6.6 Maple Package

An implementation of the procedure used for checking small cases of the conjecture

is available at http://sites.math.rutgers.edu/~ajl213/DrZ/Bunkbed/bunkbed.txt.

There is documentation there on how to use the package. Just type ‘Help()’ to see an

overview of the available functions provided.
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