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IDENTITIES FROM REPRESENTATION THEORY

SE-JIN OH AND TRAVIS SCRIMSHAW

Abstract. We give a new Jacobi–Trudi-type formula for characters of finite-dimensional ir-

reducible representations in type Cn using characters of the fundamental representations and

non-intersecting lattice paths. We give equivalent determinant formulas for the decomposition

multiplicities for tensor powers of the spin representation in type Bn and the exterior repre-

sentation in type Cn. This gives a combinatorial proof of an identity of Katz and equates

such a multiplicity with the dimension of an irreducible representation in type Cn. By taking

certain specializations, we obtain identities for q-Catalan triangle numbers, the q, t-Catalan

number of Stump, q-triangle versions of Motzkin and Riordan numbers, and generalizations

of Touchard’s identity. We use (spin) rigid tableaux and crystal base theory to show some

formulas relating Catalan, Motzkin, and Riordan triangle numbers.
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1. Introduction

The interaction between combinatorics and representation theory has a long history. For ex-

ample, by enumerating bases and modules by combinatorial objects, we can translate problems

in representation theory into computations using combinatorial rules that are often simple. On

the other hand, the algebraic structures frequently imply certain identities or positivity results.

For example, the only known proof that the q, t-Catalan number C̃n(q, t) of Garsia and

Haiman [GH96] is symmetric in q and t, i.e. C̃n(q, t) = C̃n(t, q), is by showing that C̃n(q, t)
is the bi-graded Hilbert series of a certain representation that is naturally symmetric in q

and t [GH01, GH02]. It is a famous open problem in combinatorics to prove this bijectively.

Another problem in combinatorial group theory (and geometry) was the positivity of Kazhdan–

Lusztig polynomials and was proven by using the structure of Soergel bimodules [EW14, Soe07].

Representation theory has also been applied to show certain polynomials from combinatorics

are symmetric and unimodel (see, e.g., [Sta80] and references therein).

One important relationship is given by constructing the dimension of a gln-representation

V (λ) by using semistandard Young tableaux of shape λ. The character of V (λ) is then a

Schur function sλ, which also is well-defined in the stable limit as n→∞. One can show that

combinatorially that Schur functions are a basis for the ring of symmetric functions, which

implies that finite-dimensional gln modules are fully reducible and V (λ) ∼= V (µ) if and only if

λ = µ. In turn, the fact that sλsµ corresponds to V (λ) ⊗ V (µ) implies that the Littlewood–

Richardson coefficients are non-negative. Furthermore, the Lindström–Gessel–Viennot (LGV)

lemma [Lin73, GV85] can be applied to give a bijective proof of the Jacobi–Trudi identity to

compute Schur functions. For more information on Schur functions, see, e.g., [Sta99, Ch. 7].

For the other classical Lie algebras, the problem is more intricate. There have been a number

of different tableaux to enumerate the bases of a finite-dimensional irreducible representation of

son [KW93], including by King and El-Sharkaway [KES83], King and Welsh [KW93], Koike and

Terada [KT90], Proctor [Pro90, Pro94], and Sundaram [Sun90]. For sp2n, the representations

can also be indexed by certain tableaux [Ber86], which include those by De Concini [DC79],

King [Kin76], King and El-Sharkaway [KES83], Sundaram [Sun86]. In [KT87], Koike and
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Terada give two new bases for the ring of symmetric functions that corresponds to stable limits

of sp2n and son characters. Jacobi–Trudi-type formulas and bijective proofs using the LGV

lemma for the characters of sp2n and son were given in [FK97, SV16].

One of the major advancements in both combinatorics and representation theory was Kashi-

wara’s crystal bases [Kas90, Kas91], which are the q → 0 limit of bases of representations of a

Drinfel’d–Jimbo quantum group Uq(g). Crystal give representation theoretic interpretations of

and interconnected a number of combinatorial constructions such as coplactic operators [Lot02],

evacuation [Len07], promotion [Shi02], and charge [NY97]. Crystals also yielded a new tableaux

model for V (λ) [KN94], Levi branching rules, and a combinatorial method to compute the de-

compositions of tensor products in a unified framework.

Our main result (Theorem 3.8) is a Jacobi–Trudi-type formula for characters of irreducible

representations in terms of representations corresponding to fundamental weights (i.e. given

by single column tableaux). In particular, our formula is distinct from [FK97, Eq. (3.9), (3.10)

and (3.11)], which uses the reflection principle and can involve multiple terms in each entry of

the matrix. Moreover, it is different than [SV16, Thm. 3.2], which is a “dual” version of our

results as it uses single row tableaux representations (i.e.,, symmetric powers of the natural

representation or homogeneous symmetric functions). Our proof uses the LGV lemma on

partial Dyck paths and King tableaux, which yields a determinant formula for the dimension

using Catalan triangle numbers. It is also distinct from [KT87], which uses characters of single

column tableaux in type A (i.e., elementary symmetric functions).

Our second main result are determinant formulas for the decomposition multiplicities of a

tensor power of the spin representation in type Bn (Theorem 4.4) and the exterior algebra of

sp2n (Theorem 4.11). Again, our proof is applying the LGV lemma to partial Dyck paths. In

particular, when we consider the multiplicity of the trivial representation, we have a natural

identification of the two lattice paths as proper Dyck paths. This gives a direct bijective proof

of a result of Katz [Kat16, Thm 1.4]. By using our interpretation using crystals, we can see

that this identification essentially corresponds to the virtualization map of type Cn to Bn

(see, e.g., [Kas96, OSS03a, OSS03b, SS15]). Thus, we also provide a representation theoretic

proof [Kat16, Thm. 1.4], answering a problem posed by Katz [Kat16, Sec. 4].

The remainder of our results are about various identities that arise from representation the-

ory. We show that the (natural) q-Catalan number Cn(q) from MacMahon [Mac15] is equal to

the principle specialization of a type Cn−1 character (up to a power of q) (Theorem 5.2) by giv-

ing a representation theoretic formulation of the q, t-Catalan number given by Stump [Stu09]

(Theorem 5.3). Using this as a guide, we give a new q, t-Catalan triangle numbers using special-

izations of type Cn−1 characters. Furthermore, we extend this to a q, t-binomial coefficient that

specializes to the usual q-binomial coefficients at t = q−1 (up to a power of q) (Theorem 5.8).

Additionally, we prove the classical Touchard identity using representations in type Cn,

extend this to the Catalan triangle numbers, and give a new q, t-analog that specializes to the

principle specialization of a type Cn character. We also give representation theoretic proofs

of some classical identities between Catalan numbers and Motzkin/Riordan numbers. We
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provide tableau models for highest weight crystals in types Bn and Dn using semistandard

(spin) rigid tableaux of [KLO17] and are equinumerous to Motzkin/Riordan triangle numbers

in various ways. Furthermore, we give new (recursive) q-analogs of Motzkin and Riordan

(triangle) numbers, which we conjecture to have a combinatorial interpretation.

This paper is organized as follows. In Section 2, we provide the necessary background.

In Section 3, we give a Jacobi–Trudi-type formula for characters in type Cn. In Section 4,

we compute the decomposition multiplicities of tensor powers of the type Bn spin and type

Cn exterior representation. In Section 5, we provide a representation theoretic proof of several

combinatorial identities. In Section 6, we use semistandard rigid tableaux for representations in

type Bn to give (s+1)-many distinct tableaux models which are equinumerous to the Motzkin

triangle numberM(m,s). In Section 7, we show identities involving Riordan triangle numbers

using semistandard spin rigid tableaux and type Dn representations. In Section 8, we conclude

with a number of open problems.

After completion of this manuscript, the authors were informed of the preprint [Oka89] of

Soichi Okada that also proves Theorem 3.8 using the LGV lemma and King tableaux. The

authors additionally learned of [Oka09], which provides an alternative proof of Corollary 3.13

and Proposition 5.30.

2. Background

In this section, we give the necessary background.

2.1. Catalan triangle numbers. The Catalan numbers are a well-studied sequence of num-

bers whose history spans over the past three centuries, where the earliest recorded discovery

is by the Chinese mathematician Antu Ming around 1730 [Lar99, Luo88]. The n-th Catalan

number is

Cn :=
1

2n+ 1

Ç
2n

n

å

and also satisfies the recursion

(2.1) Cn =
n∑

k=1

Ck−1Cn−k

starting with C0 = 1. Stanley has given a list of over 200 objects count the Catalan num-

bers [Sta99, Sta15], and this list continues to grow, e.g., [Rey15].

One such interpretation is given by the set of all Dyck paths in an n×n grid that stay weakly

below the diagonal y = x, which we denote by Dn. To be precise, we consider a directed graph,

known as the Catalan graph, with vertices V = {(i, j) | 0 ≤ j ≤ i ≤ n} and (directed) edges

N = (i, j)→ (i, j + 1), E = (i, j) → (i+ 1, j),

which we call North steps and East steps respectively. A Dyck path is a path from (0, 0) to

(n, n) in the Catalan graph. Indeed, we have Cn = |Dn|. We call the corresponding word in

the alphabet {N,E} a Dyck word .
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We will also require the following generalization of the Catalan numbers that appeared as

early as 1800 [Arb00]. The (n, k)-th Catalan triangle number is defined by

C(n,k) :=
Ç
n+ k

k

å
−
Ç
n+ k

k − 1

å
=

(n+ k)!(n − k + 1)

k!(n+ 1)!
= C(n,k−1) + C(n−1,k)

and can be described combinatorially the set of all paths in the Catalan graph that start at (0, 0)

and end at (n, k) [Bai96]. Thus, we denote the set of such paths by D(n,k), which is equivalent

be the set of partial Dyck words with k occurrences of the letter N and n occurrences of the

letter E. We consider C(n,k) = 0 whenever k < 0 or k > n. Note that C(n,n) = C(n,n−1) = Cn.

2.2. Motzkin triangle numbers. Another well-studied sequence of numbers are the Motzkin

numbers that were introduced by Motzkin [Mot48]. The n-th Motzkin number is

Mn :=

⌊n/2⌋∑

k=0

Ck
Ç
n

2k

å

and satisfies the recurrence

Mn =Mn−1 +
n−2∑

k=0

MkMn−2−k =
2n+ 1

n+ 2
Mn−1 +

3n− 3

n+ 2
Mn−2.

The n-th Motzkin number has an interpretation of the number of ways of drawing non-

intersecting chords on n points on a circle. They also have an interpretation similar to Dyck

paths, called Motzkin paths, using steps

U = (i, j)→ (i+ 1, j + 1), H = (i, j)→ (i+ 1, j), D = (i, j)→ (i+ 1, j − 1),

that starts at (0, 0), goes to (n, 0), and stays weakly above the y = 0 horizontal line. Note that

a Dyck path is a Motzkin path without a horizontal step H. In [Cal17], it was shown that

Mn−1 is the number of Dyck paths in Dn whose peaks all occur at odd height.

There is a triangle version of the Motzkin numbers [Lan03] (see also [Slo18, A026300]). The

(n, k)-th Motzkin triangle number is defined by

M(n,k) :=

⌊(n−k)/2⌋∑

i=0

Ç
n

2i+ k

åñÇ
2i+ k

i

å
−
Ç
2i+ k

i− 1

åô

=M(n−1,k) +M(n−1,k−1) +M(n−1,k+1).

These count the number of Motzkin paths that end at (n, k), and so M(n,0) = Mn and

M(n,n) = 1. Note that this differs from our convention for Catalan triangle numbers.

2.3. Riordan triangle numbers. The Riordan numbers are another sequence of numbers

closely related to Motzkin numbers that were first introduced by Riordan [Rio75], where the

name was coined by Bernhart [Ber97]. The n-th Riordan number is defined by

Rn :=
1

n+ 1

⌊n/2⌋∑

k=1

Ç
n+ 1

k

åÇ
n− k − 1

k − 1

å
=
n− 1

n+ 1
(2Rn−1 + 3Rn−2)
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with R0 = 1 and R1 = 0. The n-th Riordan number has an interpretation as the number of

Motzkin paths from (0, 0) to (n, 0) that does not have any horizontal steps on the y = 0 line.

Such paths are called Riordan paths. Another interpretation is the number of Dyck paths in

Dn whose peaks all occur at even height [Cal17].

Let R(n,k) denote the (n, k)-th Riordan triangle number defined by

R(n,k) :=
n−k∑

i=0

(−1)i(M(n+1−i,k) +M(n+1−i,k−1)).

The (n, k)-th Riordan triangle number has an interpretation as the Riordan paths that end

at (n, k), and thus, we have R(n,0) = Rn and R(n,n) = 1. Note that this differs from our

convention for Catalan triangle numbers.

One of the earliest known (to the authors) occurrences of the Riordan triangle numbers is in

the paper [Ber97] by taking a difference of trinomial coefficients (see [Ber97, Fig. 22(b)]). The

Riordan triangle numbers also appeared in the same year in a paper by [MRSV97, Fig. 5], but

under a different interpretation. To convert the notation/paths of [MRSV97] to the standard

Riordan paths given here, use the map

e 7→ U, ne 7→ H, n2e 7→ D.

We leave it as an exercise to the reader to show this is indeed a bijection.

Lemma 2.1. [KLO17, Lemma 4.10] For m, s ≥ 1, we have

R(m,s) +R(m−1,s) =M(m−1,s) +M(m−1,s−1).

2.4. Lindström–Gessel–Viennot lemma. We state one of our main computational tools,

the Lindström–Gessel–Viennot (LGV) lemma.

Let G be a finite directed acyclic graph with edge weights w : E(G) → R for some commu-

tative ring R. Let

e(u, v) =
∑

P : u→v

∏

e∈P

w(e),

where the sum is over all paths P from u to v. Next, fix some initial vertices s = (s1, . . . , sn) and

terminal vertices t = (t1, . . . , tn). A family of non-intersecting lattice paths P = (P (1), . . . , P (n))

from s to t are paths P (i) : si → tσ(i), for some fixed σ ∈ Sn, such that P (i) ∩ P (j) = ∅ for all
i 6= j. The sign of P is defined by sgn(P) = sgn(σ).

Lemma 2.2 ([Lin73, GV85]). We have

det




e(s1, t1) e(s1, t2) · · · e(s1, tn)

e(s2, t1) e(s2, t2) · · · e(s2, tn)
...

...
. . .

...

e(sn, t1) e(sn, t2) · · · e(sn, tn)



=
∑

P

sgn(P)
n∏

i=1

w(P (i)),

where the sum is over all non-intersecting lattices paths P = (P (1), . . . , P (n)) from s to t.

We will simply refer to Lemma 2.2 as the LGV lemma.
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2.5. Crystals. Let g be a simple Lie algebra with index set I, Cartan matrix (Aij)i,j∈I , simple

roots (αi)i∈I , fundamental weights (̟i)i∈I , weight lattice PZ, simple coroots (α∨
i )i∈I , and

canonical pairing 〈 , 〉 : P∨
Z × PZ → Z given by 〈α∨

i , αj〉 = Aij . We will use the standard

identification of the weight lattice as a sublattice of
⊕n

i=1 Qǫi (see, e.g., [BS17]). Let Uq(g)

denote the corresponding (Drinfel’d–Jimbo) quantum group. We denote

‹̟i =





2̟n if g = Bn and i = n,

̟n +̟n+1 if g = Dn+1 and i = n,

2̟i if g = Dn+1 and i = n+ 1,

̟i otherwise.

A Uq(g)-crystal is a set B with operations ei, fi : B → B⊔{0}, for i ∈ I, and weight function

wt: B → PZ such that

(1) 〈wt(b), α∨
i 〉+ εi(b) = ϕi(b), where

• εi(b) = max{k ∈ Z≥0 | eki b 6= 0},
• ϕi(b) = max{k ∈ Z≥0 | fki b 6= 0},

(2) wt(eib) = wt(b) + αi if eib 6= 0,

(3) eib = b′ if and only if b = fib
′ for all b, b′ ∈ B,

(4) is a crystal basis, in the sense of Kashiwara [Kas90, Kas91], of a Uq(g)-module.

Remark 2.3. Our definition of a crystal definition includes the property sometimes called

seminormal or regular .

In [Kas90], Kashiwara showed that all highest weight modules V (λ) for λ ∈ P+
Z admit a

crystal basis. Let B(λ) denote the crystal basis of V (λ), and let uλ be the highest weight

element of B(λ), the (unique) element such that eiuλ = 0 for all i ∈ I.
Kashiwara showed that Uq(g)-crystals form a tensor category [Kas91]. We define the tensor

product of Uq(g)-crystals B1 and B2 as the crystal B2 ⊗B1 with elements being the Cartesian

product B2 ×B1 with the crystal structure

ei(b2 ⊗ b1) =



eib2 ⊗ b1 if εi(b2) > ϕi(b1),

b2 ⊗ eib1 if εi(b2) ≤ ϕi(b1),

fi(b2 ⊗ b1) =



fib2 ⊗ b1 if εi(b2) ≥ ϕi(b1),

b2 ⊗ fib1 if εi(b2) < ϕi(b1),

εi(b2 ⊗ b1) = max(εi(b1), εi(b2)− 〈hi,wt(b1)〉),
ϕi(b2 ⊗ b1) = max(ϕi(b2), ϕi(b1) + 〈hi,wt(b2)〉),
wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.4. Our tensor product convention follows [BS17], which is opposite of Kashi-

wara [Kas91].



8 S.-J. OH AND T. SCRIMSHAW

We can simplify the tensor product rule on the tensor product of Uq(g)-crystals B = BL ⊗
· · · ⊗B1 by using the signature rule. Let b = bL ⊗ · · · ⊗ b2 ⊗ b1 ∈ B, and for i ∈ I, we write

− · · · −︸ ︷︷ ︸
ϕi(bL)

+ · · ·+︸ ︷︷ ︸
εi(bL)

· · · − · · · −︸ ︷︷ ︸
ϕi(b1)

+ · · ·+︸ ︷︷ ︸
εi(b1)

.

Then by successively deleting any (+−)-pairs (in that order) in the above sequence, we obtain

a sequence

sigi(b) :=− · · · −︸ ︷︷ ︸
ϕi(b)

+ · · ·+︸ ︷︷ ︸
εi(b)

called the reduced signature. Suppose 1 ≤ j−, j+ ≤ L are such that bj− contributes the

rightmost − in sigi(b) and bj+ contributes the leftmost + in sigi(b). Then, we have

eib = bL ⊗ · · · ⊗ bj++1 ⊗ eibj+ ⊗ bj+−1 ⊗ · · · ⊗ b1,
fib = bL ⊗ · · · ⊗ bj−+1 ⊗ fibj− ⊗ bj−−1 ⊗ · · · ⊗ b1.

Let B1 and B2 be two Uq(g)-crystals. A crystal morphism ψ : B1 → B2 is a map B1⊔{0} →
B2 ⊔ {0} with ψ(0) = 0 such that the following properties hold for all b ∈ B1 and i ∈ I:

(1) If ψ(b) ∈ B2, then wt
Ä
ψ(b)

ä
= wt(b), εi

Ä
ψ(b)

ä
= εi(b), and ϕi

Ä
ψ(b)

ä
= ϕi(b).

(2) We have ψ(eib) = eiψ(b) if ψ(eib) 6= 0 and eiψ(b) 6= 0.

(3) We have ψ(fib) = fiψ(b) if ψ(fib) 6= 0 and fiψ(b) 6= 0.

An embedding (resp. isomorphism) is a crystal morphism such that the induced map B1⊔{0} →
B2 ⊔ {0} is an embedding (resp. bijection).

For a Uq(g)-representation V , let chV denote the character. Recall that for a representation

V with a crystal basis B, we have

dimV = |B|, chV =
∑

b∈B

xwt(b),

where for λ =
∑n

i=1 ciǫi, we write xλ =
∏n

i=1 x
ci
i . Furthermore, recall that the character is

invariant under the action of the Weyl group corresponding to g. To simplify our notation, we

denote ch(̟) := ch V (̟).

2.6. Tableaux for finite-dimensional representations. We use English convention for our

partitions and tableaux.

We recall the definition of Kashiwara–Nakashima (KN) tableaux [KN94], which give a model

for highest weight crystals in types An, Bn, Cn, and Dn. We first identify λ ∈ P+ with a

partition by having a height h column correspond to ‹̟h. Additionally, for type Bn and Dn,

we allow a half width spin column corresponding to an odd coefficient of ̟n. For type Dn,

we also allow the n-th row to have negative length. In other words, we generally have 〈αi, λ〉
being the multiplicity of i in the transpose of the partition associated to λ. Furthermore, if

λ =
∑n

i=1 λiǫi, then the partition corresponding to λ is given by (λ1, λ2, . . . , λn).

Now consider the crystal of the vector representation, which is given in Figure 1 and corre-

sponds to B(̟1). When λ does not contain a half width column, we construct the elements
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An : 1 2 · · · n n+ 1
1 2 n − 1 n

Bn : 1 · · · n 0 n · · · 1
1 n − 1 n n n − 1 1

Cn : 1 · · · n n · · · 1
1 n − 1 n n − 1 1

Dn+1 : 1 · · · n− 1

n

n

n− 1 · · · 1
1 n − 2

n
−

1

n

n

n
−

1

n − 2 1

Figure 1. Crystals of the vector representation B(ω1) of classical types.

of B(λ) as semistandard tableaux of shape λ with letters in B(̟1),
1 which we identity with

an element in B(̟1)
⊗|λ| by taking the reverse Far-Eastern reading word and use this to define

the crystal structure. In particular, we consider the closure of the tableaux whose i-th row is

filled with i except for type Dn when the n-th row has negative length, where we fill it with n.

This does not generate all highest weight crystals in types Bn and Dn. To do this, we need

the spin representation B(̟n), as well as B(̟n−1) for type Dn, which are given by elements in

{+,−}n. In type Dn, for (s1, . . . , sn) ∈ B(̟k), we require that
∏n

i=1 si = −,+ if k = n− 1, n

respectively. We define the crystal structure by

ei(s1, . . . , sn) =





(. . . , si−1,+,−, si+2, . . . ) if i < n and (si, si+1) = (−,+),

(. . . , sn−1,+) if i = n, type Bn and sn = −,
(. . . , sn−2,+,+) if i = n, type Dn and (sn−1, sn) = (−,−),
0 otherwise,

fi(s1, . . . , sn) =





(. . . , si−1,−,+, si+2, . . . ) if i < n and (si, si+1) = (+,−),
(. . . , sn−1,−) if i = n, type Bn and sn = +,

(. . . , sn−2,−,−) if i = n, type Dn and (sn−1, sn) = (+,+),

0 otherwise.

wt(s1, . . . , sn) =
1

2
(s1ǫ1 + s2ǫ2 + · · ·+ snǫn) ,

We realize the spin elements as a tableaux whose shape is a half-width column of height n

and B(̟n−1) in type Dn as having a negative half-width box at height n. Note that this

is consistent with the identification of P+
Z with partitions given above. Following English

convention for tableaux, the entry in the i-th row counted from the top of the corresponding

tableau is si for an element (s1, . . . , sn).

1We consider B(̟1) as the Hasse diagram of a poset with 1 being the smallest element.
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The decompositions for g of type Bn

(2.2) B(̟n)
⊗2 ∼=

n⊕

i=0

B(‹̟i)

and for g of type Dn+1

B(̟n+1)
⊗2 ∼=

⌊(n+1)/2⌋⊕

i=0

B(‹̟n+1−2i),(2.3a)

B(̟n)
⊗2 ∼= B(2̟n)⊕

⌊(n−1)/2⌋⊕

i=0

B(‹̟n−2i),(2.3b)

B(̟n+1)⊗B(̟n) ∼= B(̟n)⊗B(̟n+1) ∼=
⌊n/2⌋⊕

i=0

B(‹̟n−2i),(2.3c)

are well-known and an easy computation from the signature rule with the spin representations.

However, different sets of tableaux have been used to count the weight space decomposition

of V (λ). In the sequel, we will use tableaux equivalent to those given by King [Kin76]. A King

tableau is a semistandard tableau under the alphabet

1 ≺ 1 ≺ 2 ≺ 2 ≺ · · · ≺ n ≺ n
such that the minimum entry in row k is k. Note that this equivalent to forbidding k in row

k+1 (as the semistandard condition then prohibits anything else). Let wt(T ) is defined as for

KN tableaux (k contributes −ǫk). We note that our tableaux are equivalent to the tableaux

in [Kin76] by interchanging k ↔ k and using the order 1 ≺′ 1 ≺′ · · · ≺′ n. Let K(λ) denote the

set of King tableaux of shape λ.

Theorem 2.5 ([Kin76]). Let g be of type Cn and λ ∈ P+
Z . We have

ch(λ) =
∑

T∈K(λ)

xwt(T ).

2.7. Principal specializations. We want to consider the principal specialization of a type

Bn, Cn, or Dn character χ(x±1
1 , . . . , x±1

n ), which is defined as

χ(q, q2, . . . , qn) := χ(x±1
1 , . . . , x±1

n )
∣∣∣
x±1
1 =q±1,...,x±1

n =q±n
.

For type An, the principal specialization is given by χ(1, q, q2, . . . , qn−1). We write ps(λ) for

the principal specialization of the character of V (λ). Let p̃s(λ) denote normalized principal

specialization, where we define

p̃s(λ) := q−ηλ ps(λ),

where ηλ is the valuation of ps(λ), or the lowest power of q appearing in ps(λ). Note that p̃s(λ)

is a polynomial in q with a non-zero constant term.

We recall some descriptions of the principal specializations that follow from the Weyl char-

acter formula; we follow [BKW16]. Recall the identification between dominant weights and

partitions from Section 2.5. Hence, we denote |λ| =∑
i≥1 λi and n(λ) =

∑
i≥1(i− 1)λi.
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Proposition 2.6 ([BKW16, Eq. (3.21)]). In type Bn, we have

ps(λ) = qn(λ)−n|λ|
n∏

i=1

1− q2λi+2n−2i+1

1− q2n−2i+1

∏

1≤i<j≤n

1− qλi−λj+j−i

1− qj−i
· 1− q

λi+λj+2n−i−j+1

1− q2n−i−j+1
.

Proposition 2.7 ([BKW16, Eq. (3.30a)]). In type Cn, we have

ps(λ) = qn(λ)−n|λ|
n∏

i=1

1− q2(λi+n−i+1)

1− q2(n−i+1)

∏

1≤i<j≤n

1− qλi−λj+j−i

1− qj−i
· 1− q

λi+λj+2n−i−j+2

1− q2n−i−j+2
.

2.8. q-analogs and q, t-Catalan numbers. We recall the standard q-analogs of integers,

factorials, binomial coefficients, and q-Pochhammer symbols. The q-analog of an integer n by

[n]q := 1 + q + · · ·+ qn−1 =
1− qn
1− q ,

factorials by [n]!q := [1]q · · · [n]q, and binomial coefficients by
ñ
n

k

ô

q

:=
[n]!q

[k]!q[n− k]!q
.

We recall that q-binomial coefficients are positive polynomials in q, i.e.,

ñ
n

k

ô

q

∈ Z≥0[q], and

there are two versions of the Pascal’s identity:
ñ
n+m

n

ô

q

= qn
ñ
n+m− 1

n

ô

q

+

ñ
n+m− 1

n− 1

ô

q

(2.4a)

=

ñ
n+m− 1

n

ô

q

+ qm
ñ
n+m− 1

n− 1

ô

q

.(2.4b)

The q-Pochhammer symbol is defined as

(a; q)n :=
n∏

k=1

(1− aqk−1).

We will use the shorthand (q)n := (q; q)n.

MacMahon defined a q-definition of the Catalan numbers, which are known as the Maho-

nian q-Catalan numbers, during his study of permutations [Mac15]. The Mahonian q-Catalan

numbers are defined by the natural q-analog of the closed form of the Catalan numbers:

Cn(q) :=
1

[n+ 1]q

ñ
2n

n

ô

q

.

However, the Mahonian q-Catalan numbers are not known to satisfy a q-analog of the Catalan

recursion relation (2.1).

We also have another q-analog of the Catalan numbers that satisfy a q-analog of (2.1):

C̃n+1(q) =
n∑

k=0

qkC̃k(q)C̃n−k(q), C̃0(q) = 1.
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The values C̃n(q) are called the Carlitz–Riordan q-Catalan numbers [CR64], and there is no

known simple formula closed for C̃n(q). However, there does exist the following combinatorial

interpretation of C̃n(q). The area of a Dyck path a : Dn → Z is given by a(D) =
∑n

i=1 ji, where

(ji, i) is the endpoint after the i-th North step. It is a standard combinatorial exercise to show

C̃n(q) =
∑

D∈Dn

qa(D).

Another statistic called bounce b : Dn → Z is used to define the q, t-Catalan numbers:

C̃n(q, t) =
∑

D∈Dn

qa(D)tb(D).

We do not need the definition of bounce and instead refer the reader to [GH01, GH02]. Fur-

thermore, Garsia and Haglund showed that C̃n(q, t) = C̃n(t, q) by showing C̃n(q, t) is the bi-

graded Hilbert series of the alternating elements subspace of the space of diagonal harmon-

ics [GH01, GH02]. It is still an open problem to prove combinatorially that C̃n(q, t) = C̃n(t, q).
Another q, t-Catalan number was introduced by Stump [Stu09] by using a refinement of

the major index statistic given by Fürlinger and Hofbauer [FH85, Sec. 5] (see also [RS+18,

St000027,St000947,St001161]). Let D be a Dyck path. Denote Des(D) := {i | Di = N,Di+1 =

E} be the descent set of D = D1 · · ·D2n, which corresponds to the positions of the valleys of

D. Define statistics

majN (D) :=
∑

i∈Des(D)

|{j ≤ i | Dj = N}|, majE(D) :=
∑

i∈Des(D)

|{j ≤ i | Dj = E}|,

and another q, t-analog of the Catalan numbers by

Cn(q, t) =
∑

D∈Dn

qmajN (D) t(
n
2)−majE(D).

Note that the usual major index is precisely majN (D) + majE(D), which yields the following.

Proposition 2.8 ([Stu09]). We have

q(
n
2)Cn(q, q−1) = Cn(q).

We will also consider two forms of q-Catalan triangle numbers. The first is a natural q-version

of the Catalan triangle numbers:

C(n,k)(q) :=
[n+ k]q![n− k + 1]q

[k]q![n+ 1]q!
= q−k

Ññ
n+ k

k

ô

q

−
ñ
n+ k

k − 1

ô

q

é
.

Note the right equality follows from
ñ
n+ k

k

ô

q

−
ñ
n+ k

k − 1

ô

q

=
[n+ k]q!([n + 1]q − [k]q)

[k]q![n+ 1]q!

and that [n+ 1]q − [k]q = qk[n− k + 1]q.

Definition 2.9. We define a new q-analog of the Catalan triangle numbers by C′(2n−i+1,i)(q) :=

p̃s(̟i) in type Cn.
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Note that C′(2n−i+1,i)(1) = C(2n−i+1,i) = dimV (̟i). Additionally, note that C′(2n−i+1,i)(q) 6=
C(2n−i+1,i)(q) in general. For example, we have

q7C′(7,2)(q) = q14 + q13 + 2q12 + q11 + 2q10 + 2q9

+ 3q8 + 3q7 + 3q6 + 2q5 + 2q4 + q3 + 2q2 + q + 1,

C(7,2)(q) = q12 + q11 + 2q10 + 2q9 + 3q8 + 3q7

+ 3q6 + 3q5 + 3q4 + 2q3 + 2q2 + q + 1.

However, they are related by a simple ratio.

Proposition 2.10. For all 1 ≤ i ≤ n− 1, we have

C(2n−i−1,i)(q)

C′(2n−i−1,i)(q)
= q(

n
2)−(

n−i
2 ) q

n−i + 1

qn + 1
.

Proof. Use the single column in type Cn−1 given in, e.g., Proposition 2.7. Then it is straight-

forward computation. �

Based on Proposition 2.10, we can give the more general definition of a modified q-Catalan

triangle number

C†(n,k)(q) :=
q⌊(n−k+1)/2⌋ + 1

q⌊(n+k+1)/2⌋ + 1
C(n,k)(q).

Note that C†(2n−i−1,i)(q) = q(
n

2)−(
n−i

2 )C′(2n−i−1,i)(q). We will not use C†(n,k)(q) in this paper.

3. Jacobi–Trudi-type formulas for type Cn characters

In this section, we give a determinant formula for type Cn characters. To do so, we use the

King tableaux description of the weight decomposition given by Theorem 2.5. We start by

recalling the bijection Ξn : Dn → K(̟n−1) in type Cn−1, given by

(1) getting the complement partition,

(2) adding the staircase shape ρ = n · · · 321, and
(3) replacing 1, 2, . . . , 2n with n, n, . . . , 2, 1, 1 (in that order) in a (sorted) column.

The bijection Ξn is a simple modification of the bijection given in [Sta99, Exercise 6.19(t)]

(equivalently [Sta15, Item 79]), which shows that |B(̟n−1)| = dimV (̟n−1) = Cn.

Example 3.1. Let n = 5. The steps under Ξ5 to go from the Dyck path EENENNEENN

to a King tableaux are:

←→ 322←→ 7541←→
1
2
3
4

.
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Figure 2. An example of the weighting w extended to a full 5× 5 grid and the
lattice path from Example 3.1.

By unrolling the bijection Ξn+1, we can construct a weighting w(N ;D) on the first n steps

N of D such that ∑

D∈Dn+1

∏

N

xw(N ;D) = ch(̟n)

via the bijection Ξn+1, where we write xı := x−1
i .2 Indeed, we define w(N ;D) by

w(N,D) :=




(NX +NY + 1)/2 if NX +NY odd,

(NX +NY )/2 if NX +NY even,

where the initial position of N in D is (NX , NY ). We denote the product by xwt(D) :=
∏

N xw(N ;D).

Remark 3.2. The values NX and NY are the number of E and N steps respectively occurring

before the particular N step in the Dyck word.

We will also require the weighting given by taking the conjugate of the partition obtained

from Step (1) before doing Step (2). We denote the resulting bijection by Ξ′
n. Thus we obtain

a weighting on the horizontal steps, which is given explicitly as

w′(E;D) :=




n− (EX + EY + 1)/2 if EX + EY odd,

n− (EX + EY )/2 if EY +EY even,

where the sum is over the last n steps E in D and the initial position of E is (EX , EY ).

Similarly, we denote xwt′(D) :=
∏

E xw′(E;D).

Example 3.3. Using the Dyck path D from Example 3.1, applying Ξ′
n yields

D ←→ 331←→ 7631←→
1
2
3
4

.

2Intrinsically, the weighting is w(N ;D) = x±1
i , but we will use the (barred) integer valued weighting in the

sequel when we take the principal specialization.
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Figure 3. An example of the weighting w′ extended to a full 5× 5 grid and the
lattice path from Example 3.3.

Remark 3.4. The last N and the first E step are fixed for any Dyck path. Hence, they

would only contribute a constant factor of xn+1 in
∑

D∈Dn+1
xwt(D) and

∑
D∈Dn+1

xwt′(D) if

they were included in the computation of xwt(D) and xwt′(D). However xn+1 does not occur

the corresponding King tableaux, so we do not include them.

It is straightforward to extend the bijection Ξn+1 to a bijection Ξ(2n−i+1,i) : D(2n−i+1,i) →
K(̟i) in type Cn. We explain the extension using our weighting on N steps. For a fixed

partial Dyck word D ∈ D(2n−i+1,i) starting at (0, 0), we consider the N -steps N (1), . . . , N (i)

and write the column

Ξ(2n−i+1,i)(D) = w(N (1);D) w(N (2);D) · · · w(N (i−1);D) w(N (i);D)
T
.

Next, let D′
(i,2n−i+1) denote the set of words with i occurrences of the letter E and 2n− i+1

occurrences of the letter N such that reversing the word and interchanging E ←→ N results in

a partial Dyck word in D(2n−i+1,i). We call the set D′
i,2n−i+1 the set of conjugate partial Dyck

words. We note that we can similarly extend Ξn+1 to a bijection Ξ′
(i,2n−i+1) : D′

(i,2n−i+1) →
K(̟i). For a fixed conjugate partial Dyck word D′ ∈ D′

(i,2n−i+1) ending at (n, n), we consider

the E-steps E(1), . . . , E(i) and write the column

Ξ′
(i,2n−i+1)(D

′) = w′(E(i);D′) w′(E(i−1);D′) · · · w′(E(2);D′) w′(E(1);D′)
T
.

Proposition 3.5. Fix some positive integer n. We have

xwt(D) = x
wt
Ä
Ξ(2n−i+1,i)(D)

ä
, xwt′(D′) = x

wt
Ä
Ξ′

(i,2n−i+1)
(D′)
ä
,

for any D ∈ D(2n−i+1,i) and D
′ ∈ D′

i,2n−i+1. Moreover, in type Cn we have

ch(̟i) =
∑

D∈D(2n−i+1,i)

xwt(D) =
∑

D′∈D′

(i,2n−i+1)

xwt′(D′)

Proof. This is immediate given the construction of the bijections Ξ2n−i+1,i and Ξ′
i,2n−i+1 and

from Theorem 2.5 �
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Remark 3.6. We can replace both Dn+1,n and D′
n,n+1 with Dn+1 to obtain

ch(̟n) =
∑

D∈Dn+1

xwt(D) =
∑

D∈Dn+1

xwt′(D).

We note that going from Dn+1 to Dn+1,n (resp. D′
n,n+1) removes the last N step (resp. first E

step) as per Remark 3.4.

Remark 3.7. Since our weighting w is encoding the character of a representation, we can

extend the Weyl group action on the character to form a new weighting ‹w. Because the

characters are Weyl group invariant, we have
∑

D∈Dn+1

∏

N

xw(N ;D) =
∑

D∈Dn+1

∏

N

xw̃(N ;D).

A similar statement holds for w′.

We can extend this to a Jacobi–Trudi formula for type Cn characters. Denote

χ(2m−i+1,i) := ch(̟i) in type Cm.

Theorem 3.8. For type Cn, let λ =
∑

i∈I ci̟i ∈ P+
Z , and let (λ′1, λ

′
2, . . . , λ

′
ℓ) denote the

conjugate partition of λ. Then, we have

det
î
χ(a(i,j),b(i,j))

óℓ
i,j=1

= ch(λ),

where

a(i, j) = 2ℓ− i− j + 2n + 1− λ′ℓ+1−j ,

b(i, j) = j − i+ λ′ℓ+1−j.

Proof. Note that we can rewrite a(i, j) = 2(ℓ+n−i)−b(i, j)+1, and so χ(a(i,j),b(i,j)) = ch(̟b(i,j))

in type Cℓ+n−i. We want to apply the LGV lemma, but we note that the edge weighting of the

paths from si → tj do not necessarily match. However, by the Weyl group invariance of the

characters, we can reweight our edges and not change χ(2m−s+1,s) = ch(̟s). Specifically, for a

path si → tj , we reweight by sending k 7→ k−(n−i) mod m (and so k 7→ k − (n− i) mod m).3

Thus, this weighting is coherent for all such choices of start and endpoints, and hence we can

define it as an edge weighting on the Catalan graph.

Therefore, we can now apply the LGV lemma, and the only families of non-intersecting

lattice paths are of the form P = (P (1), . . . , P (ℓ)) with P (i) : si → ti. Next, form a King tableau

of shape λ by defining the i-th column as Ξ(2n−i+1,i)(P
(i)) using the permuted weighting above.

Note that the resulting entries are in {1, 1, . . . , n, n}, and the semistandard condition of a King

tableau follows from the non-intersecting properly.4 This is clearly reversible, and so the claim

follows. �

3We write the results in {1, . . . , m}; in particular, we write m for 0.
4This is exactly analogous to proof of the usual Jacobi–Trudi formula.
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Example 3.9. The four grids with starting and terminal points of the paths marked in the

computation of ch(2̟2) in type C2, but reweighted as in the proof of Theorem 3.8:
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Example 3.10. We consider C4 and λ = ̟2 + 2̟3. Then the bijection between non-

intersecting lattice paths and King tableaux is given by

s1

s2

s3

t3
t2

t1

←→
1 2 2
2 2 4
3 4

.
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Example 3.11. We consider C3 and λ = 3̟3. Then the bijection between non-intersecting

lattice paths and King tableaux is given by

s1

t̃1

s2

t̃2

s3

t̃3

t1

t2

t3

←→
1 1 2
2 2 2
3 3 3

.

We add the points t̃i to denote the corresponding terminal points if the paths were extended

to be Dyck paths in the shaded upper fixed portion.

Remark 3.12. We can write the determinant of Theorem 3.8 under the specialization xi = 1

as

dimV (ℓ̟k) = det
î
C(i+j+2n−k+1,j−i+k)

óℓ−1

i,j=0
= det

î
C(i+j+2n−k+1,i−j+k)

óℓ−1

i,j=0
.

Furthermore, we have

(3.1) dimV (ℓ̟k) = det
î
C(a(i,j),b(i,j))

óℓ
i,j=1

= det
î
C(a(i,j),b(i,j)+1)

óℓ
i,j=1

,

by noting that we can only extend the non-intersecting lattice paths corresponding to the first

determinant by a N step. See, e.g., Example 3.11.

Note that the proof of Theorem 3.8 does not extend to a Jacobi–Trudi-type formula for

ch(ℓ̟n) for ℓ > 2 by using det[ch(̟n+1+i+j)]
ℓ−1
i,j=0 (or even their principal specializations) in

contrast to Remark 3.6. This is because any path ending at tℓ has to have the final N step with

a weight of 0 as per Remark 3.4 (in Example 3.11, this would be the edge (t3, t̃3)). However,

for paths ending at t1, the weight of this N step must be n + 1. Therefore, we cannot apply

the LGV lemma in this situation. To demonstrate that, consider the principal specialization,

where we have

q13 det[q−(
3+i+j

2 )C3+i+j(q)]
1
i,j=0 = q26 − q25 + 2q24 + 2q22 − q21 + 4q20 − 2q19 + 4q18 − 3q17

+ 3q16 − 3q15 + 4q14 − 6q13 + 4q12 − 3q11 + 3q10 − 3q9

+ 4q8 − 2q7 + 4q6 − q5 + 2q4 + 2q2 − q + 1.

Also note that we also cannot use the Mahonian q-Catalan numbers:

det[C3+i+j(q)]
1
i,j=0 = q26 + q24 + 2q23 + 2q22 + 2q21 + 3q20 + 3q19 + 3q18 + 3q17

+ q16 + 2q15 + q14 − 2q12 − 2q10 − q9 − 2q8 − q7 − q6 − q4.
Note that when we take the principal specialization (resp. specialize xi = 1), we obtain the

following determinant formula for the principal specializations (resp. dimensions) of type Cn
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representations.

det[C′(a(i,j),b(i,j))(q)]ℓi,j=1 = ps(λ), det[C(a(i,j),b(i,j))]ℓi,j=1 = dimV (λ).

In particular, we note the following, which we give two other alternative proofs in Appendix B.

Another alternative proof is given by a specialization of [Oka09, Thm. 2.1].

Corollary 3.13. For type Cn, we have

det[Cn+1+i+j]
r−1
i,j=0 = dimV (r̟n).

4. Determinant formulas for type Bn and Cn decomposition multiplicities

The starting point for our interpretation of decomposition multiplicities in terms of lattice

paths begins with a linear algebra definition. A Hankel matrix is a matrix H = (hij)
n−1
i,j=0 such

that hij = f(i+ j) for some fixed function f : Z→ Z. We then will use the LGV lemma to give

an interpretation of non-intersecting lattice paths, where f has a lattice path interpretation.

Theorem 4.1. The decomposition multiplicity of B(0) in B(̟n)
⊗2m in type Bn is the deter-

minant of the n× n Hankel matrix

HB
n,m := [C2n−i−j+m]ni,j=1 .

Proof. By [MW00, Thm. 1], the determinant of HB
n,m is given by the number of n non-

intersecting lattice paths that stay below the anti-diagonal from n adjacent sites to n adjacent

sites on the anti-diagonal separated by m places. Thus, it is sufficient to define a bijection from

the non-intersecting lattice paths and highest weight elements in B(̟n)
⊗2m.

We first note that if we run diagonals down from the upper-most initial and lower-most

terminal point, everything not between these lines is fixed. Consider a set of non-intersecting

lattice paths P = (P (i))ni=1, and we truncate the paths to the non-fixed region. Hence, each

path has length 2m. We label the paths/initial points from 1 to n starting from the lower

left. Let Ψ(P) denote the tensor product of spins, where the i-th row of the a-th factor is a +

(resp. −) if the a-th step P
(i)
a is an E (resp. N) step.

Note that enb = 0 if and only if we have the Yamanouchi condition on the ±, which we can

consider as the signature rule. We note that the Yamanouchi condition is equivalent to p(n)

staying strictly below the diagonal.

Next, assume i < n. Note that the super antidiagonal of the a-th position of the i-th path

corresponds to i plus the coefficient of ǫi of the tensor product truncated to a factors. Note

that P (i) intersects P (i+1) at position a if and only if ci+1 − ci < 0 for

c1ǫ1 + · · ·+ cnǫn = wt(sa ⊗ · · · ⊗ s1).
Recall that sm⊗· · ·⊗s1 is highest weight if and only if wt(sa⊗· · ·⊗s1) ∈ P+ for all 1 ≤ a ≤ m,

and a weight c1ǫ1 + · · ·+ cnǫn ∈ P+ if and only if c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. Therefore, the paths

are non-intersecting if and only if the corresponding element is highest weight. �



20 S.-J. OH AND T. SCRIMSHAW

Example 4.2. Consider type B3, and let Φ denote the bijection given in the proof of Theo-

rem 4.1. Under Φ, we have

s1

t1

s2

t2

s3

t3

7−→
−
−
−
⊗
−
+
+
⊗

+
−
−
⊗
−
−
+
⊗
−
+
−
⊗

+
−
−
⊗

+
+
+
⊗

+
+
+
.

Remark 4.3. An equivalent definition of the Hankel matrix used in Theorem 4.1 as HB
n,m =

(Ci+j+m)n−1
i,j=0. However, this indexing does not give a direct correlation between the LGV

lemma path P (i) and the weight ǫi.

We remark that the decomposition multiplicity of B(0) in V (̟n)
⊗2m in type Bn is the m-th

number of [Slo18, A006149] for n = 3, [Slo18, A006150] for n = 4, and [Slo18, A006151] for

n = 5.

Note that the proof of [MW00, Thm. 1] is essentially a direct application of LGV lemma and

the associated combinatorics of the lattice paths being Catalan numbers. We can generalize

this to obtain the multiplicity of B(λ) for general λ ∈ P+
Z as both certain non-intersecting

lattice paths and as a determinant of Catalan triangle numbers.

As an motivating example, we can reformulate Theorem 4.1 using (the determinant of) the

matrix

HB
(n,0) =

î
C(2n−i−j+m,j−i+m)

ón
i,j=1

,

and note that 0 ∈ P+
Z . Additionally, note that the only non-intersecting lattice paths must come

from the identity permutation. The same idea holds more generally and yields the following.

Theorem 4.4. For type Bn, let λ =
∑

i∈I ciǫi ∈ P+
Z with cn ∈ Z. The decomposition multi-

plicity of B(λ) in B(̟n)
⊗2m is the determinant of the n× n matrix

HB
(n,λ) =

î
C(a(i,j),b(i,j))

ón
i,j=1

,

where

a(i, j) = 2n− i− j +m+ cj ,

b(i, j) = j − i+m− cj .

Remark 4.5. For a 2m+1 tensor factor analog of Theorem 4.4 (and Theorem 4.1), we simply

add ̟n to λ. However, this does not change the entries of the matrix or the dimensions of the

representations.
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Example 4.6. We want to consider the multiplicity of B(‹̟1 + ‹̟3) in B(ω3)
⊗8 in type B3.

Note that ‹̟1 + ‹̟3 = 2ǫ1 + ǫ2 + ǫ3. One such non-intersecting lattice path and its image under

the bijection of Theorem 4.4 is

s1

s2

s3

t3
t2

t1

7−→
+
−
+
⊗
−
−
+
⊗

+
+
−
⊗

+
+
+
⊗
−
+
−
⊗

+
−
−
⊗

+
+
+
⊗

+
+
+
.

Let λ denote the complement partition of λ in an ℓ × n box. Specifically, we have λi =

n− λℓ+1−i. We can reformulate Theorem 3.8 when specializing q = 1 as

dimV (λ) = det
î
C(2n−1+i+j−λj ,i−j+λj)

óℓ
i,j=1

= det
[
C(a(i,j),b(i,j))

]ℓ
i,j=1

,

where

a(i, j) = 2ℓ− i− j + n+ 1 + λj ,

b(i, j) = j − i+ n− λj .
We can compare this form for dimV (λ) with the result from Theorem 4.4. Note that they

almost agree under the substitutions:

Theorem 4.4 n m cj
Theorem 3.8 ℓ n+ 1 λj

Yet, we can use Equation (3.1) with λ = n̟m−1 in type Cm−1 so that they do agree, which

yields the following.

Corollary 4.7. The decomposition multiplicity of B(0) in B(̟n)
⊗2m in type Bn is equal to

dimV (n̟m−1) of type Cm−1.

Next, we give a type Cn version of Theorem 4.1. In order to prove it, we first need to

examine the crystal structure of
∧
B(ω1) in type Cn. The elements of

∧k B(ω1) are given

by height k tableaux since all elements must be distinct by semistandardness, and we choose

representatives in the exterior product that are ordered (considering B(ω1) as a poset). Similar

to [Sch05], removing all pairs (i, ı) from a column T such that k + 1 + pi − pı > i, where px is

the height of x in T , gives a crystal isomorphism from
∧k B(ω1) to KN tableaux.

Remark 4.8. The tableaux for
∧
B(ω1) can be considered as a tableaux model for the Kirillov–

Reshetikhin crystal
⊕n

k=1B
k,1 of type A

(2)
2n , where we consider B0,1 = B(0), [OS08, FOS09]

similar to the Kirillov–Reshetikhin tableaux of [SS15].
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Theorem 4.9. For type Cn, the multiplicity of B(0) inside of B = (
∧
B(ω1))

⊗m is the deter-

minant of the n× n Hankel matrix

HC
n,m+1 = [Cm+1+i+j ]

n−1
i,j=0 .

Proof. We first ignore the first (n − i) + 1 and last steps in the path P (i) : si → ti (they are

forced to be E and N respectively). Thus, we get a bijection between highest weight elements

of B and lattice paths as follows. Consider the non-forced path from si to ti. We consider

the (2k, 2k + 1) steps of the path to the k-th column tableau by an EN in row i being an i, ı

pair being added, a EE being an i, and NN being an ı to the column (sorting the result as

necessary). A NE contributes nothing. Note that a column of height h might not be valid in

terms of KN tableaux, but it comes from a B(ωa) ⊆
∧hB(ω1).

It is clear that this process is reversible. The proof that the result is a highest weight element

is similar to the proof of Theorem 4.1. �

Example 4.10. Consider type C3, and let Ω denote the bijection given in the proof of Theo-

rem 4.9. Under Ω, we have

s1

t1

s2

t2

s3

t3

7−→ 1
1
⊗

2
2
1
⊗

1
2
3
3
2

.

We note that the proof of Theorem 4.9 is related to the virtualization map v : B(̟n) →
B(̟n)

⊗2 (see, e.g., [Kas96, OSS03a, OSS03b, SS15]) of A
(2)
2n to D

(2)
n+1, where the scaling factors

are (γk)
n
k=1 = (1, . . . , 1, 2). Indeed, using the wedge product tableaux from Remark 4.8, is

given by the pairs in row i

++ 7−→ i, −− 7−→ ı,

−+ 7−→ iı, +− 7−→ ∅,
added to the column (and sorting as necessary). Note that we also have to reverse the order of

the tensor factors to connect it with our lattice path interpretation given in the proof. However,

this could also be rectified by reversing the starting and terminal point labels.

Note that we can extend Theorem 4.9 to compute the multiplicity of B(λ) inside of B in

parallel to how we obtained Theorem 4.4 from Theorem 4.1.
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Theorem 4.11. For type Cn, let λ =
∑

i∈I ciǫi ∈ P+. The multiplicity of B(λ) inside of

B = (
∧
B(ω1))

⊗m in type Cn is the determinant of the n× n matrix

HC
(n,λ) =

î
C(a(i,j),b(i,j))

ón−1

i,j=0
,

where

a(i, j) = 2n − i− j − 1 +m+ cj ,

b(i, j) = j − i+m− cj .

Example 4.12. We want to consider the multiplicity of B(̟1 +̟3) in B
⊗4 in type C3. Note

that ̟1 +̟3 = 2ǫ1 + ǫ2 + ǫ3. One such non-intersecting lattice path and its image under the

bijection of Theorem 4.11 is

s1

s2

s3

t3
t2

t1

7−→ 3
2
⊗

1
2
3
3

⊗
1
3
1
⊗

1
2
3

Corollary 4.13. We have that for any partition λ, the multiplicity of B(λ) in Bm in type Cn

is equal to dimV (λ
′
) in type Cm, where λ is the complement partition in an ℓ× n box and µ′

is the conjugate partition of µ.

Proof. The claim follows by comparing Theorem 3.8 with the specialization xi = 1 and Theo-

rem 4.11 using

Theorem 4.11 n m cj
Theorem 3.8 ℓ n λj

Recall also that in Theorem 3.8, we take the conjugate of the partition (λ1, . . . , λℓ). �

5. Representation theoretic interpretations of combinatorial identities

5.1. Type C characters, q-binomials, and q, t-Catalan numbers. We show that the

principal specialization, when scaled by a power of q to be polynomial, results in the Mahonian

q-Catalan numbers.

By taking the (normalized) principal specialization, we can define wtq(D) =
∏

N q
w(N ;D),

where qı = q−i. Note that we can extend w to a statistic on the entire m×n grid by considering

k = −k. In particular, the lower-left vertical step will be −0.
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Figure 4. An example of the weighting w in a 7× 4 grid and the lattice path from
Example 5.1.

Example 5.1. Consider the Dyck word P = EENENEENEEN . Then wt(P ) = −1 − 2 +

4− 5 = −4. The weighting w on a full 7× 4 grid, along with the particular Dyck word P as a

lattice path, is given by Figure 4.

Theorem 5.2. For g of type Cn−1, we have

p̃s(̟n−1) = q(
n

2) ps(̟n−1) = Cn(q).

In order to show this, we separate the statistic w(D) into a positive part and negative part.

Thus, we now consider a q, t-analog by
∑

D∈Dn

qw+(D)tw−(D),

where w±(D) is the sum of the ± contributions to w(D).

Theorem 5.3. We have

Cn(q, t) =
∑

D∈Dn

qw+(D)tw−(D).

Proof. Note that for any given path D, there can be at most one N step that contributes a k

to w+(D) and similarly for a k to w−(D). Thus, we can define sets

X+(D) := {w+(N,D) | N step of D such that NX +NY is odd},
X−(D) := {w−(N,D) | N step of D such that NX +NY is even},

where the elements in X−(D) are unbarred letters (i.e., we consider a = a). Note that we can

recover D knowing X±(D) since X±(D) uniquely determines a King tableaux. Additionally

note that |X+(D)|+ |X−(D)| = n− 1.

Recall that a Dyck path is determined by the positions of its valleys. Thus, we define a map

Υ: Dn → Dn by having the valleys of the resulting Dyck path be given by (xi, yi), where

{x1 < x2 < · · · < xk} = X+(D),

{y1 < y2 < · · · < yk} = {1, . . . , n− 1} \X−(D).
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If Υ is well-defined, then it is clearly invertible. In order to show Υ is well-defined, we require

that xi ≥ yi for all 1 ≤ i ≤ k. By the definition of w and the diagonal condition of a Dyck

path, we can say a value yi was contributed by a row r where the r-th N step is occurs to the

right of an edge weighted by yi. Note that the initial path of D must be E(EN)y1−1E2, which

implies that x1 ≥ y1. It is a straightforward induction to see that any contributed yi must

occur on the same row or below the N step corresponding to xi. Thus, we have xi ≥ yi and Υ

is well-defined.

Recall that majN (D) (resp. majE(D)) is a sum over the vertical (resp. horizontal) positions

of the peaks of D. Therefore, we have majN
Ä
η(D)

ä
= w+(D) from Remark 3.2. Additionally,

we have
(n
2

)−majE
Ä
η(D)

ä
= w−(D) from Remark 3.2 and that the sum of all possible values

{1, . . . , n− 1} is (n2
)
. Hence, the claim follows. �

Theorem 5.2 is as an immediate consequence of Theorem 5.3 and Proposition 2.8.

Example 5.4. Suppose n = 6 and we have a path D such that X+(D) = {2, 5} and X−(D) =

{1, 4, 5}. Then we construct Υ(D) as the Dyck path with the horizontal positions of the valleys

being 2, 5 with the corresponding vertical positions 2, 3 coming from [5] \ {1, 4, 5}. Pictorially,
we have

1

1

1

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

5

5

1

1

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

5

5

5

Υ−−−−−→
(2,2)

(5,3)

Definition 5.5. We define the (n, k)-th (q, t)-Catalan triangle number as follows:

C(n,k)(q, t) :=
∑

D∈Dn,k

qw
′
+(D)tw

′
−
(D).

If we consider the Weyl group element that interchanges i↔ ı and use this to define a new

weighting w′
±(D) = w′

∓(D), then Remark 3.7 states that

C(n,k)(q, t) =
∑

D∈Dn,k

qw
′
+(D)tw

′
−
(D) =

∑

D∈Dn,k

qw
′
−
(D)tw

′
+(D).

In other words, we have C(n,k)(q, t) = C(n,k)(t, q); in particular, Cn(q, t) = Cn(t, q).
Remark 5.6. We obtain the horizontal step approach by replacing each monomial qαtβ by

qB−αtB−β, where B =
(n
2

)
. Furthermore, using the horizontal steps at t = q−1, we obtain

ps(̟n−1) of type Cn−1.
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Our specialization of the character can be extended to general statistic on lattice paths in

an n ×m grid in a natural way, with the upper right horizontal step having weight q−0. We

say −0 because of the natural alternation of the sign as we go down or to the left. Let Rn,m

denote all paths given by N and E steps in an n × m rectangle, which we will consider as

words in {N,E} such that there are n N ’s and m E’s appearing in the word. By slight abuse

of notation, we also denote our extended statistic by w′ : Rn,m → Z. Therefore, define

w′
n,m(e) :=




−(n− x+m− y − 1)/2 if x+ y odd,

(n− x+m− y)/2 if x+ y even,

where e is an E step beginning at (x, y), and for P ∈ Rn,m, define

(5.1) w′(P ) :=
∑

e

w′
n,m(e)

where the sum is over all e ∈ P such that e is an E step. We call w′
n,m(e) and w′(P ) the weight

of e and P respectively. We define the generating function

(5.2) Bn,m(q) :=
∑

P∈Rn,m

qw
′(P ).

Before we can prove that this is a q-binomial coefficient up to a power of q, we first determine

the valuation of Bn,m(q), the minimal power of q occurring in Bn,m(q).

Proposition 5.7. The valuation of Bn,m(q) is

vn,m :=−
Dn,m+m−1∑

k=Dn,m

k,

where Dn,m := ⌊(n −m+ 1)/2⌋.
Proof. We proceed by induction on m. Note that the case of n = 0 is trivial as vn,m = 0

and the only path is P = Nn, which has w′(P ) = 0. Suppose the claim holds for m. Fix

some n. If n −m is even,5 then choose a path P ∈ Rn,m such that w′(P ) = vn,m. Note that

Dn,m = Dn,m+1. Therefore, we have

w′(EP ) =
−(n− 0 + (m+ 1)− 0− 1)

2
+ w′(P ) = −n+m

2
+ vn,m

= −n+m

2
−

Dn,m+m−1∑

k=Dn,m

k = −
Dn,m+m∑

k=Dn,m

k = −
Dn,m+1+(m+1)−1∑

k=Dn,m+1

k = vn,m+1.

To show there does not exist a path P ′ ∈ Rn,m+1 such that w′(P ′) < w′(EP ), we first write

P ′ = NaEP . If a = 0, then P ′ = P , and so we assume a > 0. We can also assume that

P ∈ Rn−k,m is a path such that w′(P ) = vn−a,m. We note that Dn−a,m ≤ Dn,m, and so

w′(P ) = vn−a,m ≥ vn,m. Let e be the first E step in P ′. If a = 1, then w′
n,m+1(e) ≥ 0,

which implies w′(P ) = vn,m. If a > 1, then |w′
n,m+1(e)| ≤ Dn,m + m, and so w′(P ′) =

w′
n,m+1(e) + vn−a,m ≥ vn,m.

5Recall that the parity of n−m is the same as for n+m.
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If n−m is odd, then choose a path P ∈ Rn−1,m such that w′(P ) = vn−1,m. Thus, we have

w′(NEP ) =
(n− 0 + (m+ 1)− 1)

2
+ w′(P ) =

n+m

2
+ vn−1,m

=
n+m

2
−

Dn−1,m+m−1∑

k=Dn−1,m

k =
n+m

2
−

Dn,m+1+m∑

k=Dn,m+1+1

k

= −
Dn,m+1+(m+1)−1∑

k=Dn,m+1

k = vn,m+1.

The proof that there does not exist a path P ′ ∈ Rn,m+1 such that w′(P ′) < w′(EP ) is similar

to when n − m is even except if P ′ = EP ∈ Rn,m+1. In that case, we have w′
n,m+1(e) ≥ 0.

Since Dn,m = Dn,m−1 − 1, the claim follows. �

Theorem 5.8. We have

q−vm,nBn,m(q) =

ñ
n+m

n

ô

q

.

Proof. We first note that for the lower left horizontal edge e, we have

w′(e) =




(n+m)/2 if n+m is even,

−(n+m− 1)/2 if n+m is odd.

We show that our summation fits into the q-Pascal’s triangle relation 2.4, where which identity

we will use depends on the parity of n. Consider a path P ∈ Rn,m, and let P denote that path

with the first step e removed. We split this into two cases based upon the first step.

(1) The first step is horizontal, so P ∈ Rn,m−1. In this case, the net difference in weight of

the paths is w′(e) + (vn,m − vn,m−1).

(a) If n+m is even, then Dn,m−1 = Dn,m + 1 and

−vn,m = −vn,m−1 +Dn,m.

So the net change in weight is

n+m

2
+Dn,m =

n+m

2
+
n−m

2
= n.

where for the first equality, we could remove the floor because n+m is even.

(b) If n+m is odd, then Dn,m−1 = Dn,m and

−vn,m = −vn,m−1 +Dn,m +m− 1.

Therefore, the net change in weight is

−n+m− 1

2
+Dn,m +m− 1 = −n+m− 1

2
+
n−m+ 1

2
+m− 1

= −m+ 1 +m− 1 = 0,

where the first equality follows from the fact n+m is odd.
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(2) The first step is vertical, so P ∈ Rn−1,m. In this case the net difference in weight of the

paths is vn,m − vn−1,m.

(a) If n +m is even, then Dn−1,m = Dn,m and vn,m = vn−1,m. So the net change in

weight is 0.

(b) If n+m is odd, then Dn−1,m = Dn,m − 1 and

−vn,m = −vn−1,m + (Dn,m +m− 1)−Dn−1,m = −vn−1,m +m.

So the net change in weight is m.

Therefore, if n + m is even, we have a combinatorial interpretation of Equation (2.4a), and

otherwise we use Equation (2.4b). The boundary cases are straightforward, and the claim

follows by induction. �

We also give an alternative proof of Theorem 5.8 for the case when n +m is odd. In this

case, it can be considered as the principal specialization of a type Bn character.

Second proof of Theorem 5.8 with n+m is odd. Assume m+ n is odd. Let

w(P ;x) :=
∏

N




x(NX+NY +1)/2 if NX +NY odd,

x−1
(NX+NY )/2 if NX +NY even,

where we take the product over all N steps of P . We have

p̃s(‹̟i) =

ñ
2n+ 1

i

ô

q

by Proposition 5.26. So it is sufficient to find a bijection φ between the KN tableaux for

B(‹̟m) in type Br, where r = (n + m − 1)/2, and lattice paths in an m × n grid such that

w
Ä
φ(T );x

ä
= wt(T ).

Let T ∈ B(‹̟m), and define a new tableaux TF by removing pairs of 0’s in T and then

performing the filling map Fm given by [Sch05, §3.4]. Note that this gives a bijection with the

set F (‹̟m) of semistandard tableaux in the alphabet 1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 2 ≺ 1

with shape 1m. Next, if we sort the alphabet by 0 ≺′ 1 ≺′ 1 ≺′ 2 ≺′ 2 ≺′ · · · ≺′ n ≺′ n and the

tableau TF ∈ F (‹̟m) accordingly to T s, we can construct the lattice path by having the i-th

N step correspond to the i-th row in T s. This is clearly bijective, and define the result to be

φ(T ). Moreover, all steps are clearly weight preserving, and hence the claim follows. �

Note that we can construct a q, t-analog of a binomial coefficient by ending Bn,m(q) to

Bn,m(q, t) analogously to the q, t-Catalan numbers in Theorem 5.3. Likewise, from our con-

struction we have Bn,m(q, q−1) = Bn,m(q) .

5.2. Touchard identity and its generalizations. Recall the classical Touchard identity on

Catalan numbers:

Cn+1 =
∑

0≤k≤n/2

Ç
n

2k

å
2n−2kCk =

∑

0≤k≤n/2

Ç
n

n− 2k

å
2n−2kCk.
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Using [KLO17, Thm. 7.3] and our observation, we can obtain the following identity, which

can be considered as triangular analogue of Touchard’s identity:

Theorem 5.9. In type Cn, we have

dimV (̟s) = C(2n−s+1,s) =
∑

0≤i≤s/2

Ç
n

s− 2i

å
2s−2iC(n−s+i,i).

Proof. First, the fact that dimV (̟s) = C(2n−s+1,s) follows from the description of King

tableaux, and the fact that dim V (̟s)̟s−2i = C(n−s+i,i) follows from [KLO17, Thm. 7.3]

or [FH91, Thm. 17.5]. Since every dominant weight space of V (̟s) is one of V (̟s)̟s−2i , our

assertion follows from the B-type Weyl group Wn; that is, the number of elements in the orbit

of ̟s−2i is the same as
( n
s−2i

)
2s−2i. �

Now we can express the Mahonian q-Catalan numbers Cn(q) as follows:

Cn(q) = q(
n

2)
∑

0≤k≤n/2

Ck
∑

1≤i1<···<i2k≤n

∏

j∈[1,n]\{i1,...,i2k}

(q−j + qj) = q(
n

2) dimq V (̟n).

Moreover, we define new (q, t)-Catalan numbers by replacing q−j with tj:

(5.3) C′n(q, t) :=
∑

0≤k≤n/2

Ck
∑

1≤i1<···<i2k≤n

∏

j∈[1,n]\{i1,...,i2k}

(qj + tj).

We can also generalize the above definitions for (q, t)-Catalan triangle numbers:

(5.4) C′(2n−s+1,s)(q, t) :=
∑

0≤k≤s/2

C(n−s+k,k)

∑

1≤i1<···<is−2k≤n

∏

j∈{i1,...,is−2k}

(qj + tj).

Remark 5.10. We note that (5.3) (resp. (5.4)) is different than the q, t-Catalan (resp. triangle)

number given by Definition 5.3 (resp. Definition 5.5). For example, consider

C′4(q, t) = q6 + q5t+ q4t2 + 2q3t3 + q2t4 + qt5 + t6 + q3 + t3 + q2 + t2 + q + t,

C4(q, t) = q6 + q5t+ q4t2 + 2q3t3 + q2t4 + qt5 + t6 + q4t+ q3t2 + q2t3 + qt4 + q3t+ qt3.

Theorem 5.11. In type Cn, we have

ps(̟s) = C′(2n−s+1,s)(q, q
−1).

The above observation can be extended to the Bn-type cases. First, the following identity

can be proved by using representation theory since the dimension of the weight space V (‹̟s)˜̟k

in type Bn is
( n−k
⌊(s−k)/2⌋

)
for 0 ≤ k ≤ s (see [KLO17, Theorem 7.5] or [FH91, Theorem 19.2])

and dimV (‹̟s) =
(2n+1

s

)
(it may be well-known to combinatorialists): For 1 ≤ s ≤ n, we have

s∑

k=0

2k
Ç
n

k

åÇ
n− k

⌊(s− k)/2⌋

å
=

Ç
2n+ 1

s

å
= dimV (‹̟s).

Similarly, we can obtain the following identity since every weight multiplicity of weight space

for V (‹̟s) in type Dn is
(n−k−δn,s

(s−k)/2

)
for 0 ≤ k ≤ s and k ≡ s mod 2 (see [KLO17, Theorem 7.5]
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or [FH91, Theorem 19.4]) and

(5.5) dimV (‹̟s) =

Ç
2n − δs,n

s

å

(it may be well-known to combinatorialists): For 1 ≤ s ≤ n, we have

∑

0≤k≤s
k≡s mod 2

2k−δk,n

Ç
n

n− k

åÇ
n− k − δn,s
(s− k)/2

å
=

Ç
2n− δs,n

s

å
= dimV (‹̟s).

Let us consider the modules V (̟n + ‹̟n−s) (0 ≤ s ≤ n − 1) over Bn. Then every weight

multiplicity of V (̟n + ‹̟n−s) is a Motzkin triangle number:

Theorem 5.12 ([KLO17]). For any weight multiplicity of V (̟n + ‹̟n−s) (0 ≤ s ≤ n − 1) of

type Bn is a Motzkin triangle number. More precisely,

dimV (̟n + ‹̟n−s)̟n+ ˜̟n−m
=M(m,s) for 0 ≤ s ≤ m ≤ n.

Then we can get an identity coming from the representation theory

dimV (3̟n) = 2nCn+1 =
n∑

i=0

Mi

Ç
n

i

å
2n,

which arises from

Cn+1 =
n∑

i=0

Mi

Ç
n

i

å
,(5.6a)

Cn =
s∑

i=0

Ri

Ç
n

i

å
,(5.6b)

proved in [Ber97, Sec. 5]. A bijective proof of the identity (5.6a) has been given in [Don77]

and [DY08, Sec. 3].

By taking a natural q-analog of Equation (5.6a), we obtain

Cn(q) =
n∑

i=0

qi
ñ
n

i

ô

q

M′
i(q).

Thus, we can define a new q-Motzkin number recursively by

M′
n(q) = q−n

Ñ
Cn(q)−

n−1∑

i=0

qi
ñ
n

i

ô

q

M′
i(q)

é
, M′

0(q) = 1

We note that these are distinct from the q-Motzkin numbers in [BDLFP98, Cig99].

Example 5.13. We have

M′
0(q) = 1, M′

1(q) = q, M′
2(q) = q2(q2 + 1),

M′
3(q) = q5(q4 + q2 + q1 + 1), M′

4(q) = q8(q8 + q6 + q5 + 2q4 + q3 + 2q2 + 1).

Conjecture 5.14. We have M′
n(q) ∈ Z≥0[q].
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Proposition 5.15. For 0 ≤ s ≤ n, we have

C(2n+1−s,s) =
s∑

i=0

M(i+n−s,n−s)

Ç
n

s− i

å
,(5.7a)

C(2n−s,s) =
s∑

i=0

R(i+n−s,n−s)

Ç
n

s− i

å
.(5.7b)

Proof. We shall use an induction (with appealing to representation theory) for (5.7a) and (5.7b)

together. Our assertions for C(2k+1−s,s) and C(2k−s,s) are assumed to be true when k < n and

k − s ≥ 0. The k = s cases of (5.7a) and (5.7b) are (5.6a) and (5.6b), respectively. Then we

have

C(2n−s,s) = C(2n−s−1,s) + C(2n−s,s−1)

=
s∑

i=0

M(i+n−1−s,n−1−s)

Ç
n− 1

s− i

å
+

s−1∑

i=0

M(i+n−s,n−s)

Ç
n− 1

s− 1− i

å

=

Ç
n− 1

s

å
M(n−1−s,n−1−s) +

s∑

i=1

Ä
M(i+n−1−s,n−1−s) +M(i+n−1−s,n−s)

äÇn− 1

s− i

å

=

Ç
n− 1

s

å
R(n−s,n−s) +

s∑

i=1

Ä
R(i+n−s,n−s) +R(i+n−1−s,n−s)

äÇn− 1

s− i

å

=
s∑

i=0

R(i+n−s,n−s)

Ç
n− 1

s− i

å
+

s∑

i=1

R(i+n−1−s,n−s)

Ç
n− 1

s− i

å

=
s∑

i=0

R(i+n−s,n−s)

Ç
n− 1

s− i

å
+

s−1∑

i=0

R(i+n−s,n−s)

Ç
n− 1

s− 1− i

å

= R(n,n−s) +
s−1∑

i=0

R(i+n−s,n−s)

ÇÇ
n− 1

s− i

å
+

Ç
n− 1

s− 1− i

åå

=
s∑

i=0

R(i+n−s,n−s)

Ç
n

s− i

å
,

where we used Lemma 2.1 in the fourth equality. The proof of C(2n+1−s,s) is similar. �

Now we can obtain an interesting formula for dimV (̟n + ‹̟s) over Bn and interpret Equa-

tion (5.7a) by using Theorem 5.12 and considering Weyl group orbits:

Corollary 5.16. We have

dimV (̟n + ‹̟s) = 2nC(2n+1−s,s) =
s∑

i=0

M(i+n−s,n−s)

Ç
n

s− i

å
2n (0 ≤ s ≤ n).

In particular

dimV (3̟n) = 2nCn+1 =
s∑

i=0

Mi

Ç
n

i

å
2n

(see also [Slo18, A003645]).
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Proposition 5.17. We have

p̃s(̟n + ‹̟s) =
C(2n+1−s,s)(q)

qn+1−s + 1

n+1∏

k=1

(qk + 1).

Proof. We have

C(2n+1−s,s)(q)

qn+1−s + 1

n+1∏

k=1

(qk + 1) =

(
2n+2−s∏

i=1

1− qs+i

1− qi

)
1− qn−s+1

1− q2n+2
· 1

1− q
n+1∏

k=1

(qk + 1)

=
(q)2n+1(1− qn−s+1)

(q)s(q)2n−s+2
(−q; q)n+1

(5.8)

and

p̃s(̟n + ‹̟s) = π1π2π3π4,

where

π1 =
s∏

i=1

1− q3+2n−2i+1

1− q2n−2i+1

n∏

i=s+1

1− q1+2n−2i+1

1− q2n−2i+1
, π2 =

∏

1≤i<j≤s

1− q3+2n−i−j+1

1− q2n−i−j+1
,

π3 =
∏

s<i<j≤n

1− q1+2n−i−j+1

1− q2n−i−j+1
, π4 =

∏

1≤i≤s<j≤n

1− qj−i+1

1− qj−i
· 1− q

2+2n−i−j+1

1− q2n−i−j+1
.

Define 〈q〉n := (1− qn)(1− qn−2) · · · , and note that 〈q〉n to (q)n is what the double factorial n!!

is to the usual factorial n!. Next, we have

π1 =
(1− q2n+2)(1 − q2n) · · · (1− q2n−2s+4)(1− q2n−2s)(1− q2n−2s−2) · · · (1− q2)

(1− q2n−1)(1− q2n−3) · · · (1− q)

=
〈q〉2n+2

〈q〉2n−1(1− q2n−2s+2)
,

π2 =
∏

2≤j≤s

(1− q2n−j+3) · · · (1− q2n−2j+5)

(1− q2n−j) · · · (1− q2n−2j+2)

∏

1≤j≤s−1

(1− q2n−j+2) · · · (1− q2n−2j+3)

(1− q2n−j−1) · · · (1− q2n−2j)

=
∏

1≤j≤s−1

(1− q2n−j+1)(1− q2n−j+1)(1− q2n−j)

(1− q2n−2j+2)(1 − q2n−2j+1)(1 − q2n−2j)

=
(q)2n+1

(q)2n−s+2
· (q)2n
(q)2n−s+1

· (q)2n−2s+2

(q)2n
· (q)2n−1

(q)2n−s
· 〈q〉2n−2s

〈q〉2n−2
,

=
(q)2n+1(q)2n−2s+2(q)2n−1〈q〉2n−2s

(q)2n−s+2(q)2n−s+1(q)2n−s〈q〉2n−2
,

π3 =
∏

s+2≤j≤n

(1− q2n−s−j+1) · · · (1− q2n−2j+3)

(1− q2n−s−j) · · · (1− q2n−2j+2)
=

∏

s+2≤j≤n

1− q2n−s−j+1

1− q2n−2j+2

=
(q)2n−2s−1

(q)n−s〈q〉2n−2s−2
,

π4 =
∏

s+1≤j≤n

(1− qj) · · · (1− qj−s+1)

(1− qj−1) · · · (1− qj−s)
· (1− q

2n−j+2) · · · (1− q2n−j−s+3)

(1− q2n−j) · · · (1− q2n−j−s+1)
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=
(q)n

(q)s(q)n−s

∏

s+1≤j≤n

(1− q2n−j+2)(1− q2n−j+1)

(1− q2n−j−s+2)(1− q2n−j−s+1)

=
(q)n

(q)s(q)n−s
· (q)2n−s+1(q)n−s+1(q)2n−s(q)n−s

(q)n+1(q)2n−2s+1(q)n(q)2n−2s

=
(q)2n−s+1(q)n−s+1(q)2n−s

(q)s(q)n+1(q)2n−2s+1(q)2n−2s
.

Thus, we can simplify the product π1π2π3π4 to obtain

(5.9) p̃s(̟n + ‹̟s) =
(q)2n+1〈q〉2n−2(1− qn−s+1)

(q)2n−s+2(q)s(q)n+1
=

(−q; q)n+1(q)2n+1(1− qn−s+1)

(q)2n−s+2(q)s
.

Hence, the claim follows from noting that (5.9) and (5.8) are equal. �

Corollary 5.18. For type Bn, we have

Cn+1(q)
n∏

k=1

(1 + qk) = p̃s(3̟n).

Proof. Using

Cn(q) =
1 + qn

1 + q
C(n,n−1)(q),

the claim follows from Proposition 5.17 with s = n. �

We give a natural q-analog of Equation (5.7a) in parallel to M′
n(q) from Equation (5.6a).

We define recursively

M′
(n,n−s)(q) = C(2n+1−s,s)(q)−

s−1∑

i=0

qn(s−i)

ñ
n

s− i

ô

q

M′
(i+n−s,n−s)(q), M′

(0,0)(q) = 1,

which implies that

C(2n+1−s,s)(q) =
s∑

i=0

qn(s−i)

ñ
n

s− i

ô

q

M′
(i+n−s,n−s)(q).

Note thatM′
(n,0)(q) 6= qvM′

n(q) for some v ∈ Z. For example, we have

M′
(4,0)(q) = q8

Ä
q8 + q6 + q5 + 2q4 + q3 + 2q2 + 1

ä
,

M′
4(q) = q6 + q5 + 2q4 + 2q3 + q2 + q + 1,

and note that q−8M′
(4,0) and M′

4(q) are irreducible polynomials. Similar to Conjecture 5.14,

we conjecture that these q-Motzkin triangle numbers are positive.

Conjecture 5.19. We have M′
(n,n−s)(q) ∈ Z≥0[q].

Example 5.20. We have

[M′
(n,r)]

3
n,r=0 =




1

1 1

q + 1 q + 1 1

q3 + q2 + q + 1 q3 + 2q2 + q + 1 q2 + q + 1 1



.
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Theorem 5.21 ([KLO17]). For any weight multiplicity of V (̟n+1 + ‹̟n+1−s) in type Dn+1 is

a Riordan triangle number. More precisely,

dimV (̟n+1 + ‹̟n+1−s)µ = R(m+1,s) for 0 ≤ s ≤ m ≤ n,
where

µ =




̟n+1 + ‹̟n−m if m 6≡ s mod 2,

̟n + ‹̟n−m if m ≡ s mod 2.

Now we can also obtain an interesting formula for dimV (̟n + ‹̟s) over Dn and interpret

Equation (5.7b) by using Theorem 5.21 and considering Weyl group orbits:

Corollary 5.22. In type Dn, we have

dimV (̟n + ‹̟s) = 2n−1C(2n−s,s) =
s∑

i=0

R(i+n−s,n−s)

Ç
n

s− i

å
2n−1 (0 ≤ s ≤ n).

In particular

dimV (3̟n) = 2n−1Cn =
s∑

i=0

Ri

Ç
n

i

å
2n−1.

Similarly using Equation (5.7b), we define recursively

R′
(n,n−s)(q) = C(2n−s,s)(q)−

s−1∑

i=0

q(n−1)(s−i)

ñ
n

s− i

ô

q

R′
(i+n−s,n−s)(q), R′

(0,0)(q) = 1,

which implies that

C(2n−s,s)(q) =
s∑

i=0

q(n−1)(s−i)

ñ
n

s− i

ô

q

R′
(i+n−s,n−s)(q).

Similar to Conjecture 5.19, we conjecture that these q-Riordan triangle numbers are positive.

Conjecture 5.23. We have R′
(n,n−s)(q) ∈ Z≥0[q].

Example 5.24. We have

[R′
(n,r)]

4
n,r=0 =




1

0 1

1 1 1

1 q2 + q + 1 q + 1 1

q4 + q2 + 1 q4 + q3 + 2q2 + q + 1 q4 + q3 + 2q2 + q + 1 q2 + q + 1 1



.

5.3. Principal specializations by branching rules. Next we prove some principal special-

izations by using the branching rules for the representations. This technique has been used

before, e.g., [Rai06], and so the subsequent proofs may also be well-known to experts.

Proposition 5.25. In type An, we have

ps(̟n +̟k) = q(
n

2)+(
k

2)[n− k + 1]q

ñ
n+ 2

k

ô

q

,
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where we consider ̟0 = 0.

Proof. The case for A1 is a straightforward computation. We proceed by induction. We have

p̃s(̟n +̟k) = qηn,k [n− k + 1]q

ñ
n+ 2

k

ô

q

= qηn,k [n− k + 1]q

Ññ
n+ 1

k − 1

ô

q

+ qn+2−k

ñ
n+ 1

k − 1

ô

q

é
,

(5.10)

where ηn,k =
(n
2

)
+
(k
2

)
. Next, by the branching rule An → An−1, we have

B(̟n +̟k)→ B(̟n +̟k)⊕B(̟n +̟k−1)⊕B(̟n−1 +̟k)⊕B(̟n−1 +̟k−1)

Taking the principal specializations of the above, we have

(5.11) q(
n
2) ps(̟k) + q(

n
2)qn ps(̟k−1) + qn ps(̟n−1 +̟k) + qnqn ps(̟n−1 +̟k−1),

where the qn factors are from fixing a box with an n+ 1 and q(
n
2) from the column 12 · · · n.

In type An−1, we have

(5.12) ps(̟k) = q(
k

2)
ñ
n

k

ô

q

by either applying branching rules Ak ց Ak−1 or [Sta99, Thm. 7.21.2]. Substituting (5.12)

and by our induction hypothesis into (5.11), we obtain

ps(̟k) = q(
n

2)q(
k

2)
ñ
n

k

ô

q

+ qnq(
n

2)q(
k−1
2 )
ñ

n

k − 1

ô

q

+ qnqηn−1,k [n− k]q
ñ
n+ 1

k

ô

q

+ qnqnqηn−1,k−1 [n− k + 1]q

ñ
n+ 1

k − 1

ô

q

.

Thus, by using
(n−1

2

)
+ (n− 1) =

(n
2

)
, we obtain

(5.13)

ps(̟k) = qηn,k

ñ
n

k

ô

q

+ qn−kqηn,k

ñ
n

k − 1

ô

q

+ qqηn,k [n− k]q
ñ
n+ 1

k

ô

q

+ qn+2−kqηn,k [n− k + 1]q

ñ
n+ 1

k − 1

ô

q

.

Next, we apply the q-Pascal triangle identity (2.4b) to (5.13) and factoring out qηn,k to obtain:

qηn,k

Ññ
n+ 1

k

ô

q

+ q[n− k]q
ñ
n+ 1

k

ô

q

+ qn+2−k[n− k + 1]q

ñ
n+ 1

k − 1

ô

q

é
,

Next, note that [n− k + 1]q = q[n− k]q + 1, and so we have

qηn,k

Ñ
[n− k + 1]q

ñ
n+ 1

k

ô

q

+ qn+2−k[n− k + 1]q

ñ
n+ 1

k − 1

ô

q

é
,
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which equals (5.10) as desired. �

Proposition 5.25 can alternatively be proven using [Sta99, Thm. 7.21.2]. Note that our proof

is representation theoretic as we are using the branching rule An ց An−1.

When q = 1 of Proposition 5.25, this corresponds to negative of the reverse of the triangular

array of [Slo18, A055137] with removing the 0 and 1 portions.

Proposition 5.26. In type Bn, we have

p̃s(‹̟i) =

ñ
2n + 1

i

ô

q

.

Proof. Note that p̃s(‹̟i) = qηn,i ps(‹̟i), where ηn,i =
(n+1

2

) − (n+1−i
2

)
. The claim holds for

B2 (and B1 = A1) by a straightforward computation. Applying the q-Pascal’s triangle rela-

tion (2.4a) twice, we obtain
ñ
2n+ 1

i

ô

q

= qiqi
ñ
2n− 1

i

ô

q

+ qi
ñ
2n− 1

i− 1

ô

q

+ qi−1

ñ
2n− 1

i− 1

ô

q

+

ñ
2n− 1

i− 2

ô

q

.

We show that this agrees with the principal specialization under the branching rule Bn → Bn−1.

For some crystal B and T ∈ B, let

wtps(T ) = wt(T )
∣∣∣
x±1
1 =q±1,...,x±1

n =q±n

be the principal specialization of the weight of T , and note that ps(B) =
∑

T∈B wtps(T ). We

denote the fundamental weights of type Bn−1 by {ζi | i ∈ IBn−1}.
Assume i < n. We first show that

ps(̟i) = qi ps(ζi) + q−(n−1)qi−1 ps(ζi−1) + q−nqi−1 ps(ζi−1)

+ q−(n−1)q−nqi−2 ps(ζi−2).
(5.14)

For this proof, we equate k ≡ −k and we write the single column KN tableaux as sets. We

define a map φm : B(ζm) → B(̟k) by {t1, . . . , tm} 7→ {t1 + 1, . . . , tm + 1}. Note that under

the principal specialization, we have wtps
Ä
φm(T )

ä
= qmwtps(T ). Note that n and n− 1 cannot

appear in the image under φm, but every other set of size m appears. Thus, we can extend this

to a weight preserving bijection by adding n and/or n− 1 to φm to obtain Equation (5.14).

Next, we rewrite Equation (5.14) as

qηn,i ps(̟i) = qiqiqηn−1,i ps(ζi) + qiqηn−1,i−1 ps(ζi−1)

+ qi−1qηn−1,i−1 ps(ζi−1) + qηn−2,i−2 ps(ζi−2),

and the claim follows by induction.

Note that for i = n, the branching rule ±-diagram instead has a column with a 0 instead of

a blank column. �
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Proposition 5.27. For g of type Bn, we have

p̃s(̟n) = q(
n+1
2 ) ps(̟n) =

n∏

k=1

(1 + qk).

Proof. Note that the coefficient of qm occurring in
∏n

k=1(1+q
k) is precisely the number of strict

partitions of m. For any element (s1, . . . , sn) ∈ B(̟n), we construct a corresponding strict

partition by {n + 1 − i | si = +}, and it is clear this is a bijection. Since an i ∈ S ∈ B(̟n)

contributes weight ǫi/2 and i /∈ S contributes −ǫi/2, the claim follows. �

Remark 5.28. Proposition 5.26 and Proposition 5.27 are well-known consequences of, e.g.,

Proposition 2.6. Furthermore, in [Hug77, Sec. 3], Hughes showed that

dimq V (̟n) =
n∏

k=1

(1 + qk),

where dimq V is the q-dimension (e.g., see [Kac90, Sec. 10]).

We note that the normalized principal specialization of the characters of type Dn are not

q-binomial coefficients. For example

p̃s(‹̟2) = q14 + q13 + 2q12 + q11 + 2q10 + 2q9 + 3q8

+ 4q7 + 3q6 + 2q5 + 2q4 + q3 + 2q2 + q + 1,
ñ
2 · 4
2

ô

q

= q12 + q11 + 2q10 + 2q9 + 3q8 + 3q7

+ 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + q + 1,

However, by applying the branching rule Bn → Dn corresponding to SO(2n) → SO(2n − 1),

we obtain the following relation on normalized principal specializations.

Theorem 5.29. Let {ζi | i ∈ IDn} denote the fundamental weights of type Dn. For s < n,

p̃s(‹̟s) = p̃s(ζ̃s) + qn−s−1p̃s(ζ̃s−1),

where we consider ‹̟0 = 0. Moreover, we have

p̃s(‹̟n) = qp̃s(ζ̃n−1) + q1+(−1)n p̃s(ζ̃+n ) + q1−(−1)n p̃s(ζ̃−n ),

where ζ̃+n = 2ζn and ζ̃−n = 2ζn−1.

Proof. We consider the KN tableaux representation. We replace pairs

0
0
7→ n

n

occurring in the KN tableaux of type Bn. This is a bijection since such pairs cannot occur in

a type Bn tableaux (but they can in a type Dn tableaux). Thus, we can take the KN tableaux

with an even number of 0 entries and consider them as type Dn tableaux. For those with

an odd number of 0 entries, we replace all but the top most 0 and then remove this entry.
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The result is a height s − 1 type DN column. Note that for ηs =
(n+1

2

) − (n+1−s
2

)
, we have

p̃s(‹̟s) = qηs ps(‹̟s). Moreover, note that qn−s−1qηs−1 = qηs . Thus, the claim follows for s < n.

In the case s = n, then we also have to consider the parity by the number of barred entries.

By further subdividing the height n columns (which must have an even number of 0 entries)

into those with an even or odd number of barred entries. Finally, note that p̃s(ζ̃±b ) = qη
±

ps(ζ̃±n )

for η± = ηn−1 ± (−1)n, and the claim follows. �

In contrast, there does not appear to be a simple formula for branching Dn+1 → Bn (corre-

sponding to SO(2n + 1) → SO(2n)). For example, from type D4 → B3, the branching rule is

B(ζ̃s) 7→ B(‹̟s) +B(‹̟s−1) for s < n. Moreover, we have the following:

q7 psD(‹̟2) = q14 + q13 + 2q12 + q11 + 2q10 + 2q9 + 3q8

+ 4q7 + 3q6 + 2q5 + 2q4 + q3 + 2q2 + q + 1

= [2]2q2(q
10 + q9 − q7 + q6 + 3q5 + q4 − q3 + q + 1),

q3 psB(‹̟1) = q6 + q5 + q4 + q3 + q2 + q + 1 = [7]q,

q5 psB(‹̟2) = q10 + q9 + 2q8 + 2q7 + 3q6 + 3q5 + 3q4 + 2q3 + 2q2 + q + 1

= (q2 − q + 1)[3]q [7]q = [3]q2 [7]q,

There does not appear to be a relation between these polynomials that specializes to the

branching rule at q = 1.

5.4. Other identities. In this section, we give some other identities that do not appear to

come from a son character identity.

The following proposition is a specialization of [Oka09, Thm. 2.1], which is a o2n+1 character

identity. The proof we give is based on [Cig09].

Proposition 5.30. [BKW16, Lemma 3.3] Consider the Hankel matrix

BHr,n :=

ñÇ
2(n + i+ j) + 1

n+ i+ j

åôr−1

i,j=0

For type Bn, we have

dimV (r‹̟n) = detBHr,n.

Proof. By using [Cig09, Eq. (43)] and [Cig09, Eq. (42)], we have

detBHr,n =
1

2r
det

ñÇ
2i+ 2j + 2(n+ 1)

i+ j + (n+ 1)

åôr−1

i,j=0

=
1

2r
2r−1+(n+1)

n∏

j=0

j∏

i=1

2r + j + i− 1

j + i
= 2n

n∏

j=0

j∏

i=1

2r + j + i− 1

j + i

= 2n
∏

1≤i≤j≤n

2r + j + i− 1

j + i
.
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From Proposition 2.6 at q = 1 (see also [Oka09]), we have

dimV (r‹̟n) =
∏

1≤i≤j≤n

2r + i+ j − 1

i+ j − 1
.

By direct computation, we have

∏

1≤i≤j≤n

2r + i+ j − 1

i+ j − 1
· i+ j

i+ j
= 2n

∏

1≤i≤j≤n

2r + j + i− 1

j + i
,

and the claim holds. �

We remark that for a fixed n, the sequence
Ä
dimV (r̟n)

ä∞
r=1

corresponds to the n-th diagonal

of [Slo18, A102539].

There is not a natural q-analog of Proposition 5.30 because of the following. Consider r = 2

and n = 2 for the following determinant
∣∣∣∣∣∣∣∣∣∣∣

ñ
2n+ 1

n

ô

q

ñ
2(n+ 1) + 1

n+ 1

ô

qñ
2(n + 1) + 1

n+ 1

ô

q

ñ
2(n+ 2) + 1

n+ 2

ô

q

∣∣∣∣∣∣∣∣∣∣∣

= d+ − d−,

where

d+ =

ñ
5

2

ô

q

ñ
9

4

ô

q

= q26 + 2q25 + 5q24 + 9q23 + 16q22 + 24q21 + 36q20 + 48q19 + 63q18 + 76q17

+ 90q16 + 99q15 + 107q14 + 108q13 + 107q12 + 99q11 + 90q10 + 76q9

+ 63q8 + 48q7 + 36q6 + 24q5 + 16q4 + 9q3 + 5q2 + 2q + 1

d− =

ñ
7

3

ô

q

ñ
7

3

ô

q

= q24 + 2q23 + 5q22 + 10q21 + 18q20 + 28q19 + 43q18 + 58q17 + 76q16 + 92q15

+ 106q14 + 114q13 + 119q12 + 114q11 + 106q10 + 92q9 + 76q8 + 58q7

+ 43q6 + 28q5 + 18q4 + 10q3 + 5q2 + 2q + 1

Note that d+ − qkd− contains a negative term for any k ∈ Z. Hence, such a determinant form

with some power of q in each entry cannot result in the principal specialization of V (r‹̟n).

Remark 5.31. As an alternative approach to proving Proposition 5.30, we can consider us-

ing [Kra99, Thm. 11]. Thus, we have that

det

ñÇ
2(n + i+ j) + 1

n+ i+ j

åôr−1

i,j=0

= µr0b
r−1
1 br−2

2 · · · b2r−2br−1,
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where we consider the generating function and J-fraction

∞∑

k=0

Ç
2k + 2n+ 1

k + n

å
xk =

1√
1− 4x

Ç
1−
√
1− 4x

2x

å2n+1

=
µ0

1 + a0x−
b1x

2

1 + a1x−
b2x

2

1 + a2x− · · ·
For n = 1, we have µ0 = 3 and expect b

(1)
i = (2i + 5)(2i + 1)/(2i + 1)2. However, the validity

of Proposition 5.30 implies that µ0 = 10 and
(
b
(2)
i

)13
i=1

=

Å
7

20
,
24

35
,
275

336
,
728

825
,
525

572
,
2992

3185
,
5187

5440
,
2800

2907
,
12903

13300
,
19000

19481
,
9009

9200
,
37352

38025
,
50375

51156

ã

for n = 2. There does not appear to be a simple expression for
(
b
(n)
i

)∞
i=1

. However, we believe

b
(n)
i < 1 and limi→∞ b

(n)
i = 1, likely at an exponential rate, for all n.

Corollary 5.32. For type Dn+1, we have

det

ñÇ
2(n + i+ j) + 1

n+ i+ j

åôr−1

i,j=0

= dimV (2r̟n) = dimV (2r̟n+1).

Proof. Let {ζi | i ∈ IBn} denote the fundamental weights of type Bn. We define a map

φ : B(ζn) → B(̟n) by adding an additional sign such that the parity is correct. The map φ

is a bijection (and a {1, . . . , n}-crystal isomorphism), and this extends to tensor products; in

particular, this induces a bijection B(kζn)→ B(k̟n). This proves the first equality.

Note that there exists a similar bijection to B(̟n+1) by taking the opposite parity. This

shows the second equality. �

From (5.5), it is straightforward to construct a bijection from the tableaux of [Pro94,

Thm. 6.1] to subsets of size s of the corresponding alphabet since the m-protection condi-

tion of a (2n)-orthogonal tableau from [Pro94] is vacuously true. Hence, we have a description

using lattice paths from (0, 0) to (2n − δs,n − s, s). An equivalent construction can be given

using the tableaux of [KW93, Def. 3.5].

However, we note that for type D4, we have

p̃s(‹̟n−1) = q18 + q17 + q16 + 2q15 + 2q14 + 4q13 + 5q12 + 5q11 + 5q10 + 4q9

+ 5q8 + 5q7 + 5q6 + 4q5 + 2q4 + 2q3 + q2 + q + 1
ñ
8

3

ô

q

= q15 + q14 + 2q13 + 3q12 + 4q11 + 5q10 + 6q9 + 6q8

+ 6q7 + 6q6 + 5q5 + 4q4 + 3q3 + 2q2 + q + 1,
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so there is not a natural q-analog of (5.5). Moreover, the corresponding ratio does not appear

to be simple. Additionally, we have

840 = dimV
Ä
2(ω3 + ω4)

ä
6= det




Ç
2 · 4
4− 1

å Ç
2 · 5
5− 1

å

Ç
2 · 5
5− 1

å Ç
2 · 6
6− 1

å



= 252,

so there is not a natural extension of (5.5) with s = n−1 to r‹̟n−1 using determinants of r× r
matrices. We note that from [Oka09, Thm. 2.1], we have in type Dn

det

ñÇ
2(n+ i+ j)

n+ i+ j

åôr−1

i,j=0

= 2r dimV (2r̟n).

The following result has appeared in [Oka09, Thm. 2.1] and is likely well-known to experts.

Proposition 5.33. Let g be of type Bn. We have

dimV (r̟n) =
∏

1≤i≤j≤n

r + i+ j − 1

i+ j − 1
.

Proof. Let

(5.15) F (n) =
n∏

i=1

i!, Φ(n) = n! · (n − 2)! · (n− 4)! · · · .

From Proposition 2.6 as q → 1, we have

dimV (r̟n) =
n∏

i=1

r + 2n− 2i+ 1

2n− 2i+ 1

∏

1≤i<j≤n

r + 2n− i− j + 1

2n− i− j + 1

=
n∏

i=1

r + 2n− 2i+ 1

2n− 2i+ 1

∏

2≤j≤n

(r + 2n− j) · · · (r + 2n − 2j + 2)

(2n− j) · · · (2n − 2j + 2)

=
(r + 2n− 1) · · · (r + 3)(r + 1)

(2n− 1) · · · 3 · 1
n−1∏

j=1

(r + 2n− j − 1) · · · (r + 2n− 2j)

(2n− j − 1) · · · (2n − 2j)

=
(r + 2n − 1)!!

(r − 1)!!(2n − 1)!!

n−1∏

j=1

(r + 2n − j − 1)!(2n − 2j − 1)!

(r + 2n − 2j − 1)!(2n − j − 1)!

=
(r + 2n − 1)!!

(r − 1)!!(2n − 1)!!
· F (2n+ r − 2)Φ(r − 1)F (n − 1)Φ(2n − 3)

F (r + n− 1)Φ(r + 2n− 3)F (2n − 2)

=
(r + 2n − 1)!!

(r − 1)!!(2n − 1)!!
· Φ(2n+ r − 2)Φ(r − 1)F (n − 1)

F (r + n− 1)Φ(2n − 2)

=
Φ(2n+ r − 1)Φ(r − 2)F (n − 1)

F (r + n− 1)Φ(2n − 1)
.
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Moreover, we have

∏

1≤i≤j≤n

r + i+ j − 1

i+ j − 1
=

n∏

j=1

(r + 2j − 1) · · · (r + j)

(2j − 1) · · · j =
n∏

j=1

(r + 2j − 1)!(j − 1)!

(r + j − 1)!(2j − 1)!

=
Φ(r + 2n− 1)F (r − 1)F (n − 1)

Φ(r − 1)F (r + n− 1)Φ(2n − 1)

=
Φ(r + 2n− 1)Φ(r − 2)F (n − 1)

F (r + n− 1)Φ(2n − 1)
,

and so the claim follows. �

6. Semistandard rigid tableaux

In this section, we recall the notion of semistandard rigid tableaux from [KLO17] and then

define a crystal structure directly on semistandard rigid tableaux. We begin with the definition

in type Bn and then give some results. We then describe an extension to type Cn.

6.1. Definition and type Bn. In this section, we assume that g is of type Bn. A strict

partition is a partition such that all parts are distinct (equivalently, it is a proper set of positive

integers). We can identify elements of the spin representation B(̟n) with strict partitions ν

such that ν1 ≤ n (equivalently, all subsets of {1, . . . , n}) by
(6.1) (s1, . . . , sn) 7→ {n+ 1− i | si = −}.
Note that we are counting − from the bottom rather than from the top. Thus we define a

crystal structure on strict partitions by this identification. Explicitly, for a strict partition ν,

we have

en−i(ν) =




(ν \ {i+ 1}) ∪ {i} if i+ 1 ∈ ν and i /∈ ν,
0 otherwise,

fn−i(ν) =




(ν \ {i}) ∪ {i+ 1} if i ∈ ν and i+ 1 /∈ ν,
0 otherwise,

where we append/remove 0 to ν as necessary. See Figure 5 for an example.

We identify the reverse of an m-fold tensor product of B(̟n) (equivalently strict partitions)

with a sequence of strict partitions denoted by SPn,m. We use this to induce a crystal structure

on SPn,m. Thus, we have the following by the identification (6.1).

Proposition 6.1. Suppose a sequence of strict partitions T is a highest weight element of

weight ̟. Then the closure of T under the crystal operators is isomorphic to B(λ). Moreover,

we have SPn,m
∼= B(̟n)

⊗m.

Example 6.2. Let ̟ =
∑

i∈I ci̟i. The sequence of strict partitions

O̟ =
Ä
∅, . . . , ∅︸ ︷︷ ︸

K

, (1), . . . , (1)︸ ︷︷ ︸
cn−1

, . . . , (n − 1, . . . , 1), . . . , (n− 1, . . . , 1)︸ ︷︷ ︸
n1

ä
,(6.2)
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∅ (1) (2)

(3)

(2, 1)

(3, 1) (3, 2) (3, 2, 1)
3 2

1
3

3
1

2 3

Figure 5. The crystal of strict partitions B(̟3) in type B3.

for K = c1 + · · · + cn corresponds to a highest weight crystal of highest weight ̟. Hence the

closure of O̟, which we denote by R(̟), under the induced Kashiwara operators is isomorphic

to B(̟).

For a tuple λ = (λ1, λ2, . . . , λk), 1 ≤ u ≤ k and 1 ≤ s < k, we define a tuple

λ>s := (λs+1, λs+2, . . . , λk).

For a positive integer m, we denote by λ(m) the strict partition given by

λ(m) = (m,m− 1, . . . , 2, 1),

and call λ(m) the m-th staircase partition. We also set λ(m) = (0) for any non-positive integer

m. More generally, for a ≥ b ≥ 1, we denote by λ(a; b) the strict partition given by

λ(a; b) = (a, a− 1, . . . , b).

Next, we define the notion of a semistandard rigid tableau of shape µ/η (in short SSRT) to be

a skew-tableaux of shape µ/η that is weakly decreasing along columns and strictly decreasing

along rows. SSRTs with m rows and max entry n are in bijection with SPn,m. Indeed, consider

a sequence of strict partition T = (τ (1), τ (2), . . . , τ (l−1), τ (l)). We construct two partitions

µ = (µ1, . . . , µℓ) ⊃ η = (η1, . . . , ηℓ−1) in the following way: for each 1 ≤ i ≤ l − 1, there exists

a unique ti ∈ Z≥0 such that

τ (i) ⊃ τ (i+1)
>ti and τ (i) 6⊃ τ (i+1)

>(ti−1) for 1 ≤ i ≤ k − 1.

Then we set

ηi =
ℓ−1∑

s=i

ts (1 ≤ i ≤ ℓ− 1) and µj = ηj + ℓ(τ (j)) (1 ≤ j ≤ ℓ).

Moreover, we can consider the entries of the i-th row of the corresponding SSRT as τ (i). Thus,

we identify sequences of strict partitions and SSRTs. For a given partition η with ℓ(η) < m,

we denote by Rn,m(η) the set of all SSRTs whose lengths (resp. max entries) are less than or

equal to m (resp. n) and inner shapes are the same as η.

Example 6.3. For n ≥ 5 and m ≥ 5, the sequence of strict partitions

T =
Ä
(5, 4, 3), (5, 4), (5, 4, 3, 2), (5, 4, 3, 2, 1)

ä
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corresponds to a skew-tableaux of shape (6, 5, 5, 5)/(3, 3, 1) as follows:

· · · 5 4 3
· · · 5 4
· 5 4 3 2
5 4 3 2 1

.

Note that T ∈ Rn,m

Ä
(3, 3, 1)

ä
.

Lemma 6.4 ([KLO17, Lemma 6.1]). For a sequence of strict partitions

T =
Ä
τ (1), τ (2), . . . , τ (ℓ−1), τ (ℓ)

ä
,

such that T is a highest weight element, then τ (1) = ∅ and τ (2) = λ(s) for some s ∈ Z≥0.

Proposition 6.5. The set Rn,m(η) is closed under the Kashiwara operators. In particular,

Rn,m(η) is a subcrystal consisting of connected components of SPn,m.

Proof. It is enough to show when m = 2 and η = (n − k) for some 0 ≤ k ≤ n. Fix T =

(τ (1), τ (2)) ∈ Rn,2

Ä
(n − k)

ä
. Now we shall prove that ei(T ) ∈ Rn,2

Ä
(n − k)

ä
if ei(T ) 6= 0.

Assume to the contrary that ei(T ) 6∈ Rn,2

Ä
(n − k)

ä
. Then, for i < n, one of the following

happens:

(a) τ
(1)
s = τ

(2)
s+n−k = n+ 1− i and ei(T )(1)s = n− i, or

(b) τ (2) 6= ei(T )
(2) and ei(T )

(1) ⊇ ei(T )(2)>n−k−1.

Consider (a) first. In that case sigi(τ
(1)) = −. However, since T is a SSRT, we have n+1− i >

τ
(1)
s+1 ≥ τ

(2)
s+1+n−k and hence sigi(τ

(2)) = −. Thus we have a contradiction by the tensor product

rule.

Now let us consider (b). In that case, there exists s ∈ Z≥0 such that

τ
(1)
s+1 = n− i, τ (2)s+n−k = n+ 1− i and τ

(2)
s+n−k+1 < n− i.

Since sigi(τ
(1)) = ·, we have τ

(1)
s = n + 1 − i and hence τ

(2)
s+n−k−1 > τ

(1)
s which yields a

contradiction for the assumption that T ∈ Rn,2

Ä
(n− k)

ä
.

Let i = n. Since ẽn(T ) 6= 0, we have sign(T ) = (−,−) or sign(T ) = (−,+). Note that if

τ (2) = λ(n − k), then τ (1) = ∅, and hence sign(T ) = (+,−) = (·, ·). Then our assertion for

i = n can be easily checked. �

6.1.1. Fundamental representation cases: B(‹̟k).

Theorem 6.6. The subcrystal Rn,2

Ä
(n − k)

ä
is isomorphic to B(‹̟k) of type Bn. Moreover,

Rn,2

Ä
(n− k)

ä
= R(‹̟k).

First proof. By Proposition 6.1, Proposition 6.5, and Lemma 6.4, any T ∈ Rn,2

Ä
(n − k)

ä
is

connected to (∅, λ(s)) for some s. Note that the inner shape of (∅, λ(s)) is s, and so we must

have s = n− k. �

Second proof. By Proposition 6.1 and (2.2), Rn,2

Ä
(n− k)

ä
must be connected since it is stable

under the Kashiwara operators by Proposition 6.5. �
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6.1.2. Almost spin representation cases.

Definition 6.7. We call an integral dominant weight ̟ almost spin if

̟ = (ℓ− 1)̟n + ‹̟k

for some 1 ≤ k ≤ n. In particular, we call (ℓ+ 1)̟n pure spin.

For an almost spin ̟ = (ℓ− 1)̟n + ‹̟k, the element O̟ from (6.2) is

O̟ = (O̟n , . . . , O̟n , O̟k
) = (∅, . . . , ∅︸ ︷︷ ︸

ℓ-times

, λ(n − k)).

Now we fix an almost spin weight ̟ = (ℓ−1)̟n+ ‹̟k. We denote by Ras(k):=Rn,ℓ+1

Ä
(n−k)ℓ

ä
.

Theorem 6.8. Let ̟ = (ℓ − 1)̟n + ‹̟k. The subcrystal Ras(ℓ, k) is isomorphic to B(̟) of

type Bn. Moreover, Ras(ℓ, k) = R(̟).

Proof. By Proposition 6.5, it is enough to show that Ras(ℓ, k) is connected by the Kashiwara

operators ei and fi. By Lemma 6.4, any T ∈ Ras(ℓ, k) is connected to a highest weight element

(∅, λ(s), τ (3) , . . . , τ (ℓ), τ (ℓ+1)).

Note that for the inner shape, either the first row is n− k + s or the second row is n − k − s.
Therefore, by the definition of Ras(ℓ, k), we must have s = 0. By iterating this argument, we

also have τ (k) = ∅ for 3 ≤ k ≤ ℓ and τ (ℓ+1) = λ(n− k). Thus, the assertion follows. �

Remark 6.9. We can also give a bijective proof of Proposition 5.33. Indeed, we recall

from [Gor83] that
∏

1≤i≤j≤n

r + i+ j − 1

i+ j − 1

equals the number of semistandard Young tableaux with at most r columns and entries in

{1, . . . , n}. Note that any SSRT in R(r̟n) is precisely the dual conjugate of such a semistan-

dard tableau. Hence, Theorem 6.8 implies Proposition 5.33. More explicitly, we reflect each

entry t about the y = −x line and replace it with n+1− t. As an example, note the tableaux

for R(‹̟3) in Figure 6.

6.2. Motzkin triangle numbers. In this section, we shall give various realization of Motzkin

triangular numbersM(m,s) in term of SSRTs.

For 0 ≤ s ≤ n − 1 and any highest weight element T ♮ = (τ (1), τ (2), τ (3)) of highest weight

̟n + ‹̟n−s, let us denote by R(T ♮) the closure under ei and fi containing T ♮. Recall that

a tableau T is standard if T has n boxes and each i ∈ {1, . . . , n} appears exactly once in T .

Define the subset

S(T ♮)m := {T ∈ R(T ♮) | Sh(T ) ⊢ m and T is standard}.
Then Theorem 5.12 can be restated as follows:

|S(T ♮)m| =M(m,s).
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Figure 6. The crystal of semistandard rigid tableaux R(‹̟2) (left) and R(‹̟3) (right)
in type B3.
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In this section, for each (m, s), we shall show that there are distinct (s + 1)-many sets of

standard rigid tableaux whose cardinalities are the same as M(m,s). In this section we fix

̟ = ̟n + ‹̟n−s.

We shall start with the following lemma which is easy to check:

Lemma 6.10. In type Bn, we have

B(̟n)
⊗3 ∼=

n⊕

s=0

B(̟n + ‹̟n−s)
⊕s+1.

Furthermore, for ̟ = ̟n + ‹̟n−s, the highest crystal elements are given by

Ot
̟ = (∅, λ(t), λ(s; t + 1)) for 0 ≤ t ≤ s.

Note that for ̟ = ̟n + ‹̟n−s, the inner shape of Ot
̟ is (s, s − t). Next, we denote

Rt(̟n + ‹̟n−s) := Rn,3

Ä
(s, s− t)

ä
.

Theorem 6.11. For 0 ≤ s ≤ n, the subcrystal Rt(̟n+ ‹̟n−s) is isomorphic to B(̟n+ ‹̟n−s)

of type Bn.

Proof. Since Rt(̟n + ‹̟n−s) is stable under the Kashiwara operators by Proposition 6.5,

Lemma 6.10 and the pigeonhole principle implies that the same argument of the second proof

of Theorem 6.6 holds. �

Note that R0(̟n + ‹̟n−s) = R(O̟n+ ˜̟n−s
) in the previous section. Then the following

corollary follows from Theorem 5.12.

Corollary 6.12. For 0 ≤ s ≤ n − 1, let St(̟n + ‹̟n−s)m be the subset of Rt(̟n + ‹̟n−s)

satisfying the following properties: T ∈ St(̟n + ‹̟n−s)m if Sh(T ) ⊢ m and T is standard.

Then we have

|St(̟n + ‹̟n−s)m| =M(m,s).

Example 6.13.

(1) For m = 5, s = 3 and t = 3, the elements in S3(̟n +̟n−3)5 are

· · ·
5 4 3
2 1

,
· · ·
5 4 2
3 1

,
· · ·
5 4 1
3 2

,
· · ·
5 3 2
4 1

,
· · ·
5 3 1
4 2

,
· · · 1
5 4 2
3

,
· · · 1
5 4 3
2

,
· · · 2
5 4 3
1

,

· · · 1
5 3 2
4

, · · · 2
5 4 3 1

, · · · 3
5 4 2 1

, · · · 4
5 3 2 1

, · · · 5
4 3 2 1

, · · · 2 1
5 4 3

,

which shows that

|S3(̟n +̟n−3)5| =M(5,3) = 14.
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(2) For m = 5, s = 3 and t = 2, the elements in S2(̟n +̟n−3)5 are

· · · 2 1
· 4 3
5

,
· · ·
· 4 3
5 2 1

,
· · ·
· 5 3
4 2 1

,
· · ·
· 4 2
5 3 1

,
· · ·
· 5 2
4 3 1

,
· · ·
· 5 4
3 2 1

,
· · · 2
· 4 3 1
5

,

· · · 3
· 4 2 1
5

,
· · · 4
· 3 2 1
5

,
· · · 5
· 3 2 1
4

,
· · · 2
· 4 3
5 1

,
· · · 1
· 4 2
5 3

,
· · · 1
· 4 3
5 2

,
· · · 1
· 5 2
4 3

,

which also yields

|S2(̟n +̟n−3)5| =M(5,3) = 14.

(3) For m = 5, s = 3 and t = 1, the elements in S1(̟n +̟n−3)5 are

· · · 2 1
· · 3
5 4

,
· · · 2
· · 3 1
5 4

,
· · · 3
· · 2 1
5 4

,
· · · 4
· · 2 1
5 3

,
· · · 1
· · 3
5 4 2

,
· · · 1
· · 4
5 3 2

,
· · · 2
· · 3
5 4 1

,

· · · 1
· · 5
4 3 2

,
· · · 5
· · 2 1
4 3

,
· · · 3
· · 4
5 2 1

,
· · · 2
· · 4
5 3 1

,
· · · 2
· · 5
4 3 1

,
· · · 3
· · 5
4 2 1

,
· · · 4
· · 5
3 2 1

,

which results in

|S2(̟n +̟n−3)5| =M(5,3) = 14.

Remark 6.14. Theorem 5.12 and Lemma 6.10 imply the identity

3m =
m∑

s=0

(s+ 1)M(m,s)(6.3)

without appealing to Schur–Weyl duality. Indeed, note that the number of strict partitions

(τ (1), τ (2), τ (3)) satisfying τ (1) ∪ τ (2) ∪ τ (3) = λ(m) is 3m.

6.3. Extension to type Cn. Now we assume that g is of type Cn for this section. Recall that

there exists a virtualization map on highest weight crystals from type Cn to Bn given by

ei 7→ êγii , fi 7→ f̂γii , ̟i 7→ γi “̟i,

where γi = 1 + δin (see, e.g., [Kas96, OSS03a, OSS03b, SS15]) and for each object X in type

Cn, we write the corresponding object in type Bn as “X. Thus, we can realize a highest weight

crystal B(λ) as a subset of semistandard rigid tableaux R(Oλ).

Proposition 6.15. Let g be of type Cn and v : B(r̟n)→ R(Or ˜̟n
) be the virtualization map.

Then we have

v
Ä
B(r̟n)

ä
=
¶
T ∈ R

Ä
Or ˜̟n

ä
| Sh(T ) is an even partition

©
.

For an example of Proposition 6.15, see Figure 7. Thus, from [dSCV86, Eq. (2)] and taking

the dual conjugate tableau similar to Remark 6.9, we have a bijective proof of the following

alternative formula to Corollary 3.13.
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Figure 7. The crystal of semistandard rigid tableaux R(̟2) (left) and R(̟3) (right)
in type C3.

Proposition 6.16. In type Cn, we have

dimV (r̟n) =
∏

1≤i≤j≤n

2r + i+ j

i+ j
.



50 S.-J. OH AND T. SCRIMSHAW

7. Semistandard spin rigid tableaux

In this section, we assume g is of type Dn and use the notation of semistandard spin rigid

tableaux from [KLO17]. We will describe the corresponding crystal structure on semistandard

spin rigid tableaux and give some applications.

7.1. Definition. A colored integer is an integer with a color, gray or white. For example,

• 3 denotes a gray integer whose quantity | 3 | = 3 and

• 3 denotes a white integer whose quantity | 3 | = 3.

Remark 7.1. When we do not want to tell the color of a colored integer, we write it without

circle; that is, n can be n or n . Also we assign an integer c(n) = 1 if n is gray and c(n) = 0

if n is white.

Definition 7.2. For colored integers j and k, we construct two partial orders:

(1) j � k if and only if their colors coincide (c(j) = c(k)) and |j| ≥ |k|;
(2) j > k if and only if |j| > |k|.

Definition 7.3. For a sequence of colored integers τ = (τ1, τ2, . . . , τs), we say τ a alternating

strict partition (ASP) if

(1) c(τi) 6= c(τi+1) for all i,

(2) τi > τi+1.

Definition 7.4. For two ASPs λ and µ, we denote by λ ⊇ µ, if λi � µi for each 1 ≤ i ≤
min{ℓ(λ), ℓ(µ)}.

Take a ASP τ = (τ1 > τ2 > . . . > τℓ) such that n ≥ τ1 and i ∈ I = {1, . . . , n, n + 1} We

define ASPs ei(τ) and fi(τ) as follows:

ei(τ) :=





(τ1, τ2, . . . ,n− i, . . . , τℓ) if i < n, n− i+ 1 is a part and n− i is not,

(τ1, τ2, . . . , τℓ−1) if i = n+ 1 and τℓ = 1 ,

(τ1, τ2, . . . , τℓ−1) if i = n and τℓ = 1 ,

0 otherwise,

fi(τ) :=





(τ1, τ2, . . . ,n+ 1− i, . . . , τℓ) if i < n, n− 1 is a part and n− i+ 1 is not,

(τ1, τ2, . . . , τℓ, 1 ) if i = n+ 1, c(τℓ) is gray and 1 is not a part,

(τ1, τ2, . . . , τℓ, 1 ) if i = n, c(τℓ) is white and 1 is not a part,

0 otherwise.

One can easily check the following theorem from the spin representations of type Dn+1.

Theorem 7.5. The set of ASPs {τ | τ1 ≤ n and c(τ1) = 0} (resp. {τ | τ1 ≤ n and c(τ1) = 1})
with Kashiwara operators is isomorphic to B(̟n+1) (resp. B(̟n)) over Dn+1.
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For later use, we denoted by O̟n+1 := ∅ and O̟n := ∅ , which can be understood as the

highest weight elements of B(̟n+1) and B(̟n), respectively. By the tensor product rule of

crystals, we can define the crystal structure on the sequence of ASPs.

From Equation (2.3a) and (2.3c), any highest weight crystal B(λ) appears as a subcrystal

of B(̟n)
⊗a⊗B(̟n+1)

⊗b for some a, b ∈ Z≥0. Thus any B(λ) can be realized as certain set of

sequence of ASPs.

For a positive colored integer m, we denote by λ(m) the ASP given by

λ(m) = (m,m− 1, . . . ,2,1).

More generally, for a ≥ b ≥ 1, we we denote by λ(a;b) the ASP given by

λ(a;b) = (a,a− 1, . . . ,b)

such that if j ≡ k mod 2, then c(j) = c(k). If b > a, then we define λ(a;b) = λ(0) with

c(a) = c(0). Note that if a ≡ b mod 2, then c(a) = c(b).

Next, we define the notion of a semistandard spin rigid tableau of shape µ/η (in short SSSRT)

to be a skew-tableaux of shape µ/η that is weakly decreasing along columns and strictly

decreasing along rows. As we did for SSRTs, we can assign two partitions µ ⊃ η for each

SSSRT, in the following way: for each 1 ≤ i ≤ ℓ− 1, there exists a unique ti ∈ Z≥0 such that

τ(i) ⊇ τ
(i+1)
>ti and τ(i) 6⊇ τ

(i+1)
>ti−2 for 1 ≤ i ≤ k − 1,

Then we set

ηi =
ℓ−1∑

s=i

ts (1 ≤ i ≤ ℓ− 1) and µj = ηj + ℓ(τ(j)) (1 ≤ j ≤ ℓ).

Moreover, we can consider the entries of the i-th row of the corresponding SSSRT as τ(i). Thus,

we identify sequences of ASPs and SSSRTs.

Example 7.6. The sequence of ASPs given by
ÄÄ

4 , 3 , 2
ä
,
Ä
5 , 3

ää
is a SSSRT of shape

(5, 2) \ (2):
· · 4 3 2

5 3

Hence we can understand any sequence of strict ASPs as a SSSRT T of certain shape µ/η.

Lemma 7.7 ([KLO17, Lemma 6.1]). For a sequence of ASPs

T =
Ä
τ(1), τ(2), . . . , τ(ℓ−1), τ(ℓ)

ä
,

such that T is a highest weight element, then τ(1) = ∅ and τ(2) = λ(s) for some s ∈ Z≥0.

7.2. Riordan triangle numbers. In this section, we assume g is of type Dn+1.

Definition 7.8. We say that a composition λ of m is almost even when it satisfies one of the

following conditions:

• If m is odd, then it contains one odd part and the other parts are even.
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• If m is even, then it contains two odd parts and the other parts are even.

We write λ 0 m to denote an almost even composition λ of m.

Remark 7.9. Note that the weight of k and k are given as follows:

wt
Ä
k
ä
= ǫk − ǫn+1 and wt

Ä
k
ä
= ǫk + ǫn+1.

7.2.1. The pure spin case B(̟n+1)
⊗3. The following is a straightforward computation similar

to Lemma 6.10.

Lemma 7.10. In type Dn+1, we have

B(̟n+1)
⊗3 ∼=

⌊(n+1)/2⌋⊕

s=0

B(̟n+1 + ‹̟n+1−2s)
⊕s+1

⌊n/2⌋⊕

s=1

B(̟n +̟n−2s)
⊕s.(7.1)

Example 7.11. Let us consider B(̟4) over D4. Then we have

B(̟4)
⊗3 ∼=

Ä
B(̟4)

⊕3 ⊕B(̟2 +̟4)
⊕2 ⊕B(3̟4)

ä⊕
(B(̟1 +̟3)) ,

where corresponding highest weight elements can be described as follows:

B(̟4)
⊕3 ↔ · · · ·

· · · ·
3 2 1

, · · · ·
· · 1
3 2

, · · · ·
3 2 1

, B(̟2 +̟4)
⊕2 ↔ · ·

1
, · ·

· ·
1

,

B(̟1 +̟3)↔ · · · ·
· · 1
2

, B(3̟4)↔ ∅.

Hence we have two highest weight elements whose weights are different but inner shapes coin-

cide:
· · · ·
· · 1
3 2

, · · · ·
· · 1
2

.

Example 7.12. For a connected component of · ·
· ·
1

, we know dimV (̟2+̟4)̟4 = 6 = R(4,2)

is represented by following semistandard spin rigid tableaux:

· · 2 1
· ·
3

, · · 3 1
· ·
2

, · · 3 2
· ·
1

, · · 1
· ·
3 2

, · · 2
· ·
3 1

, · · 3
· ·
2 1

.

For a connected component of · ·
1

, we know dimV (̟2 +̟4)̟4 = 6 = R(4,2) is represented

by following semistandard spin rigid tableaux:

· ·
3 2
1

, · ·
3 1
2

, · · 1
3 2

, · · 3
2 1

, · · 2
3 1

, · · 2 1
3

.

Note that inner shapes for · ·
· ·
1

and · ·
1

are unique in Example 7.11, respectively.

Lemma 7.13.
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(1) The (s+1)-many highest weight elements of weight ̟n+1+ ‹̟n+1−2s in B(̟n+1)
⊗ 3 for

0 ≤ s ≤ ⌊(n + 1)/2⌋ are given by

O0(s, t) :=

Ç
∅ , λ

Å
2t-1

ã
, λ

Ç
2s-1 , 2t

åå
for 0 ≤ t ≤ s,

whose inner shape is (2s, 2s − 2t) for 0 ≤ t ≤ s, as a standard spin rigid tableau.

(2) The s-many highest weight elements of weight ̟n +̟n−2s in B(̟n+1)
⊗ 3 for 1 ≤ s ≤

⌊n/2⌋ are given by

O1(s, t) :=

Å
∅ , λ

Å
2t-1

ã
, λ
(
2s , 2t

)ã
for 1 ≤ t ≤ s,

whose inner shape is (2s+2, 2s−2t+2) for 1 ≤ t ≤ s, as a standard spin rigid tableau.

Corollary 7.14. Let η be (2s) or (2s, 2s). There exists a unique highest weight element with

weight ̟n+1 + ‹̟n+1−2s in B(̟n+1)
⊗ 3 for 0 ≤ s ≤ ⌊(n+ 1)/2⌋ whose inner shape is η.

Definition 7.15. For each 0 ≤ s ≤ ⌊(n + 1)/2⌋ and x = 0, 1, we define a subset Rx(̟n+1 +

̟n+1−2s) of SSSRTs consisting of T = (τ(1), τ(2), τ(3)) satisfying the following conditions:

(a) max{τ(k)1 | 1 ≤ k ≤ 3} ≤ n and c(τ
(k)
1 ) = 0 for 1 ≤ k ≤ 3,

(b) the inner shape of T is (2s, δ0x2s).

Alternatively, the definition of Rx(̟n+1+̟n+1−2s) (x = 0, 1) can be written as the following

form: The subset of SSSRTs consisting of T = (τ(1), τ(2), τ(3)) such that

(a) max{τ(k)1 | 1 ≤ k ≤ 3} ≤ n,

(b)




τ(2) ⊇ τ(3), τ(1) ⊇ τ

(2)
>2s and τ(1) 6⊇ τ

(2)
>2s−2 if x = 1,

τ(1) ⊇ τ(2), τ(2) ⊇ τ
(3)
>2s and τ(2) 6⊇ τ

(3)
>2s−2 if x = 0.

Theorem 7.16. The subcrystal Rx(̟n+1 +̟n+1−2s) is isomorphic to B(̟n+1 +̟n+1−2s).

It is straightforward to see that Theorem 7.16 holds by the following two lemmas.

Lemma 7.17. Rx(̟n+1 + ̟n+1−2s) is stable under the Kashiwara operators ei and fi. In

particular, Rx(̟n+1 +̟n+1−2s) is a subcrystal consisting of connected components.

Proof. By applying the similar argument in the proof of Proposition 6.5 twice for (τ(1), τ(2))

and (τ(2), τ(3)), one can check our assertion. �

Lemma 7.18. The subcrystal Rx(̟n+1 +̟n+1−2s) is connected.

Proof. Each element in Rx(̟n+1 +̟n+1−2s) is connected to




Ç
∅ , ∅ , λ

Ç
2s-1

åå
if x = 0,

Ç
∅ , λ

Ç
2s-1

å
, ∅
å

if x = 1,

whose inner shapes are (2s, 2s) and (2s), respectively, by a similar argument given in the proof

of Theorem 6.8 using Lemma 7.7 in place of Lemma 6.4. Thus our assertion follows from

Corollary 7.14. �
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Now, the following corollary follows from Theorem 5.21.

Corollary 7.19. For m ≥ 2s−1, let Sx(̟n+1+̟n+1−2s)m be a subset of Rx(̟n+1+̟n+1−2s)

consisting of T = (τ(1), τ(2), τ(3)) such that

τ(1) ∪ τ(2) ∪ τ(3) = λ(m) and
Ä
ℓ(τ(1)), ℓ(τ(2)), ℓ(τ(3))

ä
0 m.

Then we have

|Sx(̟n+1 +̟n+1−2s)m| = R(m+1,2s).

We remark that in Corollary 7.19, the almost even condition appears by the weight consid-

eration as per Remark 7.9.

7.2.2. The mixed spin case B(̟n)⊗B(̟n+1)
⊗2. A straightforward computation yields:

Lemma 7.20. We have

B(̟n)⊗B(̟n+1)
⊗2 ∼=

⌊n/2⌋⊕

s=0

B(̟n+1 + ‹̟n−2s)
⊕s+1 ⊕

⌊(n+1)/2⌋⊕

s=1

B(̟n +̟n−2s−1)
⊕s.

Example 7.21. Let us consider B(̟3)⊗B(̟4)
⊗2 over D4. Then we have

B(̟3)⊗B(̟4)
⊗2 ∼= B(̟3)

⊕2 ⊕B(̟1 +̟4)
⊕2 ⊕B(̟2 +̟3)⊕B(̟3 + 2̟4).

where corresponding highest weight vector can be described as follows by taking c(τ
(1)
1 ) = 1:

B(̟3)
⊕2 ↔ · · · · ·

· · · ·
3 2 1

, · · · · ·
· · 2 1
3

, B(̟1 +̟4)
⊕2 ↔ · · ·

· ·
2 1

, · · ·
2 1

B(̟2 +̟3)↔ · · ·
· ·
1

, B(̟3 + 2̟4)↔ · .

By taking c(τ
(3)
1 ) = 1, the highest weight vector can be described as follows:

B(̟3)
⊕2 ↔ · · · · ·

· · · 1
3 2

, · · · · ·
· 3 2 1

, B(̟1 +̟4)
⊕2 ↔ · · ·

· · ·
2 1

, · · ·
· 1
2

,

B(̟2 +̟3)↔ · · ·
· 1

B(̟3 + 2̟4)↔ ·
·
.

Lemma 7.22. Suppose c(τ
(1)
1 ) = 1.

(1) The (s + 1)-many highest weight elements of weight ̟n+1 + ‹̟n−2s for 0 ≤ s ≤ ⌊n/2⌋
are given by

O
0
(1,0,0)(s, t) :=

Ç
∅ , λ

(
2t
)
, λ

Ç
2s , 2t+1

åå
for 0 ≤ t ≤ s,

whose inner shape is (2s + 1, 2s − 2t) for 0 ≤ t ≤ s, as a standard spin rigid tableau.

(2) The s-many highest weight elements of weight ̟n +̟n−2s+1 for 1 ≤ s ≤ ⌊(n + 1)/2⌋
are given by

O
1
(1,0,0)(s, t) :=

Ç
∅ , λ

Å
2t-2

ã
, λ

Ç
2s-1 , 2t-1

åå
for 1 ≤ t ≤ s,
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whose inner shape is (2s+1, 2s−2t+2) for 1 ≤ t ≤ s, as a standard spin rigid tableau.

Lemma 7.23. Suppose c(τ
(3)
1 ) = 1.

(1) The (s + 1)-many highest weight elements of weight ̟n+1 + ‹̟n−2s for 0 ≤ s ≤ ⌊n/2⌋
are given by

O
0
(0,0,1)(s, t) :=

Å
∅ , λ

Å
2t-1

ã
, λ
(
2s , 2t

)ã
for 0 ≤ t ≤ s,

whose inner shape is (2s+1, 2s−2t+1) for 0 ≤ t ≤ s, as a standard spin rigid tableau.

(2) The s-many highest weight elements of weight ̟n +̟n−2s+1 for 1 ≤ s ≤ ⌊(n + 1)/2⌋
are given by

O
1
(0,0,1)(s, t) :=

Ç
∅ , λ

Å
2t-1

ã
, λ

Ç
2s-1 , 2t

åå
for 1 ≤ t ≤ s,

whose inner shape is (2s+1, 2s−2t+1) for 1 ≤ t ≤ s, as a standard spin rigid tableau.

Corollary 7.24.

(1) There exists a unique highest weight element of weight ̟n+1+ ‹̟n−2s for 0 ≤ s ≤ ⌊n/2⌋
whose inner shape is (2s + 1) and c(τ

(1)
1 ) = 1.

(2) There exists a unique highest weight element corresponding to ̟n+1 + ‹̟n−2s for 0 ≤
s ≤ ⌊n/2⌋ whose inner shape is (2s+ 1, 2s + 1) and c(τ

(3)
1 ) = 1.

Definition 7.25. For each 0 ≤ s ≤ ⌊n/2⌋ and x = 0, 1, we define a subset Rx(̟n+1 +̟n−2s)

of SSSRT consisting of T = (τ(1), τ(2), τ(3)) satisfying the following conditions:

(a) max{τ(k)1 | 1 ≤ k ≤ 3} ≤ n and c(τ
(k)
1 , τ

(k)
2 , τ

(k)
3 ) =




(1, 0, 0) if x = 1,

(0, 0, 1) if x = 0,

(b) T is a SSSRT with inner shape (2s + 1, δ0x(2s + 1)).

Alternatively, the definition Rx(̟n+1 + ̟n−2s) (x = 0, 1) can be written as the following

form: The set of SSSRT consisting of T = (τ(1), τ(2), τ(3)) such that

(a) max{τ(k)1 | 1 ≤ k ≤ 3} ≤ n and c(τ
(k)
1 , τ

(k)
2 , τ

(k)
3 ) =




(1, 0, 0) if x = 1,

(0, 0, 1) if x = 0,

(b)




τ(2) ⊇ τ(3), τ(1) ⊇ τ

(2)
≥2s+2 and τ(1) 6⊇ τ

(2)
≥2s if x = 1,

τ(1) ⊇ τ(2), τ(2) ⊇ τ
(3)
≥2s+2 and τ(2) 6⊇ τ

(3)
≥2s if x = 0.

Example 7.26.

(1) For a connected component of · · ·
2 1

with c(τ
(k)
1 , τ

(k)
2 , τ

(k)
3 ) = (1, 0, 0), we know that

dimV (̟3+̟6)̟1+̟6 = 10 = R(5,3) is represented by following semistandard spin rigid
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tableaux:

· · · 1
4 3
2

, · · · 2
4 3
1

, · · · 1
4 2
3

, · · · 2 1
4 3

, · · ·
4 3
2 1

,

· · ·
4 2
3 1

, · · · 1
4 3 2

, · · · 3
4 2 1

, · · · 4
3 2 1

, · · · 2
4 3 1

.

(2) For a connected component of · · ·
· · ·
2 1

with c(τ
(k)
1 , τ

(k)
2 , τ

(k)
3 ) = (0, 0, 1), we know that

dimV (̟3+̟6)̟1+̟6 = 10 = R(5,3) is represented by following semistandard spin rigid

tableaux:

· · · 4 3
· · ·
2 1

, · · · 4 1
· · ·
3 2

, · · · 2 1
· · ·
4 3

, · · · 3 1
· · ·
4 2

, · · · 4 2
· · ·
3 1

,

· · · 3 2
· · ·
4 1

, · · · 4
· · ·
3 2 1

, · · · 3
· · ·
4 2 1

, · · · 2
· · ·
4 3 1

, · · · 1
· · ·
4 3 2

.

Theorem 7.27. The subcrystal Rx(̟n+1 +̟n−2s) is isomorphic to B(̟n+1 +̟n−2s).

Proof. As Lemma 7.17, the stability condition under Kashiwara operators can be easily checked.

Similar to the proof of Lemma 7.18, each element in Rx(̟n+1 +̟n−2s) is connected to




(
∅ , ∅ , λ

(
2s
))

if x = 0,(
∅ , λ

(
2s
)
, ∅

)
if x = 1,

whose inner shapes are (2s + 1, 2s + 1) and (2s + 1), respectively. Thus our assertion follows

from Corollary 7.24. �

Similar to Corollary 7.19, we have the following corollary.

Corollary 7.28. For m ≥ 2s, let S x(̟)m be the subset of Rx(̟n+1 +̟n−2s) consisting of

T = (τ(1), τ(2), τ(3)) such that τ(1) ∪ τ(2) ∪ τ(3) = λ(m) and either

• (λ1, λ2 + (2s+ 1), λ3 + (2s+ 1)) 0 m+ 4s+ 2 if x = 1,

• (λ1, λ2, λ3 + (2s + 1)) 0 m+ 2s+ 1 if x = 0,

where λi = ℓ(τ(i)) for 1 ≤ i ≤ 3. Then we have

|S x(̟n+1 +̟n−2s)m| = R(m+1,2s+1).

We remark that the almost even condition appears in Corollary 7.28 by the weight consid-

eration as per Remark 7.9.

8. Open problems

We conclude with a list of open problems that came up during the course of this work.

Problem 8.1. Determine if the lattice paths used in Theorem 3.8 can give a formula for the

factorial characters in type Cn similar to Hamel and King [HK17].
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(0, 0)

Figure 8. The board used to construct the non-intersecting lattice path model for
crystals. The black dot denotes the origin (0, 0) ∈ Z2.

Problem 8.2. Determine if the proof of Theorem 5.9 can be extended to prove the q-Touchard’s

identity of [And10, Thm. 1], a triangle version, or an alternative form using C′n(q).

Problem 8.3. Determine a combinatorial interpretation ofM′
n(q),M′

(n,k)(q), and R′
(n,k)(q).

Our initial approach in trying to prove Proposition 5.30 was based on using the LGV lemma

and a crystal model on non-intersecting lattice paths. Indeed, we consider the infinite Z2 grid

as the infinite board with tiles given by Figure 8.

Next, we define a crystal structure on the non-intersecting lattice paths on this board as

follows. An addable (resp. removable) i-corner is a path that has a corner on the south-east

(resp. north-west) corner of an i tile. We define the good addable (resp. removable) i-corner

by using the signature rule given by reading top-to-bottom, left-to-right, where an addable i-

corner is a + and a removable i-corner is a − and add a second ± if we can add (resp. remove)

a second n-corner. The good addable (resp. removable) i-corner corresponds to the leftmost +

(resp. rightmost −) in the reduced signature. The crystal structure is given by having an fi
removing the good removable corner and ei adding the good addable corner.

Let Ln,i denote the set of lattice paths from (0, 0) to (i, 2n− i+1) with the aforementioned

crystal structure. We leave it to the interested reader to construct an explicit crystal isomor-

phism φi : Ln,i → B(‹̟i). Furthermore, for a dominant integral weight λ =
∑

i∈I ci ‹̟i, consider

the sequence

(ik)
ℓ−1
k=0 = (n, . . . , n︸ ︷︷ ︸

cn

, . . . , 2, . . . , 2︸ ︷︷ ︸
c2

, 1, . . . , 1︸ ︷︷ ︸
c1

),
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where ℓ =
∑

i∈I ci. Let L(λ) denote the set of non-intersecting lattice paths from (k,−k) to

(ik+k, 2n− ik+1−k) with the crystal structure above. It is straightforward to see that this is

compatible with the tensor product rule in Ln,i0 ⊗· · ·⊗Ln,iℓ−1
. Hence, we obtain L(λ) ∼= B(λ)

by applying φi to every factor Ln,i. Note that for r‹̟n, we can uniquely extend each path pk
to start at (−k,−k) and end at (k + n, k + n+ 1), where k = 0, . . . , r − 1.

Proposition 8.4. For type Bn, we have L(λ) ∼= B(λ).

Example 8.5. For L(2‹̟3) in type B3, the first few non-intersecting lattice paths are:

. . .

. . .

. . .

. . .

. . .

. . .

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

f3−−−→ . . .

. . .

. . .

. . .

. . .

. . .

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

f2−−−→ . . .
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. . .

. . .

. . .

1

1

2

2

3

3
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3

3

1

1

2
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3

3

1

1

2

2

3

3

1

1

2

2

3

3
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3

3
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2

2

3

3

1

1

2
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3

3

1

1

2

2

3

3
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. . .

. . .

. . .

1

1

2

2

3

3

1
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3

1

1

2

2

3

3

1

1
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3

3

1

1

2
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3

3

f3−−−→ . . .

. . .

. . .

. . .

. . .

. . .

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3
The dashed lines represent the extension to obtain the non-intersecting lattice paths for the

LGV lemma applied to Proposition 5.30. The corresponding KN tableaux in B(2‹̟3) are

1 1
2 2
3 3

f3−−−→
1 1
2 2
3 0

f2−−−→
1 1
2 3
3 0

f3−−−→
1 1
2 0
3 0

f3−−−→
1 1
2 0
3 3

f3−−−→
1 1
2 0
0 3

.

However, via the LGV lemma, there are non-intersecting lattice paths that do not correspond

to the identity permutation; e.g.,

. . .

. . .

. . .

. . .

. . .

. . .

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

s1

s2

t1

t2

Hence, to obtain Proposition 5.30, one would need to construct a sign-reversing involution

on the corresponding non-intersecting lattice paths, where the fixed points are those non-

intersecting lattice paths of Proposition 8.4.

Problem 8.6. Show Proposition 5.30 bijectively using the LGV lemma on the natural lattice

paths for binomial coefficients and extend it to general B(λ).
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We note the following Jacobi–Trudi-type formula was given in [Oka89] for type Bn:

ch(λ) = det
î
ch(n+j−1)(‹̟λ′

i
−i+j)

óℓ
i,j=1

,

where (λ′1, . . . , λ
′
ℓ) is the conjugate partition of λ and ch(m)(µ) denotes the character of V (λ)

in type Bm.

Problem 8.7. For Theorem 4.4, we can instead consider the graded characters/multiplicity in

(Bn,1)⊗2m in type D
(2)
n+1 as the corresponding classical type is Bn. Does the graded multiplicity

have an interpretation as non-intersecting lattice paths or a determinant identity? Similarly

for (
⊕n

k=0B
k,1)⊗m in type A

(2)
2n with Theorem 4.11 (see Remark 4.8).

Example 8.8. LetMn,m(q) denote the graded multiplicity of B(0) inside of (Bn,1)⊗2m in type

D
(2)
n+1. Then we have

M2,1(q) = q2

M2,2(q) = q8 + q6 + q4

M2,3(q) = q18 + q16 + 2q14 + q13 + 3q12 + q11 + 2q10 + q9 + q8 + q6,

M3,1(q) = q3,

M3,2(q) = q12 + q10 + q8 + q6,

M3,3(q) = q27 + q25 + 2q23 + 3q21 + q20 + 4q19 + 2q18 + 4q17

+ 2q16 + 4q15 + q14 + 2q13 + q12 + q11 + q9,

M4,1(q) = q4,

M4,2(q) = q16 + q14 + q12 + q10 + q8,

M4,3(q) = q36 + q34 + 2q32 + 3q30 + 4q28 + q27 + 5q26 + 2q25 + 7q24 + 3q23

+ 6q22 + 3q21 + 5q20 + 2q19 + 4q18 + q17 + 2q16 + q15 + q14 + q12,

M5,1(q) = q5,

M5,2(q) = q20 + q18 + q16 + q14 + q12 + q10,

M5,3(q) = q45 + q43 + 2q41 + 3q39 + 4q37 + 5q35 + q34 + 7q33 + 2q32

+ 8q31 + 4q30 + 9q29 + 4q28 + 9q27 + 4q26 + 7q25 + 3q24

+ 5q23 + 2q22 + 4q21 + q20 + 2q19 + q18 + q17 + q15

Note that the coefficients of the lowest and highest degree terms of Mn,k(q) match for fixed k

as n varies (and the number of terms that agree depends on k).

While C′n(q, t) 6= Cn(q, t) as noted in Remark 5.10, we conjecture the following relation, which

we have verified for all n ≤ 10.

Conjecture 8.9. We have

Cn(q, t)− C′n(q, t) = (qt− 1)fn(q, t)
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for some fn(q, t) ∈ Z≥0[q, t].

We note that introducing t to count the negative powers of q to obtain Theorem 5.3 is

artificial. Indeed, it was not motivated representation theory.

Problem 8.10. Give a natural representation theoretic interpretation of the q, t-Catalan tri-

angle numbers C(n,k)(q, t).

One possible interpretation of the q, t version of our paths is coming from the branching rule

coming from the natural embedding sp2n → sl2n. Indeed, recall that we can relate characters

χ(λ)(x1, . . . , xn) in type Cn with a specialized type A2n−1 character

χ(λ)(x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n )

(see, e.g., [KT87, Lemma 1.5.1]). Therefore, we take the type An character specialized as

χ(λ)(q, t, q2, t2, . . . , qn, tn) and take the corresponding type Cn character χ(λ) from the branch-

ing rule, we have an representation theoretic interpretation. Note the bijection on alphabets

1 < 2 < 3 < 4 < · · · < 2n− 1 < 2n,

1 < 1 < 2 < 2 < · · · < n < n,

and the semistandard condition on King tableaux. However, it is remains artificial in type Cn

since it comes from the branching rule. Yet, this construction leads to the following questions.

Problem 8.11. The q, t version of the statistic w′ from Equation (5.1) on lattice paths yields a

q, t-analog of the binomial coefficients. Determine the properties these q, t-binomial coefficients

satisfy. Give a natural representation theoretic interpretation of these q, t-binomial coefficients.

Determine what relation these q, t-binomial coefficients have with the q, t-Catalan numbers

Cn(q, t).

Our proof of Theorem 5.8 is essentially algebraic: showing that our combinatorial ob-

jects with their statistics satisfy the recursion relation for q-binomial coefficients. However,

q-binomials

ñ
n+m

n

ô

q

have an interpretation as generating function for the size of a partition

in an n×m rectangle. Thus, we have the following problem.

Problem 8.12. Find a combinatorial proof of Theorem 5.8 by finding a bijection between

paths and partitions in an n×m rectangle that sends our statistic to the size of the partition.

One potential approach to solving Problem 8.12 for the m = n case would be to follow

the proof of Theorem 5.2 using the results of [Stu13, Thm. 1.3] with an analogous result to

Theorem 5.3.

Conjecture 8.13. For type Bn, we have

Cn+1(q)Kn(q) = p̃s′
Ä
B(3̟n)

ä
,



IDENTITIES FROM REPRESENTATION THEORY 61

where p̃s′(B) is the normalized specialization χ(B)(q, q3, q5, · · · , q2n−1) and

Kn(q) =
(q + 1)

∏n−1
i=0 (q

2n+1−i + 1)
∏⌊n/2⌋−1

i=1 (q2n+1−2i + 1)
∏⌊n/2⌋

i=1 (q2i+2 + 1)

= (q2n+1 + 1)(qn+2 + 1)(q + 1)

⌊n/2⌋∏

i=1

(q2n+1−i + 1)(q2n−i + 1)2

(q2i+2 + 1)
.

Note that Conjecture 8.13 is the analog of Corollary 5.18 using instead the specialization

used in [BKW16]. We expect that a proof of Conjecture 8.13 can be given by a direct, but

tedious and lengthly, computation.
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Appendix A. Other q-determinants

We collect some other identities we noticed during our work on this paper.

Proposition A.1. We have

det
î
C̃r+i+j(q)

ón
i,j=1

=
∑

P

n∏

i=1

qa(P
(i)),

where the sum is over all non-intersecting lattice paths P = (P (1), . . . , P (n)) from (i1, . . . , in)

to (j1, . . . , jn), respectively, and a(d) is the area of the corresponding Dyck path.

Proof. This follows from the LGV lemma and taking the weight of the vertical edge e to be qa,

where a is the number of vertical steps directly to the left of e. In particular, this corresponds

to the contribution of area of a Dyck path passing through e. �

We were unable to find a reference in the literature, but we believe that Proposition A.1 is

likely known to experts. However, Proposition A.1 gives a combinatorial proof of the following

formulas due to Cigler [Cig99]:

det
î
C̃0+i+j(q)

ón
i,j=0

= qn(n+1)(4n−1)/6, det
î
C̃1+i+j(q)

ón
i,j=0

= qn(n+1)(4n+5)/6.
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Indeed, this is a consequence of that there is precisely one family of non-intersecting lattice

paths,
n∑

k=1

2k(2k − 1)

2
=
n(n+ 1)(4n − 1)

6
,

n∑

k=1

(2k + 1)2k

2
=
n(n+ 1)(4n + 5)

6
,

and the Dyck path EkNk has area
∑k

i=1 i =
k(k−1)

2 .

We consider the q-Motzkin numbers defined by Cigler [Cig99]:

›M†
n+1(q) =

›M†
n(q) +

n−1∑

k=0

qk+1›M†
k(q)

›M†
n−k−1(q),

›M†
0(q) = 1,

We note that these are distinct from the q-Motzkin numbers defined in [BDLFP98, BSS93] and

do not appear to be related by a simple closed formula. Cigler proved algebraically in [Cig99,

Eq. (39)] that

det[›M†
i+j(q)]

n−1
i,j=0 = qn(n−1)(2n−1)/6.

Furthermore, Cigler also showed in [Cig99, Eq. (40)] that

det[›M†
i+j+1(q)]

n−1
i,j=0 = κnq

2(n3) = κnq
(n2)qn(n−1)(2n−1)/6,

where (κn) = (1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, . . .).
Based on numerical computations, we have the following conjectures.

Conjecture A.2. Define

fn(q) :=





∑

1≤k≤n
k 6≡1 mod 3

qk if n ≡ 0 mod 3,

(q + 1)

Ñ
⌊n/3⌋∑

k=0

q3k

é
otherwise.

Then we have Å
det
î›M†

i+j+2(q)
ón−1

i,j=0

ã∞
n=1

=
Ä
qcnfn(q)

ä∞
n=1

.

for some cn ∈ Z≥0.

Conjecture A.3. Define

tn(q) :=

Ñ
⌊n/3⌋∑

k=0

q3k

é
.

We have Å
det
î›M†

i+j+3(q)
ón−1

i,j=0

ã∞
n=1

=
Ä
(−1)⌊n/3⌋qcnfn(q)

ä∞
n=1

.

for some cn ∈ Z≥0 and gn(q) ∈ Z≥0[q]. Moreover, if n ≡ 1 mod 3 then gn(q) = (q+1)2tn(q)
2,

and if n ≡ 2 mod 3, then tn(q) divides gn(q).

Conjecture A.4. For any k, n ∈ Z>0, we have

det
î›M†

i+j+2k(q)
ón−1

i,j=0
∈ Z≥0[q].
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We note that for Conjecture A.3, we have f3m+1(q) = f3m+2(q). Moreover, the positivity of

the Hankel determinants does not seem to extend to higher odd shifts since

det
î›M†

i+j+5(q)
ó2
i,j=0

= −q38 + 2q34 + 6q33 + 4q32 + 4q31 + q30 − 6q29 − 10q28

− 8q27 − 12q26 − 8q25 − 3q24 − 4q23 − 4q22 − q20.
The LGV approach does not naturally extend to show Conjecture A.4 as the only statistic

that we can see that results in Cigler’s q-Motzkin number is tunnel length. Indeed, recall that

a tunnel for a Motzkin path is the positions (i, j) of a pair of matching parentheses6 and the

length of the tunnel is j− i+1. Thus, define the tunnel length of M as T (M) =
∑

(i,j) j− i+1,

where the sum is over all tunnels (i, j) of M . The following proposition is straightforward from

the recursion on Motzkin paths for the first return to y = 0.

Proposition A.5. We have

M†
n(q) =

∑

M

qT (M),

where the sum is over all Motzkin paths of length M .

Note that this is not compatible with the LGV lemma as we cannot assign a weighting to

each edge that agrees with the tunnel length. Contrast this with area for Dyck paths which

yields Proposition A.1. Hence, to prove Conjecture A.4 combinatorially, one would need a

statistic on Motzkin paths that can be considered as an edge weighting on the corresponding

digraph to generated Motzkin paths.

Appendix B. Alternative proofs of Corollary 3.13

We give two alternative proofs of Corollary 3.13.

Alternative proof using the LGV for Catalan numbers. The result follows from LGV lemma

and a bijection with non-intersecting lattice paths and type Cn King tableaux given by using

Ξn+1 on each path P (i), with an appropriate shift of starting point, yielding the i-th column.

It is straightforward to see that the non-intersecting condition corresponds to semistandard

condition on King tableaux, similar to the case for the Jacobi–Trudi formula. �

Alternative proof using elementary manipulations. From [Kra10, Thm. 3], we can compute

det[Cn+1+i+j]
r−1
i,j=0 =

∏

0≤i<j≤r−1

(j − i)
r−1∏

i=0

(i+ r)!(2n + 2 + 2i)!

2i!(n + 1 + i)!(n + i+ r + 1)!
.

Next, from Proposition 2.7, we have

dimV (r̟n) =
r∏

i=1

i

n+ i

Ç
2n+ 2r

n+ r − i

åÇ
2n+ 2r

r − i

å−1 ∏

1≤i<j≤r

i+ j

2n+ i+ j

6Recall that we can represent a Motzkin path as a sequence of parentheses with a letter x such that every open
parenthesis ‘(’ has a matching closing parenthesis ‘)’.
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Now we shall prove that

∏

0≤i<j≤r−1

(j − i)
r−1∏

i=0

(i+ r)!(2n + 2 + 2i)!

2i!(n + 1 + i)!(n + i+ r + 1)!

=
r∏

i=1

i

n+ i

Ç
2n+ 2r

n+ r − i

åÇ
2n + 2r

r − i

å−1 ∏

1≤i<j≤r

i+ j

2n+ i+ j

Using the notation defined in (5.15), we have

det[Cn+1+i+j ]
r−1
i,j=0 = F (r − 1)

F (2r − 1)

F (r − 1)

1

Φ(2r − 2)

Φ(2n + 2r)

Φ(2n)

F (n)

F (n+ r)

F (n+ r)

F (n+ 2r)

=
Φ(2r − 1)Φ(2n + 2r)F (n)

Φ(2n)F (n + 2r)
,

while

dimV (r̟n) = F (r)
F (n+ r)

F (n+ 2r)

F (2n + 2r)

F (2n + r)

F (n)

F (n+ r)
× F (2n + r)

F (2n + 1)

Φ(2n+ 1)

Φ(2n + 2r − 1)

Φ(2r − 1)

F (r)

=
Φ(2r − 1)Φ(2n + 2r)F (n)

Φ(2n)F (n + 2r)
.

Thus our assertion holds. �
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