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Abstract

We define and characterize the f -matrices associated to Pascal-like matrices that

are defined by ordinary and exponential Riordan arrays. These generalize the face

matrices of simplices and hypercubes. Their generating functions can be expressed

simply in terms of continued fractions, which are shown to be transformations of the

generating functions of the corresponding γ- and h-matrices.

1 Introduction

Three special classes of regular polytope [16] exist in every dimension: the regular simplex,
the hypercube, and the cross-polytope. For each of these, it is usual to construct a lower
triangular matrix that enumerates, for each dimension, the number of faces of each lower
dimension of the polytope in question.

For the regular simplex, we obtain the (infinite) matrix A135278 that begins





















1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 3 1 0 0 0 0
4 6 4 1 0 0 0
5 10 10 5 1 0 0
6 15 20 15 6 1 0
7 21 35 35 21 7 1





















,

or alternatively its reversal A074909





















1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 3 3 0 0 0 0
1 4 6 4 0 0 0
1 5 10 10 5 0 0
1 6 15 20 15 6 0
1 7 21 35 35 21 7





















,
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(depending on convention).

The first matrix is the ordinary Riordan array
(

1
(1−x)2

, x
1−x

)

, while the second matrix is

its reversal.
For the case of the hypercube, the corresponding matrix A038207 and its reversal A013609

begin




















1 0 0 0 0 0 0
2 1 0 0 0 0 0
4 4 1 0 0 0 0
8 12 6 1 0 0 0
16 32 24 8 1 0 0
32 80 80 40 10 1 0
64 192 240 160 60 12 1





















and




















1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 4 4 0 0 0 0
1 6 12 8 0 0 0
1 8 24 32 16 0 0
1 10 40 80 80 32 0
1 12 60 160 240 192 64





















.

These are the ordinary Riordan array
(

1
1−2x

, x
1−2x

)

and its reversal. We have that

(

1

1− 2x
,

x

1− 2x

)

= B2,

where B =
(

1
1−x

, x
1−x

)

is the binomial matrix
((

n
k

))

n,k≥0
(Pascal’s triangle A007318). For our

purposes in this note, we can also regard the binomial matrix as the exponential Riordan
array

B = [ex, x] ,

in which case the face matrix for the hypercubes is given by B2 = [e2x, x] (or its reversal).
We now note the following.

(

1

(1− x)2
,

x

1− x

)

·B−1 =

(

1

1− x
, x

)

,

is the matrix that begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1





















.
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Similarly, we have
[

e2x, x
]

B−1 = [ex, x] = B,

which begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0
1 3 3 1 0 0 0
1 4 6 4 1 0 0
1 5 10 10 5 1 0
1 6 15 20 15 6 1





















.

In both cases, we obtain centrally symmetric, or palindromic, matrices, whose rows are the
h-vectors of the polytopes in question. We shall call a lower-triangular matrix (an,k)n,k≥0

Pascal-like if an,0 = an,n = 1 and an,n−k = an,k. If M is a Pascal-like matrix, then the matrix
given by the matrix product M ·B, where B is the binomial matrix (

(

n
k

)

), will be callde the
f -matrix (face matrix) of M .

We can generalize the two Pascal-like matrices above using Riordan arrays in two ways.
The first way is to use ordinary Riordan arrays, in which case we obtain the parameterized
family given by [5]

(

1

1− x
,
x(1 + rx)

1− x

)

,

where for instance r = 0 corresponds to the binomial matrix B. The second way is to
use exponential Riordan arrays [4], where we obtain the parameterized family palindromic
matrices given by

[

ex, x
(

1 +
rx

2

)]

.

We have investigated the associated γ-matrices for these two families in a previous paper
[1].

We shall now turn our attention to the associated f -matrices.
In the next section, we shall briefly cover some definitions and results that will provide

the context of the rest of the paper.

2 Relevant definitions and results

An ordinary Riordan array [2, 9, 10] is a lower-triangular invertible matrix whose elements
an,k are given by

an,k = [xn]g(x)f(x)k,

where g(x) = 1 + g1x + g2x
2 + · · · and f(x) = x + f2x

2 + f3x
3 + · · · are two power series,

with coefficients drawn from a suitable ring. In our case this ring will be the ring of integers
Z. This array is denoted by (g(x), f(x)) = (g, f), where x is a dummy variable, in the sense
that

an,k = [xn]g(x)f(x)k = [un]g(u)f(u)k.

3



The bivariate generating function of the array (g, f) is given by

g(x)

1− yf(x)
.

Such arrays form a group (the Riordan group), where the product is given by

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x)),

and we have

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄(x)

)

,

where f̄(x) is the compositional inverse of f(x). Thus f̄(x) is the solution u to the equation
f(u) = x such that u(0) = 0.

An exponential Riordan array [2, 6] is a lower-triangular invertible matrix whose elements
an,k are given by

an,k =
n!

k!
[xn]g(x)f(x)k,

where g(x) = 1+g1
x
1!
+g2

x2

2!
+· · · and f(x) = x

1!
+f2

x2

2!
+f3

x3

3!
+· · · are two (exponential) power

series, with coefficients drawn from a suitable ring. This array is denoted by [g(x), f(x)] =
[g, f ]. The product rule and the inverse of an exponential Riordan array are calculated in a
similar fashion to the ordinary case.

The bivariate generating function of the matrix [g(x), f(x)] is given by

g(x)eyf(x).

These two variants are specializations of the case of so-called “generalized Riordan arrays”
[15], which are defined in terms of two power series g(x) = 1 + g1

x
c1

+ g2
x2

c2
+ · · · and

f(x) = x
c1
+ f2

x2

c2
+ f3

x3

c3
+ · · · where cn is a suitable sequence of non-zero coefficients. In this

case, we have

an,k =
cn
ck
[xn]g(x)f(x)k.

We denote this array by [g(x), f(x)]cn.

Example 1. The triangle of Narayana numbers Nn,k =
1

k+1

(

n
k

)(

n+1
k

)

A001263 is the matrix
of h-vectors for the associahedron. This matrix is given by the generalized Riordan array

[

I1(2
√
x)√

x
, x

]

n!(n+1)!

.

(Observation by Peter Bala, A001263).

A Jacobi continued fraction is a continued fraction [14] of the form

1

1− αx−
βx2

1− γx−
δx2

1− · · ·

.
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We use the notation
J (α, γ, . . . ; β, δ, . . .)

for such a fraction. The k-th binomial transform of such a continued fraction is then given
by [3]

J (α + k, γ + k, . . . ; β, δ, . . .).

If an is a sequence, then its k-th binomial transform is the sequence bn =
∑n

i=0

(

n
i

)

kn−iai.
Sequences in this note, where known, will be referenced by their Annnnnn number from

the On-Line Encyclopedia of Integer Sequences [11, 12]. All the lower-triangular matrices
that we shall encounter are infinite in extent. We display a suitable truncation.

3 The f-matrix of
(

1
1−x

, x(1+rx)
1−x

)

We have that the f -matrix of the Pascal-like array
(

1
1−x

, x(1+rx)
1−x

)

is given by

Fr =

(

1

1− x
,
x(1 + rx)

1− x

)

·B =

(

1

1− x
,
x(1 + rx)

1− x

)

·
(

1

1− x
,

x

1− x

)

.

This is equal to

Fr =

(

1

1− 2x− rx2
,

x(1 + rx)

1− 2x− rx2

)

.

This matrix begins
















1 0 0 0 0 0
2 1 0 0 0 0

r + 4 r + 4 1 0 0 0
4r + 8 6r + 12 2r + 6 1 0 0

r2 + 12r + 16 2r2 + 24r + 32 r2 + 15r + 24 3r + 8 1 0
6r2 + 32r + 32 15r2 + 80r + 80 12r2 + 72r + 80 3r2 + 28r + 40 4r + 10 1

















,

or in reversed form,
















1 0 0 0 0 0
1 2 0 0 0 0
1 r + 4 r + 4 0 0 0
1 2r + 6 6r + 12 4r + 8 0 0
1 3r + 8 r2 + 15r + 24 2r2 + 24r + 32 r2 + 12r + 16 0
1 4r + 10 3r2 + 28r + 40 12r2 + 72r + 80 15r2 + 80r + 80 6r2 + 32r + 32

















.

For r = 0, 1, 2 we get, respectively,
















1 0 0 0 0 0
1 2 0 0 0 0
1 4 4 0 0 0
1 6 12 8 0 0
1 8 24 32 16 0
1 10 40 80 80 32

















,

















1 0 0 0 0 0
1 2 0 0 0 0
1 5 4 0 0 0
1 8 17 8 0 0
1 11 39 51 16 0
1 14 70 154 143 32

















,
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and
















1 0 0 0 0 0
1 2 0 0 0 0
1 6 4 0 0 0
1 10 22 8 0 0
1 14 56 72 16 0
1 18 106 248 220 32

















.

The case r = 0 is that of the hypercube.
Using the form of the bivariate generating function for a Riordan array, we have the

following result.

Proposition 2. The bivariate generating function for the f -matrix of the Pascal-like array
(

1
1−x

, x(1+rx)
1−x

)

is given by

1

1− (y + 2)x− r(y + 1)x2
,

or in reversed form,
1

1− (2y + 1)x− ry(y + 1)x2
.

Using the reversed form, we obtain the sequence of generating functions

1

1− x− ryx2
→ 1

1− (y + 1)x− ryx2
→ 1

1− (2y + 1)x− ry(y + 1)x2

for, respectively, the γ-matrix [1], the h-matrix, and the f -matrix for the Pascal-like matrix
(

1
1−x

, x(1+rx)
1−x

)

(where this matrix is the h-matrix).

We have, for the matrix family
(

1
1−x

, x(1+rx)
1−x

)

,

γn,k =

(

n− k

n− 2k

)

rk,

hn,k =

k
∑

j=0

(

k

j

)(

n− j

n− k − j

)

rj,

and

fn,k =
n

∑

i=0

i
∑

j=0

(

i

j

)(

n− j

n− i− j

)

rj
(

i

k

)

.

This follows from previous work [1, 5] and the definition of the f -matrix.

4 The f-matrix of the Pascal-like matrix [ex, x(1 + rx/2)]

The f -matrix of the Pascal-like matrix [ex, x(1 + rx/2)] is given by

[ex, x(1 + rx/2)] ·B = [ex, x(1 + rx/2)] · [ex, x] ,
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which is
eFr =

[

exex(1+rx/2), x(1 + rx/2)
]

=
[

e2x+rx2/2, x(1 + rx/2)
]

.

The bivariate generating function for eFr is then given by

exex(1+rx/2)eyx(1+rx/2) = e2x+rx2/2eyx(1+rx/2).

This matrix begins













1 0 0 0 0
2 1 0 0 0

r + 4 r + 4 1 0 0
6r + 8 9r + 12 3r + 6 1 0

3r2 + 24r + 16 2 (3r2 + 24r + 16) 3 (r2 + 10r + 8) 6r + 8 1













or in reversed form












1 0 0 0 0
1 2 0 0 0
1 r + 4 r + 4 0 0
1 2r + 6 9r + 12 6r + 8 0
1 6r + 8 3(r2 + 10r + 8) 2(3r2 + 24r + 16) 3r(r + 8) + 16













.

For r = 0, 1, 2 we obtain the triangles













1 0 0 0 0
1 2 0 0 0
1 4 4 0 0
1 6 12 8 0
1 8 24 32 16













,













1 0 0 0 0
1 2 0 0 0
1 5 5 0 0
1 9 21 14 0
1 14 57 86 43













,

and












1 0 0 0 0
1 2 0 0 0
1 6 6 0 0
1 12 30 20 0
1 20 96 152 76













.

The case r = 0 corresponds to A013609.
The reversed form of eFr will then have bivariate generating function

e2xy+rx2y2/2ex(1+rxy/2).

We have that
e2xy+rx2y2/2ex(1+rxy/2) = e(2y+1)xery(y+1)x2/2.

Now the exponential generating function e
x
2

2 expands to give the sequence of aerated double
factorials A001147

1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, . . .
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which has the ordinary generating function

1

1−
x2

1−
2x2

1−
3x2

1− · · ·

.

This leads to the following proposition [3].

Proposition 3. The ordinary generating function of the reversal of Fr is given by the con-

tinued fraction

1

1− (2y + 1)x−
ry(y + 1)x2

1− (2y + 1)x−
2ry(y + 1)x2

1− (2y + 1)x−
3ry(y + 1)x2

1− · · ·

.

This is a Jacobi continued fraction, which we can write as

J (2y + 1, 2y + 1, 2y + 1, . . . ; ry(y + 1), 2ry(y + 1), 3ry(y + 1), . . .).

We then have the following result.

Proposition 4. The γ-matrix, the h-matrix, and the f -matrix of the Pascal-like matrix

[ex, x(1 + rx/2)]

have their ordinary generating functions given by, respectively,

J (1, 1, 1, . . . , ry, 2ry, 3ry, . . .),

J (y + 1, y + 1, y + 1, . . . ; ry, 2ry, 3ry, . . .),

and

J (2y + 1, 2y + 1, 2y + 1, . . . ; ry(y + 1), 2ry(y + 1), 3ry(y + 1), . . .).

Proof. The h-matrix in question is the Pascal-like matrix [ex, x(1 + rx/2)] itself. This has
bivariate generating function

exeyx(1+rx/2) = e(y+1)xerx
2/2.

This is the (y + 1)-st binomial transform of the sequence with generating function erx
2/2,

whence the assertion concerning the h-matrix. The statement regarding the γ-matrix is
proven in [1].
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5 Remarks on the associahedron and the permutahe-

dron

It can be shown that the γ-matrix, the h-matrix and the f -matrix for the associahedron of
type A (which are A055151, A001263 and A033282, respectively) have the following ordinary
generating functions:

J (1, 1, 1, . . . ; y, y, y, . . .),

J (y + 1, y + 1, y + 1, . . . ; y, y, y, . . .),

and
J (2y + 1, 2y + 1, 2y + 1, . . . ; y(y + 1), y(y + 1), y(y + 1), . . .).

In like manner, we can show that the γ-matrix, the h-matrix and the f -matrix for the per-
mutahedron (which are A101280, A008292, A019538, respectively [7, 8]) have the following
ordinary generating functions:

J (1, 2, 3, . . . ; 2y, 6y, 12y, . . .),

J (y + 1, 2(y + 1), 3(y + 1), . . . ; 2y, 6y, 12y, . . .),

and
J (2y + 1, 2(2y + 1), 3(2y + 1), . . . ; 2y(y + 1), 6y(y + 1), 12y(y + 1), . . .).

We see that the assignment

J (α, β, γ, . . . ; a, b, c, . . .) 7→ J (α, 2β, 3γ, . . . ; 2a, 6b, 12c, . . .)

provides us with a transfer mechanism between the associahedron and related objects to the
permutahedron and associated objects.

6 Conclusion

In this note we have shown how the face-vectors matrix of the hypercube and the n-simplex
can be generalized to a generalized “f-matrix” for Pascal-like matrices that are defined by
ordinary and exponential generating functions, respectively. To each such Pascal-like matrix
there is an associated γ-matrix and and f -matrix. The bivariate generating functions are
related in a specific and simple pattern. This pattern carries over to the associahedron and
the permutahedron, and indeed, to other polytopes. It would appear useful to consider
generalized Riordan arrays [15] as a context for these cases.
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