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THE NUMBER OF MAXIMUM PRIMITIVE SETS OF INTEGERS

HONG LIU, PÉTER PÁL PACH, AND RICHÁRD PALINCZA

Abstract. We study problems on enumerating sets of integers with multiplicitive contraints. A
subset of {1, . . . , n} is primitive if it does not contain an element dividing another. Let g(n) be the

number of primitive subsets of {1, . . . , n}. Recently, Angelo proved that the limit of g(n)1/n exists,
confirming a conjecture of Cameron and Erdős. However, the limiting value remains unknown. We
present an algorithmic proof that can approximate the limit β with (1 + ε) multiplicative error in
N(ε) steps. In particular, we show that β ≈ 1.57.

Our algorithmic proof can be adapted to enumerate the number of primitive subsets of maximum
size. Let f(n) be the number of n-element primitive subsets of {1, . . . , 2n}. Very recently, Vijay

proved that 1.303n < f(n) < 1.408n. We show that the limit of f(n)1/n also exists, i.e. f(n) =
(α+ o(1))n and α ≈ 1.318 can be approximated efficiently as well.

We address another related problem. Cameron and Erdős showed that the number of sets con-

taining pairwise coprime integers in {1, . . . , n} is between 2π(n) · e(
1

2
+o(1))

√
n and 2π(n) · e(2+o(1))

√
n.

We show that neither of these bounds is tight: there are in fact 2π(n) · e(1+o(1))
√
n such sets.

1. Introduction

Enumeration problem is one of the central topics in combinatorics. In the past decade, it has
attracted a great deal of attention. The machinery of hypergraph container offers a systematic
way to deal with such problems. We refer the readers to [6, 11] for more literature on enumeration
problems on graphs and other settings; see also [3, 9, 12] for more recent results in arithmetic setting
forbidding additive structures.

In this paper, we consider enumeration problems of different flavours. We are interested in sets
of integers with multiplicative forbidden structure. We say that a subset S of [n] := {1, . . . , n} is
primitive if it does not contain any element dividing another, i.e. ∀a, b ∈ S, a ∤ b. Let g(n) be
the number of primitive subsets of [n]. Cameron and Erdős [8] proved that for sufficiently large

n, 1.55967n ≤ g(n) ≤ 1.6n and conjectured that the limit of g(n)1/n exists. Recently, Angelo [1]
verified this conjecture, however he has not provided a method to find better estimate of the limit.
We present a proof of this conjecture, which enables us to approximate the limit β efficiently.

Theorem 1.1. The number of primitive subsets of [n] is g(n) = (β + o(1))n. Futhermore, for any

ε > 0, there exists N(ε) such that β can be approximated with a multiplicative error 1 + ε in N(ε)
steps.

We remark that N(ε) can be explicitly given. Our algorithm provides upper (≈ 1.5745) and
lower (≈ 1.571) estimates within a ratio of 1.0022.

A natural extension is to estimate the cardinality of certain subfamily consisting of “largest”
members. For example, in the context of graphs, the number of maximal (under graph inclusion)
triangle-free graphs on vertex set [n] has been studied [2]; and in the arithmetic setting, the number
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of maximal (under set inclusion) sum-free subsets of [n] has been considered [4, 5]. One such question
about primitive sets, that is, the number of maximum primitive subsets of [2n], was mentioned by
Bishnoi in his blog post “On a famous pigeonhole problem” [7]. Note that a maximum primitive
subset of [2n] is of size n. Indeed, group elements of [2n] into n classes according to their largest
odd divisor, then a primitive set can have at most one element from each class. On the other hand
{n+1, . . . , 2n} is primitive. Behind this pigeonhole argument was the famous story that young Pósa
came up with this solution during a dinner with Erdős. Coming back to the question mentioned by
Bishnoi, denoting by f(n) the number of n-element primitive subsets of [2n], Vijay [13] proved that
for sufficiently large n, 1.303n ≤ f(n) ≤ 1.408n. In fact, the sequence f(n) was already considered
in OEIS, the Online Encyclopedia of Integer Sequences [10]. A priori, it was not clear whether the

limit of f(n)1/n exists. Our second result answers this question, showing that this is indeed the

case, i.e. f(n)1/n converges to some α, which is roughly 1.318.

Theorem 1.2. The number of n-element primitive subsets of [2n] is f(n) = (α + o(1))n. Futher-

more, for any ε > 0, there exists N(ε) such that α can be approximated with a multiplicative error

1 + ε in N(ε) steps.

Similarly, the function N(ε) here can be explicitly given as well. Our algorithm provides upper
(≈ 1.3184) and lower (≈ 1.3183) estimates within a ratio of 1.0001.

Another related problem concerns subsets S of [n] containing pairwise coprime elements, i.e. ∀a, b ∈
S, (a, b) = 1. Cameron and Erdős [8] showed that the number of such sets is between 2π(n) ·
e(

1
2
+o(1))

√
n and 2π(n) · e(2+o(1))

√
n. Deciding which bound is closer to the truth remains an interest-

ing question. We resolve this question, showing that neither of these bounds is tight.

Theorem 1.3. The number of subsets of [n] containing pairwise coprime integers is 2π(n)·e(1+o(1))
√
n.

The rest of the paper is organised as follows. We will present the proof of Theorem 1.2 in
Section 2, and the algorithm approximating α in Section 3. It turns out that estimating g(n) is
considerably simpler than f(n). We only highlight the difference for Theorem 1.1 in Section 4. The
proof of 1.3 is in Section 5.

2. Number of maximum primitive subsets of [2n]

Let l be a positive integer, Pl = {p1, p2, . . . , pl} be the set of first l primes, and q := pl+1 be the
(l+1)st prime. Let Ml ⊆ N denote the set of all positive integers whose prime factors are all in Pl:

Ml = {pα1
1 pα2

2 . . . pαl
l : α1, . . . , αl ≥ 0}.

For x > 0 let Ml(x) = {n ∈ Ml : n ≤ x}. Note that |Ml(x)| ≤ (1+ log2 x)
l as the number of choices

for each αi is at most 1 + log2 x.
Partition [2n] into classes in such a way that two elements belong to the same class if and

only if their ratio can be written as a ratio of two elements from Ml. In other words, denoting
Tl = {t ∈ [2n] : (t, p1p2 . . . pl) = 1}, the lattice containing t ∈ Tl is the following:

Ll(t) = t ·Ml(2n/t) = {tpα1
1 pα2

2 . . . pαl
l : α1, . . . , αl ≥ 0, tpα1

1 pα2
2 . . . pαl

l ≤ 2n}.
Let K be a positive integer. Define Tl,K = Tl ∩ ( 2n

K+1 ,
2n
K ], Tl,≤K = ∪i∈[K]Tl,i, and Ll,K =

∪t∈Tl,≤K
Ll(t). For brevity, throughout this section, we skip the subscript l and write instead

M,T,L(t), TK , T≤K and LK whenever it is clear from the context.
Equip L(t) with the divisibility partial ordering. Note that in L(t), the size of a maximum

antichain is the number of odd elements in L(t). Indeed, by pigeonhole principle the size of an
antichain cannot be larger; on the other hand, each odd element of L(t) has a unique multiple in
L(t) ∩ (n, 2n], all of which form an antichain.

The following fact about max-size primitive sets will be frequently used. For each odd u in [2n],
denote by C(u) the chain {u, 2u, 4u, . . .}.
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(†) If A ⊆ [2n] is an n-element primitive subset, then A contains exactly one element from each
chain C(u).

Note that if A is a max-size primitive set, then A ∩ L(t) is a max-size antichain for all t ∈ T .
However, the converse is not true as the partial order in L(t) does not forbid prime divisors at least
q. The following claim establishes a partial converse.

Claim 2.1. Let T ∗ ⊆ T . If A∗ ⊆ (2n/q, 2n] is a union of max-size antichains of L(t), t ∈ T ∗, then
A∗ can be extended to an n-element primitive set A∗ ⊆ A ⊆ (2n/q, 2n]. Futhermore, such extension

is injective, i.e. distinct A∗ extend to distinct A.

Proof. Note that each chain C(u) is either contained in L(t) for some t ∈ T ∗ or disjoint from
L∗ := ∪t∈T ∗L(t). By (†), to extend A∗, we need to pick exactly one element from each chain
disjoint from L∗.

The elements of A∗ do not divide any element in (2n/q, 2n] \ L∗. Indeed, for any a ∈ A∗ and
b /∈ L∗, if b/a < q is an integer, then b is in the same lattice as a, a contradiction. Thus, we
only have to guarantee that the newly chosen elements form an antichain in (2n/q, 2n] \ L∗ and
none of them divides any element of A∗. This holds, if from each chain C(u) disjoint from L∗, we
choose the unique element lying in (n, 2n]. Clearly, the resulting n-element primitive set A satisfies
A∗ ⊆ A ⊆ (2n/q, 2n]. As A∗ = A ∩ L∗, this extension is injective. �

Let fq(n) be the number of n-element primitive sets in (2n/q, 2n]. Clearly fq(n) ≤ f(n). We

now give bounds on fq(n), which will be useful for proving the convergence of f(n)1/n. Note that
if 2n

i+1 < t ≤ 2n
i , then the poset L(t) is isomorphic with M(i). Consequently, an antichain in

L(t)∩ (2n/q, 2n] corresponds to an antichain in M(i)∩ (i/q, i], since i
q ≤ 2n

qt < i+1
q . Let r′(i) = r′l(i)

denote the number of those max-size antichains of M(i) in (i/q, i]. Then Claim 2.1 implies that

fq(n) ≥
K
∏

i=1
r′(i)|Ti|. Note that |Ti| ≈ 2n

i(i+1)

l
∏

j=1

(

1− 1
pj

)

. Define c′K = c′l,K =
K
∏

i=1
r′(i)

2
i(i+1)

l
∏

j=1

(

1− 1
pj

)

.

Then the above inequality implies that for every K,

(2.1) f(n) ≥ fq(n) ≥ (c′K + o(1))n.

Let VK := (2n/q, 2n]\LK be the left-over elements. Then |VK | = (η′K+o(1))n, where η′K = η′l,K =
(

2− 2
q

)

−
K
∑

i=1

2
i(i+1)

l
∏

j=1

(

1− 1
pj

)(

|M(i)| −
∣

∣

∣
M

(

i
q

)
∣

∣

∣

)

. Since (2n/q, 2n] are covered by ∪i∈[2n],t∈Ti
L(t)

and |M(i)| ≤ (1 + log2 i)
l, we have

(2.2) η′K ≤
∞
∑

i=K+1

2

i(i + 1)
· (1 + log2 i)

l → 0, as K → ∞.

Recall that each max-size primitive set must intersect each lattice at a max-size antichain, so

fq(n) ≤ 2|VK | ·
K
∏

i=1

r′(i)|Ti| = (c′K · 2η′K + o(1))n.

Let s = ⌊log2 q⌋. We shall see that

(2.3) f(n) ≤ fq(n) · 2
s+2
2s

·n ≤ (c′K · 2η′K · 2 s+2
2s + o(1))n.

Thus, combining (2.1) and (2.3), we see that fq(n)
1/n and c′K converge to the same limit αl as

K,n → ∞. From the definition of fq it follows that the sequence αl is increasing and bounded.

Hence, again by (2.1) and (2.3) we obtain that f(n)1/n, αl converge to the same limit α as l, n → ∞.
Let C be the union of the chains contained in (2n/q, 2n], i.e. C = ∪u> 2n

q
C(u). Let A be a max-size

primitive subset of [2n]. By (†), A′ := A∩ C ⊆ (2n/q, 2n] consists of exactly one element from each
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chain C(u). Furthermore, A′ can be extended to an n-element primitive subset in (2n/q, 2n] by
adding C(u)∩ (n, 2n] for each chain C(u) not in C. Such extension is again injective as A′ = A∩ C.
Therefore, the number of possibilities for A′ is at most fq(n). To bound the number of possibilities

to extend A′ to A, the crude upper bound 2|[2n]\C| suffices.
To estimate the size of [2n] \ C, recall the definition of s implies that s is the unique integer

satisfying 2s ≤ q < 2s+1. Then those chains C(u) for which 2n/q < 2n/2s ≤ u ≤ 2n are contained
in C. There are n/2s odd numbers in [2n/2s] and each corresponding chain has at most s elements
in [2n/2s, 2n]. So

|[2n] \ C| ≤ 2n

2s
+

n

2s
· s =

(

s+ 2

2s

)

n,

implying that

f(n) ≤ fq(n) · 2|[2n]\C| ≤ (c′K · 2η′K · 2 s+2
2s + o(1))n.

Setting l = 10 log(1/ε)/ε and K = K(l) = l10l log log l, we get, from (2.2) and (2.3), that the limit

satisfies c′K ≤ α ≤ c′K · 2l−5l log log l · 2 s+2
2s ≤ (1 + ε)c′K . In other words, to determine α up to a

multiplicative error less than 1 + ε, it suffices to calculate c′K(l) for l ≈ log(1/ε)/ε.

Note that some of the estimations that we used are rough, if we calculate more precisely, much
better estimations can be obtained (with a fixed l). For instance, for l = 2, K = 106 we get

(2.4) 1.31464 ≤ c′K ≤ α.

Finally, we mention another way of getting upper bounds for α. Let rl(i) denote the total number
of max-size antichains of Ml(i) and let

cK = cl,K =

K
∏

i=1

r(i)
2

i(i+1)

l
∏

i=1

(

1− 1
pi

)

Then we have

(2.5) α ≤ cK · 2ηK ,

since the number of left-over elements is (ηK + o(1))n, where

ηK = 2−
K
∑

i=1

2

i(i+ 1)

l
∏

j=1

(1− 1/pj)|M(i)|,

For l = 2,K = 106 we get from (2.5) α ≤ 1.32157. Together with (2.4), we get lower and upper
estimates within a ratio of 1.32157

1.31464 < 1.0053.

3. Numerical bounds for max-size primitive sets

In this section, we will present an improved algorithm to get better estimates than the ratio
1.0053 obtained from (2.4) and (2.5).

We have showed that c′K(l) converges to α from below, and it suffices to calculate c′K(l) for large

enough K and l to get arbitrarily good lower bound for α using (2.4). However, for larger values of l
calculating the r′(i) values is getting more and more difficult. Furthermore, the speed of convergence
of c′K(l) to α is getting slower, that is, for larger l we need to calculate c′K for a larger K = K(l)

to get better lower bounds. We get into the same difficulty when looking for upper bounds, since
calculating the r(i) values is also getting more difficult as l increases. Note that for a fixed value of
K it can happen that the cK · 2ηK product is increasing as l increases, as the number of left-over
elements, (ηK + o(1))n, is larger for fixed K and larger l. Because of this, within the same running
time the resulting bound using l primes can get worse and worse, as l increases.
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We shall combine the bounds obtained with different choices for l (the number of primes) in
a way, which will enable us to get significantly better lower and upper bounds within the same
running time.

Let C0, C1, . . . , Ck be a partition of all the chains C(u) (hence it is also a partition of [2n]). The
role of C0 will be slightly different than the roles of other Ci. We will know the structure of Ci for
i > 0 and we will think of C0 as the set of left-over elements, about which we do not have any
information except the size of C0.

If A ⊆ [2n] is a max-size primitive set, then for every i the set A ∩ Ci must also be a max-size
primitive set (max-size antichain) in Ci, due to (†). Denoting by f(X) the number of max-size
primitive subsets of X, we obtain that

(3.1) f(n) = f([2n]) ≤
k
∏

i=0

f(Ci) ≤ 2|C0|
k
∏

i=1

f(Ci).

If we change the partition by merging Ci and Cj for some 0 < i < j, then, compared to the previous

bound on the right hand side of (3.1), we gain a factor of
f(Ci∪Cj)
f(Ci)f(Cj ) ≤ 1.

Conversely, if Ai ⊆ Ci is a max-size antichain in Ci for every i > 0, furthermore, all multiples

(in [2n]) of all elements of Ai are contained in Ci, then
k
⋃

i=1
Ai, together with the unique element

in C(u) ∩ (n, 2n] from each chain C(u) ∈ C0, forms a max-size primitive subset of [2n]. Therefore,
denoting by f∗(X) the number of those max-size primitive A subsets of X such that all multiples
(in [2n]) of all elements of A are contained in X, we obtain that

(3.2)

k
∏

i=1

f∗(Ci) ≤
k
∏

i=0

f∗(Ci) ≤ f([2n]) = f(n).

3.1. Numerical estimations for the lower bound. Let S,K1, . . . ,KS be positive integers, for
brevity let K = (K1,K2, . . . ,KS).

Step 0. Let us consider first the S-dimensional lattices LS,KS
, i.e. LS(t) with t ∈ TS,≤KS

. These
are pairwise disjoint and as we have seen earlier, if we choose max-size antichains consisting of
numbers larger than 2n/(tpS+1) in MS(2n/t), then their union, AS , is a max-size antichain in
LS,KS

. Moreover, all multiples of all elements of AS are contained in LS,KS
.

The number of choices for AS is (λS(K) + o(1))n, where

λS(K) := c′S,KS
=

KS
∏

iS=1

(

r′S(iS)
)

2
iS(iS+1)

∏

j≤S

(

1− 1
pj

)

.

Step 1. Now, consider the set of left-over elements WS := [2n] \ LS,KS
. Our aim is to add those

lattices LS−1(t) for t ∈ TS−1,≤KS−1
that are contained in WS. Let t = pαS

S t′ with some αS and
(t′, p1 . . . pS) = 1. The lattice LS−1(t) is contained in the left-over set WS if and only if 2n/(KS−1+
1) < t and t′ ≤ 2n/(KS + 1). Hence, the number of those 2n/(iS−1 + 1) < t ≤ 2n/(iS−1) for which
LS−1(t) ⊆ WS is at least (w(S−1, iS−1)+o(1))n, where the weight w(S−1, iS−1) can be calculated
as follows:

w(S − 1, iS−1) :=
2

iS−1(iS−1 + 1)

∏

j≤S−1

(

1− 1

pj

) ∞
∑

αS=0

(

1− 1

pS

)(

1

pS

)αS

I(pαS
S · iS−1 > KS) =

=

2
∏

j≤S

(

1− 1
pj

)

iS−1(iS−1 + 1)

∞
∑

αS=0

I(pαS
S · iS−1 > KS)

pαS
S

,
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where I(pαS
S · iS−1 > KS) = 1, if pαS

S · iS−1 > KS holds, and 0 otherwise.
Therefore, the improvement compared to λS(K) is the following factor:

λS−1(K) :=

KS−1
∏

iS−1=1

r′S−1(iS−1)
w(S−1,iS−1).

Step 2. Continuing like this, taking those LS−2(t) lattices in the set of left-over elements WS−1 :=
WS \ LS−1,KS−1

for which t ∈ TS−2,≤KS−2
the next improvement is the factor

λS−2(K) :=

KS−2
∏

iS−2=1

r′S−2(iS−2)
w(S−2,iS−2),

where

w(S − 2, iS−2) :=

2
∏

j≤S

(

1− 1
pj

)

iS−2(iS−2 + 1)

∞
∑

αS=0

∞
∑

αS−1=0

I(p
αS−1

S−1 pαS
S · iS−2 > KS)I(p

αS−1

S−1 · iS−2 > KS−1)

p
αS−1

S−1 pαS
S

.

We continue this process, for S − 3 ≥ l ≥ 1. Step (S − l) is as follows.

Step (S − l). Taking those Ll(t) lattices contained in the set of left-over elements Wl+1 := Wl+2 \
Ll+1,Kl+1

for which t ∈ Tl,≤Kl
, the next improvement is

λl(K) :=

Kl
∏

il=1

r′l(il)
w(l,il),

where the weight w(l, il) is

w(l, il) :=

2
∏

j≤S

(

1− 1
pj

)

il(il + 1)

∞
∑

αS=0

∞
∑

αS−1=0

· · ·
∞
∑

αl+1=0

S
∏

v=l+1

I(ilp
αl+1

l+1 . . . pαv
v > Kv)

pαv
v

.

Finally, after Step (S − 1), we obtain the lower bound

(3.3)
S
∏

l=1

λl(K) ≤ α.

Note that assuming K1 ≥ K2 ≥ · · · ≥ KS the formula for the weight w(l, il) simplifies as

w(l, il) =

2
∏

j≤S

(

1− 1
pj

)

il(il + 1)

∞
∑

αS=0

∞
∑

αS−1=0

· · ·
∞
∑

αl+1=0

I(ilp
αl+1

l+1 > Kl+1)

p
αl+1

l+1 . . . pαS
S

=

=

2
∏

j≤l+1

(

1− 1
pj

)

il(il + 1)

∞
∑

αl+1=0

I(ilp
αl+1

l+1 > Kl+1)

p
αl+1

l+1

.

This assumption is natural, since calculating the r′l(i) values is getting more difficult as l increases,
meaning that with less primes we can calculate r′l(i) till larger values of i.

By taking S = 5,K1 = K2 = 1006632960,K3 = 50000,K4 = 2695,K5 = 1000 we get that
from (3.3) an improved lower bound

(3.4) 1.3183 ≤ α.
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3.2. Numerical estimations for the upper bound. We start with the partition C0 = [2n], by
(3.1) this yields the trivial upper bound f(n) ≤ 4n, that is, α ≤ 4.

Step 1. Fix a positive integer K1. For every odd t ∈ (2n/(K1+1), n] we replace the one-element sets

t, 2t, 4t, . . . , 2⌊log2(2n/t)⌋t by their union. (Note that performing this for every odd t ∈ [2n] would
result in the partition of [2n] into chains C(u).) After this, in the resulting partition every odd
t ∈ (2n/(K1 + 1), 2n] is contained in its chain C(u) = L1(t) and C0 contains the left-over elements,
specially, all positive integers up to 2n/(K1 + 1). In every chain C(u) the max-size antichain is a
1-element set, thus the number of max-size primitive sets is exactly the length of the chain C(u).

Let 2 ≤ i1 ≤ K1. The number of those odd t for which 2n/(i1 + 1) < t ≤ 2n/i1 is (1+o(1))n
i1(i1+1) , and

the improvement for these values of t is r1(i1)

2|M1(i1)| =
|M1(i1)|
2|M1(i1)| . Hence, the upper bound corresponding

to the resulting partition is

α ≤ 4

K1
∏

i1=2

( |M1(i1)

2|M1(i1)|

)
1

i1(i1+1)

.

Note that from now on the set of left-over elements, C0 = [2n/(K1 + 1)], will remain the same.

Step 2. Let K2 ≤ K1 be a positive integer. For every odd t ∈ (2n/(K2 + 1), 2n/3], in decreasing
order, we replace the poset of t and the poset of 3t by their union (for n/9 < t we have L2(3t) =
L1(3t)). Note that when we get to t, the poset of t is C(t) = L1(t) and the poset of 3t is L2(3t).
Indeed, for n/9 < t we have L2(3t) = L1(3t); while for t ≤ n/9, when we try to merge posets of t
and 3t, we have already merged the posets of 3t and 9t, which is L2(3t).

Let 3 ≤ i2 ≤ K2. The number of those odd t for which 2n/(i2 + 1) < t ≤ 2n/i2 is (1+o(1))n
i2(i2+1) , and

the improvement for these values of t is the factor r2(i2)
r1(i2)r2(i2/3)

, since the poset of t is isomorphic

with M1(i2), the poset of 3t is isomorphic with M2(i2/3) and the resulting poset is isomorphic with
M2(i2). Hence, the upper bound corresponding to the resulting partition is

α ≤ 4

K1
∏

i1=2

( |M1(i1)|
2|M1(i1)|

)
1

i1(i1+1)
K2
∏

i2=3

(

r2(i2)

r1(i2)r2(i2/3)

)
1

i2(i2+1)

.

From now on, we continue as in Step 2.: with the help of the next prime pS we build S-dimensional
lattices from the existing (S − 1)-dimensional lattices and calculate the improvement. For 3 ≤ S
the general step is as follows:

Step S. Let KS ≤ KS−1 be a positive integer. For every t ∈ (2n/(KS + 1), 2n/pS ] satisfying
(t, p1p2 . . . pS−1) = 1, in decreasing order, we replace the poset of t and the poset of pSt by their
union. When we consider t, the poset of t is LS−1(t) and the poset of pSt is LS(pSt, 2n). (Note
that for 2n/p2S < t we have LS(pSt, 2n) = LS−1(pSt, 2n).)

Let pS ≤ iS ≤ KS . The number of those t for which 2n/(iS+1) < t ≤ 2n/iS and (t, p1p2 . . . pS−1) =

1 is (1+o(1))n
iS(iS+1)

∏

j<S

(

1− 1
pj

)

, and the improvement for these values of t is the factor rS(iS)
rS−1(iS)rS(iS/pS)

,

since the posets of t, pSt and the resulting poset are isomorphic with MS−1(iS), MS(iS/pS) and
MS(iS) respectively. Hence, the upper bound corresponding to the resulting partition is

α ≤ 4

K1
∏

i1=2

( |M1(i1)|
2|M1(i1)|

)
1

i1(i1+1)
S
∏

l=2

Kl
∏

il=pl

(

rl(il)

rl−1(il)rl(il/pl)

)
2

il(il+1)

∏

j<l

(

1− 1
pj

)

.

By taking S = 5,K1 = K2 = 1006632960,K3 = 50000,K4 = 2695,K5 = 1000 we get that

α ≤ 1.31843.

Together with (3.4), we get lower and upper estimates within a ratio of 1.31843
1.3183 < 1.0001.
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4. Number of primitive subsets of [n]

The proof of convergence of g(n)1/n can be proved using the idea for max-size primitive sets. It

is in fact considerably simpler than that of f(n)1/n. We thus only highlight the differences.
To achieve bounds for g(n), we will use the number of primitive subsets of (n/q, n], denoted by

gq(n). Define now the lattice Ll(t) = t ·M(n/t) instead. Note that A ⊆ (n/q, n] is primitive if and
only if A ∩ Ll(t) is an antichain for every t ≤ n, (t, p1p2 . . . pl) = 1. We also consider the empty
set as an antichain. Instead of r′l(i), the relevant parameter now is R′

l(i), which is the number
of those antichains of Ml(i) that contain only numbers that are larger than i/q. We then have

gq(n) ≥ (c′l,K+o(1))n, where c′l,K =
K
∏

i=1
R′

l(i)

1
i(i+1)

l
∏

j=1

(

1− 1
pj

)

. Let V ′
l,K = (n/q, n]\ ⋃

(t,p1p2...pl)=1,
n

K+1
<t≤n

L(t, n)

be the set of the left-over elements. We then have (c′l,K + o(1))n ≤ gq(n) ≤ (c′l,K + o(1))n · 2|V ′
l,K |,

where |V ′
l,K | = (η′l,K + o(1))n with

η′l,K = (1− 1/q)−
K
∑

i=1

1

i(i+ 1)

l
∏

j=1

(

1− 1

pj

)

(|Ml(i)| − |Ml(i/q)|) → 0 as K, l → ∞.

Thus, gq(n)
1/n converges to some βl. Clearly, βl is an increasing and bounded sequence, thus it

converges to some β. Upon noticing gq(n) ≤ g(n) ≤ gq(n) · 2n/q, we see that g(n)1/n converges to
the same limit β, as l (hence q) tending to infinity.

Denoting byRl(i) the total number of antichains ofMl(i) and setting cl,K =
K
∏

i=1
Rl(i)

1
i(i+1)

l
∏

j=1

(

1− 1
pj

)

and ηl,K = 1−
K
∑

i=1

1
i(i+1)

l
∏

j=1

(

1− 1
pj

)

|Ml(i)| we obtain for every K, l the bounds

c′l,K ≤ β ≤ cl,K · 2ηl,K .

For l = 2,K = 106 we get 1.55966 ≤ β ≤ 1.58852. So the ratio of lower and upper estimates is
1.58852
1.55966 < 1.019.

4.1. Improved algorithm for numerical estimates for g(n)1/n. The convergence of g(n)1/n

can be accelerated in an analogous way as we did in the case of max-size primitive subsets of [2n].
In this section we highlight the differences.

The main difference is that here we do not need to pay special attention on chains C(u). We
similarly partition [n] into subsets (posets) C0, C1, . . . , Ck. If A ⊆ [n] is a primitive set, then for
every i the set A ∩ Ci must also be a primitive set (antichain) in Ci. Denoting by g(X) the number
of max-size primitive subsets of X we obtain that

(4.1) g(n) = g([n]) ≤
k
∏

i=0

g(Ci) ≤ 2|C0|
k
∏

i=1

g(Ci).

If we change the partition by merging Ci and Cj (for some 0 < i < j), then we gain a factor of
g(Ci∪Cj)
g(Ci)g(Cj) ≤ 1. On the other hand, denoting by g∗(X) the number of those primitive A subsets of X

which satisfy that all multiples (in [n]) of all elements of A are contained in X, we obtain that

(4.2)

k
∏

i=1

g∗(Ci) ≤
k
∏

i=0

g∗(Ci) ≤ g([n]) = g(n).
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4.2. Numerical estimations for the lower bound. Let S,K0,K1, . . . ,KS be positive inte-
gers, for brevity let K = (K0,K1,K2, . . . ,KS). We start with taking the LS(t) lattices with
(t, p1p2 . . . pS) = 1 and n/(KS + 1) < t ≤ n, which gives the lower bound

λS(K) := c′S,KS
=

KS
∏

iS=1

(

R′
S(iS)

)

1
iS (iS+1)

∏

j≤S

(

1− 1
pj

)

for β. Continuing this process, for S − 1 ≥ l ≥ 0. In (S − l)-th step, we will merge (to the current
posets) those Ll(t) lattices contained in the set of left-over elements for which n/Kl < t ≤ n and

(t, p1p2 . . . pl) = 1. The next improvement is the factor λl(K) :=
Kl
∏

il=1
R′

l(il)
w(l,il), where the weight

w(l, il) is

w(l, il) :=

∏

j≤S

(

1− 1
pj

)

il(il + 1)

∞
∑

αS=0

∞
∑

αS−1=0

· · ·
∞
∑

αl+1=0

S
∏

v=l+1

I(ilp
αl+1

l+1 . . . pαv
v > Kv)

pαv
v

.

Finally, after Step S, we obtain the lower bound

S
∏

l=0

λl(K) ≤ β.

Note that assuming K0 ≥ K1 ≥ K2 ≥ · · · ≥ KS the formula for the weight w(l, il) simplifies as

w(l, il) =

∏

j≤S

(

1− 1
pj

)

il(il + 1)

∞
∑

αS=0

∞
∑

αS−1=0

· · ·
∞
∑

αl+1=0

I(ilp
αl+1

l+1 > Kl+1)

p
αl+1

l+1 . . . pαS
S

=

=

∏

j≤l+1

(

1− 1
pj

)

il(il + 1)

∞
∑

αl+1=0

I(ilp
αl+1

l+1 > Kl+1)

p
αl+1

l+1

.

Note that the last step here is Step S, which gives the improvement by the factor λ0(K) :=
K0
∏

i0=1
R′

0(i0)
w(0,i0). Since R′

0(i0) is the number of those antichains of the 1-element set {1} where each

element is at least (i0+1)/2, we have R′
0(1) = 2 and R′

0(i0) = 1 for i0 > 1. That is, λ0(K) = 2w(0,1),
where the number of left-over elements after Step (S− 1). is (w(0, 1)+ o(1))n. This represents that
for any left-over element in the interval (n/2, n] we can decide independently whether we would like
to add them, or do not add them to the antichain. In the case of max-size independent sets this
step would not give any improvement, since the number of max-size antichains in the 1-element set
{i0} is 1, even without any restriction on i0.

By taking S = 5,K1 = K2 = 220,K3 = 960,K4 = 196,K5 = 98 we get that

(4.3) 1.571068 ≤ β.

4.3. Numerical estimations for the upper bound. We start with C0 = [n], which yield the
trivial upper bound g(n) ≤ 2n, that is, β ≤ 2.

In Step 1, for every t ∈ (n/(K1 + 1), n/2], in decreasing order, we replace the poset of t and
the poset of 2t by their union. When we consider t, the poset of t is L0(t) = {t}, and the poset

of 2t is L1(2t) = {2t, 4t, . . . , 2⌊log2(n/(2t))⌋t}. Let Rl(i) be the number of antichains in Ml(i). Let

2 ≤ i1 ≤ K1. The number of those t for which n/(i1 + 1) < t ≤ n/i1 is n(1+o(1))
i1(i1+1) , and the

improvement for these values of t is R1(i1)
R0(i1)R1(i1/2)

, since the chains of t, 2t and the resulting chain
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are isomorphic with M0(i1) (1-element poset), M1(i1/2) and M1(i1) respectively. Hence, the upper
bound corresponding to the resulting partition is:

β ≤ 2

K1
∏

i1=2

(

R1(i1)

R0(i1)R1(i1/2)

)
1

i1(i1+1)

.

Note that R0(i1) = 2 is the number of antichains of the 1-element set {i1}.
For S ≥ 2, in Step S, we choose a positive integer KS ≤ KS−1 and for every t ∈ (n/(KS+1), n/pS ]

satisfying (t, p1p2 . . . pS−1) = 1, in decreasing order, we merge the poset of t and the poset of pSt.
When we consider t, the poset of t is LS−1(t) and the poset of pSt is LS(pSt). After Step S, we
obtain the upper bound

β ≤ 2

S
∏

l=1

Kl
∏

il=Pl

(

Rl(il)

Rl−1(il)Rl(il/pl)

)
1

il(il+1)

∏

j≤l−1

(

1− 1
pj

)

.

By taking S = 5,K1 = K2 = 220,K3 = 960,K4 = 196,K5 = 98 we get

β ≤ 1.574445.

Together with (4.3), we get lower and upper estimates within a ratio of 1.574445
1.571068 < 1.00215.

5. Pairwise coprime

In this section, we prove Theorem 1.3. For a positive integer n, denote by Ω(n) the number of
distinct prime divisors of n. Denote by π(n) the number of primes at most n. Assume that A ⊆ [n]
contains pairwise coprime integers, let

A1 = {a ∈ A : Ω(a) ≤ 1},

A2 = {a ∈ A : Ω(a) = 2},

A3 = {a ∈ A : Ω(a) ≥ 3},
that is, A1, A2, A3 contains the elements having at most 1, exactly 2, at least 3 prime factors,
respectively.

The number of choices for A1 is precisely the number of subsets of the set of all primes and 1,
which is at most 2π(n)+1.

In A3, every element has a prime factor below n1/3. As elements in A3 ⊆ A are pairwise coprime,
each prime less than n1/3 can be a divisor of at most one element in A3. Thus the number of choices

for A3 is at most nπ(n1/3) = eo(
√
n).

Let us partition the elements of A2 into two classes: A′
2 contains the elements having a prime

factor which is at most
√
n/ log n and A′′

2 = A2 \A′
2 contains the remaining elements. The number

of choices for A′
2 is at most nπ(

√
n/ logn) = eo(

√
n). For each a ∈ A′′

2 , write a = pq where
√
n/ log n <

p ≤ √
n ≤ q <

√
n log n. Similarly, each of the π(

√
n) choices of p can only divide at most one

a ∈ A′′
2; and there are obviously at most

√
n log n choices for the corresponding q = a/p. Hence, the

number of choices for A′′
2 is at most (

√
n log n)π(

√
n) = e(1+o(1))

√
n.

Now, we continue with the lower bound. Let 2 = pk < pk−1 < · · · < p1 ≤ √
n
(

1− 1
logn

)

be the primes up to
√
n
(

1− 1
logn

)

. We define A2 in the following way: For i = 1, 2, . . . , k we

choose a pair qi for pi from the set of primes from the interval [
√
n, n/pi]. The pair of pi is chosen

in such a way that qi has to be different from the previously chosen q1, . . . , qi−1 primes. Finally,
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A2 := {piqi : 1 ≤ i ≤ k}. The number of choices for qi is

π(n/pi)− π(
√
n)− (π

(√
n

(

1− 1

log n

))

− π(pi)) &

&
2n/pi
log n

− 2
√
n

log n
−

2
√
n
(

1− 1
logn

)

log n
+

2pi
log n

≥ 2
√
n

(log n)− 1
− 2

√
n

log n
≥ 2

√
n

(log n)2

Since k ∼ 2
√
n

logn , the number of choices for A2 is at least
(

2
√
n

(log n)2

)

(2+o(1))
√
n

logn
= e(1+o(1))

√
n. After

choosing A2, we can add any subset of the complement of {p1, . . . , pk, q1, . . . , qk}, the number of

these subsets is 2π(n)−2π(
√
n) = 2π(n)eo(

√
n). Therefore, the total number of subsets containing

pairwise coprime elements is at least 2π(n) · e(1+o(1))
√
n. This completes the proof of Theorem 1.3.
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E-mail address: pricsi@cs.bme.hu

Department of Computer Science and Information Theory, Budapest University of Technology and

Economics, 1117 Budapest, Magyar tudósok körútja 2, Hungary

http://arxiv.org/abs/1705.02584
http://arxiv.org/abs/1804.01740

	1. Introduction
	2. Number of maximum primitive subsets of [2n]
	3. Numerical bounds for max-size primitive sets
	3.1. Numerical estimations for the lower bound
	3.2. Numerical estimations for the upper bound

	4. Number of primitive subsets of [n]
	4.1. Improved algorithm for numerical estimates for g(n)1/n
	4.2. Numerical estimations for the lower bound
	4.3. Numerical estimations for the upper bound

	5. Pairwise coprime
	References

