ON SZÁSZ-MIRAKYAN-JAIN OPERATORS PRESERVING EXPONENTIAL FUNCTIONS

G. C. Greubel
Newport News, VA, United States
jthomae@gmail.com

Abstract

In the present article we define the Jain type modification of the generalized Szász-Mirakjan operators that preserve constant and exponential mappings. Moments, recurrence formulas, and other identities are established for these operators. Approximation properties are also obtained with use of the Boham-Korovkin theorem.

Keywords. Szász-Mirakjan operators, Jain basis functions, Jain operators, Lambert W-function, Boham-Korovkin theorem.
2010 Mathematics Subject Classification: 33E20, 41A25, 41A36.

1. Introduction

In Approximation theory positive linear operatos have been studied with the test functions $\left\{1, x, x^{2}\right\}$ in order to determine the convergence of a function. Of interest are the Szász-Mirakjan operators, based on the Poisson distribution, which are useful in approximating functions on $[0, \infty)$ and are defined as, [10], [12],

$$
\begin{equation*}
S_{n}(f ; x)=\sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} e^{-n x} f\left(\frac{k}{n}\right) \tag{1.1}
\end{equation*}
$$

In 1972, Jain [9, used the Lagrange expansion formula

$$
\begin{equation*}
\phi(z)=\phi(0)+\sum_{k=1}^{\infty} \frac{1}{k!}\left[D^{k-1}\left(f^{k}(z) \phi^{\prime}(z)\right)\right]_{z=0}\left(\frac{z}{f(z)}\right)^{k} \tag{1.2}
\end{equation*}
$$

with $\phi(z)=e^{\alpha z}$ and $f(z)=e^{\beta z}$ to determined that

$$
\begin{equation*}
1=\alpha \sum_{k=0}^{\infty} \frac{1}{k!}(\alpha+\beta k)^{k-1} z^{k} e^{-(\alpha+\beta k) z} . \tag{1.3}
\end{equation*}
$$

Jain established the basis functions

$$
\begin{equation*}
L_{n, k}^{(\beta)}(x)=\frac{n x(n x+\beta k)^{k-1}}{k!} e^{-(n x+\beta k)} \tag{1.4}
\end{equation*}
$$

with the normalization

$$
\sum_{k=0}^{\infty} L_{n, k}^{(\beta)}(x)=1
$$

and considered the operators

$$
\begin{equation*}
B_{n}^{\beta}(f, x)=\sum_{k=0}^{\infty} L_{n, k}^{(\beta)}(x) f\left(\frac{k}{n}\right) \quad x \in[0, \infty) \tag{1.5}
\end{equation*}
$$

In the reduction of $\beta=0$ the Jain operators reduce to the Szász-Mirakjan operators.
Recently Acar, Aral, and Gonska [1] considered the Szász-Mirakjan operators which preserve the test functions $\left\{1, e^{a x}\right\}$ and established the operators

$$
\begin{equation*}
R_{n}^{*}(f ; x)=e^{-n \gamma_{n}(x)} \sum_{k=0}^{\infty} \frac{\left(n \gamma_{n}(x)\right)^{k}}{k!} f\left(\frac{k}{n}\right) \tag{1.6}
\end{equation*}
$$

for functions $f \in C[0, \infty), x \geq 0$, and $n \in \mathbb{N}$ with the reservation property

$$
\begin{equation*}
R_{n}^{*}\left(e^{2 a t} ; x\right)=e^{2 a x} \tag{1.7}
\end{equation*}
$$

Here the Jain basis is used to extend the the class of operators for the test functions $\left\{1, e^{-\lambda x}\right\}$ by defining Szász-Mirakyan-Jain operators which preserve the mapping of $e^{-\lambda x}$, for $\lambda, x>0$. In the case of $\lambda=0$ the Szász-Mirakyan-Jain operators are constant preserving operators. Moments, recurrence formulas, and other identities are established for these new operators. Approximation properties are also obtained with use of the Boham-Korovkin theorem. The Lambert W-function and related properties are used in the analaysis of the properties obtained for the Szász-Mirakyan-Jain operators.

2. Szász-Mirakyan-Jain Operators

The Szász-Mirakyan-Jain operators, (SMJ), which are a generalization of the SzászMirakyan operators, are defined by

$$
\begin{equation*}
R_{n}^{(\beta)}(f ; x)=n \alpha_{n}(x) \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}(x)+\beta k\right)^{k-1} e^{-\left(n \alpha_{n}(x)+\beta k\right)} f\left(\frac{k}{n}\right) \tag{2.1}
\end{equation*}
$$

for $f \in C[0, \infty)$. It is required that these operators preserve the mapping of $e^{-\lambda x}$, as given by

$$
\begin{equation*}
R_{n}^{(\beta)}\left(e^{-\lambda t} ; x\right)=e^{-\lambda x} \tag{2.2}
\end{equation*}
$$

where $x \geq 0$ and $n \in \mathbb{N}$, and $\lambda \geq 0$. When $\beta=0$ in (2.1) the operator reduces to that defined by Acar, Aral, and Gonska [1]. When $\beta=0$ and $\alpha_{n}(x)=x$ the operator reduces to the well known Szász-Mirakyan operators given by (1.1). For $0 \leq \beta<1$ and $\alpha_{n}(x)=x$ these operators reduce to the Szász-Mirakyan-Durrmeyer operators defined by Gupta and Greubel in [5].

Lemma 1. For $x \geq 0, \lambda \geq 0$, we have

$$
\begin{equation*}
\alpha_{n}(x)=\frac{-\lambda x}{n(z(\lambda / n, \beta)-1)}, \tag{2.3}
\end{equation*}
$$

where $-\beta z(t, \beta)=W\left(-\beta e^{-\beta-t}\right)$ and $W(x)$ is the Lambert W-function.

Proof. Considering the mapping (2.2) it is required that

$$
\begin{equation*}
e^{-\lambda x}=n \alpha_{n}(x) \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}(x)+\beta k\right)^{k-1} e^{-\left(n \alpha_{n}(x)+\beta k\right)} e^{-\lambda k / n} \tag{2.4}
\end{equation*}
$$

Making use of (1.3) in the form

$$
\begin{equation*}
e^{n \alpha_{n}(x) z}=n \alpha_{n}(x) \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}(x)+\beta k\right)^{k-1} e^{-(\beta z-\ln (z)) k} \tag{2.5}
\end{equation*}
$$

and letting $\beta z-\ln (z)=\beta+\frac{\lambda}{n}$ then

$$
e^{n \alpha_{n}(x) z}=n \alpha_{n}(x) \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}(x)+\beta k\right)^{k-1} e^{-(\beta+\lambda / n) k}
$$

which provides

$$
e^{-\lambda x}=e^{n \alpha_{n}(x)(z-1)}
$$

or

$$
\alpha_{n}(x)=-\frac{\lambda x}{n(z(\lambda / n, \beta)-1)}
$$

The value of z is determined by the equation $\beta z-\ln (z)=\beta+\frac{\lambda}{n}$ which can be seen in the form

$$
z e^{-\beta z}=e^{-\beta-\lambda / n}
$$

and has the solution

$$
\begin{equation*}
z(\lambda / n, \beta)=-\frac{1}{\beta} W\left(-\beta e^{-\beta-\lambda / n}\right) \tag{2.6}
\end{equation*}
$$

where $W(x)$ is the Lambert W-function.
Remark 1. For the case $\lambda \rightarrow 0$ the resulting $\alpha_{n}(x)$ is

$$
\lim _{\lambda \rightarrow 0} \alpha_{n}(x)=(1-\beta) x .
$$

Proof. For the case $\lambda \rightarrow 0$ the resulting $z=z(\lambda / n, \beta)$ of (2.6) yields $z(0, \beta)=1$. By considering

$$
\frac{\partial z}{\partial \lambda}=-\frac{1}{\beta} \frac{\partial}{\partial \lambda} W\left(-\beta e^{-\beta-\lambda / n}\right)=\frac{W\left(-\beta e^{-\beta-\lambda / n}\right)}{n \beta\left(1+W\left(-\beta e^{-\beta-\lambda / n}\right)\right)}
$$

and

$$
\lim _{\lambda \rightarrow 0} \frac{\partial z}{\partial \lambda}=-\frac{1}{n(1-\beta)} .
$$

Now, by use of L'Hospital's rule,

$$
\lim _{\lambda \rightarrow 0} \alpha_{n}(x)=\frac{x}{n} \lim _{\lambda \rightarrow 0} \frac{\lambda}{z-1}=\frac{x}{n} \lim _{\lambda \rightarrow 0} \frac{1}{\frac{\partial z}{\partial \lambda}}=(1-\beta) x
$$

as claimed.

By taking the case of $\lambda \rightarrow 0$ the operators $R_{n}^{(\beta)}(f ; x)$ reduce from exponential preserving to constant preserving operators. In this case the operators $\left.R_{n}^{(\beta)}(f ; x)\right|_{\lambda \rightarrow 0}$ are related to the Jain operators, (1.5), by $R_{n}^{(\beta)}(f ; x)=B_{n}^{\beta}(f ;(1-\beta) x)$.

The SMJ operators are now completely defined by

$$
\left\{\begin{align*}
R_{n}^{(\beta)}(f ; x) & =n \alpha_{n}(x) \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}(x)+\beta k\right)^{k-1} e^{-\left(n \alpha_{n}(x)+\beta k\right)} f\left(\frac{k}{n}\right) \tag{2.7}\\
\alpha_{n}(x) & =-\frac{\lambda x}{n(z(\lambda / n, \beta)-1)} \\
z(t, \beta) & =-\frac{1}{\beta} W\left(-\beta e^{-\beta-t}\right)
\end{align*}\right.
$$

and the requirement that $R_{n}^{(\beta)}\left(e^{-\lambda t} ; x\right)=e^{-\lambda x}$, for $x \geq 0, \lambda \geq 0$ and $n \in \mathbb{N}$.

3. Moment Estimations

Lemma 2. The moments for the SMJ operators are given by:

$$
\begin{align*}
& R_{n}^{(\beta)}(1 ; x)=1 \\
& R_{n}^{(\beta)}(t ; x)=\frac{\alpha_{n}(x)}{1-\beta} \\
& R_{n}^{(\beta)}\left(t^{2} ; x\right)=\frac{\alpha_{n}^{2}(x)}{(1-\beta)^{2}}+\frac{\alpha_{n}(x)}{n(1-\beta)^{3}} \tag{3.1}\\
& R_{n}^{(\beta)}\left(t^{3} ; x\right)=\frac{\alpha_{n}^{3}(x)}{(1-\beta)^{3}}+\frac{3 \alpha_{n}^{2}(x)}{n(1-\beta)^{4}}+(1+2 \beta) \frac{\alpha_{n}(x)}{n^{2}(1-\beta)^{5}} \\
& R_{n}^{(\beta)}\left(t^{4} ; x\right)=\frac{\alpha_{n}^{4}(x)}{(1-\beta)^{4}}+\frac{6 \alpha_{n}^{3}(x)}{n(1-\beta)^{5}}+(7+8 \beta) \frac{\alpha_{n}^{2}(x)}{n^{2}(1-\beta)^{6}}+\left(1+8 \beta+6 \beta^{2}\right) \frac{\alpha_{n}(x)}{n^{3}(1-\beta)^{7}} \\
& R_{n}^{(\beta)}\left(t^{5} ; x\right)=\frac{\alpha_{n}^{5}(x)}{(1-\beta)^{5}}+\frac{10 \alpha_{n}^{4}(x)}{n(1-\beta)^{6}}+5(5+4 \beta) \frac{\alpha_{n}^{3}(x)}{n^{2}(1-\beta)^{7}} \\
& \quad+15\left(1+4 \beta+2 \beta^{2}\right) \frac{\alpha_{n}^{2}(x)}{n^{3}(1-\beta)^{8}}+\left(1+22 \beta+58 \beta^{2}+24 \beta^{3}\right) \frac{\alpha_{n}(x)}{n^{4}(1-\beta)^{9}}
\end{align*}
$$

The proof follows directly from work of the author dealing with moment operators for the Jain basis, see [4, 5, 6].
Lemma 3. Let, $\phi=t-x$, then the central moments of the SMJ operators are:

$$
\begin{align*}
R_{n}^{(\beta)}\left(\phi^{0} ; x\right) & =1 \\
R_{n}^{(\beta)}\left(\phi^{1} ; x\right) & =\frac{\alpha_{n}(x)}{1-\beta}-x \\
R_{n}^{(\beta)}\left(\phi^{2} ; x\right) & =\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{2}+\frac{\alpha_{n}(x)}{n(1-\beta)^{3}} \tag{3.2}\\
R_{n}^{(\beta)}\left(\phi^{3} ; x\right) & =\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{3}+\frac{3 \alpha_{n}(x)}{n(1-\beta)^{3}}\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)+(1+2 \beta) \frac{\alpha_{n}(x)}{n^{2}(1-\beta)^{5}}
\end{align*}
$$

$$
\begin{aligned}
& R_{n}^{(\beta)}\left(\phi^{4} ; x\right)=\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{4}+\frac{6 \alpha_{n}(x)}{n(1-\beta)^{3}}\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{2}+(7+8 \beta) \frac{\alpha_{n}(x)}{n^{2}(1-\beta)^{5}} \\
& \cdot\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)+\left(1+8 \beta+6 \beta^{2}\right) \frac{\alpha_{n}(x)}{n^{3}(1-\beta)^{7}}+\frac{3 \alpha_{n}(x)}{n^{2}(1-\beta)^{5}} \\
& R_{n}^{(\beta)}\left(\phi^{5} ; x\right)=\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{5}+\frac{10 \alpha_{n}(x)}{n(1-\beta)^{3}}\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{3}+\frac{5 \alpha_{n}(x)}{n^{2}(1-\beta)^{5}}\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right) \cdot \mu_{1} \\
&+\frac{5 \alpha_{n}(x)}{n^{3}(1-\beta)^{7}} \cdot \mu_{2}+\left(1+22 \beta+58 \beta^{2}+24 \beta^{3}\right) \frac{\alpha_{n}(x)}{n^{4}(1-\beta)^{9}},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mu_{1}=(5+4 \beta)\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)+3 x \\
& \mu_{2}=3\left(1+4 \beta+2 \beta^{2}\right)\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)+2(1+2 \beta) x
\end{aligned}
$$

Proof. Utilizing the binomial expansion

$$
\phi^{m}=(t-x)^{m}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} t^{m-k} x^{k}
$$

then

$$
\begin{equation*}
R_{n}^{(\beta)}\left(\phi^{m} ; x\right)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} x^{k} R_{n}^{(\beta)}\left(t^{m-k} ; x\right) . \tag{3.3}
\end{equation*}
$$

Wih the use of (3.1) the first few values of m are:

$$
\begin{aligned}
R_{n}^{(\beta)}\left(\phi^{0} ; x\right) & =R_{n}^{(\beta)}\left(t^{0} ; x\right)=1 \\
R_{n}^{(\beta)}\left(\phi^{1} ; x\right) & =R_{n}^{(\beta)}(t ; x)-x R_{n}^{(\beta)}\left(t^{0} ; x\right)=\frac{\alpha_{n}(x)}{1-\beta}-x \\
R_{n}^{(\beta)}\left(\phi^{2} ; x\right) & =R_{n}^{(\beta)}\left(t^{2} ; x\right)-2 x R_{n}^{(\beta)}(t ; x)+x^{2} R_{n}^{(\beta)}\left(t^{0} ; x\right) \\
& =\frac{\alpha_{n}^{2}(x)}{(1-\beta)^{2}}+\frac{\alpha_{n}(x)}{n(1-\beta)^{3}}-2 x \frac{\alpha_{n}(x)}{1-\beta}+x^{2} \\
& =\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{2}+\frac{\alpha_{n}(x)}{n(1-\beta)^{3}}
\end{aligned}
$$

The remainder of the central moments follow from (3.1) and (3.3).
Lemma 4. The central moments, given in Lemma 3, lead to the limits:

$$
\begin{align*}
\lim _{n \rightarrow \infty} n R_{n}^{(\beta)}(\phi ; x) & =\frac{\lambda x}{2!(1-\beta)^{2}} \tag{3.4}\\
\lim _{n \rightarrow \infty} n R_{n}^{(\beta)}\left(\phi^{2} ; x\right) & =\frac{x}{(1-\beta)^{2}}
\end{align*}
$$

Proof. By setting $t=\lambda / n$ in (6.4) then

$$
\begin{aligned}
& \frac{(-\lambda)}{n(1-\beta)(z(\lambda / n, \beta)-1)}=1+\frac{v}{2!}+2(1-4 \beta) \frac{v^{2}}{4!}+6 \beta^{2} \frac{v^{3}}{4!} \\
& -\left(1-8 \beta+88 \beta^{2}+144 \beta^{3}\right) \frac{v^{4}}{6!}+840 \beta^{2}\left(1+12 \beta+8 \beta^{2}\right) \frac{v^{5}}{8!}+O\left(v^{6}\right),
\end{aligned}
$$

where $n(1-\beta)^{2} v=\lambda$. This expansion may be placed into the form

$$
\frac{\alpha_{n}(x)}{1-\beta}-x=\frac{v x}{2!}\left(1+(1-4 \beta) \frac{v}{3!}+12 \beta^{2} \frac{v^{2}}{4!}-O\left(v^{3}\right)\right)
$$

Multiplying by n and taking the desired limit the resulting value is given by

$$
\lim _{n \rightarrow \infty} n R_{n}^{(\beta)}(\phi ; x)=\frac{\lambda x}{2!(1-\beta)^{2}}
$$

It is evident that

$$
\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{2}=\left(\frac{v x}{2!}\right)^{2}\left(1+2(1-4 \beta) \frac{v}{3!}+20\left(1-8 \beta+52 \beta^{2}\right) \frac{v^{2}}{6!}-O\left(v^{3}\right)\right)
$$

for which

$$
\begin{aligned}
\left(\frac{\alpha_{n}(x)}{1-\beta}-x\right)^{2}+ & \frac{\alpha_{n}(x)}{n(1-\beta)^{3}} \\
= & \left(\frac{v x}{2!}\right)^{2}\left(1+2(1-4 \beta) \frac{v}{3!}+20\left(1-8 \beta+52 \beta^{2}\right) \frac{v^{2}}{6!}-O\left(v^{3}\right)\right) \\
& +\frac{x}{n(1-\beta)^{2}}\left(1+\frac{v}{2!}+2(1-4 \beta) \frac{v^{2}}{4!}-O\left(v^{3}\right)\right)
\end{aligned}
$$

Multiplying by n and taking the limit yields

$$
\lim _{n \rightarrow \infty} n R_{n}^{(\beta)}\left(\phi^{2} ; x\right)=\frac{x}{(1-\beta)^{2}} .
$$

Remark 2. Other limits may be determined by extending the work of Lemma 4, such as:

$$
\begin{align*}
\lim _{n \rightarrow \infty} R_{n}^{(\beta)}\left(\phi^{m} ; x\right) & =0, \text { for } m \geq 1 \\
\lim _{n \rightarrow \infty} n R_{n}^{(\beta)}\left(\phi^{m} ; x\right) & =0, \text { for } m \geq 3 \\
\lim _{n \rightarrow \infty} n^{2} R_{n}^{(\beta)}\left(\phi^{3} ; x\right) & =\frac{2(1+2 \beta) x+3 \lambda x^{2}}{2!(1-\beta)^{4}} \tag{3.5}\\
\lim _{n \rightarrow \infty} n^{2} R_{n}^{(\beta)}\left(\phi^{4} ; x\right) & =\frac{3 x^{2}}{(1-\beta)^{4}}
\end{align*}
$$

Lemma 5. Expansion on a general exponential weight is given by

$$
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)=e^{n \alpha_{n}(x)(z(\mu / n, \beta)-1)},
$$

or

$$
\begin{equation*}
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)=\operatorname{Exp}\left[-\lambda x\left(\frac{z(\mu / n, \beta)-1}{z(\lambda / n, \beta)-1}\right)\right]=\operatorname{Exp}\left[-\mu x \cdot \frac{\lambda}{\mu} \frac{z(\mu / n, \beta)-1}{z(\lambda / n, \beta)-1}\right] \tag{3.6}
\end{equation*}
$$

for $\mu \geq 0$ and has the expansion

$$
\begin{align*}
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)=e^{-\mu x} & \left(1+\frac{\mu(\mu-\lambda) x}{2!n(1-\beta)^{2}}+((3 \mu x-4-8 \beta) \mu\right. \\
& \left.-(3 \mu x-2+8 \beta) \lambda) \frac{\mu(\mu-\lambda) x}{4!n^{2}(1-\beta)^{4}}+\mathcal{O}\left(\frac{\mu(\mu-\lambda) x}{6!n^{3}(1-\beta)^{6}}\right)\right) \tag{3.7}
\end{align*}
$$

where $-\beta z(\mu / n, \beta)=W\left(-\beta e^{-\beta-\mu / n}\right),-\beta z(\lambda / n, \beta)=W\left(-\beta e^{-\beta-\lambda / n}\right)$. In the limit as $n \rightarrow \infty$ it is evident that

$$
\begin{align*}
\lim _{n \rightarrow \infty} R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right) & =e^{-\mu x} \\
\lim _{n \rightarrow \infty} n\left[R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)-e^{-\mu x}\right] & =\frac{\mu(\mu-\lambda) x}{2!(1-\beta)^{2}} e^{-\mu x} . \tag{3.8}
\end{align*}
$$

Proof. It is fairly evident that

$$
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)=n \alpha_{n}(x) \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}(x)+\beta k\right)^{k-1} e^{-n \alpha_{n}(x)-(\beta+\mu / n) k}
$$

which, by comparison to (2.5), leads to

$$
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)=e^{-n \alpha_{n}(x)(z(\mu / n, \beta)-1)}=\operatorname{Exp}\left[-\lambda x\left(\frac{z(\mu / n, \beta)-1}{z(\lambda / n, \beta)-1}\right)\right]
$$

The expansion of (3.6), with use of (6.5), is given by

$$
\begin{aligned}
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)= & \sum_{k=0}^{\infty} \frac{(-\mu x)^{k}}{k!}\left(\frac{\lambda}{\mu} \frac{z(\mu / n, \beta)-1}{z(\lambda / n, \beta)-1}\right)^{k} \\
= & \sum_{k=0}^{\infty} \frac{(-\mu x)^{k}}{k!}\left(1-\frac{k(\mu-\lambda)}{2!(1-\beta)^{2}}+k((3 k+1+8 \beta) \mu\right. \\
& \left.+(3 k-1-8 \beta) \lambda) \frac{\mu-\lambda}{4!(1-\beta)^{4}}+\mathcal{O}\left(\frac{\mu-\lambda}{6!(1-\beta)^{6}}\right)\right) \\
= & e^{-\mu x}\left(1+\frac{\mu(\mu-\lambda) x}{2!n(1-\beta)^{2}}+((3 \mu x-4-8 \beta) \mu\right. \\
& \left.\quad-(3 \mu x-2+8 \beta) \lambda) \frac{\mu(\mu-\lambda) x}{4!n^{2}(1-\beta)^{4}}+\mathcal{O}\left(\frac{\mu(\mu-\lambda) x}{6!n^{3}(1-\beta)^{6}}\right)\right) .
\end{aligned}
$$

Taking the appropriate limits yields the desired results.
Remark 3. By use of Lemma 5 it may be stated that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2} R_{n}^{(\beta)}\left(\left(e^{-t}-e^{-x}\right)^{4} ; x\right)=\frac{3 x^{2} e^{-4 x}}{(1-\beta)^{4}} \tag{3.9}
\end{equation*}
$$

Proof. Since

$$
\begin{gathered}
R_{n}^{(\beta)}\left(\left(e^{-t}-e^{-x}\right)^{4} ; x\right)=R_{n}^{(\beta)}\left(e^{-4 t} ; x\right)-4 e^{-x} R_{n}^{(\beta)}\left(e^{-3 t} ; x\right)+6 e^{-2 x} R_{n}^{(\beta)}\left(e^{-2 t} ; x\right) \\
-4 e^{-3 x} R_{n}^{(\beta)}\left(e^{-t} ; x\right)+e^{-4 x} R_{n}^{(\beta)}(1 ; x)
\end{gathered}
$$

then, by making use of (3.7), it becomes evident that

$$
R_{n}^{(\beta)}\left(\left(e^{-t}-e^{-x}\right)^{4} ; x\right)=\frac{3 x^{2} e^{-4 x}}{n^{2}(1-\beta)^{4}}+\mathcal{O}\left(\frac{1}{n^{3}(1-\beta)^{6}}\right)
$$

Multiplying by n^{2} and taking the limit as $n \rightarrow \infty$ yields the desired result.

4. Analysis

Theorem 1. Given the sequence $A_{n}: C^{*}[0, \infty) \rightarrow C^{*}[0, \infty)$ of positive linear operators which satisfies the conditions

$$
\lim _{n \rightarrow \infty} A_{n}\left(e^{-k t} ; x\right)=e^{-k x}, \quad k=0,1,2
$$

uniformly in $[0, \infty)$ then

$$
\lim _{n \rightarrow \infty} A_{n}(f ; x)=f(x)
$$

uniformly in $[0, \infty)$ for every $f \in C^{*}[0, \infty)$.
The proof of this theorem 1 can be found in [2, 3, 8] and has, in essense, been demonstarted by (3.7) for $\mu \geq 0$. An estimate of the rate of convergence for the SMJ operators will require the use of the modulus of continuity

$$
\omega(F, \delta)=\operatorname{Sup}_{x, t>0}|F(t)-F(x)|
$$

and can be seen as, for the case where $F\left(e^{-t}\right)=f(t)$,

$$
\omega^{*}(f ; \delta)=\operatorname{Sup}_{\substack{\mathrm{x}, \mathrm{t}>0 \\\left|e^{-t}-e^{-x}\right| \leq \delta}}|f(t)-f(x)|
$$

and is well defined for $\delta \geq 0$ and all functions $f \in C^{*}[0, \infty)$. In the present case the modulus of continuity has the property

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(1+\frac{\left(e^{-x}-e^{-t}\right)^{2}}{\delta^{2}}\right) \omega^{*}(f ; \delta), \quad \delta>0 \tag{4.1}
\end{equation*}
$$

Further properties and use of the modulus of continuity can be found in [3, 8]. The following theorem can also be found in the later.

Theorem 2. If a sequence of positive linear operators $A_{n}: C^{*}[0, \infty) \rightarrow C^{*}[0, \infty)$ satisfy the equalities:

$$
\begin{aligned}
\left\|A_{n}(1 ; x)-1\right\|_{[0, \infty)} & =a_{n} \\
\left\|A_{n}\left(e^{-t} ; x\right)-e^{-x}\right\|_{[0, \infty)} & =b_{n} \\
\left\|A_{n}\left(e^{-2 t} ; x\right)-e^{-2 x}\right\|_{[0, \infty)} & =c_{n}
\end{aligned}
$$

where a_{n}, b_{n} and c_{n} are bounded and finite, in the limit $n \rightarrow \infty$, then

$$
\left\|A_{n}(f ; x)-f(x)\right\|_{[0, \infty)} \leq a_{n}|f(x)|+\left(2+a_{n}\right) \omega^{*}\left(f, \sqrt{a_{n}+2 b_{n}+c_{n}}\right)
$$

for every function $f \in C^{*}[0, \infty)$, and satisfies

$$
\left\|A_{n}(f ; x)-f(x)\right\|_{[0, \infty)} \leq 2 \omega^{*}\left(f, \sqrt{2 b_{n}+c_{n}}\right)
$$

for constant preserving operators.
Proof. Since

$$
A_{n}\left(\left(e^{-t}-e^{-x}\right)^{2} ; x\right)=\left[A_{n}\left(e^{-2 t} ; x\right)-e^{-2 x}\right]-2 e^{-x}\left[A_{n}\left(e^{-t} ; x\right)-e^{-x}\right]+e^{-2 x}\left[A_{n}(1 ; x)-1\right]
$$

then, by use of (4.1),

$$
\begin{aligned}
A_{n}(|f(t)-f(x)| ; x) & \leq\left(A_{n}(1 ; x)+\frac{1}{\delta^{2}} A_{n}\left(\left(e^{-t}-e^{-x}\right)^{2} ; x\right)\right) \omega^{*}(f, \delta) \\
& \leq\left(1+a_{n}+\frac{a_{n}+2 b_{n}+c_{n}}{\delta^{2}}\right) \omega^{*}(f, \delta)
\end{aligned}
$$

By choosing $\delta=\sqrt{a_{n}+2 b_{n}+c_{n}}$ then

$$
A_{n}(|f(t)-f(x)| ; x) \leq\left(2+a_{n}\right) \omega^{*}\left(f, \sqrt{a_{n}+2 b_{n}+c_{n}}\right) .
$$

Now, making use of

$$
\left|A_{n}(f ; x)-f(x)\right| \leq|f|\left|A_{n}(1 ; x)-1\right|+A_{n}(|f(t)-f(x)| ; x)
$$

leads to the uniform estimation of convergence in the form

$$
\left\|A_{n}(f ; x)-f(x)\right\|_{[0, \infty)} \leq a_{n}|f(x)|+\left(2+a_{n}\right) \omega^{*}\left(f, \sqrt{a_{n}+2 b_{n}+c_{n}}\right)
$$

For constant preserving operators the property $\left\|A_{n}(1 ; x)-1\right\|_{[0, \infty)}=a_{n}=0$ holds and leads to

$$
\left\|A_{n}(f ; x)-f(x)\right\|_{[0, \infty)} \leq 2 \omega^{*}\left(f, \sqrt{2 b_{n}+c_{n}}\right)
$$

Remark 4. The SMJ operators satisfy

$$
\left\|R_{n}^{(\beta)}(f ; x)-f(x)\right\|_{[0, \infty)} \leq 2 \omega^{*}\left(f, \sqrt{2 b_{n}+c_{n}}\right)
$$

Proof. By using Lemma 2 it is evident that $R_{n}^{(\beta)}(1 ; x)=1$ and yields $a_{n}=0$. By using (3.7), of Lemma 5, it is seen that

$$
R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)-e^{-\mu x}=e^{-\mu x}\left(\frac{\mu(\mu-\lambda) x}{2!n(1-\beta)^{2}}-\frac{\Lambda(x, \mu, \lambda) \mu(\mu-\lambda) x}{4!n^{2}(1-\beta)^{4}}+\mathcal{O}\left(\frac{1}{n^{3}(1-\beta)^{6}}\right)\right),
$$

where $\Lambda(x, \mu, \lambda)=(3 \mu x-4-8 \beta) \mu-(3 \mu x-2+8 \beta) \lambda$, and provides

$$
\left\|R_{n}^{(\beta)}\left(e^{-\mu t} ; x\right)-e^{-\mu x}\right\|=\left\|\frac{\mu(\mu-\lambda) x e^{-\mu x}}{2!n(1-\beta)^{2}}\left(1+\frac{2 \Lambda(x, \mu, \lambda)}{4!n(1-\beta)^{2}}+\mathcal{O}\left(\frac{1}{n^{2}(1-\beta)^{4}}\right)\right)\right\|
$$

which, for $\mu \in\{1,2\}$, the remaining limiting values, b_{n} and c_{n} can be seen to be bounded and finite. It is also evident that in the limiting case, $n \rightarrow \infty, b_{n}$ and c_{n} tend to zero. By the resulting statements of Theorem 2 it is determined that

$$
\left\|R_{n}^{(\beta)}(f ; x)-f(x)\right\|_{[0, \infty)} \leq 2 \omega^{*}\left(f, \sqrt{2 b_{n}+c_{n}}\right)
$$

as claimed.
For the SMJ operators a quantitative Voronovskaya-type theorem can be defined in the following way.

Theorem 3. Let $f, f^{\prime}, f^{\prime \prime} \in C^{*}[0, \infty)$ then

$$
\begin{aligned}
& \left|n\left[R_{n}^{(\beta)}(f ; x)-f(x)\right]-\frac{\lambda x}{2!(1-\beta)^{2}} f^{\prime}(x)-\frac{x}{n(1-\beta)^{2}} f^{\prime \prime}(x)\right| \\
& \quad \leq\left|\mu_{n}(x, \beta)\right|\left|f^{\prime}(x)\right|+\left|\nu_{n}(x, \beta)\right|\left|f^{\prime \prime}(x)\right| \\
& \quad+2\left(2 \nu_{n}(x, \beta)+\frac{x}{(1-\beta)^{2}}+\zeta_{n}(x, \beta)\right) \omega^{*}\left(f^{\prime \prime} ; \frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{n}(x, \beta) & =n R_{n}^{(\beta)}(\phi ; x)-\frac{\lambda x}{2!(1-\beta)^{2}} \\
\nu_{n}(x, \beta) & =\frac{1}{2!}\left(n R_{n}^{(\beta)}\left(\phi^{2} ; x\right)-\frac{x}{(1-\beta)^{2}}\right) \\
\zeta_{n}(x, \beta) & =n^{2} \sqrt{R_{n}^{(\beta)}\left(\left(e^{-x}-e^{-t}\right)^{4} ; x\right)} \sqrt{R_{n}^{(\beta)}\left(\phi^{4} ; x\right)}
\end{aligned}
$$

Proof. The Taylor expansion for the function $f(x)$ is seen by

$$
\begin{equation*}
f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{f^{\prime \prime}(x)}{2!}(t-x)^{2}+\theta(t, x)(t-x)^{2} \tag{4.2}
\end{equation*}
$$

where $2 \theta(t, x)=f^{\prime \prime}(\eta)-f^{\prime \prime}(x)$ for $x \leq \eta \leq t$. Applying the SMJ operator to the Taylor expansion it is determined that

$$
\begin{array}{rl}
\mid R_{n}^{(\beta)}(f(t) ; x)-f & \left.f(x) R_{n}^{(\beta)}(1 ; x)-f^{\prime}(x) R_{n}^{(\beta)}(\phi ; x)-\frac{f^{\prime \prime}(x)}{2!} R_{n}^{(\beta)}\left(\phi^{2} ; x\right) \right\rvert\, \\
\leq & \left|R_{n}^{(\beta)}\left(\theta(t, x) \phi^{2} ; x\right)\right| .
\end{array}
$$

Using the results of lemma 4 and 5 this can be seen by

$$
\begin{aligned}
& \left|n\left(R_{n}^{(\beta)}(f ; x)-f(x)\right)-\frac{\lambda x}{2!(1-\beta)^{2}} f^{\prime}(x)-\frac{x}{2!(1-\beta)^{2}} f^{\prime \prime}(x)\right| \\
& \quad \leq\left|n R_{n}^{(\beta)}(\phi ; x)-\frac{\lambda x}{2!(1-\beta)^{2}}\right|\left|f^{\prime}(x)\right|+\frac{1}{2!}\left|n R_{n}^{(\beta)}\left(\phi^{2} ; x\right)-\frac{x}{(1-\beta)^{2}}\right|\left|f^{\prime \prime}(x)\right| \\
& \quad+\left|n R_{n}^{(\beta)}\left(\theta(t, x) \phi^{2} ; x\right)\right|
\end{aligned}
$$

or

$$
\begin{aligned}
& \left|n\left(R_{n}^{(\beta)}(f ; x)-f(x)\right)-\frac{\lambda x}{2!(1-\beta)^{2}} f^{\prime}(x)-\frac{x}{2!(1-\beta)^{2}} f^{\prime \prime}(x)\right| \\
& \quad \leq\left|\mu_{n}(x, \beta)\right|\left|f^{\prime}(x)\right|+\left|\nu_{n}(x, \beta)\right|\left|f^{\prime \prime}(x)\right|+\left|n R_{n}\left(\theta(t, x) \phi^{2} ; x\right)\right|
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{n}(x, \beta) & =n R_{n}^{(\beta)}(\phi ; x)-\frac{\lambda x}{2!(1-\beta)^{2}} \\
\nu_{n}(x, \beta) & =\frac{1}{2!}\left(n R_{n}^{(\beta)}\left(\phi^{2} ; x\right)-\frac{x}{(1-\beta)^{2}}\right)
\end{aligned}
$$

By using (3.8) it is given that

$$
|\theta(t, x)| \leq\left(1+\frac{\left(e^{-t}-e^{-x}\right)^{2}}{\delta^{2}}\right) \omega^{*}\left(f^{\prime \prime} ; \delta\right)
$$

which becomes, when $\left|e^{-t}-e^{-x}\right| \leq \delta$ is taken into consideration, $|\theta(t, x)| \leq 2 \omega^{*}\left(f^{\prime \prime} ; \delta\right)$. If $\left|e^{-t}-e^{-x}\right|>\delta$ then $|\theta(t, x)| \leq\left(2 / \delta^{2}\right)\left(e^{-t}-e^{-x}\right)^{2} \omega^{*}\left(f^{\prime \prime} ; \delta\right)$. Therefore, it can be concluded that

$$
|\theta(t, x)| \leq 2\left(1+\frac{\left(e^{-t}-e^{-x}\right)^{2}}{\delta^{2}}\right) \omega^{*}\left(f^{\prime \prime} ; \delta\right)
$$

The term $n R_{n}^{(\beta)}\left(\theta(t, x) \phi^{2} ; x\right)$ becomes

$$
n R_{n}^{(\beta)}\left(\theta(t, x) \phi^{2} ; x\right) \leq 2 n\left(R_{n}^{(\beta)}\left(\phi^{2} ; x\right)+\frac{1}{\delta^{2}} R_{n}^{(\beta)}\left(\left(e^{-t}-e^{-x}\right)^{2} \phi^{2} ; x\right)\right) \omega^{*}\left(f^{\prime \prime} ; \delta\right)
$$

which, by applying the Cauchy-Swarz inequality, becomes

$$
n R_{n}^{(\beta)}\left(\theta(t, x) \phi^{2} ; x\right) \leq 2 n\left(R_{n}^{(\beta)}\left(\phi^{2} ; x\right)+\frac{1}{\delta^{2}} \zeta_{n}(x, \beta)\right) \omega^{*}\left(f^{\prime \prime} ; \delta\right),
$$

where

$$
\zeta_{n}(x, \beta)=n^{2} \sqrt{R_{n}^{(\beta)}\left(\left(e^{-x}-e^{-t}\right)^{4} ; x\right)} \sqrt{R_{n}^{(\beta)}\left(\phi^{4} ; x\right)} .
$$

Now, by choosing $\delta=1 / \sqrt{n}$, the desired result is obtained.
Remark 5. By use of Lemma 4 it is clear that $\mu_{n}(x, \beta) \rightarrow 0$ and $\nu_{n}(x, \beta) \rightarrow 0$ as $n \rightarrow \infty$. Using (3.5) and (3.9) the limit of $\zeta_{n}(x, \beta)$ becomes

$$
\lim _{n \rightarrow \infty} \zeta_{n}(x, \beta)=\frac{3 x^{2} e^{-2 x}}{(1-\beta)^{4}}
$$

and yields

$$
\lim _{n \rightarrow \infty}\left(2 \nu_{n}(x, \beta)+\frac{x}{(1-\beta)^{2}}+\zeta_{n}(x, \beta)\right)=\frac{x}{(1-\beta)^{2}}+\frac{3 x^{2} e^{-2 x}}{(1-\beta)^{4}}
$$

Corollary 1. Let $f, f^{\prime}, f^{\prime \prime} \in C^{*}[0, \infty)$ then the inequality

$$
\lim _{n \rightarrow \infty} n\left|R_{n}^{(\beta)}(f ; x)-f(x)\right|=\frac{\lambda x}{2!(1-\beta)^{2}} f^{\prime}(x)+\frac{x}{(1-\beta)^{2}} f^{\prime \prime}(x)
$$

holds for all $x \in[0, \infty)$.

5. Further Considerations

Having established several results for the Szász-Mirakyan-Jain operators further considerations can be considered. One such consideration could be an application of a theorem found in a recent work of Gupta and Tachev, [7]. In order to do so the following results are required.

Lemma 6. Let $z_{\mu}=z(\mu / n, \beta), \phi=t-x$, and $f=\operatorname{Exp}\left[n \alpha_{n}(x)\left(z_{\mu}-1\right)\right]$. The exponentially weighted moments are then given by:

$$
\begin{align*}
R_{n}^{(\beta)}\left(e^{-\mu x} \phi^{0} ; x\right)= & f \\
R_{n}^{(\beta)}\left(e^{-\mu x} \phi^{1} ; x\right)= & {\left[\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right] f } \\
R_{n}^{(\beta)}\left(e^{-\mu x} \phi^{2} ; x\right)= & {\left[\left(\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right)^{2}+\frac{\alpha_{n}(x) z_{\mu}}{n\left(1-\beta z_{\mu}\right)^{3}}\right] f } \\
R_{n}^{(\beta)}\left(e^{-\mu x} \phi^{3} ; x\right)= & {\left[\left(\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right)^{3}+\frac{3 \alpha_{n}(x) z_{\mu}}{n\left(1-\beta z_{\mu}\right)^{3}}\left(\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right)\right.} \\
& \left.+\left(1+2 \beta z_{\mu}\right) \frac{\alpha_{n}(x) z_{\mu}}{n^{2}\left(1-\beta z_{\mu}\right)^{5}}\right] f \\
R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{4} ; x\right)= & {\left[\left(\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right)^{4}+\frac{6 \alpha_{n}(x) z_{\mu}}{n\left(1-\beta z_{\mu}\right)^{3}}\left(\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right)^{2}\right.} \\
& +\left(7+8 \beta z_{\mu}\right) \frac{\alpha_{n}(x) z_{\mu}}{n^{2}\left(1-\beta z_{\mu}\right)^{5}} \cdot\left(\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right)+\left(1+8 \beta z_{\mu}+6 \beta^{2} z_{\mu}\right) \\
& \left.\cdot \frac{\alpha_{n}(x) z_{\mu}}{n^{3}\left(1-\beta z_{\mu}\right)^{7}}+\frac{3 \alpha_{n}(x) z_{\mu}}{n^{2}\left(1-\beta z_{\mu}\right)^{5}}\right] f \tag{5.1}
\end{align*}
$$

Proof. By using (2.7) then

$$
\begin{aligned}
R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{m} ; x\right) & =n \alpha_{n} \sum_{k=0}^{\infty} \frac{1}{k!}\left(n \alpha_{n}+\beta k\right)^{k-1} e^{-\left(n \alpha_{n}+\beta k\right)} e^{-\mu k / n}\left(\frac{k}{n}-x\right)^{m} \\
& =(-1)^{m}\left(\frac{d}{d \mu}+x\right)^{m} e^{n \alpha_{n}(x)\left(z_{\mu}-1\right)}
\end{aligned}
$$

For the case $m=1$ it is given that

$$
R_{n}^{(\beta)}\left(e^{-\mu t} \phi ; x\right)=-\left(\frac{d}{d \mu}+x\right) e^{n \alpha_{n}(x)\left(z_{\mu}-1\right)}=\left[\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x\right] e^{n \alpha_{n}(x)\left(z_{\mu}-1\right)} .
$$

The remainder of the moments follow.
Remark 6. The ratio of $R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{4} ; x\right)$ and $R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{2} ; x\right)$ as $n \rightarrow \infty$ is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{4} ; x\right)}{R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{2} ; x\right)}=0, \tag{5.2}
\end{equation*}
$$

with order of convergence $\mathcal{O}\left(n^{-2}\right)$.
Proof. Consider the expansion of

$$
\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}=z_{\mu} \cdot \frac{1-\beta}{1-\beta z_{\mu}} \cdot \frac{\alpha_{n}(x)}{1-\beta}
$$

by making use of the expansion used in the proof of Lemma (6. (6.3), and by

$$
\frac{1-\beta}{1-\beta z_{\mu}}=1-\frac{\beta \mu}{n(1-\beta)^{2}}+\frac{3 \beta^{2} \mu^{2}}{2!n^{2}(1-\beta)^{4}}-\frac{\left(\beta+14 \beta^{2}\right) \mu^{3}}{3!n^{3}(1-\beta)^{6}}+\mathcal{O}\left(\frac{\mu^{4}}{n^{4}(1-\beta)^{8}}\right)
$$

then

$$
\begin{equation*}
\frac{\alpha_{n}(x) z_{\mu}}{1-\beta z_{\mu}}-x=\frac{x}{2 n(1-\beta)^{2}}\left((\lambda-2 \mu)+\frac{\sigma(\lambda, \mu)}{3!n(1-\beta)^{2}}+\mathcal{O}\left(\frac{1}{n^{2}(1-\beta)^{4}}\right)\right) . \tag{5.3}
\end{equation*}
$$

where $\sigma(\lambda, \mu)=(1-4 \beta) \lambda-6 \lambda \mu+6\left(1-2 \beta+3 \beta^{2}\right) \mu^{2}$. By squaring this result and taking the limit it is determined that

$$
\lim _{n \rightarrow \infty} \frac{R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{4} ; x\right)}{R_{n}^{(\beta)}\left(e^{-\mu t} \phi^{2} ; x\right)}=\lim _{n \rightarrow \infty} \frac{(\lambda-2 \mu)^{2} x^{2}}{4 n^{2}(1-\beta)^{4}}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right) \rightarrow 0 .
$$

With Lemma 6 and Remark 6 use could be made of Theorem 5 of Gupta and Tachev, [7], which can be stated as
Theorem 4. Let E be a subspace of $C[0, \infty)$ which contains the polynomials and suppose $L_{n}: E \rightarrow C[0, \infty)$ is a sequence of linear positive operators preserving linear functions. Suppose that for each constant $\mu>0$, and fixed $x \in[0, \infty)$, the operators L_{n} satisfy

$$
L_{n}\left(e^{-\mu t}(t-x)^{2} ; x\right) \leq Q(\mu, x) R_{n}^{(\beta)}\left(e^{-\mu t}(t-x)^{2} ; x\right) .
$$

Additionally, if $f \in C^{2}[0, \infty) \cap E$ and $f^{n} \in \operatorname{Lip}(\alpha, \mu)$, for $0<\alpha \leq 1$, then, for $x \in[0, \infty)$,

$$
\begin{aligned}
& \left|L_{n}(f ; x)-f(x)-\frac{f^{\prime \prime}(x)}{2} \mu_{n, 2}^{R^{(\beta)}}\right| \\
& \quad \leq\left[e^{-\mu x}+\frac{Q(\mu, x)}{2}+\sqrt{\frac{Q(2 \mu, x)}{4}}\right] \mu_{n, 2}^{R^{(\beta)}} \cdot \omega_{1}\left(f^{n}, \sqrt{\frac{\mu_{n, 4}^{R^{(\beta)}}}{\mu_{n, 2}^{R^{(\beta)}}}}, \mu\right)
\end{aligned}
$$

where $\mu_{n, 2}^{R^{(\beta)}}=R_{n}^{(\beta)}\left(e^{-\mu t}(t-x)^{2} ; x\right)$.

6. Appendix

Expansion of the function $f\left(a e^{t}\right)$ in powers of t is is given by

$$
\begin{equation*}
f\left(a e^{t}\right)=\sum_{k=0}^{\infty}\left[D_{t}^{k} f\left(a e^{t}\right)\right]_{t=0} \frac{t^{k}}{k!}=f(a)+\sum_{k=1}^{\infty} p_{k}(a) \frac{t^{k}}{k!}, \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n}(a)=\left[D_{t}^{n} f\left(a e^{t}\right)\right]_{t=0}=\sum_{r=1}^{n} S(n, n-r) a^{r} f^{(r)}(a), \tag{6.2}
\end{equation*}
$$

with $S(n, m)$ being the Stirling numbers of the second kind. Applying this expansion to the Lambert W-function the formula $W\left(x e^{x}\right)=x$ and the $n^{t h}$-derivative coefficients, Oeis A042977, [11, 13] are required to obtain

$$
\begin{equation*}
-\frac{1}{\beta} W\left(-\beta e^{-\beta+t}\right)=1+(1-\beta) \sum_{n=1}^{\infty} \frac{B_{n-1}(\beta) u^{n}}{n!} \tag{6.3}
\end{equation*}
$$

where $(1-\beta)^{2} u=t$ and $B_{n}(x)$ are the Eulerian polynomials of the second kind. Let $z(t)$ be the left-hand side of (6.3), $-\beta z(t)=W\left(-\beta e^{-\beta+t}\right)$, to obtain

$$
\begin{align*}
\frac{t}{(1-\beta)(z(t)-1)}= & 1-\frac{u}{2!}+2(1-4 \beta) \frac{u^{2}}{4!}-6 \beta^{2} \frac{u^{3}}{4!}-\left(1-8 \beta+88 \beta^{2}+144 \beta^{3}\right) \frac{u^{4}}{6!} \\
& -840 \beta^{2}\left(1+12 \beta+8 \beta^{2}\right) \frac{u^{5}}{8!}+O\left(u^{6}\right) . \tag{6.4}
\end{align*}
$$

The ratio of $z(x)-1$ to $z(t)-1$ is given by

$$
\begin{equation*}
\frac{t}{x} \frac{z(x)-1}{z(t)-1}=1+\frac{(x-t)}{2!(1-\beta)^{2}}+\delta_{1} \frac{(x-t)}{4!(1-\beta)^{4}}+\delta_{2} \frac{(x-t)}{4!(1-\beta)^{6}}+\mathcal{O}\left(\frac{(x-t)}{8!(1-\beta)^{8}}\right) \tag{6.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \delta_{1}=4(1+2 \beta) x-2(1-4 \beta) t \\
& \delta_{2}=\left(1+8 \beta+6 \beta^{2}\right) x^{2}-\left(1-4 \beta-6 \beta^{2}\right) x t+6 \beta^{2} t^{2}
\end{aligned}
$$

References

[1] Acar, T., Aral, A., Gonska, H., On Szász-Mirakyan Operators Preserving $e^{2 a x}, a>0$, Mediterr. J. Math., December 2016
[2] Altomare, F. \& Campiti, M., Korovkin-type Approximation Theory and its Applications, De Gruyter Series Studies in Mathematics, Vol. 17, Walter de Gruyter \& Co., Berlin, New York, 1994
[3] Boyanov, B. D., Veselinov, V. M., A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. Roum 14(62), 1970, 9-13. (no. 1)
[4] Greubel, G. C., A note on Jain basis functions, arXiv:1612.09385 [math.CA], 2016
[5] Gupta, V., and Greubel, G. C., Moment Estimations of new Szász-Mirakyan-Durrmeyer operators, Appl. Math. Comp., 271, 2015, 540-547
[6] Gupta, V., and Greubel, G. C., A Note on modified Phillips operators, arXiv:1604.08847 [math.CA], 2016
[7] Gupta, V. and Tachev, G., On approximation properties of Phillips operators preserving exponential functions, Mediterr. J. Math. (2017), 14:177
[8] Holhos, A., The rate of approximation of functions in an infinite interval by positive linear operators, Studia Univ. "Babes-Bolyai ", Mathematica 55(2), 2010, 133-142
[9] Jain, G. C., Approximation of functions by a new class of linear operators, J. Aust. Math. Soc. 13 (3), 1972, 271-276
[10] Mirakyan, G. M., Approximation of continuous functions with the aid of polynomials (Russian), Dokl. Akad. Nauk. SSSR, 31, 1941, 201-205
[11] Online Encyclopedia of Integer Sequences, sequence A042977, http://oeis.org/A042977
[12] Szász, O., Generalization of S. Bernsteins polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45, 1950, 239-245
[13] Weisstein, Eric W. "Lambert W-Function." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/LambertW-Function.html

