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1. Introduction

In Approximation theory positive linear operatos have been studied with the test func-
tions {1, x, x2} in order to determine the convergence of a function. Of interest are the
Szász-Mirakjan operators, based on the Poisson distribution, which are useful in approx-
imating functions on [0,∞) and are defined as, [10], [12],

Sn(f ; x) =
∞
∑

k=0

(nx)k

k!
e−nx f

(

k

n

)

. (1.1)

In 1972, Jain [9], used the Lagrange expansion formula

φ(z) = φ(0) +
∞
∑

k=1

1

k!

[

Dk−1
(

fk(z)φ′(z)
)]

z=0

(

z

f(z)

)k

(1.2)

with φ(z) = eαz and f(z) = eβ z to determined that

1 = α

∞
∑

k=0

1

k!
(α+ βk)k−1 zk e−(α+β k) z. (1.3)

Jain established the basis functions

L
(β)
n,k(x) =

nx (nx+ βk)k−1

k!
e−(nx+β k) (1.4)

with the normalization
∞
∑

k=0

L
(β)
n,k(x) = 1

1
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2 JAIN OPERATORS

and considered the operators

Bβ
n(f, x) =

∞
∑

k=0

L
(β)
n,k(x) f

(

k

n

)

x ∈ [0,∞). (1.5)

In the reduction of β = 0 the Jain operators reduce to the Szász-Mirakjan operators.
Recently Acar, Aral, and Gonska [1] considered the Szász-Mirakjan operators which

preserve the test functions {1, eax} and established the operators

R∗
n(f ; x) = e−nγn(x)

∞
∑

k=0

(n γn(x))
k

k!
f

(

k

n

)

(1.6)

for functions f ∈ C[0,∞), x ≥ 0, and n ∈ N with the reservation property

R∗
n(e

2at; x) = e2ax. (1.7)

Here the Jain basis is used to extend the the class of operators for the test functions
{1, e−λx} by defining Szász-Mirakyan-Jain operators which preserve the mapping of e−λx,
for λ, x > 0. In the case of λ = 0 the Szász-Mirakyan-Jain operators are constant
preserving operators. Moments, recurrence formulas, and other identities are established
for these new operators. Approximation properties are also obtained with use of the
Boham-Korovkin theorem. The Lambert W-function and related properties are used in
the analaysis of the properties obtained for the Szász-Mirakyan-Jain operators.

2. Szász-Mirakyan-Jain Operators

The Szász-Mirakyan-Jain operators, (SMJ), which are a generalization of the Szász-
Mirakyan operators, are defined by

R(β)
n (f ; x) = nαn(x)

∞
∑

k=0

1

k!
(nαn(x) + β k)k−1 e−(nαn(x)+β k) f

(

k

n

)

(2.1)

for f ∈ C[0,∞). It is required that these operators preserve the mapping of e−λx, as
given by

R(β)
n (e−λt; x) = e−λx (2.2)

where x ≥ 0 and n ∈ N, and λ ≥ 0. When β = 0 in (2.1) the operator reduces to that
defined by Acar, Aral, and Gonska [1]. When β = 0 and αn(x) = x the operator reduces
to the well known Szász-Mirakyan operators given by (1.1). For 0 ≤ β < 1 and αn(x) = x
these operators reduce to the Szász-Mirakyan-Durrmeyer operators defined by Gupta and
Greubel in [5].

Lemma 1. For x ≥ 0, λ ≥ 0, we have

αn(x) =
−λ x

n (z(λ/n, β)− 1)
, (2.3)

where −β z(t, β) = W (−β e−β−t) and W (x) is the Lambert W-function.
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Proof. Considering the mapping (2.2) it is required that

e−λx = nαn(x)

∞
∑

k=0

1

k!
(nαn(x) + β k)k−1 e−(nαn(x)+βk) e−λk/n (2.4)

Making use of (1.3) in the form

enαn(x) z = nαn(x)
∞
∑

k=0

1

k!
(nαn(x) + βk)k−1 e−(βz−ln(z))k (2.5)

and letting β z − ln(z) = β + λ
n
then

enαn(x) z = nαn(x)

∞
∑

k=0

1

k!
(nαn(x) + βk)k−1 e−(β+λ/n) k

which provides

e−λx = enαn(x) (z−1)

or

αn(x) = − λ x

n (z(λ/n, β)− 1)
.

The value of z is determined by the equation β z − ln(z) = β + λ
n
which can be seen in

the form

z e−β z = e−β−λ/n

and has the solution

z(λ/n, β) = − 1

β
W (−β e−β−λ/n), (2.6)

where W (x) is the Lambert W-function. �

Remark 1. For the case λ → 0 the resulting αn(x) is

lim
λ→0

αn(x) = (1− β) x.

Proof. For the case λ → 0 the resulting z = z(λ/n, β) of (2.6) yields z(0, β) = 1. By
considering

∂z

∂λ
= − 1

β

∂

∂λ
W (−β e−β−λ/n) =

W (−β e−β−λ/n)

nβ (1 +W (−β e−β−λ/n))

and

lim
λ→0

∂z

∂λ
= − 1

n (1 − β)
.

Now, by use of L’Hospital’s rule,

lim
λ→0

αn(x) =
x

n
lim
λ→0

λ

z − 1
=

x

n
lim
λ→0

1
∂z
∂λ

= (1− β) x

as claimed. �
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By taking the case of λ → 0 the operators R
(β)
n (f ; x) reduce from exponential preserving

to constant preserving operators. In this case the operators R
(β)
n (f ; x)|λ→0 are related to

the Jain operators, (1.5), by R
(β)
n (f ; x) = Bβ

n(f ; (1− β) x).
The SMJ operators are now completely defined by



































R(β)
n (f ; x) = nαn(x)

∞
∑

k=0

1

k!
(nαn(x) + β k)k−1 e−(nαn(x)+β k) f

(

k

n

)

,

αn(x) = − λ x

n (z(λ/n, β)− 1)
,

z(t, β) = − 1

β
W (−β e−β−t)

(2.7)

and the requirement that R
(β)
n (e−λt; x) = e−λx, for x ≥ 0, λ ≥ 0 and n ∈ N.

3. Moment Estimations

Lemma 2. The moments for the SMJ operators are given by:

R(β)
n (1; x) = 1

R(β)
n (t; x) =

αn(x)

1− β

R(β)
n (t2; x) =

α2
n(x)

(1− β)2
+

αn(x)

n (1− β)3
(3.1)

R(β)
n (t3; x) =

α3
n(x)

(1− β)3
+

3α2
n(x)

n (1− β)4
+ (1 + 2 β)

αn(x)

n2 (1− β)5

R(β)
n (t4; x) =

α4
n(x)

(1− β)4
+

6α3
n(x)

n (1− β)5
+ (7 + 8 β)

α2
n(x)

n2 (1− β)6
+ (1 + 8β + 6β2)

αn(x)

n3 (1− β)7

R(β)
n (t5; x) =

α5
n(x)

(1− β)5
+

10α4
n(x)

n (1− β)6
+ 5 (5 + 4 β)

α3
n(x)

n2 (1− β)7

+ 15 (1 + 4β + 2β2)
α2
n(x)

n3 (1− β)8
+ (1 + 22β + 58β2 + 24β3)

αn(x)

n4 (1− β)9
.

The proof follows directly from work of the author dealing with moment operators for
the Jain basis, see [4, 5, 6].

Lemma 3. Let, φ = t− x, then the central moments of the SMJ operators are:

R(β)
n (φ0; x) = 1

R(β)
n (φ1; x) =

αn(x)

1− β
− x

R(β)
n (φ2; x) =

(

αn(x)

1− β
− x

)2

+
αn(x)

n (1− β)3
(3.2)

R(β)
n (φ3; x) =

(

αn(x)

1− β
− x

)3

+
3αn(x)

n (1− β)3

(

αn(x)

1− β
− x

)

+ (1 + 2 β)
αn(x)

n2 (1− β)5
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R(β)
n (φ4; x) =

(

αn(x)

1− β
− x

)4

+
6αn(x)

n (1− β)3

(

αn(x)

1− β
− x

)2

+ (7 + 8 β)
αn(x)

n2 (1− β)5

·
(

αn(x)

1− β
− x

)

+ (1 + 8β + 6β2)
αn(x)

n3 (1− β)7
+

3αn(x)

n2 (1− β)5

R(β)
n (φ5; x) =

(

αn(x)

1− β
− x

)5

+
10αn(x)

n (1− β)3

(

αn(x)

1− β
− x

)3

+
5αn(x)

n2 (1− β)5

(

αn(x)

1− β
− x

)

· µ1

+
5αn(x)

n3 (1− β)7
· µ2 + (1 + 22β + 58β2 + 24β3)

αn(x)

n4 (1− β)9
,

where

µ1 = (5 + 4β)

(

αn(x)

1− β
− x

)

+ 3 x

µ2 = 3 (1 + 4β + 2β2)

(

αn(x)

1− β
− x

)

+ 2 (1 + 2β) x.

Proof. Utilizing the binomial expansion

φm = (t− x)m =

m
∑

k=0

(−1)k
(

m

k

)

tm−k xk

then

R(β)
n (φm; x) =

m
∑

k=0

(−1)k
(

m

k

)

xk R(β)
n (tm−k; x). (3.3)

Wih the use of (3.1) the first few values of m are:

R(β)
n (φ0; x) = R(β)

n (t0; x) = 1

R(β)
n (φ1; x) = R(β)

n (t; x)− xR(β)
n (t0; x) =

αn(x)

1− β
− x

R(β)
n (φ2; x) = R(β)

n (t2; x)− 2xR(β)
n (t; x) + x2R(β)

n (t0; x)

=
α2
n(x)

(1− β)2
+

αn(x)

n (1− β)3
− 2x

αn(x)

1− β
+ x2

=

(

αn(x)

1− β
− x

)2

+
αn(x)

n (1− β)3

The remainder of the central moments follow from (3.1) and (3.3). �

Lemma 4. The central moments, given in Lemma 3, lead to the limits:

lim
n→∞

nR(β)
n (φ; x) =

λ x

2! (1− β)2

lim
n→∞

nR(β)
n (φ2; x) =

x

(1− β)2

(3.4)
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Proof. By setting t = λ/n in (6.4) then

(−λ)

n (1− β) (z(λ/n, β)− 1)
= 1 +

v

2!
+ 2 (1− 4β)

v2

4!
+ 6β2 v

3

4!

− (1− 8β + 88β2 + 144β3)
v4

6!
+ 840β2 (1 + 12β + 8β2)

v5

8!
+O(v6),

where n (1− β)2 v = λ. This expansion may be placed into the form

αn(x)

1− β
− x =

v x

2!

(

1 + (1− 4β)
v

3!
+ 12β2 v

2

4!
−O(v3)

)

.

Multiplying by n and taking the desired limit the resulting value is given by

lim
n→∞

nR(β)
n (φ; x) =

λ x

2! (1− β)2
.

It is evident that
(

αn(x)

1− β
− x

)2

=
(v x

2!

)2
(

1 + 2(1− 4β)
v

3!
+ 20 (1− 8β + 52β2)

v2

6!
− O(v3)

)

for which
(

αn(x)

1− β
− x

)2

+
αn(x)

n (1− β)3

=
(v x

2!

)2
(

1 + 2(1− 4β)
v

3!
+ 20 (1− 8β + 52β2)

v2

6!
− O(v3)

)

+
x

n (1− β)2

(

1 +
v

2!
+ 2 (1− 4β)

v2

4!
−O(v3)

)

Multiplying by n and taking the limit yields

lim
n→∞

nR(β)
n (φ2; x) =

x

(1− β)2
.

�

Remark 2. Other limits may be determined by extending the work of Lemma 4, such as:

lim
n→∞

R(β)
n (φm; x) = 0, for m ≥ 1

lim
n→∞

nR(β)
n (φm; x) = 0, for m ≥ 3

lim
n→∞

n2R(β)
n (φ3; x) =

2(1 + 2β) x+ 3λ x2

2! (1− β)4

lim
n→∞

n2R(β)
n (φ4; x) =

3 x2

(1− β)4

(3.5)

Lemma 5. Expansion on a general exponential weight is given by

R(β)
n (e−µ t; x) = enαn(x) (z(µ/n,β)−1),
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or

R(β)
n (e−µ t; x) = Exp

[

−λ x

(

z(µ/n, β)− 1

z(λ/n, β)− 1

)]

= Exp

[

−µ x · λ
µ

z(µ/n, β)− 1

z(λ/n, β)− 1

]

(3.6)

for µ ≥ 0 and has the expansion

R(β)
n (e−µ t; x) = e−µx

(

1 +
µ(µ− λ)x

2!n(1− β)2
+ ((3µx− 4− 8β)µ

−(3µx− 2 + 8β)λ)
µ(µ− λ)x

4!n2(1− β)4
+O

(

µ(µ− λ)x

6!n3(1− β)6

)) (3.7)

where −β z(µ/n, β) = W (−β e−β−µ/n), −β z(λ/n, β) = W (−β e−β−λ/n). In the limit as

n → ∞ it is evident that

lim
n→∞

R(β)
n (e−µt; x) = e−µx

lim
n→∞

n
[

R(β)
n (e−µt; x)− e−µx

]

=
µ(µ− λ) x

2! (1− β)2
e−µx.

(3.8)

Proof. It is fairly evident that

R(β)
n (e−µt; x) = nαn(x)

∞
∑

k=0

1

k!
(nαn(x) + βk)k−1 e−nαn(x)−(β+µ/n)k

which, by comparison to (2.5), leads to

R(β)
n (e−µt; x) = e−nαn(x) (z(µ/n,β)−1) = Exp

[

−λ x

(

z(µ/n, β)− 1

z(λ/n, β)− 1

)]

.

The expansion of (3.6), with use of (6.5), is given by

R(β)
n (e−µt; x) =

∞
∑

k=0

(−µx)k

k!

(

λ

µ

z(µ/n, β)− 1

z(λ/n, β)− 1

)k

=
∞
∑

k=0

(−µx)k

k!

(

1− k(µ− λ)

2! (1− β)2
+ k((3k + 1 + 8β)µ

+(3k − 1− 8β)λ)
µ− λ

4! (1− β)4
+O

(

µ− λ

6! (1− β)6

))

= e−µx

(

1 +
µ(µ− λ)x

2!n(1− β)2
+ ((3µx− 4− 8β)µ

−(3µx− 2 + 8β)λ)
µ(µ− λ)x

4!n2(1− β)4
+O

(

µ(µ− λ)x

6!n3(1− β)6

))

.

Taking the appropriate limits yields the desired results. �

Remark 3. By use of Lemma 5 it may be stated that:

lim
n→∞

n2 R(β)
n ((e−t − e−x)4; x) =

3 x2 e−4x

(1− β)4
. (3.9)
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Proof. Since

R(β)
n ((e−t − e−x)4; x) = R(β)

n (e−4t; x)− 4 e−xR(β)
n (e−3t; x) + 6 e−2xR(β)

n (e−2t; x)

− 4 e−3xR(β)
n (e−t; x) + e−4x R(β)

n (1; x)

then, by making use of (3.7), it becomes evident that

R(β)
n ((e−t − e−x)4; x) =

3 x2 e−4x

n2 (1− β)4
+O

(

1

n3 (1− β)6

)

.

Multiplying by n2 and taking the limit as n → ∞ yields the desired result. �

4. Analysis

Theorem 1. Given the sequence An : C∗[0,∞) → C∗[0,∞)of positive linear operators

which satisfies the conditions

lim
n→∞

An(e
−kt; x) = e−kx, k = 0, 1, 2

uniformly in [0,∞) then

lim
n→∞

An(f ; x) = f(x)

uniformly in [0,∞) for every f ∈ C∗[0,∞).

The proof of this theorem 1 can be found in [2, 3, 8] and has, in essense, been demon-
started by (3.7) for µ ≥ 0. An estimate of the rate of convergence for the SMJ operators
will require the use of the modulus of continuity

ω(F, δ) = Sup
x,t>0

|F (t)− F (x)|

and can be seen as, for the case where F (e−t) = f(t),

ω∗(f ; δ) = Sup
x,t>0

|e−t−e−x|≤δ

|f(t)− f(x)|

and is well defined for δ ≥ 0 and all functions f ∈ C∗[0,∞). In the present case the
modulus of continuity has the property

|f(t)− f(x)| ≤
(

1 +
(e−x − e−t)2

δ2

)

ω∗(f ; δ), δ > 0. (4.1)

Further properties and use of the modulus of continuity can be found in [3, 8]. The
following theorem can also be found in the later.

Theorem 2. If a sequence of positive linear operators An : C∗[0,∞) → C∗[0,∞) satisfy
the equalities:

‖An(1; x)− 1‖[0,∞) = an

‖An(e
−t; x)− e−x‖[0,∞) = bn

‖An(e
−2t; x)− e−2x‖[0,∞) = cn,
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where an, bn and cn are bounded and finite, in the limit n → ∞, then

‖An(f ; x)− f(x)‖[0,∞) ≤ an |f(x)|+ (2 + an)ω
∗(f,

√

an + 2 bn + cn),

for every function f ∈ C∗[0,∞), and satisfies

‖An(f ; x)− f(x)‖[0,∞) ≤ 2ω∗(f,
√

2 bn + cn)

for constant preserving operators.

Proof. Since

An((e
−t − e−x)2; x) = [An(e

−2t; x)− e−2x]− 2 e−x [An(e
−t; x)− e−x] + e−2x [An(1; x)− 1]

then, by use of (4.1),

An(|f(t)− f(x)|; x) ≤
(

An(1; x) +
1

δ2
An((e

−t − e−x)2; x)

)

ω∗(f, δ)

≤
(

1 + an +
an + 2 bn + cn

δ2

)

ω∗(f, δ).

By choosing δ =
√
an + 2 bn + cn then

An(|f(t)− f(x)|; x) ≤ (2 + an)ω
∗(f,

√

an + 2 bn + cn).

Now, making use of

|An(f ; x)− f(x)| ≤ |f | |An(1; x)− 1|+ An(|f(t)− f(x)|; x)
leads to the uniform estimation of convergence in the form

‖An(f ; x)− f(x)‖[0,∞) ≤ an |f(x)|+ (2 + an)ω
∗(f,

√

an + 2 bn + cn).

For constant preserving operators the property ‖An(1; x) − 1‖[0,∞) = an = 0 holds and
leads to

‖An(f ; x)− f(x)‖[0,∞) ≤ 2ω∗(f,
√

2 bn + cn).

�

Remark 4. The SMJ operators satisfy

‖R(β)
n (f ; x)− f(x)‖[0,∞) ≤ 2ω∗(f,

√

2 bn + cn).

Proof. By using Lemma 2 it is evident that R
(β)
n (1; x) = 1 and yields an = 0. By using

(3.7), of Lemma 5, it is seen that

R(β)
n (e−µ t; x)− e−µx = e−µx

(

µ(µ− λ)x

2!n (1− β)2
− Λ(x, µ, λ)µ(µ− λ)x

4!n2 (1− β)4
+O

(

1

n3 (1− β)6

))

,

where Λ(x, µ, λ) = (3µx− 4− 8β)µ− (3µx− 2 + 8β)λ, and provides

‖R(β)
n (e−µ t; x)− e−µx‖ =

∥

∥

∥

∥

µ(µ− λ) x e−µx

2!n(1− β)2

(

1 +
2Λ(x, µ, λ)

4!n (1− β)2
+O

(

1

n2 (1− β)4

))∥

∥

∥

∥
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which, for µ ∈ {1, 2}, the remaining limiting values, bn and cn can be seen to be bounded
and finite. It is also evident that in the limiting case, n → ∞, bn and cn tend to zero. By
the resulting statements of Theorem 2 it is determined that

‖R(β)
n (f ; x)− f(x)‖[0,∞) ≤ 2ω∗(f,

√

2 bn + cn).

as claimed. �

For the SMJ operators a quantitative Voronovskaya-type theorem can be defined in the
following way.

Theorem 3. Let f, f ′, f ′′ ∈ C∗[0,∞) then
∣

∣

∣

∣

n [R(β)
n (f ; x)− f(x)]− λ x

2! (1− β)2
f ′(x)− x

n (1− β)2
f ′′(x)

∣

∣

∣

∣

≤ |µn(x, β)| |f ′(x)|+ |νn(x, β)| |f ′′(x)|

+ 2 (2 νn(x, β) +
x

(1− β)2
+ ζn(x, β))ω

∗

(

f ′′;
1√
n

)

where

µn(x, β) = nR(β)
n (φ; x)− λ x

2! (1− β)2

νn(x, β) =
1

2!

(

nR(β)
n (φ2; x)− x

(1− β)2

)

ζn(x, β) = n2

√

R
(β)
n ((e−x − e−t)4; x)

√

R
(β)
n (φ4; x).

Proof. The Taylor expansion for the function f(x) is seen by

f(t) = f(x) + f ′(x) (t− x) +
f ′′(x)

2!
(t− x)2 + θ(t, x) (t− x)2 (4.2)

where 2 θ(t, x) = f ′′(η)− f ′′(x) for x ≤ η ≤ t. Applying the SMJ operator to the Taylor
expansion it is determined that

|R(β)
n (f(t); x)− f(x)R(β)

n (1; x)− f ′(x)R(β)
n (φ; x)− f ′′(x)

2!
R(β)

n (φ2; x)|

≤ |R(β)
n (θ(t, x)φ2; x)|.

Using the results of lemma 4 and 5 this can be seen by
∣

∣

∣

∣

n
(

R(β)
n (f ; x)− f(x)

)

− λ x

2! (1− β)2
f ′(x)− x

2! (1− β)2
f ′′(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

nR(β)
n (φ; x)− λ x

2! (1− β)2

∣

∣

∣

∣

|f ′(x)|+ 1

2!

∣

∣

∣

∣

nR(β)
n (φ2; x)− x

(1− β)2

∣

∣

∣

∣

|f ′′(x)|

+ |nR(β)
n (θ(t, x)φ2; x)|
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or
∣

∣

∣

∣

n
(

R(β)
n (f ; x)− f(x)

)

− λ x

2! (1− β)2
f ′(x)− x

2! (1− β)2
f ′′(x)

∣

∣

∣

∣

≤ |µn(x, β)| |f ′(x)|+ |νn(x, β)| |f ′′(x)| + |nRn(θ(t, x)φ
2; x)|

where

µn(x, β) = nR(β)
n (φ; x)− λ x

2! (1− β)2

νn(x, β) =
1

2!

(

nR(β)
n (φ2; x)− x

(1− β)2

)

.

By using (3.8) it is given that

|θ(t, x)| ≤
(

1 +
(e−t − e−x)2

δ2

)

ω∗(f ′′; δ)

which becomes, when |e−t− e−x| ≤ δ is taken into consideration, |θ(t, x)| ≤ 2ω∗(f ′′; δ). If
|e−t−e−x| > δ then |θ(t, x)| ≤ (2/δ2) (e−t−e−x)2 ω∗(f ′′; δ). Therefore, it can be concluded
that

|θ(t, x)| ≤ 2

(

1 +
(e−t − e−x)2

δ2

)

ω∗(f ′′; δ).

The term nR
(β)
n (θ(t, x)φ2; x) becomes

nR(β)
n (θ(t, x)φ2; x) ≤ 2n

(

R(β)
n (φ2; x) +

1

δ2
R(β)

n ((e−t − e−x)2 φ2; x)

)

ω∗(f ′′; δ)

which, by applying the Cauchy-Swarz inequality, becomes

nR(β)
n (θ(t, x)φ2; x) ≤ 2n

(

R(β)
n (φ2; x) +

1

δ2
ζn(x, β)

)

ω∗(f ′′; δ),

where

ζn(x, β) = n2

√

R
(β)
n ((e−x − e−t)4; x)

√

R
(β)
n (φ4; x).

Now, by choosing δ = 1/
√
n, the desired result is obtained. �

Remark 5. By use of Lemma 4 it is clear that µn(x, β) → 0 and νn(x, β) → 0 as n → ∞.

Using (3.5) and (3.9) the limit of ζn(x, β) becomes

lim
n→∞

ζn(x, β) =
3 x2 e−2x

(1− β)4

and yields

lim
n→∞

(

2 νn(x, β) +
x

(1− β)2
+ ζn(x, β)

)

=
x

(1− β)2
+

3 x2 e−2x

(1− β)4
.
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Corollary 1. Let f, f ′, f ′′ ∈ C∗[0,∞) then the inequality

lim
n→∞

n
∣

∣R(β)
n (f ; x)− f(x)

∣

∣ =
λ x

2! (1− β)2
f ′(x) +

x

(1− β)2
f ′′(x)

holds for all x ∈ [0,∞).

5. Further Considerations

Having established several results for the Szász-Mirakyan-Jain operators further consid-
erations can be considered. One such consideration could be an application of a theorem
found in a recent work of Gupta and Tachev, [7]. In order to do so the following results
are required.

Lemma 6. Let zµ = z(µ/n, β), φ = t−x, and f = Exp[nαn(x) (zµ−1)]. The exponentially
weighted moments are then given by:

R(β)
n (e−µx φ0; x) = f

R(β)
n (e−µx φ1; x) =

[

αn(x) zµ
1− β zµ

− x

]

f

R(β)
n (e−µx φ2; x) =

[

(

αn(x) zµ
1− β zµ

− x

)2

+
αn(x) zµ

n (1− β zµ)3

]

f

R(β)
n (e−µx φ3; x) =

[

(

αn(x) zµ
1− β zµ

− x

)3

+
3αn(x) zµ

n (1− β zµ)3

(

αn(x) zµ
1− β zµ

− x

)

+(1 + 2 β zµ)
αn(x) zµ

n2 (1− β zµ)5

]

f

R(β)
n (e−µt φ4; x) =

[

(

αn(x) zµ
1− β zµ

− x

)4

+
6αn(x) zµ

n (1− β zµ)3

(

αn(x) zµ
1− β zµ

− x

)2

+(7 + 8 β zµ)
αn(x) zµ

n2 (1− β zµ)5
·
(

αn(x) zµ
1− β zµ

− x

)

+ (1 + 8β zµ + 6β2 zµ)

· αn(x) zµ
n3 (1− β zµ)7

+
3αn(x) zµ

n2 (1− β zµ)5

]

f

(5.1)

Proof. By using (2.7) then

R(β)
n (e−µtφm; x) = nαn

∞
∑

k=0

1

k!
(nαn + βk)k−1 e−(nαn+βk) e−µk/n

(

k

n
− x

)m

= (−1)m
(

d

dµ
+ x

)m

enαn(x) (zµ−1).
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For the case m = 1 it is given that

R(β)
n (e−µt φ; x) = −

(

d

dµ
+ x

)

enαn(x) (zµ−1) =

[

αn(x) zµ
1− β zµ

− x

]

enαn(x) (zµ−1).

The remainder of the moments follow. �

Remark 6. The ratio of R
(β)
n (e−µt φ4; x) and R

(β)
n (e−µt φ2; x) as n → ∞ is

lim
n→∞

R
(β)
n (e−µt φ4; x)

R
(β)
n (e−µt φ2; x)

= 0, (5.2)

with order of convergence O(n−2).

Proof. Consider the expansion of

αn(x) zµ
1− β zµ

= zµ ·
1− β

1− β zµ
· αn(x)

1− β

by making use of the expansion used in the proof of Lemma 4, (6.3), and by

1− β

1− β zµ
= 1− β µ

n(1− β)2
+

3 β2 µ2

2!n2(1− β)4
− (β + 14β2)µ3

3!n3(1− β)6
+O

(

µ4

n4(1− β)8

)

then

αn(x) zµ
1− β zµ

− x =
x

2n(1− β)2

(

(λ− 2µ) +
σ(λ, µ)

3!n(1− β)2
+O

(

1

n2(1− β)4

))

. (5.3)

where σ(λ, µ) = (1− 4β)λ− 6λµ+6(1− 2β +3β2)µ2. By squaring this result and taking
the limit it is determined that

lim
n→∞

R
(β)
n (e−µt φ4; x)

R
(β)
n (e−µt φ2; x)

= lim
n→∞

(λ− 2µ)2 x2

4n2(1− β)4

(

1 +O
(

1

n

))

→ 0.

�

With Lemma 6 and Remark 6 use could be made of Theorem 5 of Gupta and Tachev,
[7], which can be stated as

Theorem 4. Let E be a subspace of C[0,∞) which contains the polynomials and suppose

Ln : E → C[0,∞) is a sequence of linear positive operators preserving linear functions.

Suppose that for each constant µ > 0, and fixed x ∈ [0,∞), the operators Ln satisfy

Ln(e
−µt (t− x)2; x) ≤ Q(µ, x)R(β)

n (e−µt(t− x)2; x).

Additionally, if f ∈ C2[0,∞)
⋂

E and fn ∈ Lip(α, µ), for 0 < α ≤ 1, then, for x ∈ [0,∞),
∣

∣

∣

∣

Ln(f ; x)− f(x)− f
′′

(x)

2
µR(β)

n,2

∣

∣

∣

∣

≤
[

e−µx +
Q(µ, x)

2
+

√

Q(2µ, x)

4

]

µR(β)

n,2 · ω1



fn,

√

√

√

√

µR(β)

n,4

µR(β)

n,2

, µ





where µR(β)

n,2 = R
(β)
n (e−µt(t− x)2; x).
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6. Appendix

Expansion of the function f(aet) in powers of t is is given by

f(aet) =
∞
∑

k=0

[

Dk
t f(ae

t)
]

t=0

tk

k!
= f(a) +

∞
∑

k=1

pk(a)
tk

k!
, (6.1)

where

pn(a) =
[

Dn
t f(ae

t)
]

t=0
=

n
∑

r=1

S(n, n− r) ar f (r)(a), (6.2)

with S(n,m) being the Stirling numbers of the second kind. Applying this expansion to
the Lambert W-function the formula W (xex) = x and the nth-derivative coefficients, Oeis
A042977, [11, 13] are required to obtain

− 1

β
W (−β e−β+t) = 1 + (1− β)

∞
∑

n=1

Bn−1(β) u
n

n!
, (6.3)

where (1−β)2 u = t and Bn(x) are the Eulerian polynomials of the second kind. Let z(t)
be the left-hand side of (6.3), −β z(t) = W (−β e−β+t), to obtain

t

(1− β) (z(t)− 1)
= 1− u

2!
+ 2 (1− 4β)

u2

4!
− 6β2 u

3

4!
− (1− 8β + 88β2 + 144β3)

u4

6!

− 840β2 (1 + 12β + 8β2)
u5

8!
+O(u6). (6.4)

The ratio of z(x)− 1 to z(t)− 1 is given by

t

x

z(x)− 1

z(t)− 1
= 1 +

(x− t)

2! (1− β)2
+ δ1

(x− t)

4! (1− β)4
+ δ2

(x− t)

4! (1− β)6
+O

(

(x− t)

8! (1− β)8

)

, (6.5)

where

δ1 = 4(1 + 2β)x− 2(1− 4β) t

δ2 = (1 + 8β + 6β2) x2 − (1− 4β − 6β2) xt+ 6β2 t2
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