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Abstract. In the present article we define the Jain type modification of the generalized
Szasz-Mirakjan operators that preserve constant and exponential mappings. Moments,
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1. INTRODUCTION

In Approximation theory positive linear operatos have been studied with the test func-
tions {1,z,z?} in order to determine the convergence of a function. Of interest are the
Szasz-Mirakjan operators, based on the Poisson distribution, which are useful in approx-
imating functions on [0, c0) and are defined as, [10], [12],

supi) =3 ke (1) (L)

k=0

In 1972, Jain [9], used the Lagrange expansion formula

o0 k
o0 =000+ 355 [0 (9. (755) 12
with ¢(2) = e®* and f(z) = €’* to determined that
1=a i % (o + Bk)F—1 2k em(@tBR) 2, (1.3)
Jain established the basis functif):;
Lf}l(m) _ nax(nz + Bk o (na+Bk) (1.4)

k!
with the normalization
Y L) =1
k=0
1


http://arxiv.org/abs/1805.06968v1

2 JAIN OPERATORS

and considered the operators

Bi(fr) = L) f (’“) z € [0,00). (1.5)

n
k=0

In the reduction of 8 = 0 the Jain operators reduce to the Szész-Mirakjan operators.
Recently Acar, Aral, and Gonska [I] considered the Szdsz-Mirakjan operators which
preserve the test functions {1, e} and established the operators

Ry () = e 30 (nla)) (E) (1.6)

|
par k! n

for functions f € C[0,00), x > 0, and n € N with the reservation property
R (e*; x) = e, (1.7)

Here the Jain basis is used to extend the the class of operators for the test functions
{1,e7**} by defining Szasz-Mirakyan-Jain operators which preserve the mapping of e =%,
for A,z > 0. In the case of A\ = 0 the Szdsz-Mirakyan-Jain operators are constant
preserving operators. Moments, recurrence formulas, and other identities are established
for these new operators. Approximation properties are also obtained with use of the
Boham-Korovkin theorem. The Lambert W-function and related properties are used in

the analaysis of the properties obtained for the Szasz-Mirakyan-Jain operators.

2. SZASZ-MIRAKYAN-JAIN OPERATORS

The Szasz-Mirakyan-Jain operators, (SMJ), which are a generalization of the Szdsz-
Mirakyan operators, are defined by

o

RO (fia) = nenfa) 3 s (nana) 4 4Pttt p () o
k=0

for f € C[0,00). It is required that these operators preserve the mapping of e=*%, as
given by

n

where z > 0 and n € N, and A > 0. When § = 0 in (1)) the operator reduces to that
defined by Acar, Aral, and Gonska [I]. When § = 0 and «,,(x) = x the operator reduces
to the well known Szdsz-Mirakyan operators given by (L1). For 0 < g < 1 and a,(z) = =

these operators reduce to the Szasz-Mirakyan-Durrmeyer operators defined by Gupta and
Greubel in [5].

Lemma 1. For x > 0, A > 0, we have
-z
ap(T) = 5 2.3
ST EEVIN Ry %)

where — 3 z(t, 8) = W (=B e 7t and W (z) is the Lambert W-function.
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Proof. Considering the mapping (2.2)) it is required that

e = nay(x) Z o (n oy, (x) + B k)ET em(man(@)+8k) g=Ak/n (2.4)
k=0
Making use of (3] in the form
=1
6nom(x)z _ nan(x) Z E (TL Oén(l’) + /Bk:)k‘—l e—(Bz—ln(z))k (25)
k=0

and letting 3z — In(z) = 8+ 2 then
— 1
enon®z — oy, () Z o (n o (z) + Bk)E—L e (BHAmE

which provides

or

— nGORB) -1
The value of z is determined by the equation 8z —In(z) = 3 + 2 which can be seen in
the form

ze P% = BAn
and has the solution
1
Z()‘/nu 5) = _B W(_B 6_5_)\/”)7 (26)

where W (x) is the Lambert W-function. O
Remark 1. For the case X\ — 0 the resulting oy, (z) is
lim 0, () = (1 - §) .

Proof. For the case A — 0 the resulting z = z(\/n, 5) of (28] yields z(0,5) = 1. By
considering

0z 1 0
7 -7 . —B—=\/n —
o~ paxV(pe ) =5

W (e
B+ W(—Bed3m)

and
0z 1

lim — =

=0 0N n(l-p)
Now, by use of L’Hospital’s rule,
A x . 1

. x ..
R T P

as claimed. O
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By taking the case of A — 0 the operators Ry (f;x) reduce from exponential preserving
to constant preserving operators. In this case the operators RY )( f;7)|as0 are related to
the Jain operators, (L)), by Rgf)(f;:c) = BA(f; (1 - B)x).

The SMJ operators are now completely defined by

( RO (f:2) = noy(x) i % (nap(z) + B k)t e~ (ran@)+8k) ¢ (E) ,
— k! n
an(z) = Ax (2.7)

n(z(\/n,B) 1)’

| 6= Wise

and the requirement that R;ﬁ)(e_’\t; r)=e* forz >0, A>0and n € N.

3. MOMENT ESTIMATIONS

Lemma 2. The moments for the SMJ operators are given by:

RO (1:z2) =1

@) (4. — (@)
R (t;x) = 5
R (t% x) = (1@ "_(9;%2 + - g"ﬁx;)g (3.1)
RO (i) = 4 S0 (1) 0l

B) (4. ) — () 6 (x) a?(x) b ()
R (% x) ) +n(1_5>5 +(7+8ﬁ)7n2(1_5>6 + (1488 +683 )7713(1_@7
RO (8 x) = (1@ Z(?)S - nlé)lo‘j(gﬁ +5(5+48) ?1"(_93)5)7

+15 (1 + 46 + 26%) % + (14228 + 5862 + 24°) #@5)9

The proof follows directly from work of the author dealing with moment operators for
the Jain basis, see [4] 5] [6].

Lemma 3. Let, p =t — x, then the central moments of the SMJ operators are:
R (¢%x) =1
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B) (4 1) = a"(aj)_x 6 an () O‘n(I)_x ? an ()

(s (1—6 ) i (T e) 088
Qn 2 an () 3 ()

) +(1+88+65%) 3(1_5)74-712(1_5)5

s o [an() * 10an(z) [ an(z) P Ban(z)  [on(a)
Réﬁ)@’x)‘(l—ﬁ”) Fanap (15 ) g (12~ 7)
5 ap(x) . 2 3 ()
+7n3(1—ﬁ)7 po 4 (14228 4 583° + 243 )7714(1_@9,

—_

where

1 = (54 48) (1_@5) —x) +3x

py =3 (1443 + 25%) (%(“2—9:) +2(1+28) .

Proof. Utilizing the binomial expansion

P" = (t —x)" Zm: ( )tm_kxk

k=0
then
m - m m—
R = 30" () ot Rt (3.3

Wih the use of (B the first few values of m are:
R (%) = R (% 2) = 1

RO(8'50) = R (2) — 2 RO (1) = 22

1-p
Rnﬂ)(¢2; x) = Rf@ﬁ) (t2; ) — 22 Rng)(t; ) + 22 R;ﬁ) (to; )
_ OZEL(SL’) Oén(.ilf) 9 Oén(x) 9

The remainder of the central moments follow from (B.1I) and (B3).

0
Lemma 4. The central moments, given in Lemma 3, lead to the limits:
Az
li RO (b: ) =
lim nR,(f)(qbz;x) = <

n—00 (1 — 5)2
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Proof. By setting t = A/n in (6.4]) then
(=) v v? 9 v3
=14 5 +2(1—48) 1 +68°
n=AGma -
P

—(1—88+883% + 14453) + 8408% (14 128 + 862) + O(v%),

where n (1 — 3)2v = \. This expansion may be placed into the form

an(x) v 5 V2
—r= 1+(1—-4 126% — —
) o= 5 (Lr - g 12 - 00
Multiplying by n and taking the desired limit the resulting value is given by
Ax
; B) (e ) —

It is evident that
02

T R )

-5
for which
an () ’ an ()
(1—B _x) -y
— (z;_“;”)z (1+2(1—45) +20(1—85+52ﬁ2)— —O(v ))

+ﬁ (1—1—%—1—2(1—45)%—0(03))

Multiplying by n and taking the limit yields

li_)m n R (% x) = (1—p)

O

Remark 2. Other limits may be determined by extending the work of Lemma 4, such as:

lim R® (o™ 2) =0, form > 1
n—oo
lim n R (¢™; 2) =0, form >3
n—o0
' 2(1+28)x + 3\ 22 (3.5)
2 pB) (A3 1) —
32
2 p(B) (. ) —
lim n” R, (7 7) L

Lemma 5. Fzxpansion on a general exponential weight is given by

RO (et 1) = enen@ G/ms)-1),
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or

RO (e ) = Eap [—m (%)} :Ezp{ - 5%] (3.6)

for p >0 and has the expansion

RO ekt z) = eh (1 + % + ((3uxr — 4 — 86

—(Bur — 2+ 806)\) % +0 (%))

where —B 2(u/n, B) = W(=Be P=#/m) —B2(\/n,B) = W(=BeP~M"). In the limit as
n — oo it is evident that

(3.7)

lim R (e " z) = e

n—oo

_ 3.8)
: (B) ( ,—ut. _—x_lu“(:u )‘)x—x (
Jim n (B (e x) — e = na—pe’
Proof. Tt is fairly evident that
= 1
Rﬁlﬁ)(e_“ﬂ ) = nap(z o (1 oy (2 +ﬁk)k 1 g=nan(@)=(B+u/n)k
k=0

which, by comparison to (2.1), leads to

B)(omtib. .\ _ —nan(@) (2(u/n,B)~1) _ B z(p/n, B) -1
R (e " x)=e E:L’pl Az <—z()\/n,5)—1 .

The expansion of (3.6]), with use of (6.0), is given by

[e.9]

Ly e () (A 20, B) — 1N
B =) (ﬁz(x/n,m—l)

0 (_Z!x) (1 - % +k((3k +1+8B)u

1\ - A
+(3k—1—8ﬁ)k>h+o (h))

—p (1 + % + ((Buz — 4 — 88)u

[
NE

B
Il

plp — Az plp — Nz
— -2 A)——— ] .
Bz =2+ 89N aa— g T O <6!n3(1 — B
Taking the appropriate limits yields the desired results. O]

Remark 3. By use of Lemma 5 it may be stated that:

lim n? RO ((e7t —e )4 z) = (3.9)

oo M 1-B)"
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Proof. Since
RP (et —e ™) 2) = RP(em*:2) —de* RO (e 1) + 6722 R (e7 2 1)
—d4e RO (et x) + e RP)(1;2)
then, by making use of (31), it becomes evident that
Jzte e 1
RO ((e™t —e™)ha) = ZI= ) +0 <m) :
Multiplying by n? and taking the limit as n — oo yields the desired result. 0

4. ANALYSIS

Theorem 1. Given the sequence A, : C*[0,00) — C*[0,00)of positive linear operators
which satisfies the conditions

lim A, (e ™™ 2)=e™, k=0,1,2

n—oo

uniformly in [0, 00) then
lim A,(f;z)= f(z)
uniformly in [0, 00) for every f € C*[0, c0).

The proof of this theorem 1 can be found in [2, 3| [§] and has, in essense, been demon-
started by ([B1) for g > 0. An estimate of the rate of convergence for the SMJ operators
will require the use of the modulus of continuity

w(F,0) = Sup [F(t) — F(z)

x,t>0

and can be seen as, for the case where F(e™") = f(t),

S = S 170 f@)
le=t—e—*|<§

and is well defined for 6 > 0 and all functions f € C*[0,00). In the present case the
modulus of continuity has the property
(™

50 - < (14 S5 v, 50 (1.)

Further properties and use of the modulus of continuity can be found in [3, [§]. The
following theorem can also be found in the later.

Theorem 2. If a sequence of positive linear operators A,, : C*[0,00) — C*[0, 00) satisfy
the equalities:

HAn(e_t; T) — e_x||[0700) = by,

[An(e™;2) — 7> ||0,00) = Cns
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where ay, b, and ¢, are bounded and finite, in the limit n — oo, then

[An(f52) = F(@)l[0.00) < an |f(2)] 4+ (2 4 an) W (f, Vam + 200 + ),
for every function f € C*[0,00), and satisfies
14 (f52) = F(@)llj0.00) < 207(f, V20 + )
for constant preserving operators.

Proof. Since
Ap((et —e ™) ha) = [Aulez) —e ] —2e " [Ay(eh2) — e T+ e [Au(1;2) — 1]
then, by use of (4.1]),

A1F0) = f(@)lia) < (A0(152) + 5 A7 = i) ) (1)

a, +20b, + ¢,

< (1 +a, + T) w*(f,0).

By choosing 6 = v/a,, + 2b,, + ¢, then
A1) = f(@)];2) < (24 an) W (f, Van + 20, + cp).

Now, making use of

[An(f52) = f(@)] < |fIAR(L 2) = 1] + An([f(2) — f(2)[; 2)

leads to the uniform estimation of convergence in the form

For constant preserving operators the property [|A,(1;2) — 1||jp,.c) = @ = 0 holds and

leads to
[An(f52) = f(2)lj0,00) < 20" (f, V2 b + €2).

Remark 4. The SMJ operators satisfy
IR (f:2) = f(@)ljo.00) < 260 (f, /200 + ca).

Proof. By using Lemma 2 it is evident that RY )(1; x) = 1 and yields a,, = 0. By using
B1), of Lemma 5, it is seen that

—ut. —uxr _ _—px :u(lu“_)\)x A("EHU“’)‘):U(IU“_)‘)ZE 1
RI(eha) — e = (21n(1—5)2_ A2 (1— B)° +O(n3(1—5)6))’

where A(z, pi, A) = (Buz —4 — 86) u — (Bux — 2 + 8F) A, and provides

O mnt. oz _ ||[P— Az e 2A(z, 1, 2) ( ))
IR (e ) 6”“—Hzmu—m2 O+4WG—BP+O (1= p
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which, for p € {1,2}, the remaining limiting values, b, and ¢, can be seen to be bounded
and finite. It is also evident that in the limiting case, n — oo, b, and ¢, tend to zero. By
the resulting statements of Theorem 2 it is determined that

HRSLB)(.]C,LL’) - f(x)H[O,oo) S 2w*(f7 V an + Cn)'

as claimed. O

For the SMJ operators a quantitative Voronovskaya-type theorem can be defined in the
following way:.

Theorem 3. Let f, f', f" € C*[0,00) then

W R (fs) = £(0)) = g 10) =
< lan(, B 1) + o, ) 1)

T+ Gl (175

+2(2vn(z, 8) +

where
AT
21(1 - )2

vo(z, B) = % (n R (¢% ) — ﬁ)

ol ) = 2\ RO (e — et)ts) y/ B (64 )
Proof. The Taylor expansion for the function f(x) is seen by

F(t) = fla) + f'(2) (t —2) + f”2<!ff>

where 20(t,x) = f"(n) — f"(z) for x < n < t. Applying the SMJ operator to the Taylor
expansion it is determined that

pin(z, ) = n R (¢ 2) —

(t—2)* +0(tz)(t — ) (4.2)

_ =)

5 R (¢?; 2)]

(R (F(t):2) = f(2) B (12) — f'(2) R (¢52)
< [RP(0(t,2) 6% ).

Using the results of lemma 4 and 5 this can be seen by

AT T
n (R;ﬁ)(fﬁc) - f(fc)) - m f(x) - m f(x)
< IR 010) 5 £ @)+ g7 RO (60) = = | 170

+n RP(0(t, ) 9% )|
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Ax , x ”
n (BO(fi2) = @) = =g /@) ~ grp =g /'@
< (e, B (@) + [, B)| [ ()] + [0 Ra(0(t, ) 6% 7))
where

x :nR(ﬁ)(gb'a:)—i)\I
fin (2, B) n (95 TTEIE
1 T

vn(z, 8) = a1 (”Rﬁzﬁ)(qp;x) - m) :

By using (3.8) it is given that

(e—t _ e—x)2

pieo) < (14 50w
which becomes, when |e™" —e™*| < § is taken into consideration, |0(¢, z)| < 2w*(f";0). If

le7t—e7®| > § then |0(t, z)| < (2/6%) (e7t—e*)2w*(f"; ). Therefore, it can be concluded
that

(e

— e—x)2 *( gl
0(t, z)| <2 It (f";9).
The term n R (6(t, z) ¢% &) becomes
1 —_ —x * "
n R0t 2) 6% 2) < 2n (R£B><¢2;x> + g B —e >2¢2;x>) W' (f";9)
which, by applying the Cauchy-Swarz inequality, becomes

n R (0(t,2) 6% ) < 2n (Rﬁ?’@%@ + i@(aﬁ)) W (£"39),

52
where
Gl 8) = R (e = ey ) |/ R (01.0),
Now, by choosing § = 1/4/n, the desired result is obtained. O

Remark 5. By use of Lemma 4 it is clear that p,(x,5) — 0 and v,(z, ) — 0 as n — co.

Using 3.0) and B9) the limit of (,(x, 3) becomes

2 ,—2z
nh_>r20 Cn(l’a 6) = LZ)lx_eﬁ)4
and yields
| . T Jale 2
nll_{{.lo (2 vn(x, B) + m + Cn(il?,ﬁ)) = (1—pB)2 + (1— )+
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Corollary 1. Let f, f', f" € C*[0,00) then the inequality

AT x

Jm 0 [R(fi2) = f@)] = g M@+ =g

holds for all x € [0,00).

f" ()

5. FURTHER CONSIDERATIONS

Having established several results for the Szdsz-Mirakyan-Jain operators further consid-
erations can be considered. One such consideration could be an application of a theorem
found in a recent work of Gupta and Tachev, [7]. In order to do so the following results
are required.

Lemma 6. Let z, = z(pu/n, 3), ¢ =t—x, and f = Ezp[n o, (x) (2,—1)]. The exponentially
weighted moments are then given by:

R (e ¢%a) = f

RO o) = | 3405 o)
L+ T M
R®) (e=h7 2. ) = -<an(a7) % x)2 N @)z .
" 7 L 1—5,2” n(l—ﬁzu)?’
(B) (p=he 43. 1) — _ on(T) 2 ’ 3an(z) 2 (an(:c)z B )
RO (e=re ¢ 1) = _(1_525 !L") +n(1—ﬁz:)3 1—52: x
an(x) z
+(1+252,) 712(1——5;;)5] f
@) (it gty _ | [ On(®) 2 Y Gan(a)z an(®) 2, 2
Rnﬁ(€“¢47l’)_ (1—525 ZL’) +7’L(1—6Z:)3 1_62: x
+(7+8ﬁzu) nz?f(:v)ﬁzgu>5 . (?rfl; j:j _ SL’) 4 (1 "‘SB 2, _'_6B2 Zp)
Oén(l') Zu 3 Oén(l') Zu
.n3 (1 _ /BZH>7 n2 (1 _ Bzu>5:| f

Proof. By using (2.7)) then

RO (e g™ x) = nay, Z o (noy, + Bk)F—t e (rantBk) g=uk/n <— — x)
! n
k=0

d m
o () e
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For the case m = 1 it is given that

d n
Rfﬁ)(e—ut ¢;r) = — (@ + x) ehom () (zu=1) _ [Clt_(iﬂﬁ) Z _ x} oo (@) (1)

The remainder of the moments follow. O
Remark 6. The ratio of R (e=" ¢*; 2) and R (e ¢ 2) as n — oo is
R%ﬁ) —ut 4.
T o G L (5.2)
n—00 Rglﬁ) (e—ut ¢27 .CL’)

with order of convergence O(n=?).

Proof. Consider the expansion of
an () 2, _ 1-fF  an(z)
1 -8z, Y 1-B2, 1-7
by making use of the expansion used in the proof of Lemma [, (€.3)), and by

1-5 Bu 3 6% p? (8 + 1482) u '
T ) DA TP ) L TP (o L <n4<1 —5)8)
then
an () 2, x

1- Bz, 2n(l-pB2 <(A—2u)+%+0(m)). (5.3)

where o(A, 1) = (1 —48)\ — 6 u+ 6(1 — 26+ 35%)u?. By squaring this result and taking
the limit it is determined that

R (et gty (A= 2p)% L
"h_{go R (ert ¢2; z) a "h_{go An?(1—p)* (1 O (5)) -0

O

With Lemma [6] and Remark [6] use could be made of Theorem 5 of Gupta and Tachev,
[7], which can be stated as

Theorem 4. Let E be a subspace of C[0,00) which contains the polynomials and suppose
L, : E — C|0,00) is a sequence of linear positive operators preserving linear functions.
Suppose that for each constant > 0, and fived x € [0,00), the operators L, satisfy

Ln(e7 (t — )% 2) < Q(p, x) RY (e (t — x)*; ).
Additionally, if f € C*[0,00)(E and f™ € Lip(a, u), for 0 < a < 1, then, for xz € [0, 00),

Lu(fia) — (o) - 1Dy

< e+ +

2 4

Q(u, ) Q(Q,U,!L")] RO

where ,uf’(;) = Rgf)(e_”t(t —x)% ).
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6. APPENDIX

Expansion of the function f(ae') in powers of ¢ is is given by

:ZWHmnoy +Zm M (6.1)
k=0
where
pa(a) = [D} f( ZSnn—raf (a), (6.2)

with S(n, m) being the Stirling numbers of the second kind. Applying this expansion to
the Lambert W-function the formula W (ze*) = x and the n'*-derivative coefficients, Oeis
A042977, [111, 13] are required to obtain

_% W(—Be ) =1+ (1—8) Z W’ (6.3)

where (1 — 3)?u =t and B, () are the Eulerian polynomials of the second kind. Let z(t)
be the left-hand side of ([63), —( z(t) = (—B e‘BH) to obtain
t u ut

—@mﬁa+mﬁ+w%—+0() (6.4)

The ratio of z(x) — 1 to z(t) — 1 is given by

tZ(:L’)—l_ (:L’—t) (x—t) (x—t) (SL’—t)
540—1_1 21 (1 — B)2 &mu—ﬁy+%aﬁiﬁﬁ+o(§@j§§),@@
where

5 =4(1+28)z —2(1 —48)t
6y = (14+83+68%) 2> — (1 — 4B — 65%) ot + 63° t*
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